
Motor primitives in space and time via targeted gain mod-
ulation in cortical networks

One-sentence summary: Modulation of single-neuron excitability can flexibly control neuronal

activity in recurrent cortical network models with fixed connectivity.

Jake P. Stroud1, Mason A. Porter2,3,4, Guillaume Hennequin5, Tim P. Vogels1

1Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
2Department of Mathematics, University of California Los Angeles, Los Angeles, USA
3Mathematical Institute, University of Oxford, Oxford, UK
4CABDyN Complexity Centre, University of Oxford, Oxford, UK
5Computational and Biological Learning Lab, Department of Engineering, University of Cam-

bridge, Cambridge, UK

Motor cortex (M1) exhibits a rich repertoire of activities to support the generation of com-1

plex movements. Recent network models capture many qualitative aspects of M1 dynam-2

ics, but they can generate only a few distinct movements (all of the same duration). We3

demonstrate that simple modulation of neuronal input–output gains in recurrent neuronal4

network models with fixed connectivity can dramatically reorganize neuronal activity and5

consequently downstream muscle outputs. We show that a relatively small number of modu-6

latory control units provide sufficient flexibility to adjust high-dimensional network activity7

using a simple reward-based learning rule. Furthermore, novel movements can be assembled8

from previously-learned primitives and we can separately change movement speed while pre-9

serving movement shape. Our results provide a new perspective on the role of modulatory10

systems in controlling recurrent cortical activity.11

Motor systems continually adapt and refine voluntary movements by flexibly controlling12

neuronal activity in motor-related brain areas [1]. To understand how a cortical network can effi-13

ciently generate a large variety of outputs, we begin with an existing model of motor cortex that14

1

incorporates strong excitatory recurrent interactions that are stabilized by feedback inhibition [2].15

For appropriate initial conditions (see Section 1.1), this model produces naturalistic activity tran-16

sients (see Section 1) that resemble M1 recordings [3], and the population activity is rich enough17

to enable the generation of complex movements through linear readouts (see Fig. 1). However, it is18

unclear how the static architecture of such models allows variations in both output trajectories and19

their speed—e.g., to switch downstream muscle activity from one reaching movement to another20

(see Fig. 1A).21

A possible mechanism for effectively switching network activity is to adjust the intrinsic22

gain—that is, the input–output sensitivity—of each neuron so that they engage more (or less) ac-23

tively in the recurrent neuronal dynamics [4–6]. Indeed, neuromodulation in M1 can cause such24

changes in neuronal responsiveness [7, 8], and gain modulation of motor neurons has been linked25

experimentally to optimization of muscular control [9, 10]. In our model, we emulate neuromod-26

ulation by including a set of modulatory afferents that directly control the input–output gain of27

each neuron (see Fig. 1B and Section 1). We find that uniformly increasing the gain of all neurons28

increases both the frequency and amplitude of the neuronal dynamics (see Fig. 1C), and the same29

network can produce different, yet predictable (see Section 1.7), activity trajectories.30

To allow more precise control of network activity than through uniform modulation, we can31

independently adjust the gain of each neuron in what we call neuron-specific modulation. We ob-32

tain gain patterns that lead to the generation of target output activity using a reward-based learning33

rule (see Section 1.8). Our rule, which acts on the modulatory pathway of the model but is similar34

to proposed synaptic plasticity rules for reward-based learning [11–14], uses a global scalar signal35

of recent performance to iteratively evaluate and adjust each neuron’s gain while network initial36

condition and architecture remain fixed. Starting with a network that produces an initial movement37

with all gains set to 1 (see black curve in Fig. 1D), our learning rule yields a gain pattern that leads38

to the successful generation of a novel target movement after a few thousand iterations (see Fig. 1D39

and Section 1.10). Errors between the actual and desired outputs tend to decrease monotonically40

and eventually become negligible. Independent training sessions with the same target movement41

2

produce nonidentical but correlated gain patterns (see Fig. S1B). Counterintuitively, the recurrent42

neuronal dynamics change only slightly even though the muscle output is altered substantially43

(see Figs. S1C,F). Once the target is learned, the same initial condition can produce either of two44

distinct muscle outputs, depending on the applied gain pattern. The outputs are similarly robust45

with respect to noisy initial conditions for each gain pattern (see Fig. 1F), and we achieve similar46

learning performance (i.e., error reduction) using alternative, commonly used models of move-47

ment generation that rely on additional preparatory periods [2], or altogether different, ‘chaotic’48

dynamics [15, 16] (see Fig. S1E and Section 1.10). Notably, in all of these models, changes in neu-49

ronal responsiveness alone—for example, via inputs from neuromodulatory afferents—can cause50

dramatic changes in network outputs, thereby providing an efficient mechanism for rapid switch-51

ing between movements without requiring any changes in synaptic architecture or network initial52

condition.53

Individually modulating the gain of every neuron in motor cortex is likely unrealistic. In54

line with the existence of diffuse (i.e., non-neuron specific) neuromodulatory projections to M155

[7, 17, 18], we cluster neurons into groups so that units within a group are modulated identically56

(see Fig. 2A and Section 1.11). We find that such coarse-grained modulation gives similar perfor-57

mance to neuron-specific control for as few as 20 randomly-formed groups in a network of 20058

neurons (see Fig. 2B and Fig. S3A). For a specified number of groups, performance can be im-59

proved if, instead of grouping neurons randomly as above, we use a specialized clustering for each60

movement that is based on previous training sessions (see Fig. 2B and Section 1.11). Importantly,61

there exist specialized groupings that perform similarly across multiple different movements (see62

Fig. 2C and Figs. S3B,C). Such specialized groupings acquired from learning one set of move-63

ments also perform well on novel movements (see Fig. S3D).64

Notably, even with random groupings, network size hardly affects learning performance for a65

single readout (see Fig. 2D). Performance depends on the number of groups and not on the number66

of neurons per group. When the task involves two or more readout units, larger networks do learn67

better, and achieving a good performance necessitates more independently modulated groups (see68

3

Fig. 2E). Finally, smaller networks typically learn faster (see the bottom panel of Fig. 2E), but they69

ultimately exhibit poorer performance, indicating that there is a trade-off between network size,70

number of groups, and task complexity (i.e., the number of readout units).71

In principle, it is possible to independently learn numerous gain patterns, supporting the pos-72

sibility of a repertoire (which we call a ‘library’) of modulation states that a network can use, in73

combination, to produce a large variety of outputs. Generating new movements would be much74

more efficient if new gain patterns could be ‘intuited’ as combinations of previously acquired prim-75

itives [4, 19]. To test if this is possible in our model, we first approximate a novel target movement76

as a (convex) combination of existing movements. (We term this ‘fit’ in Fig. 3; see Section 1.12.)77

We then use the same combination of the associated library of gain patterns to construct a new78

gain pattern (see Fig. 3A). Surprisingly, the resulting network output closely resembles the target79

movement (see Fig. 3B). One can understand this mathematically using power series expansions80

of the solution of the linearized neuronal dynamics (see Section 1.9). Increasing the number of81

elements in the movement library reduces the error between a target movement and its fit, which82

is also reflected in a progressively better match between the target and the network output (see83

Figs. 3B–D, Fig. S4, and Fig. S5). Although the idea of using motor primitives to facilitate rapid84

acquisition of new movements is well-established [19, 20], our model proposes the first (to our85

knowledge) circuit-level mechanism for achieving this objective. In addition to neuromodulatory86

systems [7, 8, 10], the cerebellum is a natural candidate structure to coordinate such motor primi-87

tives [20], as it is known to project to M1 and to play a critical role in error-based motor learning88

[20, 21].89

Thus far, we have demonstrated that simple (even coarse, group-based) gain modulation en-90

ables control of muscle activity over a fixed duration. To control movements of different durations,91

motor networks must be able to slow down or speed up muscle outputs (i.e., change the duration92

of movements without affecting their shape). In line with recent results [22, 23], we investigate93

if gain changes are able to control the speed of an intended movement (see Fig. 4A and Section94

1.13). We begin with a network of 400 neurons (with 40 random modulatory groups) that generates95

4

muscle activity lasting approximately 0.5 s (as in Figs. 2 and 3). Our learning rule can success-96

fully train the network to generate a slower variant, lasting 5 times longer (see the top panel of97

Fig. 4B and Fig. S6A) than the original movement (see Section 1.13). The learned slow variants98

are more sensitive to noisy initial conditions than the fast variants, but we can find more robust so-99

lutions by using a (somewhat less biologically plausible) regularized back-propagation algorithm100

to train the neuronal gains (see Section 1.13). Following training, the slow variants are learned101

successfully (see Fig. 4C) and are less sensitive to the same noisy initial conditions (see Fig. S6G).102

The neuronal dynamics oscillate transiently, with a substantially lower frequency than either the103

fast variants or the slow variants trained by our local learning rule (compare the bottom panels of104

Fig. 4C and Fig. 4B). We can also find a single gain pattern that, instead of slowing down one105

movement, slows down up to approximately five distinct movements (associated with five orthog-106

onal initial conditions) by a factor of 5 (see Figs. S6H–J). Thus, the temporal scale of transient107

neuronal activity can be extended several-fold through specific changes in neuronal gains.108

Following training on a slow and a fast variant of the same movement (see above), we find109

that naively interpolating between the two gain patterns does not yield the same movement at110

intermediate speeds (see Fig. S7A), consistent with human subjects being unable to consistently111

apply learned movements at novel speeds [24]. Thus, even when we consider ‘fast’ and ‘slow’112

variants of the same movement, both our learning rule and the back-propagation training do not113

learn to ‘slow down’ the movement; instead, they learn two seemingly unrelated gain patterns.114

However, it is possible to modify our back-propagation training procedure to yield gain patterns115

for fast and slow variants so that interpolating between the two gain patterns produces progressively116

faster or slower outputs. We successfully train the network to generate two movements (associated117

with two different initial conditions) at 7 different speeds (with durations ranging from 0.5 s to118

2.5 s) by adjusting both the readout weights and gain patterns for the fast and slow variants (see119

Figs. S7B,D and Section 1.13). Linear interpolation between the fast and slow gain patterns now120

generates smooth speed control of both movements (see Figs. 4D,E). In other words, to control121

movement speed, we learn a ‘manifold’ [25] in neuronal gain space that is delimited by the fast122

and the slow gain patterns (see Fig. 4A; bottom right).123

5

Thus far, we have shown that gain modulation can affect either the shape or the speed of a124

movement. Flexible independent control of both the shape and speed of a movement (i.e., jointly)125

necessitates separate representations of space and time in the gain patterns. A relatively simple126

possibility is to find a single manifold in neuronal gain space for speed control and combine it with127

gain patterns associated with different movement shapes. Biologically, this may be achievable128

using separate modulatory systems. We achieve such separation by simultaneously training one129

manifold for speed control and 10 gain patterns for 10 different movement shapes in a model in130

which the movements are encoded by the product of shape-specific and speed-specific gain patterns131

