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Abstract 1 

Humans and other primates share many decision biases, among them our subjective distortion 2 

of objective probabilities. When making choices between uncertain rewards, we typically treat 3 

probabilities non-linearly: overvaluing low probabilities of reward, and undervaluing high ones. A 4 

growing body of evidence, however, points to a more flexible pattern of distortion than the classical 5 

inverse-S one, highlighting the effect of experimental conditions in shifting the weight assigned to 6 

probabilities, such as task feedback, learning, and attention. Here we investigated the role of 7 

sequence structure – the order in which gambles are presented in a choice task – in shaping the 8 

probability distortion patterns of rhesus macaques. We presented two male monkeys with binary 9 

choice sequences of MIXED or REPEATED gambles against safe rewards. Parametric modeling 10 

revealed that choices in each sequence type were guided by significantly different patterns of 11 

probability distortion. Whereas we elicited the classical inverse-S shaped probability distortion in 12 

pseudorandomly MIXED trial sequences of gamble-safe choices, we found the opposite pattern 13 

consisting of S-shaped distortion, with REPEATED sequences. We extended these results to 14 

binary choices between two gambles, without a safe option, and confirmed the unique influence 15 

of the sequence structure in which the animals make choices. Finally, we showed that the value 16 

of past experienced gambles had a significant impact on the subjective value of future ones, 17 

shaping probability distortion on a trial-by-trial basis. Taken together, our results suggest that 18 

differences in choice sequence are sufficient to reverse the direction of probability distortion.  19 

 20 

Significance Statement 21 

Our lives are peppered with uncertain, probabilistic choices. Recent studies showed dynamic 22 

subjective weighting of probability. In the present study, we show that probability distortions in 23 

macaque monkeys differ significantly between sequences in which single gambles are repeated 24 

(S-shaped distortion), as opposed to being pseudorandomly intermixed with other gambles 25 
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(inverse-S shaped distortion). Our findings challenge the idea of fixed probability distortions 26 

resulting from inflexible computations, and points to a more instantaneous evaluation of 27 

probabilistic information. Past trial outcomes appeared to drive the ‘gap’ between probability 28 

distortions in different conditions. Our data suggest that probability values are slowly but 29 

constantly updated from prior experience – like in most adaptive systems – driving measures of 30 

probability distortion to either side of the S/inverse-S debate. 31 

 32 

Introduction 33 

Choices between uncertain rewards require decision-makers to evaluate each option along 34 

multiple dimensions. At the very least, a decision-maker needs to simultaneously consider the 35 

quantity and probability of a reward’s occurrence if he is to evaluate its attractiveness in relation 36 

to other choice prospects. The von Neumann and Morgenstern utility theorem, commonly referred 37 

to as Expected Utility (EU) theory, was the first axiomatic model of rational behavior capable of 38 

describing people’s choices in these situations (Von Neumann & Morgenstern, 1944). EU theory 39 

rigorously introduced the concept of utility as a representation of a decision-maker’s subjective 40 

value for an objective reward quantity. Through the metric of utility, EU theory was able to describe 41 

different risk attitudes, like the risk-seeking behavior of a gambler or the risk aversion of an 42 

insurance buyer; it was, however, soon challenged by the various experimental results of 43 

behavioral economics (for review see e.g., Machina, 1987; Starmer, 2000; Weber & Camerer, 44 

1987). Attempts to resolve some of these challenges led to the development of several 45 

generalized expected utility theories, many of which (notably prospect theory, rank-dependent 46 

utility theory and cumulative prospect theory) incorporated the concept of probability distortion 47 

(Kahneman & Tversky, 1979; Quiggin, 1982; Tversky & Kahneman, 1992). While maintaining the 48 

non-linear relationship between subjective utility and objective reward magnitudes, these theories 49 
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made use of subjective probability weightings, or probability distortions, to account for the idea 50 

that reward probabilities were also treated non-linearly during choice.  51 

Experimental measures of probability distortion in humans and monkeys typically show that while 52 

small probabilities tend to be overweighted by decision-makers, large probabilities are instead 53 

underweighted (Gonzalez & Wu, 1999; Kahneman & Tversky, 1979; W. R. Stauffer, Lak, 54 

Bossaerts, & Schultz, 2015). There is, however, dramatic variation in this pattern of distortion 55 

across both different subjects (Bruhin, Fehr-Duda, & Epper, 2010; Burke et al., 2018; Gonzalez 56 

& Wu, 1999) and between different task contexts (Farashahi, Azab, Hayden, & Soltani, 2018; 57 

Hertwig, Barron, Weber, & Erev, 2004; Wu, Delgado, & Maloney, 2009). While the causes of such 58 

variability have yet to be identified, differences in probability distortions could relate to the way in 59 

which probability information is presented to decision-makers (Hertwig et al., 2004), or the way in 60 

which probability knowledge is acquired and stored by the decision-maker (Camilleri & Newell, 61 

2013). Some studies suggested that prospect theory might, altogether, be incapable of explaining 62 

differences in risk attitudes across these contexts (Kellen, Pachur, & Hertwig, 2016).  63 

Here we investigated the role of choice context, specifically sequential structures, as a possible 64 

source of probability distortion variability in rhesus macaques: animals known to show quantifiable 65 

and reproducible probability distortions (W. R. Stauffer et al., 2015). To achieve this, we first 66 

measured the certainty equivalents (CE) of specific gambles, defined as the amount of reward for 67 

which the animal was choice-indifferent with regards to said gambles; the CE therefore indicated 68 

the subjective value of the gamble in the ‘currency’ of the safe reward. We then simultaneously 69 

estimated the contributions of utility and probability distortion to these subjective values, allowing 70 

us to model the shape of the monkeys’ probability distortion independently from utility.  71 

We used this technique to investigate the possible influence of trial sequence structure on the 72 

shape of the probability distortion in two different task situations: randomly intermixing the trials 73 

required for the CE measurements of all gambles simultaneously, or determining the CEs of 74 
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different gambles via separate blocks of trials. We performed an out-of-sample test to validate 75 

and extend the results of our main task, and investigated the contribution of the trial history as a 76 

possible correlate of probability distortion variance. Our data showed that a change in the 77 

presentation order of probability information indeed altered the observed probability distortion 78 

pattern, inducing a reversal in probability distortion shape. 79 

 80 

Materials and Methods 81 

Animals and Experimental Setup 82 

Two male rhesus macaques (Macaca mulatta) were used in this study (11.2kg and 13.2kg). 83 

During experiments, the monkeys sat in a primate chair (Crist Instruments) and made choices 84 

between rewarding stimuli presented on a computer monitor positioned 30cm in front of them. 85 

The animals reported their choices between options with a left-right motion joystick (Biotronix 86 

workshop, Cambridge). Joystick position and task event times were sampled and stored at 1kHz 87 

on a Windows 7 computer running custom-made software written in MATLAB (The MathWorks, 88 

Natick, MA) using Psychtoolbox (v3.0.11). All experimental protocols were assessed and 89 

approved by the Home Office of the United Kingdom. 90 

Experimental Design 91 

We trained the monkeys to associate visual stimuli with specific juice rewards that varied along 92 

two dimensions: the quantity of juice delivered (reward magnitude, m), and the delivery probability 93 

of the reward (reward probability, p). To capture both dimensions descriptively, the visual stimuli 94 

consisted of a horizontal bar or of a pair of horizontal bars framed between two vertical framing 95 

lines. The vertical position of the horizontal bars signaled the magnitude of juice delivered; the 96 

width of the bar signaled the probability of their delivery from no bar (no reward) to touching the 97 

frame on both side (certain reward). To ensure that the bar edge position was not used as a cue 98 
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for the gamble’s mathematical expected value (EV), i.e. the product of m and p, the bars were 99 

randomly shifted horizontally on each trial. This guaranteed that magnitude and probability 100 

information were independently presented and used to make choices. Multiple partial bars found 101 

between the vertical frames signaled gambles between ‘risky’ rewards, while a singular, full width 102 

horizontal bar signaled a safe, riskless reward. Across all trials, monkeys experienced rewards 103 

ranging from 0 ml to 0.5 ml in 0.05 ml increments, and gamble probabilities varying between 0.1 104 

and 1 in decimal increments (0.1). 105 

The animals learned to associate rewards and magnitudes with the visual stimuli schema through 106 

more than 5000 single-outcome, or imperative, trials. For these trials, only one option was 107 

presented on either side of the screen. To obtain the cued reward, the animals were required to 108 

select the side on which the reward was presented. All reward options were repeated on both the 109 

left and right sides of the computer screen, alternating pseudorandomly to control for any side-110 

preference. 111 

Following imperative training, we presented the animals with a binary choice paradigm where they 112 

had to choose one of two reward options presented simultaneously. Most binary choice trials 113 

pitted a safe reward against a gamble. All gambles consisted of two probabilistic rewards: the 114 

monkey could either get a fixed 0.5 ml of juice with probability p, or 0 ml of juice with probability 1 115 

- p. Safe options varied in terms of reward magnitude only. In separate sets of trials, we presented 116 

the animals with choices between two gambles with two outcomes each (possible outcomes: 0 117 

ml, 0.25 ml, 0.5 ml). In these trials, one of the gambles could have two non-zero outcomes (0.25 118 

ml and 0.5 ml). In all cases, reward was delivered probabilistically, matching the probabilities cued 119 

by each stimulus. Trials began with a white cross at the center of a black screen, followed by the 120 

appearance of a joystick-driven cursor. The cursor had to be moved to the center cross in order 121 

for a trial to begin. After successfully maintaining the cursor on the central cross for 0.5 to 1 s, two 122 

visual option cues appeared left and right of the central cross (Fig. 1a). In the case of imperative 123 
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(1) 

trials, only one option appeared while the other side remained dark. The animal had 3 seconds to 124 

convey his decision by moving the joystick to the selected side, after which the unselected option 125 

would disappear. The animal’s response time (RT), i.e. the time interval between the cues 126 

appearance and the beginning of the joystick movement, was collected for individual trials. 127 

Reward delivery occurred after the holding time (0.1 s to 0.2 s), and the selected option lingered 128 

on the screen for 1 s post reward delivery to reinforce stimulus-reward associations with visual 129 

feedback. A variable inter-trial period of 1 to 1.5 s (blank screen) led to the next trial onset. 130 

