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ABSTRACT Luminescent materials that can spontaneously assemble into highly ordered networks are 

essential to improve the quality of thin films in stacked device architectures and enhance the performances 

of solution processed OLEDs. Herein, we report two pyridine-decorated thermally activated delayed 

fluorescence (TADF) emitters, 3PyCzBP and 4PyCzBP. 4PyCzBP shows robust two component gel 

formation in the presence of either tartaric acid or succinic acid along with significant emission 

enhancement. Morphology studies reveal that these gels consist of homogeneous nanofibers assembled in 

hierarchical supramolecular networks. Transient photoluminescence spectra confirm that the gels emit via 

a TADF mechanism, making them the first examples of TADF gels. These nanofibers are promising 

candidates as self-assembled emitting nanofibers in thin films in solution-processed OLEDs.   
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INTRODUCTION 

Recently, there has been an increasing demand to develop low-cost and flexible organic light emitting 

devices (OLEDs) for flat-panel displays and solid-state lighting sources.1-3Although efficient vacuum-

deposited small-molecule OLED devices have been developed, solution-processed methods open up the 

potential for low-cost, flexible, large-area devices. For the most part, efficient solution-processed OLEDs 

show inferior performance to their vacuum-evaporated analogs.4-8This is because solution-processed 

devices are generally characterised by disordered and non-uniform thin films, which impact negatively on 

the electronic as well as the optical properties of OLEDs. Therefore, materials that can spontaneously 

assemble into ordered arrangements that form uniform films are needed to improve the performance of 

solution-processed OLEDs.9-11 

In the past few years gelator materials have gained increased attention due to their propensity to 

form stable three-dimensional (3D) networks through weak intermolecular interactions such as H-bonding, 

π˗ π stacking and van der Waals forces.12-17Though these materials have been shown to self-assemble into 

ordered networks that form uniform thin films in stacked device architectures the use of luminescent 

supramolecular gels in OLEDs is surprisingly still unprecedented. Recently, OLEDs based on metal-free 

TADF emitters have emerged as a cheaper alternative for phosphorescent organic light emitting diodes 

(PhOLEDs).18-21Similar to phosphorescent organometallic emitters, organic TADF emitters in 

electroluminescent devices can harvest both singlet and triplet excitons for light emission, achieving up to 

100% internal quantum efficiency (IQE). Recently, solution-processed TADF OLEDs have demonstrated 

comparable performances to their vacuum-deposited counterparts.22-24 

Herein, we report two novel TADF emitters, 4PyCzBP and 3PyCzBP, characterised by a 

dipyridylcarbazole donor moiety and benzophenone (BP) as the acceptor unit (Fig. 1). The distal pyridines 

linked to the carbazole engage in hydrogen-bonding with aliphatic diacids such as tartaric acid (TA) and 
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succinic acid (SA), giving rise to hierarchical supramolecular networks. The fine fibrillar type assembly 

leads to gelation, which attractively exhibits gelation-enhanced emission (GEE) concomitant with a 

bathochromic shift in the emission energy. The emission energy and the strength of the gel can both be 

tuned as a function of the nature of the acid additive. The gel assemblies have been characterized by atomic 

force microscopy (AFM), transmission electron microscopy (TEM), laser scanning confocal microscopy 

(LSCM) and powder X-ray diffraction (PXRD). To the best of our knowledge these are the first examples 

of luminescent gels that emit via a TADF mechanism. Importantly, due to their ordered networks, such gel 

systems can be attractive emitters for solution-processed OLEDs and other devices.25-27 

EXPERIMENTAL SECTION 

General syntheses of (4-(3,6-di(pyridin-3,4-yl)-9H-carbazol-9-yl)phenyl)(phenyl)methanone 

(3PyCzBP and 4PyCzBP)  

The (4-(3,6-dibromo-9H-carbazol-9-yl)phenyl)(phenyl)methanone (0.40 g, 0.79 mmol, 1.0 equiv.), 3-

pyridinylboronic acid or 4-pyridinylboronic acid (0.24 g, 1.99 mmol, 2.5 equiv.) and caesium carbonate 