(see Fig. 4F, Figs. S7E,F, and Section 1.13). We thereby obtain separate families of gain patterns132

for movement shape and speed that independently control movements in space and time.133

Our results support the view that knowing only the structure of neuronal networks does not134

suffice to explain their dynamics [26, 27]. In line with known physiological effects [6, 8, 26, 28],135

we have shown that relatively subtle changes in neuronal excitability in cortical circuits can have136

dramatic effects on ensuing muscular activity, suggesting the possibility that gain modulation is a137

central part of neuronal motor control. Gain modulation may occur primarily via neuromodulators138

[8, 10], as we suggest in this paper, but it may also arise from changes in the balance of excitatory139

and inhibitory inputs to cortical neurons (for example, through inputs from the cerebellum) [29].140

Indeed, in real cortical circuits, changes in neuronal dynamics will likely stem from changes in141

both inputs [30] and modulatory states [31].142

In traditional theories of learning, synaptic modifications occur directly in the circuit whose143

activity expresses the (motor) memory [18, 32], which would result in altered dynamics in these144

networks even during periods of idle behaviour, thus providing experimentally accessible signa-145

tures of learning. In contrast, our work predicts that synaptic modifications take place further146

upstream—for example, in the input synapses to the presumed neuromodulatory neurons [33].147

Therefore, once the trained modulatory input is removed, neuronal activity would not exhibit any148

sign of learning other than during epochs of movement generation. Consequently, elucidating the149

neural substrate of motor learning may necessitate recording from a potentially broader set of brain150

6

areas than those circuits whose activity correlates directly with movement dynamics.151

7

References152

153
1. D. A. Rosenbaum, Human Motor Control. Cambridge, USA: Academic Press, 2009.154

2. G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of transient dynamics in bal-155

anced networks supports generation of complex movements,” Neuron, vol. 82, no. 6, pp. 1394–156

1406, 2014.157

3. M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu,158

and K. V. Shenoy, “Neural population dynamics during reaching,” Nature, vol. 487, no. 7405,159

pp. 1–8, 2012.160

4. C. D. Swinehart, K. Bouchard, P. Partensky, and L. F. Abbott, “Control of network activity161

through neuronal response modulation,” Neurocomputing, vol. 58, pp. 327–335, 2004.162

5. J. Zhang and L. F. Abbott, “Gain modulation of recurrent networks,” Neurocomputing, vol. 32,163

pp. 623–628, 2000.164

6. E. Marder, “Neuromodulation of neuronal circuits: Back to the future,” Neuron, vol. 76, no. 1,165

pp. 1–11, 2012.166

7. K. Molina-Luna, A. Pekanovic, S. Rohrich, B. Hertler, M. Schubring-Giese, M. S. Rioult-167

Pedotti, and A. R. Luft, “Dopamine in motor cortex is necessary for skill learning and synaptic168

plasticity,” PloS One, vol. 4, no. 9, p. e7082, 2009.169

8. K. Thurley, W. Senn, and H.-R. Lüscher, “Dopamine increases the gain of the input–output170

response of rat prefrontal pyramidal neurons,” Journal of Neurophysiology, vol. 99, no. 6,171

pp. 2985–2997, 2008.172

9. M. Vestergaard and R. W. Berg, “Divisive gain modulation of motoneurons by inhibition op-173

timizes muscular control,” Journal of Neuroscience, vol. 35, no. 8, pp. 3711–3723, 2015.174

8

10. K. Wei, J. I. Glaser, L. Deng, C. K. Thompson, I. H. Stevenson, Q. Wang, T. G. Hornby, C. J.175

Heckman, and K. P. Körding, “Serotonin affects movement gain control in the spinal cord,”176

Journal of Neuroscience, vol. 34, no. 38, pp. 12690–12700, 2014.177

11. I. R. Fiete and H. S. Seung, “Gradient learning in spiking neural networks by dynamic pertur-178

bation of conductances,” Physical Review Letters, vol. 97, no. 4, p. 048104, 2006.179

12. R. Legenstein, S. M. Chase, A. B. Schwartz, and W. Maass, “A reward-modulated Hebbian180

learning rule can explain experimentally observed network reorganization in a brain control181

task,” Journal of Neuroscience, vol. 30, no. 25, pp. 8400–8410, 2010.182

13. G. M. Hoerzer, R. Legenstein, and W. Maass, “Emergence of complex computational struc-183

tures from chaotic neural networks through reward-modulated Hebbian learning,” Cerebral184

Cortex, vol. 24, no. 3, pp. 677–690, 2014.185

14. T. Miconi, “Biologically plausible learning in recurrent neural networks for flexible decision186

tasks,” eLife, vol. 6, p. e20899, 2017.187

15. D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic neural188

networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.189

16. H. Sompolinsky, A. Crisanti, and H. J. Sommers, “Chaos in random neural networks,” Physi-190

cal Review Letters, vol. 61, no. 3, pp. 259–262, 1988.191

17. G. W. Huntley, J. H. Morrison, A. Prikhozhan, and S. C. Sealfon, “Localization of multiple192

dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum,” Molec-193

ular Brain Research, vol. 15, no. 3-4, pp. 181–188, 1992.194

18. J. A. Hosp, A. Pekanovic, M. S. Rioult-Pedotti, and A. R. Luft, “Dopaminergic projections195

from midbrain to primary motor cortex mediate motor skill learning,” Journal of Neuroscience,196

vol. 31, no. 7, pp. 2481–2487, 2011.197

19. S. F. Giszter, “Motor primitives—New data and future questions,” Current Opinion in Neuro-198

biology, vol. 33, pp. 156–165, 2015.199

9

20. K. A. Thoroughman and R. Shadmehr, “Learning of action through adaptive combination of200

motor primitives,” Nature, vol. 407, no. 6805, pp. 742–747, 2000.201

21. D. A. Spampinato, H. J. Block, and P. A. Celnik, “Cerebellar–M1 connectivity changes asso-202

ciated with motor learning are somatotopic specific,” Journal of Neuroscience, vol. 37, no. 9,203

pp. 2377–2386, 2017.204

22. J. Wang, D. Narain, E. A. Hosseini, and M. Jazayeri, “Flexible timing by temporal scaling of205

cortical responses,” Nature Neuroscience, vol. 21, no. 1, pp. 102–110, 2018.206

23. S. Soares, B. V. Atallah, and J. J. Paton, “Midbrain dopamine neurons control judgment of207

time,” Science, vol. 354, no. 6317, pp. 1273–1277, 2016.208

24. N. F. Hardy, V. Goudar, J. L. Romero-Sosa, and D. V. Bounomano, “A model of temporal209

scaling correctly predicts that Weber’s law is speed-dependent,” bioRxiv, p. 159590, 2017.210

25. J. A. Gallego, M. G. Perich, L. E. Miller, and S. A. Solla, “Neural manifolds for the control of211

movement,” Neuron, vol. 94, no. 5, pp. 978–984, 2017.212

26. C. I. Bargmann, “Beyond the connectome: How neuromodulators shape neural circuits,”213

BioEssays, vol. 34, no. 6, pp. 458–465, 2012.214

27. D. S. Bassett and O. Sporns, “Network neuroscience,” Nature Neuroscience, vol. 20, no. 3,215

pp. 353–364, 2017.216

28. H. Kida and D. Mitsushima, “Mechanisms of motor learning mediated by synaptic plasticity217

in rat primary motor cortex,” Neuroscience Research, pp. 1–5, 2017.218

29. F. S. Chance, L. F. Abbott, and A. D. Reyes, “Gain modulation from background synaptic219

input,” Neuron, vol. 35, no. 4, pp. 773–782, 2002.220

30. G. F. Elsayed, A. H. Lara, M. T. Kaufman, M. M. Churchland, and J. P. Cunningham, “Reor-221

ganization between preparatory and movement population responses in motor cortex,” Nature222

Communications, vol. 7, p. 13239, 2016.223

10

31. V. R. Athalye, F. J. Santos, J. M. Carmena, and R. M. Costa, “Evidence for a neural law of224

effect,” Science, vol. 359, no. 6379, pp. 1024–1029, 2018.225

32. L. F. Abbott and S. B. Nelson, “Synaptic plasticity: Taming the beast,” Nature Neuroscience,226

vol. 3, pp. 1178–1183, 2000.227

33. A. R. O. Martins and R. C. Froemke, “Coordinated forms of noradrenergic plasticity in the228

locus coeruleus and primary auditory cortex,” Nature Neuroscience, vol. 18, no. 10, pp. 1483–229

1492, 2015.230

34. K. Rajan, L. F. Abbott, and H. Sompolinsky, “Stimulus-dependent suppression of chaos in231

recurrent neural networks,” Physical Review E, vol. 82, no. 1, p. 011903, 2010.232

35. J. C. Kao, P. Nuyujukian, S. I. Ryu, M. M. Churchland, J. P. Cunningham, and K. V. Shenoy,233

“Single-trail dynamics of motor cortex and their applications to brain-machine interfaces,”234

Nature Communications, vol. 6, pp. 1–12, 2015.235

36. G. Teschl, Ordinary Differential Equations and Dynamical Systems. American Mathematical236

Society, 2012.237

37. N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent plasticity, and theory238

of three-factor learning rules,” Frontiers in Neural Circuits, vol. 9, p. 85, 2016.239

38. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-240

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.241

Acknowledgements: We thank the members of the Vogels lab (particularly Everton J. Agnes, Rui242

P. Costa, and William F. Podlaski) and Yayoi Teramoto Kimura for creating the monkey illustra-243

tion. We also thank Omri Barak, Tim E. Behrens, and Rafal Bogacz for their helpful comments.244

Funding: Our work was supported by grants from the Wellcome Trust (TPV and JPS WT100000,245

GH 202111/Z/16/Z) and the Engineering and Physical Sciences Research Council (JPS). Authors246

contributions: JPS, GH, and TPV conceived the study. JPS performed simulations for Figs. 1–3247

11

and Figs. S1–S5, JPS and GH performed simulations for Fig. 4 and Figs. S6–S7. JPS analyzed248

the results, produced the figures, and wrote the first draft of the manuscript. All authors discussed249

and iterated on the analysis and its results and revised the final manuscript. Competing interests:250

The authors declare that no competing interests exist. Data and materials availability: Code or251

other materials will be made available upon reasonable request. Requests should be addressed to252

