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Nestedness—the tendency for specialist species to interact with 
subsets of the species that generalist species interact with—is a 
pervasive feature of empirical mutualistic communities (Bascompte, 
Jordano, Melián, & Olesen, 2003). While theoretical work has dis-
covered important dynamical implications of nestedness, such as en-
hanced community stability and species coexistence (Bastolla et al., 
2009; Rohr, Saavedra, & Bascompte, 2014; Thébault & Fontaine, 
2010), there has been less agreement about why networks vary 
in their levels of nestedness. Answering this question is an impor-
tant challenge as it has the potential to improve understanding of 
the mechanisms leading to nested architectures and hence the pro-
cesses underlying community persistence.

In a recent paper, Song, Rohr, and Saavedra (2017) address this 
issue in plant–pollinator communities, examining the environmen-
tal correlates of nestedness. Specifically, the authors develop a 
new normalized nestedness metric based on NODF (nestedness 
based on overlap and decreasing fill) (Almeida- Neto, Guimarães, 
Guimaraes, Loyola, & Ulrich, 2008) that, unlike other nestedness 
measures, can be fairly compared between networks. They use 
this metric to test the hypothesis that higher levels of nestedness 
are found in more variable environments, where the enhanced 
tolerance to environmental perturbations afforded by a nested 
structure is advantageous. The authors find that their normal-
ized nestedness metric is positively associated with temperature 
seasonality, supporting this hypothesis, and argue that the lack 

of relationship in some past studies is due to widespread use of 
nestedness measures that are not comparable between networks.

This last point is an important one: nestedness is a central con-
cept in the study of mutualistic communities and ensuring it can be 
compared between networks with different properties is essential. 
Song et al.'s normalized nestedness metric aims to solve this problem 
by expressing nestedness as a proportion of the maximum nested-
ness that can be achieved in a given network with the same num-
ber of plants, pollinators and links: NODFn = NODF∕max(NODF). 
They then additionally control for connectance and network size, 
as these can also influence nestedness values, to give a final ‘com-
bined nestedness statistic’: NODFc = NODFn∕(C · log(S)), where C is 
connectance and S is the geometric mean of the number of plants 
and pollinators in the network. The authors provide convincing 
evidence that this statistic is invariant to changes in network size 
and connectance, unlike alternative normalization methods, such as 
using z- scores to express nestedness values relative to a set of null 
expectations.

We welcome the introduction of a new nestedness measure 
that is comparable across networks, and anticipate it will have wide 
uptake among network ecologists. However, while we believe the 
theoretical basis for the combined nestedness statistic is robust, the 
authors’ proposed method for finding the maximum nestedness that 
can be achieved in a network with a given number of plants, pollina-
tors and links (with the constraint that all plants and pollinators must 
have at least one link) has important limitations.

The authors use a greedy algorithm to calculate maximum nested-
ness. This works by successively adding links to the network, placing 
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each new link in the position that gives the highest NODF value out 
of all possible positions. An inherent limitation of greedy algorithms 
is that they lack the foresight to choose suboptimal solutions (in this 
case, link positions) in the current iteration that will allow for better 
solutions (higher nestedness values) later in the algorithm. To illus-
trate this, we consider the following optimization task. Given a graph 
with a branching structure (see Figure 1a), we want to choose a path 
from the node in the top level to one of the nodes in the bottom level 
that maximizes the sum of nodes that lie on the path. Starting from the 
top- level node, an intuitive greedy algorithm will proceed by choos-
ing the node with the highest value at each level and will always get 
stuck in a local optimum (Figure 1b). To achieve the global optimum, 
it is instead necessary to select the node with the lower value in the 
middle level, which the greedy algorithm will never do (Figure 1c). 
One can see that increasing the value of the leftmost node in the bot-
tom level results in an arbitrarily large gap between the optimal and 
greedy solutions. The limitations of greedy algorithms are well known 
in other areas of ecology, such as systematic conservation planning, 
where optimization algorithms are used to solve problems such as 
“what is the minimum number of sites that need to be designated 
as protected areas for all species to occur in at least one protected 
area” or “if a given number of sites can be designated as protected 
areas, what is the maximum number of species that can occur in at 
least one protected area?” It was identified early on that greedy algo-
rithms tend to get stuck in local optima when solving these problems 
(Ardron, Possingham, & Klein, 2010; Ball, Possingham, & Watts, 2009; 
Kirkpatrick, 1983; Underhill, 1994) and so modern software for these 
reserve selection tasks, such as Zonation and Marxan, instead uses 
more sophisticated algorithms to select sites for protection (Moilanen 
et al., 2005; Possingham, Ball, & Andelman, 2000).