Unsuccessful central hold, side selection hold, or trials where no choices were made resulted in 131 

a 6 s timeout for the animal, after which the trial would be repeated. 132 

Psychometric Elicitation of Certainty Equivalents  133 

The likelihood of a monkey choosing a specific, individual gamble over different safe options was 134 

assessed through the binary choice paradigm (Fig. 1b). The resulting choice ratios were then 135 

used to fit a logistic sigmoid function, or psychometric curve, to estimate choice likelihoods for 136 

every possible safe-gamble pairing within the tested reward range.  137 

P(ChooseSafe) =  1/(1 + e
−(

𝑆𝑎𝑓𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑚𝑙  − 𝑥0
𝜎

)
) 138 

These psychometric curve captured the likelihood of choosing a safe option over a gamble 139 

through two free parameters: x0, measuring the x-position of the curve’s inflection point, and σ, 140 

the function’s temperature parameter, reflecting the steepness of the curve. Importantly, only 141 

sequences that contained choices between a gamble and a minimum of three different safe 142 

options (repeated at least 4 times) were used in the analysis. 143 

The point of choice indifference between gamble and safe options, corresponding to the inflection 144 

point x0 of the resulting model, represented a gamble’s certainty equivalent (CE): the certain safe 145 

reward that was of equal subjective value to the gamble. CEs could then be used to categorize 146 

behavior. Gambles where the CEs were of greater value than the predicted EV signaled risk-147 
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seeking behavior for that gamble’s probability value. Gambles with CEs lower than their EVs 148 

indicated risk-averse behavior for that option. For cases where CEs were equal to EVs, the 149 

animals were seen as being risk-neutral. 150 

To explore the role of task structure on the variability of one’s probability distortion pattern, we 151 

measured CEs in one of two elicitation conditions: MIXED or REPEATED trial sequences (Fig. 152 

1c,d,e). In the case of MIXED sequences, multiple CEs were elicited through single blocks of 153 

randomized choice trials involving different gambles and safe options. Such blocks were repeated 154 

until each gamble-safe pair had been presented a minimum of 4 times each. In the case of 155 

REPEATED sequences, CEs were elicited using blocks of trials that contained a unique gamble. 156 

These REPEATED trial blocks pitted multiple safe options against a single gamble for the 157 

elicitation sequence. Other than these sequence designs, everything from visual cues to 158 

timescales was identical. The only difference between elicitation conditions was the number of 159 

different probabilities of reward (gambles) experienced within a trial block. Testing for each 160 

elicitation condition was done consecutively over multiple days, with each monkey receiving 161 

imperative training before their daily elicitation sessions. We collected on average 172.95 ± 20.24 162 

(SEM) trials per daily session over 56 sessions for monkey A (22 REPEATED and 34 MIXED 163 

sessions, in consecutive days), and 414.63 ± 27.87 trials over 59 sessions for monkey B (31  164 

REPEATED and 28 MIXED sessions, in consecutive days). 165 

Analysis of Behavioral Data 166 

All data were collected, stored, and analyzed using custom MATLAB and Python (SciPy 1.1.0: 167 

Oliphant, 2007) software. Analyses were run on trial-by-trial choice data, and on the CEs elicited 168 

psychometrically from these trial-by-trial choices. The data were stored and analyzed separately 169 

for the two animals. 170 
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(2) 

Before any comparative analyses, the use of visual stimuli to guide the monkeys’ decision 171 

behavior was verified through analyzing all CE elicitation trials (excluding error trials where the 172 

animals made no choices) in a logistic regression model: 173 

𝑦 = 𝛽0 + 𝛽1(𝑉𝐺𝑎𝑚𝑏𝑙𝑒) + 𝛽2(𝑉𝑆𝑎𝑓𝑒) + 𝛽4(𝑅𝑖𝑠𝑘) + 𝛽3(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑅) + 𝜀  174 

The dependent variable took a value of y = 1 if the gamble was chosen and y = 0 if the safe option 175 

was chosen instead. As had been previously done (W. R. Stauffer et al., 2015), we fitted four 176 

independent variables: option values (Vgamble, Vsafe) were defined as the EV of gamble and safe 177 

rewards; gamble position (PositionLR) as 0 for left, 1 for right screen side; and the outcome’s risk 178 

value was defined as √ 𝑝 ∗ (1 − 𝑝), a proportional representation of probabilistic variance. We 179 

fitted individual testing days separately, fully standardizing the β-coefficients and then testing for 180 

statistical significance (one sample t-test, p<0.05) in order to identify relevant decision variables. 181 

Positive regression coefficients indicated an increase in the likelihood of choosing a gamble over 182 

a safe option with increasing independent variable value; negative regression coefficients 183 

indicated a decrease in the likelihood of choosing the gamble.  184 

Once the use of onscreen stimuli to guide choices had been confirmed, CEs were measured using 185 

the aformentioned psychometric fit (see Psychometric Elicitation of Certainty Equivalents). CEs 186 

gathered in the MIXED condition were compared with CEs gathered under the REPEATED 187 

condition using a two-factor ANOVA with gamble probability and elicitation condition as main 188 

factors. The ANOVA also captured any interaction between the two factors, highlighting any 189 

condition effects present at a sequence level. 190 

We pooled trial-by-trial choices to parametrically model the respective effects of utility and 191 

probability distortion on single choices, and more generally, on the subjective value of gambles 192 

(CEs). For each daily testing session, we simultaneously estimated both the utility and probability 193 

distortion functions from within a standard discrete choice model. Functional parameters that best-194 
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(5) 

(3) 

(4) 

described choices between gamble-safe pairs were elicited in this way, capturing the individual 195 

effects of non-linear utility and probability distortion. The model ran on trial-by-trial choice data, 196 

with data binned into several sets containing one gamble and all safe options presented against 197 

it on the day (CE elicitation sequence). The discrete choice (softmax) function returned the 198 

probability of choosing the gamble option based on the subjective value of both the gamble (VG) 199 

and the safe reward presented (VS).  200 

𝑃𝑐ℎ𝑜𝑜𝑠𝑒 𝐺𝑎𝑚𝑏𝑙𝑒 = 1/(1 + e−𝜆(𝑉𝐺−𝑉𝑆)) 201 

The softmax parameter, λ, defined the likeliness of choosing the better prospect; each option’s 202 

value (V) was defined according to prospect theory (Kahneman & Tversky, 1979), as the product 203 

of utility (u) and probability distortion (w) outputs: 204 

𝑉(𝑝, 𝑚) = 𝑤(𝑝) ∗ 𝑢(𝑚) 205 

Utility was modeled through a power function 206 

𝑢(𝑚) = (
𝑚𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝑚𝑚𝑎𝑥
)

𝜌

 207 

where ρ>1 captured risk-seeking choice behavior, ρ<1 captured risk-averse choice behavior 208 

(ρ<1), and p=0 implied risk neutrality (Hsu, Krajbich, Zhao, & Camerer, 2009). Magnitude values 209 

were divided by 0.5 ml (mmax), such that the maximal reward a monkey could get was anchored 210 

at 1 unit of utility. 211 

We compared four functional models of probability distortion in an attempt to best capture 212 

changes in probability distortion across conditions. Of these classical models, two had a single 213 

fitting parameter: the one-parameter Prelec function (Eq. 6, Prelec-1, parameter: α) and the 214 

Kahneman and Tversky probability weighting function (Eq. 7, Tversky, parameter: ε); the others 215 

had two fitting parameters: the two-parameter Prelec function (Eq. 8, Prelec-2, parameters: α, β) 216 

and the Gonzalez and Wu log-odds model (Eq. 9, Gonzalez, parameters: γ, δ). Formally: 217 
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(6) 

(7) 

(8) 

(9) 

(10) 

𝑤(𝑝) =  e −(− ln(𝑝))𝛼  218 

𝑤(𝑝) =  
𝑝𝜀

(𝑝𝜀 + (1 − 𝑝)𝜀)1/𝜀
 219 

𝑤(𝑝) =  e −𝛽(− ln(𝑝))𝛼  220 

𝑤(𝑝) =
𝛿𝑝𝛾

𝛿𝑝𝛾 + (1 − p)𝛾
 221 

Using a maximum likelihood estimation (MLE) method we simultaneously estimated the functional 222 

parameters from the experimental data. We defined the log-likelihood function as: 223 

𝐿𝐿(𝑢(𝑚), 𝑤(𝑝)| 𝑦) =  ∑  𝑦𝑖

𝑛

𝑖=1
∗ log(𝑃𝐶ℎ𝑜𝑜𝑠𝑒 𝐺𝑎𝑚𝑏𝑙𝑒) + ∑  𝑦𝑖

′
𝑛

𝑖=1
∗ log(𝑃𝐶ℎ𝑜𝑜𝑠𝑒 𝑆𝑎𝑓𝑒) 224 

The log-likelihood function was defined on all trials in a session (n), the trial number (i) and the 225 

choice outcome parameter for the gambles and safe options (y and y’ respectively). The outcome 226 

parameters took a value of 1 if their respective option was chosen; 0 otherwise. We used an 227 

unconstrained Nelder-Mead search algorithm (MATLAB: fminsearch) to compute the functional 228 

parameters that minimized the negative log-likelihood (-LL). This maximum likelihood estimation 229 

approach allowed for the simultaneous estimation of the model’s free parameters, placing no 230 

constraints on their values (Abdellaoui, 2000; Pelé, Broihanne, Thierry, Call, & Dufour, 2014; W. 231 

R. Stauffer et al., 2015). 232 

The algorithm identified the best fitting softmax, utility, and probability distortion parameters with 233 

respect to each monkey’s daily choices on CE elicitation sequences. Four complete models were 234 

parametrized, accounting for the different probability distortion functions investigated. From these, 235 

we calculated the Bayesian Information Criterion (BIC) to pinpoint the probability distortion 236 

function most reliable in capturing behavior. Four sets of parameters and their BIC were estimated 237 

for every testing day, independently for each model. We selected a single model for further 238 
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analysis, based on the flexibility of the functional model, its comparative BIC score (one-factor 239 