JPS (jake.stroud@cncb.ox.ac.uk).253

1 Supplementary Methods254

1.1 Network dynamics255

Following Ref. [2], we use recurrent rate networks of N = 2M neurons (M excitatory and M256

inhibitory) whose state x(t) = (x1(t), . . . , xN(t))> evolves according to the dynamical system257

τ
dx(t)

dt
= −x(t) +W f(x(t); g) , (1)

from some initial condition x(0) = x0. In Eqn. (1), f(x; g) denotes the element-wise application258

of the static scalar function f to the neuronal activity vector x. We choose the initial state x0259

among the ‘most observable’ modes of the system (i.e., those that elicit strong, temporally-rich260

activity transients [2]). Specifically, we first linearize the dynamics around its unique fixed point261

x = 0 using unit gains (i.e., all gi = 1), and computed the observability Gramian (a symmetric262

positive-definite matrixQ) of the linearized system [2]. The most observable modes (i.e., the initial263

conditions that evoke the largest transients) are the top eigenvectors of Q. We detail the choice of264

synaptic weight matrixW ∈ RN×N in Section 1.3.265

We do not explicitly model dynamics prior to movement execution; all of our simulations266

begin at the time of movement onset [2, 3]. In keeping with [2], we set the single-neuron time267

constant to be τ = 200 ms, and the gain function f , which governs the transformation of neuronal268

12

activity x into firing rates relative to a baseline rate r0, is269

f(xi; gi) =

r0 tanh(gixi/r0) , if xi < 0 ,

(rmax − r0) tanh(gixi/(rmax − r0)) , if xi ≥ 0 ,

(2)

where gi is the slope of the function f at baseline rate r0 and thus controls the input–output sen-270

sitivity of neuron i [34]. We use a baseline rate of r0 = 20 Hz and a maximum firing rate of271

rmax = 100 Hz, consistent with observations [3]. (See Fig. 1C, where we plot the gain function272

shifted up by 20 Hz.) With this setup, the majority of the neuronal dynamics operate within the273

linear part of the nonlinear gain function f (i.e., the neuronal dynamics are similar to the case of274

using a linear gain function (see Fig. S2C)) — which is consistent with experimental observations275

[35]. However, by reducing r0 so that it is closer to 0, which leads to more neuronal activities near276

the lower saturation regime of the nonlinear gain function f (i.e., more nonlinear behaviour), we277

obtain qualitatively similar results to those that we presented in the main manuscript. We demon-278

strate several of our main results using r0 = 5 Hz in Figs. S2 and S5.279

1.2 Biophysical interpretation of Eqn. (1)280

In Section 1.1, we described how neuronal activity can be modelled relative to a baseline rate r0.281

In this section, we clarify that one can obtain identical neuronal activity by using a strictly positive282

gain function f and including a constant input h in Eqn. (1). Specifically, given a desired baseline283

firing rate r0, one models the neuronal activity as284

τ
dx(t)

dt
= −x(t) +W f(x(t); g) + h (3)

for the same initial condition x0 that we described in Section 1.1, where hi = −r0

∑
jWij and285

f(xi; gi) =

r0 tanh(gixi/r0) + r0 , if xi < 0 ,

(rmax − r0) tanh(gixi/(rmax − r0)) + r0 , if xi ≥ 0 ,

(4)

where rmax is the maximum firing rate.286

13

1.3 Construction of the network architecture287

Prior to optimization, we generate synaptic weight matrices W as detailed in Ref. [2]. In keeping288

with Dale’s law, these matrices consist of M positive (excitatory) columns and M negative (in-289

hibitory) columns. We begin with a set of sparse and strong weights with nonzero elements set290

to w0/
√
N (excitatory) and −γw0/

√
N (inhibitory), where w2

0 = 2ρ2/(p(1 − p)(1 + γ2))291

and the connection probability between each two neurons is p = 0.1. This construction results in292

W having a circular eigenvalue spectrum of radius ρ, set to ρ = 10, leading to linear instabilities293

before stability optimization (see below). As in Ref. [2], we set the inhibition/excitation ratio γ to294

be γ = 3.295

After constructing the initialW , we never change any of the excitatory connections. Follow-296

ing [2], we refine the inhibitory connections to minimize an upper bound ofW ’s ‘spectral abscissa’297

(SA) (i.e., the largest real part among the eigenvalues ofW) [2]. Briefly, inhibitory weights are it-298

eratively updated to follow the negative gradient of this upper bound to the SA. First, the inhibitory299

weights remain inhibitory (i.e., negative). Second, we maintain a constant ratio (γ = 3) of mean300

inhibitory to mean excitatory weights. Third, we restrict the density of inhibitory connections to301

be less than or equal to 0.4 to maintain sparse connectivity. This constrained gradient descent usu-302

ally converges within a few hundred iterations. As was also observed in Ref. [2], the SA typically303

decreases during optimization from 10 to about 0.15. For additional details, see the supplemental304

information of Ref. [2].305

As a proof of principle, we also construct a ‘chaotic’ variant of our network model (see306

Fig. S1E). These networks are chaotic in the sense that the neuronal dynamics Eqn. (1) give rise307

to a positive maximal Lyapunov exponent [16]. We use a synaptic weight matrixW , as described308

above prior to optimization, but with γ = 1 and ρ = 1.5 (as in Ref. [15]). We set τ = 20 ms, and309

we choose the initial condition for each neuron’s activity from a uniform distribution between−10310

and 10 Hz.311

14

1.4 Creating target muscle activity312

We generate target muscle activities of duration T = 500 ms (fast movements) and T = 2500 ms313

(slow movements). In each case, we draw muscle activity from a Gaussian process with a covari-314

ance functionK ∈ [0 : T]×[0 : T]→ R+ that consists of a product of a squared-exponential kernel315

(to enforce temporal smoothness) and a non-stationary kernel that produces a temporal envelope316

similar to that of real EMG data during reaching [3]. Specifically,317

K(t, t′) = e−
(t−t′)2

2`2 × E(t/σ)× E(t′/σ) , (5)

with E(t) = t exp(−t2/4). We set σ = 125 ms and ` = 30 ms for fast movements and σ = 624 ms318

and ` = 150 ms for slow movements. We also multiply the resulting muscle activity by a scalar to319

ensure that it has the same order of magnitude as the neuronal activity. We use a sampling rate of320

400 Hz for fast movements and 200 Hz for slow movements.321

1.5 Network output322

We compute the momentary output activity z(t) as a weighted linear combination of excitatory323

neuronal firing rates:324

z(t) = m>f(xE(t); gE) + b , (6)

where m ,xE(t) , gE ∈ RM and xE(t) is the excitatory neuronal activity. To ensure that the325

network generates realistic muscle activity (see Section 1.4) prior to any training of the neuronal326

gains, we fit the readout weightsm and the offset b to an initial output activity using least-squares327

regression. To ameliorate any issues of overfitting, we use 100 noisy trials, in which we add328

Gaussian white noise to the network initial condition x0 for each trial with a signal-to-noise ratio329

of 30 dB [2]. Subsequently, the readout weights remain fixed throughout training of the neuronal330

gains. Additionally, see our simulation details for each figure.331

15

1.6 Network output error332

We compute the error ε between the network output z ∈ RT and the target y ∈ RT by calculating

ε = 1−R2 =

∑T
t=1(z(t)− y(t))2∑T
t=1(y(t)− ȳ)2

, (7)

where ȳ = 1
T

∑T
t=1 y(t) and R2 is the commonly used coefficient of determination (which is often333

called simply ‘R-squared’). Therefore, an error of ε = 1 implies that the performance is as bad334

as if the output z is equal to the mean of the target y and thus does not capture any variations in335

output. When we use multiple readout units, we take the mean error ε across all outputs. We use336

this definition of error throughout the entire paper.337

1.7 Analysis of the effects of identically changing the gain of all neurons338

To examine the effects of gain modulation on neuronal dynamics when identically changing all339

neuronal gains (i.e., gi = g for all i), we construct a Taylor expansion of f(xi; gi) from Eqn. (2).340

By keeping only leading-order terms, we obtain f(xi; g) ≈ gxi, and substituting this expression341

into Eqn. (1) yields τ ẋ = (gW −I) ·x = A ·x, where I is the identity matrix andA = gW −I .342

Empirically, we find this linear approximation to be valid in a large basin of attraction around the343

equilibrium.344

Changing the gain from g to g′ multiplies the imaginary part of the spectrum of A by the345

factor g′/g. (Subtracting the identity matrix does not affect the imaginary part of the spectrum of346

A.) This, in turn, multiplies the frequency of the associated solution of the linearized dynamics of347

x(t) by the factor of g′/g.348

A change in gain also causes changes in the real parts of the eigenvalues of A. Specifically,349

increasing the gain causes the real parts of all but one of the eigenvalues of gW to increase (i.e.,350

the eigenvalues ofA get closer to the imaginary axis), generally causing a slower decay of activity351

towards the equilibrium [36]. The real part of the remaining eigenvalue, which is associated with352

16

the eigenvector (1, 1, . . . , 1)T/
√
N (see Ref. [2]), becomes more negative with increasing gain,353

resulting in faster decay of the neuronal dynamics (however, this effect is small compared with354

the slowing of the decay due to the changes of the other real parts of the eigenvalues mentioned355

above).356

1.8 A learning rule for neuronal input–output gains357

We devise a reward-based learning rule that is biologically plausible in the sense that it includes358

only local information and a single scalar reward signal that reflects a system’s recent performance359

[11, 12, 14]. Our learning rule progressively reduces the error (on average) between the network360

output and a target output over training iterations. We update the gain gi for neuron i after each361

training iteration tn (with n = 1, 2, 3, . . .) according to the following learning rule:362

gi(tn) = gi(tn−1) +R(tn−1)(gi(tn−1)− ḡi(tn−1)) + ξi(tn) , (8)

where

R(tn) = sgn(ε̄(tn−1)− ε(tn)) , (9)

ε̄(tn) = αε̄(tn−1) + (1− α)ε(tn) ,

ḡi(tn) = αḡi(tn−1) + (1− α)gi(tn) ,

where ε(tn) represents the output error at iteration tn (see Section 1.6), sgn is the sign function,363

ξi(tn) ∼ N (0, 0.0012) is a Gaussian random variable with mean 0 and standard deviation 0.001,364

and α = 0.3. The initial reward signal is R(t0) = 1, and the other initial conditions are ε̄(t0) =365

ε(t0) (where ε(t0) is the initial error before training) and ḡi(t0) = gi(t0) = 1. One can interpret366

the terms ḡi and ε̄ as low-pass-filtered gains and errors, respectively, over recent iterations with a367

history controlled by the decay rate α [14]. We use these parameter values in all of our simulations.368