Without further assumptions, the merit of a greedy algorithm 
is in speed and simplicity rather than optimality: as we see in 
Figure 1, the decisions made earlier in the optimization process 
severely influence the optimization decisions that can be made 
later on. To demonstrate that the greedy algorithm is unlikely to 
find the true maximum nestedness of a network, we developed 
a simulated annealing algorithm. Simulated annealing works by 
successively applying small modifications to a starting position 
and accepting or rejecting these based on a temperature parame-
ter. The algorithm derives its name from material science, where 
annealing describes the process of heating a material, such as 
glass or steel, and letting it cool down slowly to increase desired 

properties such as clarity or rigidity. The goal of a simulated an-
nealing algorithm is to abstract from this physical process to cre-
ate a more versatile optimization algorithm. A classical simulated 
annealing algorithm requires methods for evaluating the cost and 
finding the neighbour of a feasible network. In the case of nest-
edness maximization, we say that neighbours of a given network 
web are those networks web′ that can be constructed by moving a 
single link, and the cost function is given by web → 1 − nodf(web). 
A feasible network is one where all plants and pollinators have at 
least one link.

The simulated annealing algorithm starts with a random fea-
sible network and initializes the current temperature T to be the 
starting temperature T0. It then proceeds by considering a ran-
domly chosen neighbour of the current network. For both the 
current network and the neighbour network, the cost function is 
evaluated: 

If cost′ < cost, we accept the neighbour network as our new 
solution. If cost′ > cost, we accept the neighbour network with a 
probability given by Kirkpatrick's acceptance probability function 
ecost-cost′/T. Consequently, when the temperature T is high, the algo-
rithm is more likely to accept suboptimal solutions. In other words, 
the algorithm is more likely to accept neighbour networks with nest-
edness values that are lower than the one we have currently found. 
This allows the algorithm to escape any local optima encountered 
early in the process and is analogous to random particle move-
ments happening more often in materials with high temperatures. 
Conversely, when T is low, the algorithm is less likely to accept worse 
solutions, allowing the algorithm to increasingly concentrate on a 
subset of the solution space where a nestedness value close to the 
global optimum can hopefully be found.

The algorithm proceeds like this for a given number of iterations 
N, preserving the best solution encountered in case it is optimal. 
After N iterations, the temperature T is reduced by multiplying it 
by a predefined cooling rate 0 < α < 1. Once the temperature falls 
below a given minimum temperature, Tmin, the algorithm terminates, 
returning the optimal network observed over the entire simulation 
process. While the above describes the core of our method, the ac-
tual algorithm used for our analyses was a modified version of this 
classical simulated annealing algorithm. The detail of these modi-
fications is given in the Supporting Information. The code for our 

cost=1−nodf(web) cost� =1−nodf(web�).

F IGURE  1 Three graphs with branching structures to illustrate the limitations of greedy algorithms. (a) A graph with a branching 
structure. We want to select a path from the node in the top level of the graph to one of the nodes in the bottom level, such that we 
maximize the sum of the nodes that lie on the path. (b) A greedy algorithm would solve this problem by successively selecting the node with 
the highest value, achieving a sum of 18. (c) The optimal solution, achieving a sum of 103
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algorithm is available at https://github.com/CHoeppke/pymaxnodf, 
alongside a script to reproduce our main result.

We applied our modified simulated annealing algorithm to the 
same 59 networks analysed by Song et al. Our algorithm found 
higher levels of maximum nestedness for 58 of these networks 
(98.3%) (Figure 2). In the one network where our algorithm did not 
find higher nestedness values (M_PL_042), we achieved a nested-
ness value equal to the greedy algorithm. This network was the 
smallest one in the dataset (18 species) and so it is likely that both 
 algorithms found the true optimum nestedness in this case. As 
can be seen in Figure 2, while for most networks the increase in 
maximum nestedness was 1% or 2%, for some networks we found 
substantial increases of up to 17%. This maximum increase of 17% 
was insensitive to changes in the algorithm parameters (Figure S1). 
Therefore, normalizing nestedness by dividing the observed nested-
ness by the maximum nestedness achieved using a greedy algorithm 
could lead to misleading normalized nestedness values and subse-
quent ecological interpretations.

In conclusion, we applaud the combined nestedness statistic 
introduced by Song et al. The metric fixes a long- standing prob-
lem in network research, and we highly recommend its adoption. 
We do, however, caution against assuming that a greedy algorithm 
finds the maximum nestedness of a network. As we have shown 
here, in 58 of the 59 networks analysed we are able to find a higher 
(and, in some cases, much higher) maximum nestedness than the 
greedy algorithm. This is not to suggest that our algorithm found 
the true global optimum, but rather to prove that the greedy algo-
rithm definitely did not. We therefore need to take on board the 
lessons learnt from applied mathematics and other areas of ecol-
ogy, such as systematic conservation planning, and adopt better 

ways to find the maximum nestedness of a network than a greedy 
algorithm. We note that adopting more sophisticated algorithms 
does not necessarily incur any computational cost. Conversely, an-
other benefit of simulated annealing algorithms is that evaluating 
the NODF metric for neighbour networks can be implemented in 
a highly efficient way. Consequently, our algorithm improved both 
the computational and optimization performance of the greedy al-
gorithm. For example, for the network with the most number of 
links in the dataset (M_PL_015), Song et al.'s greedy algorithm took 
33 min to complete, while our algorithm finished this same net-
work in 11 min. We hope this reply will stimulate further research 
on methods to find the maximum nestedness of networks, with the 
aim of using Song et al.'s combined nestedness statistic to make 
nestedness truly comparable between communities.
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