ANOVA with repeated measures, Greenhouse-Geisser corrected p-values: pGGc), and the 240 

deviance between the model’s predicted CEs and the experimental ones (one-factor ANOVA with 241 

repeated measures, Greenhouse-Geisser corrected p-values). 242 

We further validated the parameter estimation procedure by running 10 simulated choice datasets 243 

within the fitting algorithm. Datasets used for testing were generated by fixing the utility parameter 244 

(ρ) and varying the probability distortion parameter (α), or vice-versa. The softmax temperature 245 

parameter was kept constant (λ=10) as we specifically wanted to test the robustness of the 246 

estimation procedure in relation to variability in the utility and probability parameters. These fixed 247 

models were used to simulate individual trial choices. We simulated 6 trials for every gamble-safe 248 

pair (safe magnitude levels: 0 ml to 0.5 ml in steps of 0.05 ml). Five datasets varied in terms of 249 

utility (ρ = 0.20, 0.50, 1.00, 1.50, 3.00), five in terms of probability distortion (α = 0.33, 0.67, 1.00, 250 

1.50, 3.00). We measured estimation accuracy as the 95% confidence interval on estimated 251 

parameters from Monte Carlo simulations on the parameter-derived datasets.  252 

The final estimated parameters were first log-transformed to account for the asymmetric 253 

distribution of the utility and probability distortion parameters (ranging from 0 to ∞, with a value of 254 

1 defining the linear case). We then compared the parameter estimates via one-way MANOVA 255 

analysis with elicitation condition as main factor. From this multivariate analysis, we identified any 256 

significant effect of individual decision functions, while recognizing the collective role all three 257 

parameters in capturing risk preference. More specifically, the MANOVA identified which model 258 

function parameters (choice softmax, utility, or probability distortion) differed significantly between 259 

CE elicitation conditions. 260 

In the REPEATED condition, the gamble option did not change for long sequences of trials and 261 

could, theoretically, be ignored. In order to test the possibility of an attentional shift towards the 262 
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(11) 

safe option in this condition, we defined a model with different weights applied to the two options' 263 

values: 264 

𝑃𝑐ℎ𝑜𝑜𝑠𝑒 𝐺𝑎𝑚𝑏𝑙𝑒 = 1/(1 + e−𝜆( (1−𝑘)∗𝑉𝐺 − 𝑘∗𝑉𝑆 )) 265 

The weight parameter (k) captured the attentional shift towards one option, if significantly larger 266 

than 0.5. The options’ values (VG, VS) were computed, as in the previous model, using the power 267 

utility function and the selected probability distortion function (Prelec-1). 268 

Evaluation of probability distortion in the Marschak-Machina triangle 269 

We introduced the Marschak-Machina triangle (Machina, 1982; Marschak, 1950) to compare the 270 

choice behavior between the MIXED and REPEATED conditions in an out-of-sample test, and to 271 

evaluate the theoretical predictions of the discrete choice model vis-à-vis utility and probability 272 

distortions. 273 

The Marschak-Machina triangle defines a two-dimensional space where any probabilistic 274 

combination of three fixed reward magnitudes m1<m2<m3 can be represented (see Results for 275 

details). The x- and y-axes correspond to the probability of obtaining the lowest (p1) reward m1 276 

and the highest (p3) reward m3, respectively. The probability of the middle magnitude is not 277 

explicitly represented in the diagram, but it can be readily obtained as p2=1-(p1+p3). Points on the 278 

horizontal axis therefore correspond to gambles with outcomes m1 and m2, while points on the 279 

vertical axis identify gambles with m2 and m3 as possible outcomes; the hypotenuse comprises 280 

all gambles containing outcomes m1 and m3 only. In our experiment we set the fixed magnitude 281 

levels to m1 = 0 ml, m2 = 0.25 ml and m3 = 0.5 ml. 282 

We characterized monkey A’s behavior within the Marschak-Machina triangle, by defining 283 

indifference lines between points on the triangle edges as follows: we presented choices between 284 

a fixed gamble (A), defined on one of the axes, and a set of gambles (Bi) located on the triangle’s 285 

hypotenuse; by fitting a psychometric curve to the ratio of Bi and A choices, we identified the 286 
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(12) 

indifference point on the hypotenuse as the probability p3 corresponding to a choice ratio of 0.5. 287 

We then defined an indifference line as the segment connecting the fixed gamble on the axis with 288 

its corresponding indifference point. This procedure was repeated for four fixed gambles on the 289 

x-axis (p1 = 0.2, 0.4, 0.6, 0.8) and for another four fixed gambles on the y-axis (p3 = 0.2, 0.4, 0.6, 290 

0.8), resulting in 8 indifference lines. 291 

Note that such indifference lines characterized points on the triangle edges (two-outcome 292 

gambles): they did not represent complete indifference curves within the Marschak-Machina 293 

triangle (three-outcome gambles). Nevertheless, the slopes of the indifference lines univocally 294 

identified a directional property a monkey’s risk preference pattern: a gradual change in the slope 295 

(fanning-in or fanning-out) of indifference lines has been extensively used in the economic 296 

literature to characterize choice behavior, particularly in relation to the predictions of generalized 297 

expected utility theories. This property allowed us to quantify behavioral changes across elicitation 298 

conditions and to compare the observed data with predictions from the theoretical economic 299 

model.  300 

Crucially, gambles resting on the two axes were never used in the elicitation of CEs. representing 301 

an out-of-sample test. As a consequence, the choice behavior observed in the Marschak-Machina 302 

triangle could be used as independent validation for our previous results. 303 

We computed the theoretical indifference lines by calculating, for each of the eight fixed gambles 304 

defined above, the probability p3 for which the theoretical subjective value of the fixed gamble 305 

was equal to that of the gamble on the hypotenuse. The subjective value of a two-outcome gamble 306 

was defined according to cumulative prospect theory as 307 

𝑉(𝑔𝑎𝑚𝑏𝑙𝑒) = 𝑢(𝑚𝐻) ∙ 𝑤(𝑝𝐻) +  𝑢(𝑚𝐿) ∙ (1 − 𝑤(𝑝𝐻)) 308 
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(13) 

where mH and mL represent the magnitude of the highest and lowest outcome respectively, pH the 309 

probability of occurrence of the highest outcome, u the power utility function and w the Prelec-1 310 

probability distortion function. 311 

The indifference point was defined as the point on the hypotenuse with subjective value equal to 312 

the subjective value of the fixed gamble. Thus, knowing the value of the fixed gamble, one could 313 

identify the indifference point as the probability p3 satisfying the equation u(m3)·w(p3) = V(gamble): 314 

𝑝3 =  𝑤−1 (
𝑉(𝑔𝑎𝑚𝑏𝑙𝑒)

𝑢(𝑚3)
) 315 

where w-1 represents the inverse of the probability distortion function, i.e. w-1 = exp(-(-ln(w))1/α). 316 

Each daily set of indifference points was elicited after CE elicitation sequences, for both the 317 

MIXED and REPEATED CE elicitation sessions. This resulted in two sets of indifference lines, 318 

distinctly associated with the REPEATED and MIXED conditions. Both datasets were obtained 319 

using intermingled gamble sequences, so any difference in the pattern of indifference lines could 320 

only be attributed to the effect of the previous block of trials, i.e. REPEATED or MIXED CE 321 

elicitation. 322 

The directional pattern of the indifference lines was characterized by a measure of the “fanning” 323 

direction, corresponding to a gradual change in the slopes of indifference lines. When moving 324 

from the lower right to the top left corner of the Marschak-Machina triangle, indifference lines 325 

decreasing their slope would fan-in, while indifference lines increasing their slope would fan-out- 326 

much like the structural slats of a folding fan. 327 

A linear regression analysis on the indifference line slopes was used to statistically characterize 328 

the fanning pattern. A positive regression coefficient identified fanning-out of the indifference lines, 329 

while a negative regression coefficient identified fanning-in. It should be noted that the relation 330 

between the slopes of the indifference lines, as we defined them, was not expected to be linear, 331 



16 
 

(14) 

but the linear regression served as a reasonable description of the expected theoretical pattern 332 

and was then used to characterize the measured behavior. 333 

In order to statistically compare the predicted and observed sequence effects on the steepness 334 

of the indifference lines, we first calculated the shift of indifference points (change in p3 value) 335 

between the REPEATED and MIXED conditions; we did this for each of the eight indifference 336 

lines, for both the measured data and the model’s predicted lines. We then carried out a 337 

correlation analysis on the modeled and measured shifts. 338 

Trial History Effects 339 

Since gamble presentation order was the only difference between the MIXED and REPEATED 340 

elicitation sequences, we sought to categorize the effects of said order on the subjective distortion 341 

of probabilities. Using past gamble EVs as a quantitative measure of past experiences – specific 342 

to probabilities – we compared the distribution and use of previous gamble EVs across elicitation 343 

condition. 344 

We first compared the variability of consecutive gamble probabilities in both conditions using a 345 

two-sample t-test. We used the absolute value of consecutive gamble EV differences to contrast 346 

order in an unsigned matter, as signed differences would amount to zero in both cases. We then 347 

assessed the use of past gamble EVs using the following logistic regression: 348 

𝑦 = 𝛽0 + 𝛽1(𝐸𝑉𝐺𝑎𝑚𝑏𝑙𝑒) + 𝛽2(𝐸𝑉𝑆𝑎𝑓𝑒) + 𝛽3(𝐸𝑉𝐺𝑎𝑚𝑏𝑙𝑒−1) + ⋯ + 𝛽𝑛(𝐸𝑉𝐺𝑎𝑚𝑏𝑙𝑒−𝑛) + 𝜀 349 

Again, the dependent variable took a value of y = 1 if the gamble was chosen and y = 0 if the safe 350 

option was chosen instead. The EV of both the current gamble and safe (EVgamble, EVsafe), as well 351 

as the gamble EV of up to 8 trials in the past (EVgamble-n) served as independent variables. Trials 352 

that did not have a minimum of 8 previous trials, in individual sessions, were removed for this 353 

analysis. We again standardized regression coefficients, and identified how many past gamble 354 