We find that varying the standard deviation of the noise term ξ or the factor α has little effect on369

the learning dynamics (not shown), in line with Ref. [13].370

The learning rule (8) is similar to the reward-modulated ‘exploratory Hebbian’ (EH) synap-371

17

tic plasticity rule [12–14]. However, we investigate gain learning in which there are changes in372

neuronal gains (i.e., the responsiveness of neurons) inside a recurrent network rather than on the373

synaptic readout weights (as was explored in Refs. [12, 13]). Additionally, our reward signal R374

does not provide information on the sign and magnitude of the error, and it also does not indicate375

the amount that each readout (if using multiple readouts) contributes to a recent change in perfor-376

mance. One can view the reward signal as an abstract model for phasic output of dopaminergic377

systems in the brain [7, 17, 18, 37].378

We update the gains as follows. We update the gains for iteration t1 according to Eqn. (8),379

and we obtain the network output from the gain pattern g(t1). We then calculate the error ε(t1))380

from the output, and we subsequently calculate the reward R(t1) and the quantities ε̄(t1) and ḡ(t1)381

using Eqn. (9). We then repeat this process for all subsequent iterations.382

One can also adapt our learning rule so that learning ceases when the error ε(tn) saturates383

at a sufficiently small value. A way to achieve this is by instead placing the noise term ξi inside384

the brackets in Eqn. (8), so that the reward term R multiplies ξi, together with changing the sgn385

function in Eqn. (9) to the tanh function. This yields the following learning rule:386

gi(tn) = gi(tn−1) +R(tn−1)(gi(tn−1)− ḡi(tn−1) + ξi(tn)) , (10)

where

R(tn) = tanh(η(ε̄(tn−1)− ε(tn))) , (11)

ε̄(tn) = αε̄(tn−1) + (1− α)ε(tn) ,

ḡi(tn) = αḡi(tn−1) + (1− α)gi(tn) ,

and η = 50, 000 controls the slope of the tanh function at 0 (i.e., when the low-pass-filtered error387

ε̄(tn) matches the current error ε(tn)). Learning now stops when ε̄(tn−1) = ε(tn); see the orange388

curve in Fig. S1E. We achieve a qualitatively similar learning performance by using Eqns. (10) and389

(11) instead of Eqns. (8) and (9), respectively. (Compare the orange and red curves in Fig. S1E.)390

18

1.9 Analysis of linear combinations of gain patterns and their associated solutions391

In Fig. 3, we illustrated that there is a consistent mapping between learned gain patterns and their392

outputs. Specifically, we illustrated that for a library of k gain patterns (g1, . . . , gk), a convex393

combination c1f(g1) + . . .+ ckf(gk) (so cj ≥ 0 for all j and
∑k

j=1 cj = 1) of their corresponding394

outputs approximates the output f(c1g1 + . . . + ckgk) obtained using the gain patterns combined395

in the same way (see Fig. 3). Here, the subscript index j denotes the library element j and is not a396

neuron index. We now provide some mathematical understanding of this phenomenon by studying397

linearized solutions of the neuronal dynamics. Because the readout unit is a linear combination of398

the neuronal dynamics, it is sufficient to study convex combinations of internal neuronal activity399

x(t) directly, rather than convex combinations of linear readout trajectories.400

For a convex combination (i.e., a weighted mean) of k vectors or matrices φ with weights cj ,401

it is convenient to use the following notation:402

C
[
φ̃
]

=
k∑
j=1

cjφj , (12)

where the tilde in the square brackets is a reminder that we are summing over the index of the

associated library terms. For a given gain pattern Gj ∈ RN×N (where the neuronal gains are

elements along the diagonal of Gj and all other elements are 0, and the index j denotes library

element j), the solution xj ∈ RN of the linearized dynamics of Eqn. (1) (i.e., we linearize the gain

function f) is given by

xj(t) = e
t
τ

(WGj−I)x0 , (13)

under the assumption that there are N distinct eigenvectors for the matrix WGj − I and that we403

are away from any bifurcations. Let404

u(t) = e
t
τ [W C[G̃]−I]x0 (14)

denote the neuronal activity that results from a convex combination C
[
G̃
]

of gain patterns. We405

need to show that u(t) is approximately the same as the convex combination of the individual406

19

neuronal dynamics xj(t) with the same coefficients cj . That is, we need to show that the difference407

∆(t) = u(t)− C [x̃(t)] (15)

is small with respect to the magnitude of the neuronal activity. We first note that d∆
dt

∣∣
t=0

= 0,

which we prove as follows:

d

dt
u(t)

∣∣∣∣
t=0

=
1

τ

(
W C

[
G̃
]
− I

)
x0 (16)

=
1

τ
C
[
WG̃− I

]
x0

=
d

dt
C [x̃(t)]

∣∣∣∣
t=0

,

where we used the fact that
∑k

j=1 cj = 1 to go from the first to the second line and the matrices

W and I do not depend on the gain patterns. To see whether we can also expect ∆(t) to be small

for t > 0, it is useful to consider the power-series expansion of the matrix exponentials on the

right-hand side of Eqn. (15):

C [x̃(t)] = C

(∞∑
m=0

(WG̃− I)m

m!

) t
τ

x0

 , (17)

u(t) =

(
∞∑
m=0

(
W C

[
G̃
]
− I

)m
m!

) t
τ

x0 . (18)

We observe in numerical simulations (not shown) that power-series expansions of this form are

accurate descriptions of the associated neuronal dynamics up to second order in m. We therefore

truncate to m = 2, and we evaluate the difference of Eqns. (17) and (18):

∆(t) =

(
1

2

) t
τ

(
C
[(

(WG̃)2 + I
) t
τ

]
−
((
W C

[
G̃
])2

+ I

) t
τ

)
x0 . (19)

We need to check if the right-hand side of Eqn. (19) is small compared to the neuronal dynamics

(i.e., compared to Eqn. (17)). One way to check if this holds at certain times t is to substitute values

of t into Eqns. (19) and (17) and calculate the ratio of the norms of these two expressions. Setting

t = τ — at t = τ = 200 ms, the neuronal dynamics are close having reached their maximum

20

amplitude (see Fig. S3E) — yields

‖∆(t) |t=τ ‖
‖C [x̃(t) |t=τ] ‖

≈

∥∥∥∥(C [(WG̃
)2

+ I

]
−
(
W C

[
G̃
])2

− I
)
x0

∥∥∥∥∥∥∥∥(C [(WG̃
)2

+ I

])
x0

∥∥∥∥
=

∥∥∥∥W 2

(
C
[
G̃2
]
−
(
C
[
G̃
])2
)
x0

∥∥∥∥∥∥∥(W 2C
[
G̃2
]

+ I
)
x0

∥∥∥ . (20)

We now study the magnitude of both the numerator and the denominator of Eqn. (20) and show408

that the ratio is small. Both the numerator and the denominator scale approximately in linear pro-409

portion to the norm of the product of W 2 and that of x0 (the identity matrix in the denominator410

is small compared to W 2). The main difference between the two is their dependency on the gain411

patterns Gj . The numerator scales approximately proportionally to a ‘weighted variance’ of the412

gain patterns (specifically, with C
[
G̃2
]
−
(
C
[
G̃
])2

), whereas the denominator scales approxi-413

mately proportionally to a weighted mean of the squared gain patterns (i.e., (C
[
G̃2
]
)). Because414

our learned gain patterns are typically narrowly distributed, with a mean of 1 and approximate415

standard deviation of 0.15 (see Fig. S4A), this ratio is small (on the order of 10−2). Numerically,416

we confirm that the normalized error in Eqn. (20) is indeed small, which also corroborates the417

results of Fig. 3 of the main text. Finally, we note that although we restricted our discussion above418

to a linear gain function, our numerical simulations suggest that Eqn. (15) is also small for the419

nonlinear gain function of Eqn. (2) (see Fig. 3) that we used throughout the main text.420

1.10 Simulation details for Fig. 1 and Figs. S1 and S2421

We create two different electromyogram (EMG) (see Section 1.4) muscle activities (initial reach422

and target reach) that each last 0.5 s (see Figs. 1A,F). We use a network of N = 200 neurons423

and sample transient neuronal dynamics lasting 0.5 s following the network initial condition (see424

Section 1.1). We fit the readout weights over 100 trials in which we add white Gaussian noise to the425

network initial condition x0 (with a signal-to-noise ratio of 30 dB) using least-squares regression426

so that the initial network output, with all gains set to 1, approximates the initial reach (see Section427

21

1.5). We use the same readout weights throughout all training, and we use only one readout unit428

for all simulations.429

In Fig. 1C, we plot the dynamics of three example neurons with all gains set to 1 (black) and430

all gains set to 2 (blue).431

For each training iteration of the neuronal gains (to approximate the target movement), we432

give the initial condition x0 to the network at time t = 0 (see Section 1.1), and we calculate the433

subsequent network output as described in Section 1.5. We compute the error ε (see Section 1.6)434

after each iteration, and we then update the neuronal gains according to Eqn. (8). We repeat this435

process for 18, 000 training iterations (which, in physical units, corresponds to 2.5 hours of training436

time), which is enough training time for the error to saturate (see Fig. 1D).437

We run 10 independent training sessions on the same target, and we plot these results in438

Figs. 1D,E. For the outputs that we show in Fig. 1F, we add white Gaussian noise to the network439

initial condition x0 with a signal-to-noise ratio of 30 dB using one of the learned gain patterns and440

with all gains equal to 1. For each of the 10 learned gain patterns g, we plot the change in the441

spectral abscissa of W × diag(g) (i.e., the largest real part in the spectrum of W × diag(g)) in442

Fig. S1A. We observe an increase in the spectral abscissa after training.443

In Fig. S1B, we calculate, for each neuron, the variance of the gains across the 10 training444

sessions, and we plot the mean variance across all neurons (see the arrow). We also plot the445

distribution of mean variances from a permutation test with 10, 000 independent uniformly random446

shuffles of gain values across neurons and training sessions. (We obtain a p-value of p < 10−4.)447

This suggests that similar gain patterns occur in independent training sessions.448

To generate the correlation matrices that we show in Fig. S1C, we calculate the Pearson cor-449

relation coefficient of the neuronal dynamics between all pairs of neurons in the recurrent network.450

Therefore, each entry in the matrix indicates the extent to which the neuronal dynamics are similar451

