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Device Fabrication 

Fluorine doped Tin Oxide (FTO)-coated glasses (Pilkington, 8 Ωcm -1, 25x25 mm2) were 

etched with an infrared Nd:YVO4 laser beam. The substrate was cleaned in an ultrasonic bath, 

by using a three-step procedure (10 minutes each step) with de-ionized water, acetone and 

isopropanol. A 50 nm-thick patterned blocking TiO2 layer (BL-TiO2) layer was deposited onto 

the patterned FTO following a reported procedure by using spray pyrolysis. TiO2 paste (18 NR-

T paste, Dyesol) diluted with ethanol (1:6 w/w) was deposited over the BL-TiO2 surface by spin 

coating (2000 rpm for 20 s) and sintered at 450 °C for 30 min to obtain a titania mesoporous 

structure. The TiO2-coated substrate was then transferred into a glovebox. A solution 1.1 M of 

PbI2 powder (Sigma Aldrich) and 1.1 M of CH3NH3I (Dyesol) was dissolved in DMSO and 

stirred at room temperature overnight. 110 µl of the aforementioned solution was spin coated 

on the TiO2 substrate at 1000 rpm for 10 s and 5000 rpm 30 s. 200 µl of toluene were poured 

on the device 10 s prior the end of the second ramp. In order to obtain a full perovskite 

conversion the film was annealed at 100 °C for 40 minutes. A doped Spiro-OMeTAD 

(2,20,7,70-tetrakis(N,N-dip-methoxyphenylamine) 9,9’-spirobifluorene) solution (60 mM, 

Lumtec) in chlorobenzene was spun at 2000 rpm for 20 s. The molar ratio the cobalt additive 

(FK102)/Spiro-OMeTAD was 0.03. Finally, the samples were transferred into a high vacuum 

chamber (10-6 mbar) to thermally evaporate Au back contacts having a nominal thickness of 80 

nm and leaving an active area of 1.05 cm2. 

 

Thin Film Fabrication 

We purchased the organic cation salts from Dyesol; the Pb compounds from TCI and CsI and 

KI from Alfa Aesar. Spiro-OMeTAD was purchased from Borun Chemicals and used as 
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received. Unless otherwise stated, all other materials were purchased from Sigma-Aldrich. We 

prepared the triple-cation-based perovskite Cs0.06FA0.79MA0.15Pb(I0.85Br0.15)3 films by 

mixing PbI2 (1.2 mol.L-1), FAI (1.11 mol.L-1), MABr (0.21 mol.L-1) and PbBr2 (0.21 mol.L-1) 

in a mixture of anhydrous DMF:DMSO (4:1, volume ratio). We then added 5 volume percent 

CsI stock solution (1.5 mol.L-1 in DMSO) to the prepared double cation perovskite solution. 

The potassium iodide powders was first dissolved in mixed solutions of DMF/DMSO (4:1, 

volume ratios) to make stock solutions each of 1.5 mol.L-1. The resulting KI solution was added 

into the triple cation perovskite solution to achieve the desired additive ratios. We then 

deposited the perovskite films by spin coating the prepared solutions using a two-step program 

at 2000 and 6000 rpm for 10 and 30 seconds, respectively, and dripping 150 µL of 

chlorobenzene 30 seconds after the start of the spinning process. We then annealed the films at 

100°C for 1 hour. All solutions and films were prepared in a nitrogen-filled glove box.  

 

Electron Microscopy Characterisation 

Cross-sectional specimens were extracted as lamellae for TEM analysis using focused ion beam 

(FIB) milling. EDX data were acquired using a FEI Tecnai Osiris TEM equipped with a high 

brightness Schottky X-FEG gun and a Super-EDX system composed of four silicon drift 

detectors, each approximately 30 mm2 in area and arranged symmetrically around the optical 

axis to achieve a collection solid angle of 0.9 sr. Spectrum images were acquired with an 

acceleration voltage of 200 kV, a probe current of 0.6 nA and a spatial sampling of 10 nm per 

pixel.  
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Figure S1.  Variation in the probe size for different focus conditions. The convergence angle α/2 is equal 

to 13 mrad. 

Principal Component Analysis (PCA) is one of the most popular multivariate analysis methods and it 

is used to identify correlations in a given dataset. In particular, PCA aims to find the covariance 

structure of a set of components, i.e the directions that explain the highest data variation. These 

directions are called principal components, from which the name of the technique. The simple case of 

a dataset of two variables (X,Y) is shown in Figure S2.  

 

Figure S2. Data set of two variables. Direction 1 is responsible for most of the variance. Direction 2 is 

perpendicular to direction 1.   
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Applying PCA two components are obtained (green arrows). 