EVs had a significant impact on current choice (one sample t-test, p<0.05). Refining the analysis 355 
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(15) 

to a singular preceding trial – we investigated the use of a win-stay/lose-shift (WSLS) strategy by 356 

the animals. A common strategy for human and non-human primates alike, a WSLS choice 357 

pattern involves repeating a ‘winning’ choice until it results in a ‘loss’, one would then shift and try 358 

their luck on another choice option. Since choice options in the CE elicitation sequences involved 359 

many different values for both the gamble and the safe options, we instead explored a more 360 

relaxed WSLS model: 361 

𝑦 = 𝛽0 + 𝛽1(𝐸𝑉𝐺𝑎𝑚𝑏𝑙𝑒) + 𝛽2(𝐸𝑉𝑆𝑎𝑓𝑒) + 𝛽3( 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑎𝑠𝑡) + 𝛽4(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑅) + 𝜀 362 

If the previous choice had been that of a gamble, and that gamble had won (i.e. resulted in a 0.5 363 

ml reward), the 3rd independent variable (Outcomepast) took a value of 1; if the past chosen gamble 364 

had instead been unsuccessful, Outcomepast was 0. By including current EVGamble, EVSafe, and 365 

PositionLR, we could identify the relative effect of a previous gamble’s outcome on current choice. 366 

The logistic regression analysis was only applied to trials in which the previous trial's gamble was 367 

chosen. A positive regression coefficient for Outcomepast implied a greater likelihood of picking 368 

the gamble after a ‘win’, regardless of its value. A negative coefficient would, instead, capture a 369 

decrease in the likelihood of picking the gamble, whatever it may be, after a ‘loss’. 370 

In order to compare the performance of this model with the previously defined model (Eq. 2), 371 

which did not include the contribution of past trials, we computed the BIC scores of the two models 372 

only in trials in which the previous gamble was chosen. After this trial selection, we removed 5 373 

sessions in Monkey A’s data, as they had fewer than 4 trials per gamble-safe pair. 374 

To further investigate the effect of past outcomes on the risk patterns, we defined a reinforcement 375 

learning model, in which each gamble value was updated, starting from its EV, by adding or 376 

removing a fixed amount following a win or a loss respectively. Formally, choices were evaluated 377 

according to the discrete choice model defined earlier (Eq. 2), in which the safe value (VS) was 378 
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the certain option’s magnitude (linear coding of magnitudes), while the gamble value (VG) was 379 

updated on each trial according to the rule: 380 

𝑉𝐺 = 𝑉𝐺 + 𝜂 ∙  𝑝𝑟𝑒𝑊𝑖𝑛 −  𝜂 ∙  𝑝𝑟𝑒𝐿𝑜𝑠𝑠 381 

Where preWin and preLoss are variables encoding the last trial’s outcome, i.e. preWin=1 if a gamble 382 

was won in the previous trial, 0 otherwise, and vice versa for preLoss. The value-updating 383 

parameter η represents the amount of value (in ml) added or removed to the gamble value based 384 

on the previous outcome. According to this model, the gamble value was not updated if the safe 385 

option had been chosen on the previous trial. 386 

We retrieved the η parameter value using MLE, and used the resulting average value to simulate 387 

choices and compute the resulting CEs. The simulation was run on MIXED and REPEATED 388 

sequences separately, in order to compare the effect of a value-updating model on the CEs in the 389 

two sequence conditions. 390 

Statistical Analysis 391 

We used MATLAB and/or Python for all statistical analyses. Logistic regressions were computed 392 

per session and results were standardized by multiplying each coefficient with the ratio of the 393 

corresponding independent variable's standard deviation over the standard deviation of the 394 

predicted variable (Menard, 2011). Standardized regression coefficients were tested for statistical 395 

significance through one sample t-test. Two-factor ANOVA, one-factor MANOVA, linear 396 

regression, and t-test results were considered significant at p<0.05, while one-way repeated-397 

measures ANOVAs were Greenhouse-Geisser corrected (degrees of freedom adjustment) to 398 

account for sphericity violations (Mauchly’s test p<0.05; Greenhouse & Geisser, 1959). Post-hoc 399 

analysis with Bonferroni-Holm correction for multiple comparisons were applied to ANOVA 400 

results. Cohen’s d values were used as a measure of effect sizes. In all analyses of data from 401 

single sessions, we reported mean ± SEM across sessions. 402 
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 403 

Results 404 

Design 405 

We tested whether the shape of the probability distortion would be influenced by the order in 406 

which probability information is presented in a sequence of decisions. 407 

Once the animals had been extensively trained with the reward-predicting stimuli (>10,000 trials), 408 

we presented them with sequences of binary choices between different probabilistic rewards (or 409 

gambles) and safe rewards (Fig. 1).  We then used the choice ratios to measure the value of 410 

gambles relative to certain rewards - pinpointing the certain rewards that were subjectively 411 

equivalent to gambles, or a gamble’s certainty equivalent (CE). This procedure revealed the 412 

animals’ attitude towards risky choices: gamble CEs larger than said gamble’s objective expected 413 

value (EV) reflected risk-seeking behavior; risk-aversion was characterized instead by gamble 414 

CEs smaller than the gamble’s EV. 415 

By simultaneously estimating the individual contributions of utility and probability distortion to 416 

these measures of risk attitudes, we could model the shape of the monkeys’ probability distortion 417 

irrespective of the utility function. 418 

Basic behavioral performance 419 

A logistic regression analysis demonstrated that the monkeys used the information from the visual 420 

stimuli to guide their decisions on all daily testing sessions (Fig. 2a). A positive regression 421 

coefficient for gamble value (one-sample t-test, Monkey A: t(55)=29.41, p=2.5×10-35; Monkey B: 422 

t(58)=30.16, p=3.9×10-37) indicated that animals were more likely to choose higher probability 423 

gambles than lower probability ones; conversely, the negative coefficient for safe reward value 424 

(Monkey A: t(55)=-44.65, p=6.8×10-45; Monkey B: t(58)=-58.61, p=2.6×10-53) indicated that 425 

monkeys chose the safe option more frequently when its value was of higher magnitude. Both 426 
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animals preferred gambles of higher over lower probabilistic variance, i.e. they preferred gambles 427 

that were more uncertain, regardless of the outcome (positive coefficient for risk; Monkey A: 428 

t(55)=4.58, p=2.7×10-5; Monkey B: t(58)=7.79, p=1.4×10-10). Monkey A, but not monkey B, 429 

showed a side bias (positive coefficient for the position variable), which was taken into account 430 

by balancing the positions of gambles and safe rewards: every option was presented the same 431 

number of times on each side of the computer monitor. 432 

Estimation of subjective values using different sequence structures 433 

We used a binary choice paradigm to estimate the monkeys’ subjective valuation of specific 434 

gambles. We measured the choice ratios between different safe rewards and gambles ranging in 435 

probabilities from p=0.1 to p=0.9. Fitting a softmax curve to each of these gamble-safe groups 436 

allowed us to estimate the CEs corresponding to different gamble probabilities (see Materials and 437 

methods). These CEs served as a measure of subjective value for unique probabilities and 438 

provided us with a precise measure of an animal’s risk preference over the range of probabilities 439 

tested. 440 

We elicited CEs in both monkeys using two different elicitation conditions: MIXED and 441 

REPEATED gamble sequences (Fig. 2b). In the MIXED condition, we estimated CEs from 442 

sequences of binary choices containing several different gambles pitted against safe rewards. All 443 

gamble and safe options presented were randomly intermixed, and multiple CEs were estimated 444 

from these sequences – one for each gamble. In the REPEATED condition, we elicited CEs from 445 

blocks of trials that contained a single, unique gamble versus different safe rewards. In this way, 446 

we elicited a unique gamble’s CE for each given block. Importantly, the two conditions used the 447 

same visual stimuli; any difference between estimated CEs would therefore be due to the 448 

elicitation sequence in which CEs were estimated. 449 
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We aggregated the daily CEs of individual monkeys, for both conditions, to determine the risk-450 

preference pattern derived from the CEs measured in each elicitation sequence. The risk-451 

preference pattern was therefore directly inferred from the relation between the CEs and the 452 

respective EVs, as opposed to being theoretically derived from the shape of utility and probability 453 

distortion functions. We found a significant difference between the distribution of CE values 454 

elicited in REPEATED versus those elicited in MIXED sequences (two-way ANOVA, factors: 455 

gamble probability, elicitation condition). As expected, we found a significant main effect of reward 456 

probability on a gamble’s CE: higher probability gambles had a higher certainty equivalent in both 457 

animals (Monkey A: F(8,237)=444.12, p=5.2×10-138; Monkey B: F(8,337)=241.14, p=1.4×10-134). 458 

We also saw a main effect of elicitation conditions (Monkey A: F(1,237)=7.69, p=0.006; Monkey 459 

B: F(1,337)=20.21, p=9.6×10-6), where CEs elicited in the MIXED condition were significantly 460 

different to those in the REPEATED condition. Adding to this effect, we observed a significant 461 

interaction effect between probability and condition (Monkey A: F(8,237)=7.73, p=3.3×10-9; 462 

Monkey B: F(8,337)=12.56, p=8.5×10-16), suggesting that the different elicitation sequences had 463 

a more complex effect on CE values than a mere monotonic increase or decrease. This effect 464 

was readily observable from the condition-specific CE distributions (Fig. 2c), where the concave 465 

pattern of the MIXED-condition CEs contrasts with the S-shaped distribution of the REPEATED-466 

condition CEs. 467 

Sequence-dependent changes in probability distortion 468 

Since CE elicitation rested on reward options that varied in both magnitude and probability, any 469 

risk-preference changes could be attributed to non-linear utility, probability distortion, or a 470 

combination of both. To better understand the role of these decision variables in shaping a 471 

gamble’s subjective value, we simultaneously estimated the shape of both functions from the 472 

monkeys’ daily binary choices. Using a standard discrete choice model (Eq. 3), we elicited 473 

functional parameters that best explained each animal’s choices between gamble-safe choice 474 
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pairs on individual days, assuming non-linear utility and probability distortion. The estimation 475 

procedure allowed parameters to take on any value, imposing no constraints beyond the 476 

functional forms of the discrete choice softmax, probability distortion, and utility curves.  477 

We defined the value of each reward option as the product of its subjective probability and utility, 478 

consistent with prospect theory and other modern decision theories (Kahneman & Tversky, 1979; 479 

Tversky & Kahneman, 1992). As is traditionally done, we modeled utility through a one-parameter 480 

power function. The simple power function accounted well for risk-seeking (ρ>1), risk-aversive 481 