22

for a pair of neurons over the duration of the movement (i.e., 0.5 s). We show correlation matrices452

for examples in which all gains are set to 1 and for two example learned gain patterns (see our453

discussion above). We use the same network initial condition that we used during training, and we454

observe that there is not a substantial change in the correlations between the neuronal dynamics455

even though we obtain a dramatically different output activity.456

We also studied whether the neuronal dynamics correlate more positively with the target457

movement after training compared with before training. To quantify the similarity between the458

neuronal dynamics and the target output, we calculate for each of the 10 training sessions (see459

above) the Pearson correlation coefficient of the neuronal dynamics between each neuron in the460

recurrent network and the target output. In Fig. S1D, we plot the mean Pearson correlation coef-461

ficient across all neurons for the case in which all gains are set to 1 (i.e., before training) and for462

each of the 10 learned gain patterns (i.e., after training). There is a significant (with a p-value of463

p ≈ 0.002) change in the mean Pearson correlation coefficient before training versus after training464

using a paired Wilcoxon signed rank one-sided test. For the gain pattern that produces the largest465

change in the mean correlation coefficient (see the grey line in the left panel of Fig. S 1D), we466

plot the distribution of changes in correlation coefficients for all neurons (see the right panel of467

Fig. S1D). We see that most values are larger than 0, so the neuronal dynamics become more pos-468

itively correlated with the target output after learning. We also show an example of a substantial469

change in the neuronal dynamics of one neuron.470

For the same task as that shown in Fig. 1D, we also use an alternative learning rule (Eqns. (10)471

and (11)), where learning automatically stops when the network output error becomes sufficiently472

low (see Section 1.8). We plot the error reduction in Fig. S1E in orange. Using this alternative473

learning rule, the error reaches a smaller value for this task (compare the orange curve to the red474

curve in Fig. S1E) and learning stops after approximately 10, 000 training iterations on average.475

In another computational experiment, we train the network on the same task but instead use476

a ramping input to the network (simulating preparatory activity prior to movement onset [2, 3]) and477

23

train the neuronal gains so that the network output generates the target. We use the same ramping478

input function that was used in Ref. [2], namely exp(t/τon) if t < 0 s and exp(−t/τoff) after479

movement onset (t ≥ 0), with an onset time τon = 400 ms and an offset time τoff = 2 ms. Any480

gain changes resulting from learning now also affect the neuronal activity state at t = 0 (i.e., at481

movement onset). We again run 10 independent training sessions, and we observe learning results482

that are qualitatively similar to those above (see blue curve in Fig. S1E).483

For the same task, we also train a ‘chaotic’ [15] variant of our network model (see Section484

1.3, where we describe how we construct such a model) and apply the same training method that485

we described above. We use the first 0.5 s of network activity and we again change only the486

neuronal gains during training. We run 10 independent training sessions, and we observe a very487

similar error reduction over training iterations (see black curve in Fig. S1E) as we saw in Fig. 1D488

(compare black and red curves in Fig. S1E).489

In another computational experiment, we generate 10 different target muscle activities (see490

Section 1.4) and independently train the neuronal gains for a network of 200 neurons, as we de-491

scribed earlier in this section using our learning rule Eqn. (8) (see the red curve in Fig. S1G). As a492

control to compare the performance of training neuronal gains, for the same 10 target movements,493

we independently train a rank-one perturbation of the synaptic weight matrix for each movement.494

Specifically, for each of the 10 movements, we learn vectors u,v ∈ R200×1 to reduce the error495

between the network output, which we obtain from the neuronal dynamics in Eqn. (1) withW re-496

placed byW +uv>, and the target movement. We use Eqn. (8) to independently train the vectors497

u and v, where gi and ḡi are replaced, respectively, by ui and ūi and by vi and v̄i. When training498

the vectors u and v, we set all gains to 1. We find that by training with gain modulation, which499

is the focus of our paper, we reduce the error at a substantially faster rate compared to the training500

method of using a rank-one perturbation. (Compare the blue and red curves in Fig. S1G.)501

In a final computational experiment, we train a network on the same task as the one that we502

showed in Figs. 1D–F, but with r0 = 5 Hz. We plot these results in Fig. S2.503

24

1.11 Simulation details for Fig. 2 and Fig. S3504

For coarse-grained (i.e., grouped) gain modulation, we generate n random (modulatory) groups,505

and we independently modulate each group using one external ‘modulatory unit’. Our generation506

mechanism proceeds as follows. For each of the n groups, we choose N/n neurons (where N507

is the total number of neurons in the network) uniformly at random without replacement. If n508

does not divide N , we assign the remaining neurons to groups uniformly at random. When using509

specialized groupings based on previous training, we obtain groups by applying k-means clustering510

to 10 gain patterns obtained from 10 independent training sessions (using neuron-specific control)511

on the same target.512

For the same task as in Fig. 1, we plot the results of the above random and specialized513

groupings (as well as the neuron-specific result from Fig. 1D) in Fig. S3A. The readout weights514

are the same as those in Fig. 1.515

We now give details for Figs. 2B,C and Figs. S3B,C. We generate 5 different target outputs516

and run 10 independent training sessions for each target. For the random groupings, we use differ-517

ent independently-generated random groupings for each simulation. However, for the specialized518

groupings, for a specified number of groups, we use the same grouping in all simulations. We plot519

the results of using 10 or 20 groups with either random or specialized groupings in Figs. 2B,C and520

Figs. S3B,C. When obtaining specialized groupings shared by multiple movements (i.e., we use521

the same grouping for learning multiple movements), as plotted in Fig. 2C and Figs. S3B,C, we use522

k-means clustering across all the gain patterns that we obtain using neuron-specific modulation for523

each of the movements. We also use the specialized grouping that we obtain for 20 groups shared524

across 5 movements to learn 10 hitherto-untrained movements. We plot these results in Fig. S3D.525

For the same 5 targets that we just described above, we consider various different numbers of526

groups (determined randomly using the above procedure) for networks with N = 100, N = 200,527

and N = 400 neurons. We again perform 10 independent training sessions for each network,528

25

target, and number of groups. We fit the readout weights so that each network generates the same529

initial output with all gains set to 1. The readout weights remain fixed throughout training. We plot530

these results in Fig. 2D and Figs. S3E–H. We use the Tukey style for the whiskers in the box plots.531

We now give details for Figs. 2E,F. For multiple readout units, we generate 10 different532

initial network outputs and targets for each readout unit. For example, for 2 readout units, we533

generate 10 different initial and target outputs for each of units 1 and 2. We run independent534

training sessions for these 10 sets of target outputs and calculate mean errors across the 10 training535

sessions. For a given number of readout units, we use the same sets of initial and target movements536

for all 3 networks and each number of random groups. We thus fit readout weights so that each537

network generates the same initial output with all gains set to 1. The readout weights remain fixed538

throughout training. We now use 60, 000 (instead of 18, 000) training iterations to ensure error539

saturation.540

1.12 Simulation details for Fig. 3 and Figs. S4 and S5541

To create libraries of learned movements, we train a network of 400 neurons and 40 random groups542

(see Section 1.11) on each of 100 different movements independently. (In other words, this gener-543

ates 100 different gain patterns, with one for each movement.) In Fig. S4A, we plot the distribution544

of gains that we obtain after training across all 100 gain patterns. We plot all 100 outputs from545

these 100 learned gain patterns in Fig. S4B. We also generate 100 new gain patterns by sampling546

uniformly at random from the distribution in Fig. S4A and plot the output of each of these gain547

patterns in Fig. S4C. These outputs are much more homogeneous than the learned gain patterns in548

Fig. S4B, and they likely would not constitute a good basis set for movement generation.549

For library sizes of k ∈ {1, 2, . . . , 50}, we choose 100 samples of k movements (from the550

learned gain patterns and their outputs, as described above) uniformly at random without replace-551

ment for each k. We then fit the set of movements in each of the 100 sample libraries using552

least-squares regression for each of 100 hitherto-untrained novel target movements. We constrain553

26

the fitting coefficients cj from the least-squares regression by requiring that cj ≥ 0 for all j and554 ∑k
j=1 cj = 1. That is, we consider convex combinations of the coefficients cj . We calculate the555

fit error (i.e., the error between the fit and the target), the output error (i.e., the error between556

the output and the target), and the error between the fit and the output for each of the 100 novel557

movements, each of the 100 samples, and each k. See Section 1.6 for our description of how we558

calculate errors.559

For each k and for each randomly-generated combination of library elements (see the para-560

graph immediately above), we order the 100 novel target movements based on the error between561

the output and the fit, and we select the one that is the 50th largest (i.e., close to the median error).562

We then extract the output and fit errors for this target and repeat this procedure for k = 1, . . . , 50563

and for each of the 100 randomly-generated combinations of library elements. We plot these re-564

sults in Fig. 3C and Fig. S4G. In Fig. 3, we plot results for k ∈ {1, 2, . . . , 20}; in Fig. S4, we565

plot results for k ∈ {1, 2, . . . , 50}. Observe that there is only a small change in the errors between566

k = 20 and k = 50. In Fig. S4E, we plot the distribution of errors over the 100 samples for k = 5567

and k = 20. Additionally, for each k and for each of the 100 target movements, we order the 100568

combinations of library elements based on the error between the output and the fit, and we select569

the one that is the 50th largest. We then extract the output and fit errors for this combination and570

repeat this procedure for k = 1, . . . , 50 and for each of the 100 target movements. We plot these571

results in Fig. S4H. This indicates that we obtain qualitatively similar results if we average over572

the 100 target movements or if we instead average over the 100 combinations of library elements.573

We also calculate the Pearson correlation coefficient between the output and the fit errors for574

each k when taking the 50th largest error across the 100 novel target movements (see Fig. S4I) or575

across the 100 randomly-generated samples (see Fig. S4J).576

Importantly, we also repeat these simulations for the baseline rate r0 = 5 Hz in Eqn. (2). We577

plot the results of these simulations in Fig. S5, and we note that we obtain near identical results to578

those obtained for the baseline rate r0 = 20 Hz.579

27

1.13 Simulation details for Fig. 4 and Figs. S6 and S7580

We now describe our simulations for learning target activity that lasts longer than 0.5 s. In each581

of these simulations, we use a network of 400 neurons and 40 random modulatory groups. (See582

Section 1.11 for our discussion of how we determine such groups.) We construct target movements583

with σ = 312 ms and ` = 75 ms in Eqn. (5). We then construct both a ‘fast’ (0.5 s) and a ‘slow’584

(2.5 s) variant of each movement. (Note that we are modelling the network output activity as a585

proxy for muscle-force dynamics. To actually generate the same movement so that it lasts 5 times586

longer, we need to also scale the amplitude of the target force dynamics by the factor 1/52 = 1/25.587