To rigorously define PCA, we can consider a random vector 

 

𝑋 =

(
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and its population variance-covariance matrix E: 

 

E(X) = var(X) =(

σ1
2 ⋯ σ1𝑝
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σ𝑝1 ⋯ σ𝑝
2
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where  

σjj = E([Xj - µj]2) is the population variance of the j-th variable  

σjk = E([Xj - µj][Xk - µ k]) is the population covariance between the j-th and k-th variables 

µj = E(Xj) is the population mean of the j-th variable 

 

The following linear combinations are linear regressions, predicting Yi from X1, X2, ... , Xp. Yi is function 

of random data, therefore also Yi is random.  

 

Y1 = e11X1 + e12X2 +···+ e1pXp  

Y2 = e21X1 + e22X2 +···+ e2pXp  

 

Yp = ep1X1 + ep2X2 +···+ eppXp 
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Yi has a population variance of 

var(𝑌𝑖)  = ∑∑𝑒𝑖𝑘𝑒𝑖𝑙𝜎𝑖𝑙

𝑝

𝑙=1

𝑝

𝑘=1

 

Y1 is the first principal component and is the linear combination of x variables which has the maximum 

variance. All the coefficients e11, e12, ... , elp will be defined in order to maximise the variance, with the 

additional constraint that the sum of the squared coefficients is unitary. This constraint is required in 

order to obtain a unique answer. The second principal component (Y2) is the linear combination of x-

variables that accounts for as much of the remaining variation as possible. There is no correlation 

between first and second component. All subsequent principal components are characterised by the 

same properties: being linear combinations that account for as much of the remaining variation as 

possible and having no correlations with the other principal components. Considering the problem 

from a geometrical point of view, PCA projects the data along the directions where the data varies the 

most as shown in Figure S2. The first direction is defined by v1 corresponding to the largest eigenvalue 

d12, whereas the second direction is defined by v2 corresponding to the second largest eigenvalue d22. 

The variance of the data along the principal component directions is related to the magnitude of the 

eigenvalues. 

In a multidimensional dataset with p variables the data are arranged in a matrix C. According to the 

matrix notation the system can be represented by: 

C = ATX  

where C is the principal components matrix, X is a m×p matrix having orthogonal columns, called score 

matrix (the image) and A is a n×p matrix having orthonormal columns, called loading matrix (the 

spectra). The rows of matrix A are the eigenvectors of the covariance matrix. The elements of this 

matrix, called loadings, are the weights aij. The elements in the diagonal of the covariance matrix are 

called eigenvalues. The total variance in the data is defined as the sum of the eigenvalues. Although 

the basic aim in PCA is to decorrelate the data by performing an orthogonal projection, this method is 

also often employed to reduce the dimension of the data removing unwanted components in the 
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signal. PCA is usually applied in the post processing analysis of EDX spectral datasets with two different 

goals. Firstly, it can be employed as a data mining technique to interpret the principal components in 

a qualitative analysis. Secondly, PCA can act as a noise-filter to improve the accuracy of quantitative 

analysis. However, the main drawback of this technique is that loadings and scores can have negative 

peaks, therefore they have no direct physical meaning. 

 

Non-negative matrix factorisation (NMF) is a computational method aimed to approximate high 

dimensional data, where the data are comprised of non-negative components. Similarly to PCA the 

main goal of non-negative matrix factorization (NMF) is to explain the observed data by using only a 

limited number of components. However, NMF performs the decomposition imposing different 

constrains. First of all, both the matrix representing the basis components and the matrix of mixture 

coefficients are imposed to have non-negative entries. Additionally, there are no constraints of 

orthogonality or independence on the basis components, but the components are allowed to overlap. 

The fact that the matrix factors are non-negative results in a direct and intuitive interpretation of 

decomposition results. The constraint of non-negativity induces sparsity. A sparse matrix is a matrix in 

which most of the elements are zero. Therefore, the mixture coefficients have only a few non zero-

entries, leading to more compact and local representation. To mathematically define the problem, we 

can consider r >0 be an integer, and X a matrix with n rows - the measured features - and p columns - 

the samples - with only non-negative entries. Non-negative Matrix Factorization consists in finding an 

approximation: 

X ≈ WH 

 where W, H are n×r and r×xp non-negative matrices, respectively. 
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Figure S3. Variance and cumulative variance on the dataset analysed on Fig 2 represented in logarithmic 

and linear scale.  
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Figure S4. EDX elemental maps calculated on the raw data. 

 

Figure S5. EDX elemental maps calculated after PCA denoising. 
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Figure S6. EDX elemental maps calculated on the raw data. 