(ρ<1), or risk neutral attitude (ρ=1) for the range of reward magnitudes. We tested only one model 482 

for utility, as magnitude presentations did not differ across conditions. Instead, we sought to 483 

optimize our choice model with regards to subjective probability, since CE elicitation sequences 484 

differed in terms of the order in which gamble probabilities were experienced. We tested four 485 

classical models of probability distortion to maximize the reliability of our model in capturing real 486 

choices; two of these functions had one free parameter, the others had two. Finally, we defined 487 

cumulative log-likelihood functions for each of these models and estimated the best-fitting 488 

parameters for each decision function through maximum likelihood estimation (MLE) (see 489 

Materials and methods).  490 

Across all testing sessions, the BIC scores of the Prelec curves were consistently lower than the 491 

one-parameter Tversky and lower than the Gonzalez models in at least monkeys (Fig. 3a). 492 

However, while the two-parameter Prelec had a marginally lower BIC score in both animals, the 493 

one-parameter Prelec showed had a marginally lower sum of squared errors (SSE) between 494 

predicted and average experimental CEs (one-factor ANOVA with repeated measures, Monkey 495 

A: F(3,144)=6.166, pGGc=5.7×104; Monkey B: F(3,168)=3.699, pGGc=1.3×10-2).  We ultimately 496 

selected the one-parameter Prelec due to this lower SSE, lower parameter count, and because 497 

of its ease of interpretation: for the curvature parameter α>1 the function underweighted low 498 

probabilities and overweighted high ones, for α<1, low probabilities were overweighted and high 499 
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ones were underweighted. With an α=1, probabilities were treated linearly. Monte Carlo 500 

simulations from predefined parameters confirmed the reliability of the MLE method for the 501 

selected model: we recovered accurate parameters for both the utility (Fig. 3b) and probability 502 

distortion (Fig. 3c) functions. 503 

Having selected the one-parameter Prelec as the best-fitting probability distortion function, we 504 

estimated the functional parameters of our choice model (Eq. 3) using the MLE method. The 505 

model was able to capture the characteristic pattern of risk attitudes observed in our experimental 506 

data: CEs of low probability gambles resulted larger than the respective EVs in the MIXED 507 

condition, while CEs of high probability gambles were larger than their EVs in the REPEATED 508 

condition (Fig. 3d), in accordance with the measured behavior (Fig. 2b). 509 

We compared daily estimated parameters across CE elicitation conditions for utility and 510 

probability distortion (Fig. 4a). Both animals exhibited convex utility (ρ>1) in the tested range of 511 

0-0.5 ml accounting for risk-seeking behavior, with linearity only in the case of Monkey B’s 512 

REPEATED condition. Importantly, probability distortions inverted across elicitation condition. In 513 

the MIXED elicitation condition, both animals overweighted low probabilities and underweighted 514 

high ones (α>1), while they instead underweighted low probabilities and overweighted high ones 515 

within the REPEATED condition (α<1) (Fig. 4b). MANOVA analysis confirmed the impact of the 516 

different elicitation sequences on both animals’ choice pattern (Monkey A: F(1,54)=24.96, Wilks’s 517 

λ=0.41, p=3.85×10-10, η2=0.59; Monkey B: F(1,57)=40.78, Wilk’s λ=0.31, p=5.2×10-14, η2=0.69) 518 

with only the probability distortion parameter (α) consistently different across conditions (Fig. 519 

4a,c). The change in risk-attitude between the two conditions could therefore, at least in the case 520 

of gamble-safe choices, be reduced to a reversal in the probability distortion function. 521 

The REPEATED condition was a much less complex decision situation compared to the MIXED 522 

one, theoretically allowing for a simpler choice strategy: it would have been sufficient to evaluate 523 

the certain option, ignoring the gamble option in the majority of trials, to make choices. 524 
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We tested for this possibility by fitting a model with an attentional parameter to the choice data 525 

(Eq. 11). We found that there was no significant difference in attention given to the safe compared 526 

to the gamble option (the weight parameter was not significantly different from 0.5; Monkey A: 527 

t(21)=-2.01, p=5.7×10-2 (t-test), Monkey B: t(30)=-1.25; p=2.2×10-1), suggesting that both options 528 

were fully considered when making choices in the REPEATED condition. 529 

Reversal of probability distortion in the Marschak-Machina triangle 530 

To extend our findings past gamble-safe choices, we characterized the choice behavior of one 531 

monkey in a different set of gambles using the Marschak-Machina triangle. This diagram was first 532 

introduced as a way of “organizing” a series of anomalies observed in risky choices, most notably 533 

the common ratio and common consequence effects, which violated the independence axiom of 534 

EU theory. Several economic theories were developed to explain these apparent paradoxes. 535 

Each theory predicted indifference curves with distinctive shapes in the Marschak-Machina 536 

triangle, making it an ideal framework to evaluate and compare the alternative theories (Machina, 537 

1982). 538 

The use of this diagram, which makes it possible to represent a more general class of choice 539 

options, i.e. gambles with three fixed outcomes of varying probabilities (Fig. 5a), allowed us to 540 

extend our results to a wider range of problems. We did this to test the robustness of the 541 

parametric modeling (out-of-sample test) and, most importantly, to investigate the effect of 542 

elicitation condition from a different perspective: by looking at the change in direction of 543 

indifference lines, which connected points of the triangle edges for which the animal expressed 544 

choice indifference (Fig. 5b), we could quantify the effects of elicitation condition that were 545 

specifically dependent on changes in probability distortion, and independent of changes in the 546 

shape of the utility function. 547 
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One of the theoretical consequences of probability distortions in the Marschak-Machina triangle 548 

is that indifference lines would not be parallel to each other, as in the case of linear probability 549 

weighting, but would instead fan-out or fan-in depending on the probability distortion (Fig. 5c): an 550 

inverse S-shaped probability distortion would induce fanning-out, while an S-shaped one would 551 

result in indifference lines fanning-in. Fanning-out would in fact correspond to an increase in the 552 

steepness of the indifference lines when shifting “probability mass” from worse to better 553 

outcomes. As steeper lines correlate with more risk-seeking behavior, fanning-out would imply an 554 

inverse S-shaped probability distortion. The opposite would happen with fanning-in indifference 555 

lines, then corresponding to an S-shaped probability distortion function (Camerer, 1989). 556 

Crucially, because the outcome magnitudes used in the Marschak-Machina triangle are fixed, the 557 

fanning direction is independent of the utility function and is therefore solely determined by the 558 

shape of the probability distortion. In that sense, any observed change in the fanning direction of 559 

the indifference lines with a change in elicitation sequence could only be due to a change in the 560 

probability weighting function (Fig. 5c). 561 

We used the previously recovered parameters for utility and probability distortion to estimate the 562 

expected pattern of indifference lines in the two experimental conditions, MIXED and REPEATED 563 

sequences. We then compared the predicted directions of the indifference lines with the 564 

measured ones. As expected, the theoretical indifference lines, modeled using the previously 565 

elicited parameters, showed a slight fanning-out pattern for the MIXED condition, where a weakly 566 

inverse S-shaped probability distortion was measured. Conversely, we saw a fanning-in pattern 567 

in the REPEATED condition, for which we had observed an S-shaped probability distortion (Fig. 568 

6a, left). 569 

The direct experimental measure of indifference lines was carried out by presenting the animals 570 

with binary choices between a gamble represented by a fixed point on the triangle edge and one 571 

of several points on the triangle’s hypotenuse. The indifference line was defined as the segment 572 
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connecting the fixed point with the point corresponding to choice indifference on the hypotenuse. 573 

This procedure resulted in a directional pattern of indifference lines compatible with the 574 

theoretically predicted one, with no clear fanning direction of indifference lines in the MIXED 575 

condition, and clear fanning-in in the REPEATED condition (Fig. 6a, right). We quantified this 576 

directional pattern of indifference lines using a measure for the fanning direction. The fanning of 577 

indifference lines corresponds to a gradual change in the slope of indifference lines: when moving 578 

from the lower right corner of the probability triangle to the upper left corner, an increasing slope 579 

would produce fanning-out, whereas a decreasing slope would produce fanning-in. Following this 580 

principle, we statistically assessed the fanning direction of the indifference lines by computing a 581 

linear regression on the slopes of the indifference lines. Results show no significant regression 582 

slope in the MIXED condition (R2=0.08, p=0.50), indicating no fanning of indifference curves, while 583 

in the REPEATED condition a significant linear regression (R2=0.98, p=4.4×10-6) indicated 584 

fanning-out of the indifference lines. These results are consistent with predictions from the 585 

modeled indifference lines, which show a similar pattern of fanning directions (Fig. 6b). 586 

We statistically compared the measured and predicted patterns of indifference lines by calculating 587 

the shift in the location of indifference points across conditions; the latter corresponding to 588 

changes in the slope of indifference lines. A significant correlation between the predicted and 589 

measured shifts (Pearson's correlation coefficient r=0.78, p=4.0×10-3) confirmed that the 590 

experimental data complied with our theoretical predictions (Fig. 6c), and supported the finding 591 

that probability distortion drove the change in risk attitude between REPEATED and MIXED 592 

conditions. 593 

The Effect of Trials History on the Probability Distortion 594 

Because CE the structure of elicitation sequences appeared to affect probability distortions 595 

specifically, we investigated whether the differences in choice behavior could be explained in 596 

relation to past experiences, or trial history. One key difference between elicitation sequences 597 
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was the order of the probabilities presented on the screen. In the MIXED sequences, the monkeys 598 

were much more likely to have experienced different gambles in their immediate past than in trials 599 

from REPEATED sequences, where the same gamble was repeated numerous times. 600 

Consequently, while the range of probabilities, magnitudes, and safe outcomes was identical in 601 

both conditions, the variability of past gambles was significantly different between the two 602 

conditions (Fig. 1d,e). 603 

Since humans and non-human primates, much like rodents, often base part of their risky decisions 604 

on recent experiences (Barron & Erev, 2003; Hayden, B; Heilbronner, S; Nair, A; Platt, 2013; 605 

Marshall & Kirkpatrick, 2013; Nowak & Sigmund, 1993), we again ran a logistic regression on the 606 

probability of choosing the gamble option: this time to verify if the EV of past gambles had any 607 

impact on the animals’ decisions (Eq. 14). We found that, in the MIXED condition, both monkeys 608 

made use of at least one past gamble to make their decision (Fig. 7a). The monkeys appeared to 609 

bias their choices in favor of the gamble (positive regression coefficient) when the prior gamble’s  610 