We omit this scaling so that the task is more difficult, because the target activity without the scaling588

has a substantially larger amplitude throughout the duration of the movement.) Each movement589

variant has 500 evenly-spaced points (see Section 1.4). We sample the fast variant using 100590

evenly-spaced points, and we then augment 400 instances of 0 values to the final 2, 000 ms of the591

movement to ensure that both movements have the same length (see Fig. 4A; top right).592

Details for Fig. 4B and Figs. S6A,C. We fit readout weights using least-squares regression so593

that with all gains set to 1, the network output approximates the fast variant. We then train gain594

patterns using our learning rule Eqn. (1.8) so that the network output generates the slow-movement595

variant. (The network initial condition and readout weights remain fixed.) We use 60, 000 training596

iterations. We run 10 independent training sessions for each of 10 different target movements. We597

plot one such movement in Fig. 4B, and we plot results of all simulations in Figs. S6A,C.598

Details for Fig. 4C and Fig. S6B. We wish to obtain neuronal dynamics that are less sensitive to599

noisy network initial conditions than those that are generated from gain patterns obtained from our600

learning rule. For example, in Fig. 4B, the neuronal activity has decayed substantially towards 0601

after approximately 0.5 s, even though the output activity is close to its maximum value. We there-602

fore perform the task that we described in the paragraph above (i.e., generating a slow-movement603

28

variant by changing the neuronal gains) using a gradient descent-training procedure using gradi-604

ents that we obtained from back-propagation [38]. Together with learning the gain pattern for the605

slow variant, we jointly optimize a single set of readout weights (shared by both the fast-movement606

and slow-movement variants) (see Section 1.5) as part of the same training procedure. The gains607

are still fixed at 1 for the fast variant. The cost function for the training procedure is composed of608

the squared error between actual network outputs (fast and slow) and target outputs (fast and slow)609

plus the Euclidean 2-norm of the readout weights, where the latter acts as a regularizer. We run610

gradient descent for 500 iterations, well after the cost has stopped decreasing.611

Using the target movement from Fig. 4B, we plot the output of the back-propagation training612

procedure in Fig. 4C, and we plot results of all simulations in Figs. S6B,D on the same 10 target613

movements as used in Fig. S6A. In Fig. S6G, for the outputs in Figs. 4B,C, we add white Gaussian614

noise with a signal-to-noise ratio of 4 dB to the network initial condition. We observe that the615

outputs from the back-propagation training procedure are less sensitive to noisy initial conditions616

than the outputs from the learning rule.617

Details for Figs. S6H–J. In these simulations, we train a single gain pattern that is shared by n618

different movements, which each last 2.5 s and where each movement corresponds to a different619

network initial condition. To generate a collection of n such initial conditions, in which each initial620

condition evokes neuronal activity of approximately equal amplitude at the baseline condition (i.e.,621

with all gains set to 1), we randomly rotate the top n eigenvectors of the observability Gramian622

of the matrix W − I [2]. Specifically, we do this by creating a matrix of n columns—one for623

each these n eigenvectors—and postmultiplying this matrix by a random n× n orthogonal matrix624

(obtained via a QR decomposition of a random matrix with elements drawn from a normal dis-625

tribution with mean 1 and standard deviation 1). We plot the results as a function of the number626

n of movement/initial condition pairs (see Figs. S 6H,I) for 10 independent draws of the initial627

conditions that we just described. We use the Tukey style for the whiskers in the box plot.628

29

Given n initial conditions, we also uniformly randomly choose n fast target movements and629

their slow counterparts out of a fixed set of 10 different movements. We then train a network to630

generate the correct fast and slow target movements by optimising a single set of readout weights631

and a set of n gain patterns for the slow variants (where we set the gains for each of the fast variants632

to 1). We train using the same gradient-descent method with back-propagation that we described633

earlier in this section.634

Details for Fig. S7A. For each of the 10 trained movements in Figs. 6A,B, we extract the mean635

minimum error across all simulations for both the outputs obtained via our learning rule (see636

Fig. S 6A) and the outputs obtained via back-propagation (see Fig. S 6B). We then linearly in-637

terpolate between the learned gain patterns for the fast and slow outputs and calculate the error638

(see Section 1.6) between the output and the target movement at the interpolated speed. We calcu-639

late these errors for many interpolated movement durations between 0.5 s and 2.5 s, and we plot640

the mean errors for both our learning rule and the back-propagation training in Fig. S7A. We also641

show an example output that lasts 1.5 s.642

Details for Figs. 4D,E and Figs. S 7B–D. To demonstrate that gain modulation can provide643

effective smooth control of movement speed for multiple network initial conditions, we train net-644

works to generate a pair of target movements in response to a corresponding pair of orthogonal645

initial conditions (see the above description of Figs. S6H–J) at fast and slow speeds (as above) and646

also at each of 5 intermediate, evenly-spaced speeds in between these extremes. To do this, we647

parametrize the gain pattern of speed s (with s ∈ {1, . . . , 7}) as a convex combination of a gain648

pattern gs=1 for fast movements and a gain pattern gs=7 for slow movements, with interpolation649

coefficients λs (with gs = λsgs=1 + (1 − λs)gs=7, λ1 = 1, and λ7 = 0). We optimize (using650

back-propagation, as discussed above) over gs=1, gs=7, the 5 interpolation coefficients λs (with651

s ∈ {2, . . . , 6}), and a single set of readout weights. For a given speed s, we use the gain pattern652

gs for both movements.653

30

We plot the 7 learned gain patterns and their corresponding outputs for each initial condition654

in Figs. S 7B,D. Note that interpolating between the fast and slow gain patterns generates both655

movements at any intermediate speed (see Fig. S7C). We show examples of interpolating between656

the fast and slow gain patterns for 5 (of the 40) modulatory groups in Fig. 4D, and we plot outputs657

at 5 evenly-spaced speeds in Fig. 4E for both initial conditions.658

Details for Fig. 4F and Figs. S7E,F. Here, we simultaneously train gain patterns for controlling659

different movements (i.e., different movement shapes) and their speed. We simultaneously train the660

network (using back-propagation, as discussed above) to generate each of 10 different movement661

shapes at 7 different, evenly-spaced speeds (ranging from the fast variant to the slow variant)662

using the same network initial condition. Importantly, to jointly learn gain patterns that control663

movement shape and speed, we parametrize each gain pattern as the element-wise product of a664

gain pattern that encodes shape (which we use at each speed for a given shape), and a gain pattern665

that encodes speed (which we use at each shape for a given speed). We again parametrize (see666

our discussion above) the gain pattern that encodes speed s (with s ∈ {1, . . . , 7}) as a convex667

combination of two common endpoints, gs=1 (which we use for the fast-movement variants) and668

gs=7 (which we use for the slow-movement variants). We thus optimize over 10 gain patterns for669

movement shape, 2 gain patterns each for fast and slow movement speeds, 5 speed interpolation670

coefficients (see above), and a single set of readout weights. In Fig. S7E, we plot the gain patterns671

that we obtain for controlling the movement speeds at each of the 7 trained speeds. In Fig. S7F, we672

plot the outputs of each of the 10 gain patterns for movement shape at each of 5 interpolated speeds673

between the fast and the slow gain patterns. In Fig. 4F, we plot 2 example movement shapes at 3674

interpolated speeds.675

31

Figures676

E
M

G
 (

a.
u.

)

100 ms

Time

. . .

. . .

Input

Gain
mod.

EMG
output

Cortical networkA

0

20

40

60

Exc.

80

 F
iri

ng
 r

at
e

(H
z)

Input (a.u.)

Gain
0

1

2

3

4

0

1

2

3

4

B

ED

E
M

G

5 Hz

E
rr

or

100 ms

C

F

Switch

. . .

. . .Target
reach

Initial
reach

100 ms

a.u.

100

Target
reach

Initial
reachE

M
G

0 5 10 15
0.4

0.6

0.8

1

1.2

1.4

1.6

G
ai

n

0 5 10 15

Neuron 1
Neuron 2

No. of iters. (103)
0 10 20 30
% of neurons

Simulation
results

Number of iterations (103)

100 ms

Inh.

N)2, σ(1

Fig. 1: Controlling network activity through neuron-specific gain modulation. (A) Example

of a reaching task, with illustrative electromyograms (EMG) of muscle dynamics for two reaches

(in orange and black). (B) Schematic of our model (see the text and Section 1.10). (C) Changing

the slope of the input–output gain function (left) uniformly for all neurons from (black) 1 to (blue)

2 has pronounced effects on neuronal activity (right); we show results for three example neurons.

(D) The mean error in network output decreases during training with neuron-specific modulation.

In the inset, we show five snapshots of network output (indicated by arrowheads) as learning pro-

gresses. (E, Left) Neuronal gain changes during training for 2 example neurons (grey and black)

and 10 training sessions. (Right) Histogram of gain values after training. The blue curve is a

Gaussian fit with a standard deviation of σ ≈ 0.157. (F) Network outputs for the initial and the

new gain patterns for 10 noisy initial conditions (grey curves) compared to both targets (black and

orange).

B

C D

E

F

A

2 4 6 8 10 15 20 N
0

0.2

0.4

0.6

0.8

1

N = 100
N = 200
N = 400

2.3

E
rr

or

Number of groups

Error before training

Network size:

1 3 5 7 9

. . .

. . .

Input

Gain
mod.

10 20 40 N

E
rr

or

0

0.2

0.4

0.6

0.8

2

Number of groups
10 20 40 N

3

10 20 40 N

4

0 15 30 45 60

E
rr

or
E

M
G

0.1
0.2
0.3
0.4

1
2
3

2.5 3.5 4.5
0.3

0.5

0.7

0 15 30 45 60 0 15 30 45 60

Number of readout units

N = 100
N = 200
N = 400

Network size:

0

100 ms

TargetBefore training After training

. .
 .

1020200
Random
Specialised

1 2 3 4 5
No. of movements

0.02

0.06

0.1
E

rr
or

20 (specialised)
20 (random)
200 (neuron-specific)

0 4321

2

1

1.5

0.5

0

E
rr

or

185 16

Number of iterations (103)

No. of iters. (103)

a.u.

Fig. 2: Controlling network activity through coarse, group-based gain modulation. (A) We

identically modulate neurons within each group (see Section 1.11), and target outputs may involve

multiple readout units. (B) Mean error during training for 20 random, 20 specialized, and 200

(i.e., neuron-specific) groups (see Section 1.11). (C) Mean minimum errors after training using

specialized groupings. The same groupings are used for different numbers of movements. (D)

Mean minimum errors for different numbers of random groups with networks of 100, 200, and 400

neurons. (The N on the horizontal axis indicates neuron-specific modulation.) In panels (B)–(D),

we use a single readout unit. (E, Top) Mean minimum error as a function of the number of random

groups when learning each of (left) 2, (centre) 3, and (right) 4 readouts for the same networks as in

panel (D). (Bottom) The corresponding mean errors during training for the case of 40 groups. The

inset is a magnification of the initial training period for the case of 2 readout units. (F) Outputs

producing the median error for the case of 4 readout units using 40 groups in the 400-neuron

network.

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
Input

G
ai

n
lib

ra
ry

. . .

A
Target

Fit to target

Output. . .

. . .

B Dk

1 20
Output versus target
Fit versus target
Output versus fit

0 5 10 15 20
No. of library elements (k)

0

1

2

3

E
rr

or

f(g1)

f(gk)

c1

ck

f(c1g1 + ... + ckgk)

c1f(g1) + ... + ckf(gk)

0 0.2 0.4 0.6 0.8 1
Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

C

100 msE
M

G
E

M
G

TargetFit Output

k = 2 k = 4

k = 8 k = 16

g1

g2

g3

gk

Fig. 3: Gain patterns can provide motor primitives for novel movements. (A) Schematic of a

learned library of gain patterns (g1, . . . , gk, which colour from purple to blue) and a combination

c1f(g1)+ . . .+ckf(gk) of their outputs that we fit (red dashed curve) to a novel target (grey curve).

(Upper right) The output (orange) f(c1g1 + . . .+ ckgk) of the same combination of corresponding

gain patterns also closely resembles the target. We use a 400-neuron network with 40 random

modulatory groups (see Section 1.12) (B) Example target, fit, and output (grey, red dashed, and

orange curves, respectively) producing the median output error using k = 2, k = 4, k = 8,

and k = 16 library elements. (C) Fit error versus the output error for 100 randomly-generated

combinations (see Section 1.12) of k library elements for k = 1, . . . , 20. Each point represents the

median error across 100 novel target movements. We show the identity line in grey. (D) Median

errors of the 100 randomly-generated combinations of k library elements versus the number of

library elements.

A B C

D

F

E Movement 1

Movement 2

Extend duration

Slow output

Fast output

Slow-variant target

Slow output

Fast output

Slow-variant target

E
M

G
 (

a.
u.

)

E
M

G
 (

a.
u.

)

0 0.5 1 1.5 2 2.5
Time (s)

F
iri

ng
 r

at
e

5 Hz

0 0.5 1 1.5 2 2.5
Time (s)

F
iri

ng
 r

at
e

5 Hz

0.5 1 1.5 2 2.5
Movement duration (s)

0
0.5

1
1.5

2

G
ai

n
E

M
G

0 0.5 1 1.5 2 2.5
Time (s)

E
M

G

Input

. . .

. . .

. . .

Fast

Slow

ga
in

 2

gain 1

ga
in

40

. . .

.

. . .
. . .

1
sg

2
sg

3
sg

1
mg

2
mg

n
mg

)1
mg×i

sg

i = 1
i = 2
i = 3

(f

)n
mg×i

sg(f

×ga
in

 2

gain 1

ga
in

40

0.5 s

Fig. 4: Gain modulation can control movement speed. (A) Schematic of gain patterns for fast

(0.5 s) and slow (2.5 s) movement variants. (Here and throughout the figure, we show the former in

blue and the latter in orange.) We train a 400-neuron network using 40 random modulatory groups

for all simulations. (See Section 1.13 for details.) (B, Top) We train a network to extend its output

from a fast to a slow-movement variant using our local learning rule. (Bottom) Example dynamics

of 50 excitatory and 50 inhibitory neurons for both fast and slow speed variants. (C) The same

as panel (B) but using a back-propagation training algorithm (see Section 1.13). (D) A linearized

gain manifold for speed control (see the main text) for 5 example modulation groups and 5 speeds

trained on two initial conditions. (E) Both outputs for the 5 evenly-spaced speeds from panel (D).

(F) One can jointly learn the gain patterns gsi for (left box) movement speed and gmj for (right box)

movement shape so that the product of two such gain patterns produces a desired movement at a

desired speed. In the rightmost panel, we show example outputs for two movement shapes at 3

different speeds.

Supplementary Figures

Our model

Our model with
ramping input

E
rr

or

‘Chaotic’ network

Before
training

After
training

Our model

100 ms

A C

F G

B

D

0.1

0.2

0.3

0.4

0.5

Before
training

After
training

S
pe

ct
ra

l a
bs

ci
ss

a

-1 0 1

%
 n

eu
ro

ns

100 ms

E
M

G

5 Hz

Rate
before
training

Rate
after
training

Target
network
output

Δ corr. coeff.Before
training

After
training

M
ea

n
(c

or
r.

 c
oe

ff.
)

**(p < 10-2) E

-0.04

-0.02

0

0.02

0.04

0.06

0

10

20

Number of iterations (103)

‘Chaotic’ network

Alternative
learning rule

0 5 10 15

10-2

10-1

100

0.021 0.022 0.023 0.024 0.025 0.026
0

200

400

600

800

N
um

be
r

of
 p

er
m

ut
at

io
ns

Mean variance of gains

Permutation results

True mean (***)

-1

-0.5

0

0.5

1
Gains set to 1 Gain pattern 1 Gain pattern 2

Neuron numberNeuron number Neuron number

C
orrelation

N
eu

ro
n

nu
m

be
r

0 5 10 15
10-2

10-1

100

101

M
ea

n
er

ro
r

Rank-1 perturbation
Learning gains

Number of iterations (103)

Fig. S1: Further effects of neuron-specific gain modulation. (A) Changes in the largest real part

in the spectrum of W × diag(g) resulting from 10 different training sessions (see Section 1.10).

Although this change appears substantial, the resulting neuronal activity does not change dramati-

cally. (For example, see panels (C) and (F).) (B) The mean variance of the gains across neurons for

10 training sessions (arrow) and the distribution of mean variances with 10, 000 instances of gains

shuffled uniformly at random across neurons and training sessions. (The p-value is p < 10−4;

see Section 1.10.) (C) Correlation matrices of the activity for all pairs of neurons with (left) all

gains set to 1 and (centre and right) two independently learned gain patterns for the task in Fig. 1D.

The order of neurons is the same in all three matrices. There is no substantial change in Pearson

correlation between pairs of neurons as a result of training. (D, Left) The mean Pearson correla-

tion coefficient between the neuronal firing rates and the target increases after training. (We show

10 training sessions.) (Bottom right) Example change in Pearson correlation coefficients between

neuronal firing rates and the target after training for the trial in grey in the left panel. (Top right)

Example of a substantial change in the dynamics of one neuron after training. (E) Mean error

during training for our model (red) (see Fig. 1D), our model with a biologically realistic ramping

input (blue), a ‘chaotic’ recurrent network model (grey), and our model when using the alternative

learning rule from Eqn. (10) (orange) (see Section 1.10). Shading indicates one standard deviation.

(F) The firing rates of 5 example neurons before and after training in (left) our model and (right)

the ‘chaotic’ network. The black vertical bars on the left and right indicate 5 Hz and 10 Hz, respec-

tively. (G) Mean error during training when independently learning 10 different target movements

using our learning rule when training the neuronal gains (red) or training a rank-one perturbation

of the synaptic weight matrix (blue) (see Section 1.10).

0 5 10 15
10-3

10-2

10-1

100

E
rr

or

0.5 1 1.5
Gain

0

10

20

30

%
 o

f n
eu

ro
ns

E
M

G
 (

a.
u.

)

F
iri

ng
 r

at
e

(H
z)

F
iri

ng
 r

at
e

(H
z)

%
 o

f n
eu

ro
na

l a
ct

iv
ity

 (
a.

u.
)

Difference in firing rate (Hz)

BA C

ED F

100 ms

100 ms100 ms

5

0

10

15

20

20

15

25

30

35 r0 = 20 Hz

Simulation
results
N)2, σ(1

r0 = 20 Hz

r0 = 5 Hz

Number of iterations (103)

-4 -2 0 2 4

0

50

100

r0 = 5 Hz

0

50

100

r0 = 20 Hz r0 = 5 Hz

Fig. S2: Neuron-specific gain modulation with r0 = 5 Hz. (A) Firing rate of all neurons in

a 200-neuron network with r0 = 20 Hz. (B) Firing rate of all neurons in the same 200-neuron

network with r0 = 5 Hz. (C) A histogram of the difference in firing rates across all neurons

compared to the case of a network with a linear gain function (i.e., f(xi; gi) = gixi in Eqn. (1))

with (top) r0 = 20 Hz and (bottom) r0 = 5 Hz. For r0 = 20 Hz, the neuronal dynamics are much

more similar to the neuronal dynamics from a linear gain function than is the case for r0 = 5 Hz.

(D) Mean error during training for our model with r0 = 20 Hz (red) (see Fig. 1D) and our model

with r0 = 5 Hz (grey) for the task in Fig. 1D (see Section 1.10). Shading indicates one standard

deviation. With r0 = 5 Hz, the network outputs achieve a lower final error after training. (E)

Histogram of gain values after training. The blue curve is a Gaussian distribution with a mean of

1 and standard deviation of σ ≈ 0.157 (i.e., the distribution that we obtained with r0 = 20 Hz in

Fig. 1E). The distribution of learned gains is almost identical to what we obtained with r0 = 20

Hz. (F) Network outputs for the initial and the new gain patterns with r0 = 5 Hz for 10 noisy

initial conditions (grey curves) compared to the two targets (black and orange).

BA

N = 400

5 Hz

N = 200N = 100

C D

G

H

E F

100 ms100 ms100 ms

0

5

10

15

0

5

10

15

0

5

10

15

1 2 3 4 5 6 7 8 9 10 15 20 200

E
rr

or

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 15 20 400

E
rr

or

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 15 20 100

E
rr

or

0

0.2

0.4

0.6

0.8

1

1.2

N
um

ber of iters. (10
3)

N
um

ber of iters. (10
3)

N
um

ber of iters. (10
3)

Number of groups Number of groupsNumber of groups

N = 200 N = 400N = 100

1 3 5 7 92 4 6 8 10 15 20 N
0

0

1

2

3

4

E
rr

or

Number of groups

Errors
before
learning

0.2
0.4
0.6
0.8

1
1.2
1.4

 F
iri

ng
 r

at
e

(H
z)

100 ms

TargetBefore training After training

N = 400, 10 groups

N = 400, 20 groups

0 5 10 15

Number of iters. (103)

10-1

100

E
rr

or

20 (specialised)
Neuron-specific

1020
Spec. across
all 5 movs.

Spec. for
each mov.