EV was higher. In game-theoric terms, and taking the gamble’s EV as a proxy for its ‘win rate’, 611 

monkeys seemed to follow a win-stay/lose-shift (WSLS) strategy, whereby receiving a reward 612 

from a risky choice option increased the likelihood of choosing a similar option again; the opposite 613 

true for choices where the risky option resulted in a loss (no reward). To validate this hypothesis, 614 

we applied a WSLS-compatible model (Eq. 15) on the immediate trial history of both monkeys, 615 

looking at their propensity to choose a gamble over a safe outcome when they had previously 616 

chosen a gamble and won (Fig. 7b). As expected, we found a significant effect of both the current 617 

gamble’s EV (one-sample t-test, Monkey A: t(50)=29.41, p=3.19×10-33; Monkey B: t(58)=32.28, 618 

p=9.38×10-39) and the current safe outcome’s EV on the likelihood of choosing a gamble (one-619 

sample t-test, Monkey A: t(50)=-38.71, p=6.05×10-39; Monkey B: t(58)=-46.19, p=1.9×10-47). Both 620 

monkeys had a small but significant side bias (one-sample t-test, Monkey A: t(50)=-4.59, 621 

p=2.97×10-5; Monkey B: t(58)=-2.55, p=1.3×10-2). More importantly, there was a significant 622 
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positive effect of ‘winning’ the preceding gamble on the likelihood of selecting the gamble option 623 

again, regardless of value (one-sample t-test, Monkey A: t(50)=10.75, p=1.3×10-14; Monkey B: 624 

t(58)=8.32, p=1.76×10-11). In other words, receiving a reward from a risky gamble made the next 625 

gamble more attractive relative to the safe outcome. 626 

We investigated this effect further, by estimating separate utility and probability distortion 627 

parameters in trials where a past gamble had been selected and ‘won’, and in trials where the 628 

past selected gamble had been ‘lost’. Due to lower trial counts per session after this trial selection, 629 

all sessions were pooled for each condition. In both animals, the utility function estimated from 630 

the former class of trials was more convex than the utility estimated from unrewarded trials (Fig. 631 

7c). Probability distortions, however, were not consistently different between these two classes of 632 

trials, maintaining their respective inverse-S and S-shapes for MIXED and REPEATED 633 

conditions. Much like in the logistic regression, these results suggested a tendency to choose the 634 

gamble option more often after rewarded (win) trials, compared to unrewarded trials (a more 635 

convex utility function corresponding to stronger risk-seeking behavior). What it also highlighted, 636 

however, was a change in the relative value distribution between gambles and safe options - one 637 

that varies with past experience. In other words, gambles following a rewarded trial would be of 638 

higher relative value for the monkeys than those following unrewarded trials, at least in terms of 639 

safe rewards. 640 

Past win or lost effects on subjective value could account for some of the gap in probability 641 

distortion observed across our two conditions. A MIXED sequence of gambles would drive 642 

subjective value estimates in an opposing pattern to that of a REPEATED elicitation sequence 643 

simply due to task structure. In the case of MIXED sequences, the random distribution of gamble 644 

probabilities would indeed result in an inverse-S probability distortion. Gambles with probabilities 645 

larger than 0.5 would, more often than not, follow a gamble of lower EV; the monkey would then, 646 

on average, be less likely to pick said gamble due to the decrease in subjective value estimate 647 
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following lower past returns. This would drive down the CE value of high probability gambles. In 648 

the case of low probability gambles, high past returns would drive CEs up. From this, we would 649 

expect an opposing distortion pattern in a REPEATED condition. For any gamble, the CE value 650 

would be distorted in a way proportional to its own probability: a low probability gamble would be 651 

driven down in value by repeated experience, whereas a high probability gamble would see its 652 

value go up.  A change in gamble value, rather than a simple WSLS strategy, might also have 653 

longer lasting effects and could explain the persistence of sequence type effects when looking at 654 

choices in the Marschak-Machina triangle paradigm.  655 

To test this hypothesis directly, we developed a simple reinforcement learning model in which 656 

gamble values were updated based on the previous trial’s outcome: the value of a gamble 657 

increased by a fixed amount after a win, and decreased by the same amount after a loss (Eq. 16). 658 

Importantly, in the choice model, the gambles’ starting values were the respective objective EVs, 659 

which were compared to the objective safe magnitudes in order to make choices. No utility or 660 

probability distortion were included, only the previous choice softmax function, and we made no 661 

distinction between parameters estimated in repeated or mixed sequences. We again estimated 662 

the model parameters through MLE on each session’s trial-by-trial choice data, and retrieved a 663 

significant, mean value-updating parameter for both monkeys (Monkey A: η = 4.5×10-3 ± 9.0×10-664 

4 SEM; t(55)=4.96, p=7.1×10-6; Monkey B: η = 4.1×10-3 ± 5.8×10-4 SEM; t(58)=7.1, p=2.0×10-9). 665 

The value of η corresponded to the fixed amount of value being added to or removed from the 666 

gamble’s subjective value estimate following “win” and “lose” trials respectively. 667 

After running the estimation procedure on all sessions, we tested if the average observed value-668 

updating parameter could explain the different CE distributions seen across the MIXED and 669 

REPEATED conditions. We computed CEs from simulated choices using the learning model 670 

defined above (Eq. 16), using the mean softmax and value-updating parameters, still holding 671 

utility and probability weights linear. The resulting pattern of simulated CEs (Fig. 7d) followed the 672 
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experimental pattern. In particular, it captured the clear separation between the two CE elicitation 673 

sequences. Although this model appeared to have a lower BIC score than the “classical” prospect 674 

theory model (Eq. 3) (Monkey A: BICEq16=160.7, BICEq3=137.5, t(55)=6.92, p=5.01×10-9; Monkey 675 

B: BICEq16=419.8, BICEq3=392.7, t(58)=4.69, p=1.70×10-5), it accounted for the change in the 676 

pattern of CEs across both conditions using a single set of parameters. Conversely, two different 677 

sets of parameters were necessary for the prospect theory counterpart to capture the different 678 

CE patterns. 679 

Taken together, these results suggest that a simple value updating mechanism that modifies 680 

gamble values based on the previous outcomes, applied to different elicitation sequences, would 681 

be sufficient to induce a reversal in the observed probability distortion patterns of monkeys during 682 

choice. 683 

 684 

Discussion 685 

This study demonstrated that the shape of the probability weighting function guiding value-based 686 

choices in monkeys depended largely on the task’s sequence structure. When deriving CEs from 687 

sequences in which different probabilistic rewards pseudorandomly alternated (MIXED), we found 688 

that monkeys overweighted low probability rewards and underweighted high probability ones. 689 

Conversely, the same CE elicitation method yielded the opposite choice pattern (underweighting 690 

of low probabilities and overweighting of high ones) when choice sequences consisted of trial 691 

blocks each containing a unique, REPEATED gamble. By simultaneously eliciting utility and 692 

probability weighting functions from each of these elicitation conditions, we showed that the two 693 

opposing choice patterns we observed could be explained by a reversal of the standard inverse 694 

S-shaped probability distortion function, seen when gambles were MIXED, to an S-shaped 695 

distortion when identical gambles were REPEATED. We confirmed and extended these results 696 

by comparing choice indifference lines in the Marschak-Machina triangle representations of the 697 
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two elicitation conditions. The triangle’s indifference maps were compatible with the observed 698 

inversion of probability distortions, preserving the weighting patterns in trials where no safe 699 

options were presented. Finally, by analyzing both sequence structure and monkeys' choices in 700 

relation to previous trials, we showed that a past-driven update of subjective values could partially 701 

explain the observed reversal in probability distortion. 702 

Modern economic theories of choice under risk introduced distorted probability weightings to 703 

account for biases and departures from expected utility theory’s predictions (Allais, 1953; 704 

Kahneman & Tversky, 1979; Von Neumann & Morgenstern, 1944).  Since then, the typical finding 705 

has been that humans overweighted low probabilities all the while underweighting high ones 706 

(Abdellaoui, 2000; Gonzalez & Wu, 1999; Lattimore, Baker, & Witte, 1992; Tobler, Christopoulos, 707 

O’Doherty, Dolan, & Schultz, 2008), an inverse-S probability distortion (Kahneman & Tversky, 708 

1979). This shape has also been replicated in monkeys (W. R. Stauffer et al., 2015), where 709 

human-ported tasks resulted in a reliable inverse-S probability distortion. The current study ties-710 

in with these findings, using a coherent set of visual stimuli for both gambles and safe reward 711 

options to control for any bias introduced by the different visual representations of the two option 712 

types. Our results, in addition to reliability capturing macaque behavior using modern economic 713 

choice theories, further characterize the effects of sequence structure on utility and probability 714 

distortion. 715 

In contrast to the generally reported inverse-S shaped probability distortion, a growing number of 716 

studies on human and animal subjects have highlighted the variability in probability distortion 717 

shapes, both across subjects and between task conditions (Bruhin et al., 2010; Farashahi et al., 718 

2018; Hey & Strazzera, 1989). Recent work by Farashahi et al. (2018), emphasized the flexibility 719 

of probability weights in adapting to contextual changes, after finding that S-shaped and linear 720 

probability distortions could be seen in monkeys when performing different tasks. Our 721 

experimental data confirmed this high level of behavioral flexibility in monkeys, whereby directly 722 
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manipulating the order of presented gambles in a single task produced opposing patterns of 723 

probability distortion.   724 

Other findings from human experiments suggest that the way in which probability information is 725 

presented could account for the reported variability in subjects’ risk attitudes. For example, when 726 

reward probabilities are explicitly described (choice from description) to human subjects, they act 727 

as if overweighting the probability of rare events, but when probabilities are learned from 728 

experience (choice from experience), subjects choose as if underweighting the probability of rare 729 

events. This effect has been aptly referred to as the description-experience (DE) gap (Hertwig et 730 

al., 2004), and appears to extend to other primates. Indeed, monkeys have been shown to be 731 

more risk-seeking for experienced than for described gambles, implying a DE gap effect in non-732 

human primates (Heilbronner & Hayden, 2016). While some authors have called for two separate 733 

theories explaining choices from description and choices from experience (Abdellaoui, L’Haridon, 734 

& Paraschiv, 2011; Hertwig & Erev, 2009), others have suggested that prospect theory could 735 

effectively describe choice in the two situations when allowing for a change in the probability 736 

distortion function between the two settings (Frey, Mata, & Hertwig, 2015; Ungemach, Chater, & 737 

Stewart, 2009). 738 

While the dichotomous choice patterns we observed are comparable to those described in the 739 

DE gap studies, here the cues representing reward probabilities were identical in the two 740 

sequence conditions. In both MIXED and REPEATED sequences, probabilities were described 741 

explicitly through cues, learned from experience by the animals; the conditions only differed in the 742 

presentation order of the probability information. While the task design was different from previous 743 

human DE studies in this respect, the repeated sampling of outcomes typically used to ‘learn’ the 744 

value of risky prospects in choices from experience (for review see Wulff, Mergenthaler-Canseco, 745 

& Hertwig, 2018) echoes the repetitive structure of our REPEATED sequence; conversely, 746 

described prospects are typically presented in a less structured, randomized sequence, 747 
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analogous to our MIXED condition. While a direct comparison remains to be done, findings in 748 

both the DE gap experiments and in the present study suggest that past trial outcomes play a role 749 

in shaping the subjective perception of reward probabilities. 750 

Sampling bias has been identified as a source of variability in probability distortions, particularly 751 

in relation to the DE gap. Indeed, sampling bias is particularly problematic in ‘experienced’ 752 

conditions due to the limited number of trials used in learning the options’ values: with small 753 

sample sizes, low probability gambles are often rewarded less frequently than would be 754 

prescribed by their nominal probability (Camilleri & Newell, 2013; Hertwig & Erev, 2009; Hertwig 755 

& Pleskac, 2010). The use of identical descriptive cues and elicitation procedures in the present 756 

study ensured that similar sampling sizes were applied, and indeed required, to estimate CEs for 757 

every gamble. Any bias would therefore affect the two conditions in a similar manner. With no 758 

obvious sampling biases, our data suggest that the DE gap could be modeled on the probability 759 

distortion changes we observed across task conditions, and that much like in the present study, 760 

the observed changes in risk-preferences - from described to experienced reward probabilities - 761 

might result from differences in the task’s presentation order of probability information.  762 

A final source of variability we considered was that the REPEATED condition was a much less 763 

complex decision situation than the MIXED one: one could ignore the gamble in long, repeated 764 

sequences. However, we found that the animals neither differentially weighed the options, nor 765 

made choices faster in the REPEATED condition, indicating that they were not using widely 766 

differing valuation strategies. 767 

The Marschak-Machina triangle, a diagram widely used in the economics literature, allows for the 768 

intuitive representation of choices between two- and three-outcome gambles, serving as an ideal 769 

framework for investigating complex economic choice problems (Camerer, 1989; Machina, 1987). 770 

In the current experiment we elicited indifference points in the Marschak-Machina triangle 771 

representation of the monkeys’ behavior, which crucially provided a link between animal and 772 
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human studies. Although full indifference curves within the Marschak-Machina triangle remain to 773 

be tested, we showed that indifference points on the triangle edges complied with economic 774 

theories of choice, and confirmed the reversal of probability distortion across conditions – this 775 

time with probabilistic rewards only. Consequently, we demonstrated the possibility of rigorous 776 

behavioral characterization in non-human primates, paving the way for future investigations into 777 

the neurophysiological basis of advanced economic constructs like probability distortion, specific 778 

economic axioms, or the neural counterparts of alternative economic theories. 779 

In conclusion, our results demonstrated the effect of a task’s sequence structure on the shape of 780 

a monkey’s elicited probability distortion, and highlighted the potential influence of past rewards 781 

on subjective value. Moreover, and perhaps most significantly, these adaptive effects extended 782 

through time: the patterns of indifference lines observed in the Marschak-Machina triangle after a 783 

session of MIXED or REPEATED sequences were compatible with the probability distortion 784 

shapes measured in the preceding CE elicitation session, even though the paradigm used in the 785 

Marschak-Machina triangle was always randomized. In this sense, the CE elicitation sequences 786 

preceding the Marschak-Machina triangle paradigm might have driven and reinforced a gap 787 

between the subjective values of identical probabilities, one that influenced choices between 788 

gambles in the Marschak-Machina triangle. The reinforcement learning model we used supports 789 

this hypothesis, implying that each experienced outcome could reinforce and update the 790 

subjective value of probabilities, leading to a flexible, and contextually driven judgement of 791 

probabilistic information. More sophisticated models, such as the addition of a standard Rescorla-792 

Wagner learning rule or a non-linear transformation of safe magnitudes to the current value 793 

updating mechanism, could be more biologically plausible and successful in explaining the choice 794 

mechanism – and so remain to be explored. It should be noted that the monkeys’ initial 795 

learning/association phase was not analyzed here in reinforcement learning terms, as it was 796 

carried out with imperative trials. A better understanding of probability learning, and the 797 
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permanence of subjective values reinforced across different conditions could shed light on the 798 

core elements of prospect theory, and on the undeniably-adaptive nature of utility and probability 799 

distortions. 800 

 801 

  802 
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Legends 907 

Figure 1. Experimental design. a, Trial sequence. Each trial started with the monkey moving a white cursor, through 908 

left/right arm movements with a joystick, to the center of the screen. After 0.5 to 1 s (center holding), two cues appeared 909 

indicating the two offered options (choice period): possible reward magnitudes and probabilities were indicated by the 910 

vertical position and width of a horizontal bar, respectively. A single horizontal bar indicated a sure reward, two bars 911 

indicated a gamble with two possible outcomes. The monkey moved the cursor to the side of the preferred option, 912 

within 2 s. After 0.1 to 0.2 s (holding time) the juice reward was delivered according to the chosen option’s reward 913 

magnitude and probability. A further 1 s (association period) followed to reinforce the association between chosen cue 914 

and reward. b, Psychometric elicitation of CEs. Left: three example gambles with different reward probabilities (p=0.3, 915 

p=0.5, p=0.7) paired with varying safe magnitudes to elicit each gamble’s CE. Right: each point represents the 916 

probability of choosing the safe option in choices between a fixed gamble (identified by the color) and a varying safe 917 

magnitude (horizontal axis). Lines are psychometric curves obtained by fitting a softmax function to the choice ratios. 918 

Each line is associated to one specific gamble, and identifies its CE as the magnitude corresponding to a choice ratio 919 

of 0.5 (vertical dashed line). c, Task conditions. The CEs were elicited using two sequence structures: in the MIXED 920 

condition different gambles and different safe options were randomly intermixed, while in the REPEATED condition the 921 

CE measurement for one gamble was completed before presenting a different gamble. d, Temporal sequence of the 922 

presented gamble EV in the two elicitation conditions for one sample session (first 200 trials). The trial-by-trial variation 923 

of the gamble EV highlights the difference in sequence structure between MIXED (red) and REPEATED (blue) 924 

conditions. e, Variability of gamble EV across consecutive trials. Absolute value of the gamble EV difference (mean ± 925 

SEM) between two consecutive trials, showing the main distinction between the two elicitation sequences: the previous 926 

trials’ gamble EV was consistently different from the current one in the MIXED condition, while it stayed constant in the 927 

REPEATED condition. Asterisk indicates significant difference (t-test, p<0.05) between conditions. 928 

 929 

Figure 2. Basic choice behavior and estimation of certainty equivalents. a, Logistic regression of choice behavior. Four 930 

task variables (gamble EV, safe EV (magnitude), risk variance, gamble position) were used as regressors for the 931 

gamble choice. Positive standardized coefficients for gamble EV and risk indicated that monkeys preferred gambles 932 

with higher EV to gambles with lower EV, and more risky gambles to less risky ones. Negative coefficient for safe EV 933 

confirmed that monkeys preferred higher reward magnitudes to lower ones. The positive position factor for one monkey 934 

indicated a side bias, that was taken into account by repeating all choice pairs with inverted left-right positions. b, 935 

Psychometric estimation of CEs. CEs of two example gambles with probabilities 0.1 (top) and 0.8 (bottom), estimated 936 
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in the two different elicitation sequences: MIXED (red) and REPEATED (blue) sequences. The percentages of safe 937 

choices as a function of safe magnitude (circles) were fitted to softmax functions (curves). Vertical lines indicate the 938 

gambles EVs (dashed lines); filled circles indicate the CEs. In both monkeys, low probability gambles (top) had a lower 939 

CE in the REPEATED condition than in the MIXED condition, where the CEs were consistently higher than the EVs, 940 

indicating a risk seeking attitude. High probability gambles (bottom) showed the inverse pattern, indicating a risk 941 

seeking behavior only in the REPEATED condition. c, Pattern of CEs across the two elicitation sequences (MIXED vs. 942 

REPEATED). Single sessions’ CEs (small data points) and average CEs across sessions (large data points) plotted as 943 

a function of gamble EV, with cubic spline interpolated curves. The full pattern of CEs shows a smooth transition from 944 

low to high probability gambles in terms of CE difference across the two elicitation sequences. For low probability 945 

gambles, both monkeys showed higher CEs in the MIXED than in the REPEATED conditions; when increasing gamble 946 

probabilities, the CE difference across conditions gradually reduced and inverted, resulting in lower CEs in the MIXED 947 

than in the REPEATED condition for high reward probabilities. Single sessions’ data points were shifted horizontally 948 

(REPEATED condition: left; MIXED condition: right) for visualization purpose. d, Response times. Mean RT (± SEM 949 

across sessions) in the two elicitation conditions. RT for monkey A were similar in the two conditions (RT difference = 950 

3.0 ms, t(9088)=-0.59 p=0.56); Monkey B showed faster response in the MIXED condition compared to the REPEATED 951 

condition (RT difference = 30.0 ms, t(22233)=-15.88 p=1.77×10-56). See Figure 2-1 for RT as a function of the options’ 952 

EV. 953 

 954 

Figure 2-1. Response time vs EV. Top: Mean RT (± SEM across sessions) as a function of EV difference between the 955 

two presented options (gamble EV – safe magnitude). Choices between options with similar EV produced higher RT. 956 