1 2 3 4 5

Movement index

1

2

3

4

5

R
el

at
iv

e
pe

rf
or

m
an

ce
 to

 n
eu

ro
n-

sp
ec

ifi
c

m
od

.
 E
rr

or

0 5 10 15 0 5 10 15

2 10
20 200

Number of groups

20 (specialised)
20 (random)
Neuron-specific

0 5 10 15
Number of iters. (103)

10-1

100

E
rr

or

Number of iters. (103) Number of iters. (103)

10-1

100

10-1

100

Fig. S3: Additional results for grouped gain modulation. (A) Mean error over 10 training ses-

sions (where shading indicates one standard deviation) using (left) random and (right) specialized

groupings for 2, 10, 20, and 200 (i.e., neuron-specific) groups (see Section 1.11). The target output

is the same as in Fig. 1. (B) Relative improvement in performance compared with neuron-specific

modulation for each of 5 movements when using specialized groups shared across all (squares) or

for each (circles) of the 5 movements using either 10 (blue) or 20 (black) groups. A value of 2

implies that the error is 2 times smaller after training compared to neuron-specific modulation. (C)

Mean error over 10 training sessions (where shading indicates one standard deviation) when learn-

ing 5 movements using the same set of 20 specialized groups (shared across all 5 movements), 20

random groups, and neuron-specific modulation. (D) Mean error over 10 training sessions when

learning 10 novel movements using the specialized grouping (with 20 groups) shared across the 5

previously trained movements from panel (C). (E) The dynamics of 50 inhibitory and 50 excitatory

neurons for each of the three different networks sizes. (F) The curves give the mean error over 10

training sessions and across the 3 networks for each of 5 targets. The circles represent the mean

error for each network, and the different colours indicate each of 5 different target outputs (see

Section 1.11). (G) Outputs for all five targets from the trial that produces the median error for the

400-neuron network for the cases of 10 and 20 groups. (H) Box plots (in blue) of the minimum

error after training for different numbers of groups and the 3 different network sizes. (These are

the same data that we plotted in panel (F).) We also include box plots (in red) for the minimum

number of iterations required before the error is within 1 % of the minimum error.

E
M

G
 (

a.
u.

)

100 ms

E
M

G
 (

a.
u.

)

100 ms

B C

D E

F

D
en

si
ty

 (
a.

u.
)

Gain

Simulation
results

A

0 0.5 1 1.5 2
0

20

40

60

80

100

G h

I J

1 50

0 10 20 30 40 50
Number of library elements (k)

0

1

2

3

E
rr

or

0 1 2 3
Error

0

10

20

30

40

50

%
 o

f s
im

ul
at

io
ns

0 0.2 0.4 0.6
Error

0

10

20

30

%
 o

f s
im

ul
at

io
ns

0 10 20 30 40 50
Number of library elements (k)

Number of library elements (k) Number of library elements (k)

0

0.05

0.1

0.15

0.2

E
rr

or

0 5 10 15
Output error

0

5

10

15

F
it

er
ro

r

k

1 20

k

N (1,0.1572)

Output versus target

Fit versus target

Output versus fit

= 5k = 20k

0 0.2 0.4 0.6 0.8 1

Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

0 10 20 30 40 50

C
or

re
la

tio
n

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Output versus target

Fit versus target

Output versus fit

Output versus fit

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. S4: Additional results for gain patterns providing motor primitives. (A) The resulting

distribution of gains from training independently on each of 100 targets (see Section 1.12). The

distribution of the gain patterns resembles a normal distribution (blue curve) with the same mean

and variance as those found in Fig. 1E . (B) Each output from the 100 trained gain patterns. (C)

Outputs of 100 randomly-generated gain patterns from the distribution in panel (A). (See Sec-

tion 1.12 for details.) The outputs are substantially more homogeneous than those in panel (B)

and likely would not constitute a good library for movement generation. (D) The same plot as in

Fig. 3D but for up to k = 50 library elements. (E) The distributions of errors across 100 different

libraries for (left) k = 5 and (right) k = 20. (Note the difference in horizontal-axis scales in the

two plots.) (F) The error between the fit and the output from panel (D). (G) The same plot as

in Fig. 3C but for k = 1, . . . , 50 and with extended axes. Each point represents the median error

across 100 novel target movements for each of 100 randomly-generated combinations of k library

elements. We show the identity line in grey. (H) The same as in panel (G), but each point rep-

resents the median error across the 100 libraries for each of the 100 novel target movements. We

plot these data in the square [0, 1]× [0, 1] and for k = 1, . . . , 20. (I) For the data in panel (G), we

plot the Pearson correlation coefficient between the output and the fit errors for each number of

library elements. (J) For the data in panel (H), we plot the Pearson correlation coefficient between

the output and the fit errors for each number of library elements (up to k = 50).

A Ck

1 20
Output versus target
Fit versus target
Output versus fit

No. of library elements (k)

B

D E

100 msE
M

G
E

M
G

TargetFit Output

k = 2 k = 4

k = 8 k = 16

0 5 10 15 20
0

1

2

3

E
rr

or

0 0.2 0.4 0.6 0.8 1
Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

C
o

rr
e

la
tio

n

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

C
o

rr
e

la
tio

n
Number of library elements (k) Number of library elements (k)

Fig. S5: Gain patterns as motor primitives with r0 = 5 Hz. (A) Example target (grey), fit

(dashed red), and output (orange) producing the median output error using k = 2, k = 4, k = 8,

and k = 16 library elements. (B) Fit error versus the output error for 100 randomly-generated

combinations (see Section 1.12 for a description of the generation process) of k library elements

for k = 1, . . . , 20. Each point represents the median error across 100 novel target movements. We

show the identity line in grey. (C) Median errors of the 100 randomly-generated combinations of k

library elements versus the number of library elements. Compare panels (A–C) of this figure with

panels (B–D) in Fig. 3. (D) For the data in panel (B), we plot the Pearson correlation coefficient

between the output and the fit errors for each number of library elements (up to k = 50). (E) The

same as panel (D) but for data corresponding to the median errors for each novel target movement,

rather than for each randomly-generated combination of library elements (up to k = 50) (see

Section 1.12). Compare panels (D) and (E) of this figure with panels (I) and (J) in Fig. S4.

0 15 30 45 60
Number of Iterations (103)

0

0.5

1

1.5

E
rr

or

0 0.5 1 1.5 2 2.5
Gain

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

-1 -0.5 0 0.5 1
Real part

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

0 2.5 5

Before training

After training

7.5 10
Imaginary part

0 100 200 300 400 500
Number of iterations

0

0.5

1

1.5

E
rr

or

0 0.5 1 1.5 2 2.5 3
Gain

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

-2 -1 0 1
Real part

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

0 5 10
Imaginary part

0 1 2
Time (seconds)

E
M

G

Output from noisy input

Output

0 1 2
Time (seconds)

5000 100 200 300 400
Number of iterations

0

0.25

0.5

0.75

1

E
rr

or

No. of inputs:

1 10

A

C

E F

G

I J

H

D

B

Before training

After training

1 2 3 4 5 6 7

0.5 s

8 9 10
Number of inputs (n)

0
0.2
0.4
0.6
0.8

1

E
rr

or
E

M
G

E
M

G

= 6n

Slow outputFast output Slow-variant target

Fig. S6: Additional results for controlling movement speeds through gain modulation. (A)

Mean error over 10 training sessions for 10 different movements when learning gain patterns for

slow-movement variants using our reward-based learning rule (see Section 1.13). (B) Mean error

over 10 training sessions for the same 10 movements when instead learning gain patterns for slow-

movement variants using a back-propagation algorithm (see Section 1.13). (C) Distribution of

gains for the slow-movement variants across all training sessions using our reward-based learning

rule. (D) Distribution of gains for the slow-movement variants across all training sessions using

the back-propagation algorithm. (E) Histograms of the real and imaginary parts of the eigenvalues

of the linearized system Eqn. (1) before and after training using our reward-based rule for the

example shown in Fig. 4A. (F) Histograms of the real and imaginary parts of the eigenvalues of

the linearized system Eqn. (1) before and after training using the back-propagation algorithm for

the example in Fig. 4B. (G) The same outputs plotted in Figs. 4A,B with white Gaussian noise,

with a signal-to-noise ratio of 4dB, added to the network initial condition (see Section 1.13). (H)

Box plot of the slow-movement-variant errors across 10 training sessions for different numbers of

initial conditions. (I) Mean error over 10 training sessions for n = 1, . . . , 10 initial conditions. (J)

For the case of 6 initial conditions in panel (H), we plot the 4 example outputs that produce the

median error for the 10 training sessions. (For each simulation, we train a 400-neuron network

using 40 random modulatory groups (see Section 1.13).)

500 833 1167 1500 1833 2167 2500
Movement duration (ms)

0

0.5

1

1.5

2

G
ai

n

Extend duration

E
M

G
 (

a.
u.

)
E

M
G

 (
a.

u.
)

A

C
D

E

F

B

Movement 1

Movement 2
E

M
G

500 ms

0.5 1 1.5 2 2.5
Movement duration (s)

0
0.4
0.8
1.2
1.6

E
rr

or

Reward-based rule
Back propagation

Movement 1
Movement 2

Target
Output

500 833 1167 1500 1833 2167 2500
Movement duration (ms)

0

1

2

G
ai

n
E

M
G

E
M

G
E

M
G

E
M

G

0 0.5 1 1.5 2 2.5
Time (s)

E
M

G

E
M

G
E

M
G

E
M

G
E

M
G

0 0.5 1 1.5 2 2.5
Time (s)

E
M

G

0.5

1.5

0.5 1 1.5 2 2.5
Movement duration (s)

0
0.4
0.8
1.2
1.6

E
rr

or

0 0.5 1 1.5 2 2.5
Time (s)

a.u.

Fig. S7: Additional results for smooth interpolation of movement speeds through gain modu-

lation. (A) Interpolation between fast and slow gain patterns does not reliably produce outputs of

intermediate speeds when trained only at the fast and slow speeds (see Section 1.13). (B) We show

the 7 optimized gain patterns for all 40 modulatory groups when training at 7 evenly-spaced speeds

(see Section 1.13). (C) Linear interpolation between the fast and slow gain patterns successfully

approximates the target output when trained at 5 intermediate speeds for 2 initial conditions. (Note

that we plot these results on the same axes as in panel (A).) (D) Outputs for both initial conditions

from the 7 trained gain patterns from panel (B). (E) The 7 optimized gain patterns for movement

speed when jointly training gain patterns for the speed and shape of 10 movements (see Sec-

tion 1.13). (F) Outputs at 5 interpolated speeds for all 10 movements. (For each simulation, we

train a 400-neuron network using 40 random modulatory groups (see Section 1.13).)