Bottom: Mean RT (± SEM across sessions) as a function of the EV of the chosen option. Faster RTs were associated 957 

to higher EV of the chosen option, while slower RTs corresponded to choices where a low EV option was selected. 958 

 959 

Figure 3. Choice model selection and validation. a, Goodness-of-fit for choice behavior using four models with different 960 

probability weighting functions. Bars represent mean BIC values (±SEM) across all sessions (Monkey A: N=56; Monkey 961 

B: N=59). BIC scores for daily parametric fits differed significantly across models (one-factor ANOVA with repeated 962 

measures, Monkey A: F(3,150)=8.32, pGGc=3.1×10-3; Monkey B: F(3,174)=13.575, pGGc=5.3×10-08). Lower BIC 963 

values for the Prelec weighting functions (Tversky, Prelec-1) indicate a better fit of the data compared to the one-964 

parameter Tversky or two-parameter Gonzalez functions. BIC values for all model pairs except for Prelec-1 vs Prelec-965 

2, Prelec-1 vs Gonzalez, and Prelec-2 vs Gonzalez in Monkey A, and the Prelec-2 vs Gonzalez in monkey B, were 966 
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significantly different (post-hoc analysis, p<0.05) for both monkeys. The sum of squared errors in CE estimation was 967 

the lowest in the Prelec models. b, c, Validation of the parameter estimation procedure using the Prelec-1 probability 968 

weighting function. Upper plots in b and c represent the utility (left) and probability distortion (right) functions used to 969 

simulate choices; lower plots represent the functions recovered with the MLE procedure. Monte Carlo simulation of 970 

choice behavior (using the same number of trials and the same step-size for magnitude and probability as in the 971 

measured data: 9 gamble probabilities, 11 safe magnitudes, 6 trials per gamble-safe pair) was repeated 1000 times, 972 

producing the 95% confidence intervals on the parameter estimates (grey areas). Varying the utility function parameter 973 

(ρ, 0.2 to 3) while keeping the probability distortion parameter constant (α=0.67) resulted in an unbiased estimate of 974 

the utility shape (b). The probability distortion parameter (α), varying from 0.33 to 3 while keeping the utility shape fixed 975 

(ρ=2), was recovered consistently and without bias (c). d, Modeled vs measured choice behavior. Comparison of 976 

estimated (curves) and measured (circles) percentage of safe choices as a function of safe magnitude, for two example 977 

gambles (probabilities 0.2 and 0.8); see Figure 3-1 for the full dataset. Estimated choice percentages were computed 978 

using the discrete choice model with the MLE-recovered parameters (Eq. 3, using the Prelec-1 probability weighting 979 

function). Estimated CEs are represented as red and blue points, EVs as vertical dashed lines. The estimated 980 

psychometric functions closely approximated the measured data points, and differences in estimated CEs across 981 

conditions are compatible with the observed data for both low and high probabilities (see Fig. 2b). 982 

 983 

Extended Data Figure 3-1. Modeled vs measured choice behavior. Comparison of estimated (curves) and measured 984 

(circles) percentage of safe choices as a function of safe magnitude. Conventions and symbols as in Fig. 3d. Thin lines 985 

represent differences between estimated and experimental data percentages, with the horizontal line (at 0.5 on the y 986 

axis) corresponding to perfect estimate (difference=0). 987 

 988 

Figure 4. Utility and probability distortion functions in two elicitation conditions. a, Model parameter estimates (mean ± 989 

SEM across sessions) in the MIXED (red) and REPEATED (blue) conditions. Asterisks indicate significant differences 990 

across conditions (MANOVA). The probability distortion parameter (α) consistently varied across sequence structures 991 

in both monkeys: negative log-values in the MIXED condition corresponded to inverse S-shaped probability distortion 992 

(α<1), while positive log-values in the REPEATED condition implied S-shaped probability distortion (α>1). Numbers 993 

below the bars represent effect sizes (Cohen’s d). The utility (ρ) and softmax (λ) parameters significantly differed across 994 

conditions only for one monkey, with a smaller effect size compared to the probability distortion parameter. b, Shapes 995 

of the probability distortion function (left) and utility function (right) corresponding to the estimated parameters, 996 
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displaying the consistent difference in subjective probability evaluation across conditions for both monkeys. c, Two-997 

dimensional representation of the utility and probability distortion parameter estimates. The dots represent the 998 

simultaneously estimated utility (ρ) and probability distortion (α) parameters for single behavioral sessions, with 95% 999 

confidence ellipses. 1000 

 1001 

Figure 5. Indifference lines in the Marshack-Machina triangle modeling different patterns of probability distortion. a, 1002 

Representation of gambles in the Marshack-Machina triangle. Schematic representation of a three-outcome gamble 1003 

(left): probabilistic combination (p1, p2, p3) of three fixed magnitudes (m1=0 ml, m2=0.25 ml, m3=0.50 ml) which can be 1004 

represented in the Marshack-Machina triangle (right, with example gambles corresponding to points on the triangle 1005 

edges). The grey line in the triangle connects points with equal expected value (EV=0.25 ml). b, Procedure for the 1006 

psychometric measurement of one indifference line. An indifference point (top, blue dot) in choices between a fixed 1007 

gamble A and different gambles Bi, circles) was defined as the point on the triangle hypotenuse for which a softmax 1008 

function fitted on the ratio of A over Bi choices equated 0.5 (bottom). An indifference line was then constructed by 1009 

connecting such indifference point on the hypotenuse to the fixed gamble A (blue line). c, Theoretical indifference lines. 1010 

Indifference lines predicted by cumulative prospect theory, for different underlying shapes of utility (u(m), power 1011 

function) and probability distortion (w(p), Prelec-1 function). Each plot shows the indifference lines corresponding to a 1012 

particular combination of u and w shapes, represented with orange and purple lines respectively. The shape of the 1013 

utility function (linear in the first row of plots, concave and convex in the other two rows) changes the global orientation 1014 

of the indifference lines, without affecting their fanning direction. On the contrary, a change in probability distortion 1015 

shape corresponds to a change in the fanning direction of indifference lines: a linear probability distortion (first column) 1016 

produces parallel indifference lines, while S-shaped (second column) and inverse S-shaped (third column) probability 1017 

distortions correspond to indifference lines fanning-in and fanning-out respectively, regardless of the utility function 1018 

shape. 1019 

 1020 

Figure 6. Effect of CE elicitation sequences on the Marshack-Machina triangle indifference lines. a, Modeled (left) and 1021 

measured (right) patterns of indifference lines across conditions. The arrows indicate the direction and amount of shift 1022 

for three sample indifference points between the MIXED (red) and REPEATED (blue) conditions, highlighting how the 1023 

model correctly predicted the effect of condition change. The grey line connects points with the same expected value 1024 

(EV=0.25 ml), representing an indifference line in case of risk-neutral behavior. Numbers define indices for the 1025 

indifference lines, corresponding to fixed gambles on the triangle edges (black dots, also represented as visual cues). 1026 
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b, Fanning direction of the indifference lines. Points represent the slope of indifference lines (angle between each line 1027 

and the horizontal axis) as a function of indifference line index (circles: model; dots: experimental data). Lines represent 1028 

linear regressions, separately computed on the two task conditions for model (dashed lines) and data points (continuous 1029 

lines). A regression line with negative slope corresponds to a decrease in indifference lines angle, indicating fanning-1030 

out; conversely, a positive regression coefficient indicates fanning-in of indifference lines. c, Statistical comparison 1031 

between model and experimental data. Shift in location of indifference points across elicitation sequences (average 1032 

difference ± SEM). A linear regression between the modeled and measured shifts (inset) confirmed the match between 1033 

model and data in terms of predicted shift in indifference points, corresponding to a correct prediction of the change in 1034 

the fanning direction across conditions. 1035 

 1036 

Figure 7. Sequence-dependent effects of trial history on probability distortion shape. a, Influence of past trials on 1037 

current trial’s choice. Standardized regression coefficients (mean ± SEM across sessions) for current trial’s gamble EV, 1038 

safe reward magnitude and previous trials’ gamble EV (up to eight trials in the past). Asterisks represent coefficients 1039 

significantly different from zero: for both monkeys, the choice behavior depended on at least one trial in the past. 1040 

Positive regression coefficients indicated that an increase in the previous trial’s gamble EV induced the monkeys to 1041 

choose the current trial’s gamble option more frequently. b, Effect of the past outcomes on gamble choices. 1042 

Standardized regression coefficients (mean ± SEM across sessions) for gamble EV, safe magnitude, previous trial’s 1043 

gamble outcome (0 ml or 0.5 ml) and gamble position. A significant positive coefficient for the previous outcome 1044 

indicated that monkeys chose the gamble more often when the previously chosen gamble was successful (0.5 ml) than 1045 

when it was not successful (0 ml): the gamble was chosen more after a win than after a loss. In terms of BIC score this 1046 

model (Eq. 15) was at least as good at describing the choice data when compared to the model with no past trials’ 1047 

influence (Eq. 2) (Monkey A: BIC2=84.2, BIC14=82.3, t-test: p=0.14; Monkey B: BIC2=221.4, BIC14=215.8, t-test: 1048 

p=5.8×10-5). c, Effect of past outcomes on the utility and probability distortion functions. The utility function appeared 1049 

more convex following a gamble-win trial (0.5 ml reward) than following a loss (no reward), suggesting that gamble 1050 

outcomes had an influence on the relative value of gamble and safe options on the next trial. The utility parameter 1051 

estimates followind win and loss trials are indicated as αW and αL respectively, while probability distortion parameter 1052 

as ρW and ρL respectively. The arrows highlight the change in the utility parameter between loss and win trials. Error 1053 

bars represent the 95% confidence intervals of the parameter estimates. d, Simulated effect of EV upgdate mechanism 1054 

based on past outcomes. Mean ± SEM across simulated sessions (N=50) of the CE resulting from choices simulated 1055 

using the learning model (Eq. 16) in MIXED and REPEATED conditions. The parameters used in the simulation were 1056 

recovered from the MLE procedure with the same model separately for each monkey. Linear probability weighting and 1057 
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linear magnitude coding were used in the simulation, demonstrating that an EV update mechanism interacting with the 1058 

local trial structure could explain the observed change in risk attitudes across conditions without explicitly introducing 1059 

a non-linear probability distortion. 1060 




