(1.55 g, 4.75 mmol, 6.0 equiv.) were added to a round-bottomed flask containing 50 mL of a mixture of 

1,4-dioxane and distilled water (4:1 v/v). The reaction mixture was degassed by multiple vacuum and N2 

purging cycles, and Pd(PPh3)4 (0.91 g, 0.079 mmol, 0.1 equiv.) was added to the flask under positive 

nitrogen pressure. The mixture was refluxed under nitrogen atmosphere for 48 h and then cooled to room 

temperature. The mixture was poured into distilled water and extracted multiple times with DCM. The 

organic fractions were combined, washed with a portion of brine and dried over magnesium sulfate. 

Filtration and evaporation under reduced pressure gave the crude products (1.0 g). The crude products were 

purified by flash column chromatography (2.5% MeOH/DCM on silica) to give 0.3 g and 0.2 g, respectively 

for 3PyCzBP and 4PyCzBP, of pure compounds as white solids. Characterisation of 3PyCzBP. Yield: 

60%. Rf = 0.45 (2.5% MeOH/DCM). Mp: 199-200°C. 1H NMR (500 MHz, CDCl3) δ (ppm): 9.10 – 8.90 
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(m, 2H), 8.64 (dd, J = 4.8, 1.6 Hz, 2H), 8.44 (d, J = 1.6 Hz, 2H), 8.15 (d, J = 8.4 Hz, 2H), 8.09 – 8.02 (m, 

2H), 7.98 – 7.91 (m, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.74 (dd, J = 8.6, 1.8 Hz, 2H), 7.70 – 7.65 (m, 3H), 7.59 

(t, J = 7.6 Hz, 2H), 7.49 (s, 0H), 7.47 – 7.42 (m, 2H). 13C NMR (500 MHz, CDCl3) δ (ppm): 195.40, 

148.33, 147.97, 134.24, 131.91, 129.97, 128.44, 126.23, 125.86, 123.60, 119.08, 110.75 HR-MS: 

Calculated: (C35H24N3O): 502.1914, Found: 502.1902. Characterisation of 4PyCzBP. Yield: 40%. Rf = 

0.34 (2.5% MeOH/DCM). Mp: 200-202°C. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.74 – 8.70 (dd, 4H), 

8.55 – 8.52 (d, J = 1.7 Hz, 2H), 8.18 – 8.13 (m, 2H), 7.98 – 7.93 (dd, 2H), 7.82 – 7.77 (m, 4H), 7.72 – 7.7 

(m, 4H), 7.68-7.67 (t, 1H), 7.67-7.64 (2H, m), 7.62 – 7.57 (m, 2H). 13C NMR (500 MHz, CDCl3) δ (ppm): 

195.52, 150.25, 148.64, 141.30, 140.77, 137.20, 136.77, 132.88, 132.09, 131.17, 130.09, 128.56, 126.33, 

125.84, 124.39, 121.72, 119.23, 110.79. HR-MS: Calculated: (C35H24N3O): 502.1914, Found: 502.1902. 

RESULTS AND DISCUSSION 

DFT calculation 

The TADF emitters 4PyCzBP and 3PyCzBP were synthesized in three steps with overall yields of 19% 

and 29%, respectively. The detailed synthetic procedures and characterization data are reported in the 

experimental section and supporting information, respectively. These molecular designs were guided by 

density functional theory (DFT) calculations, which show spatial separation of the HOMO and LUMO for 

both emitters. As illustrated in Figure 1, the HOMOs of 3PyCzBP and 4PyCzBP are mainly distributed 

over the dipyridylcarbazolyl group and slightly extended to the bridging phenyl ring. The LUMOs are 

mostly localized on the benzophenone. The time-dependent DFT (TDDFT) calculated singlet-triplet energy 

gaps (ΔEST) are 0.45 eV and 0.41 eV, respectively, for 4PyCzBP and 3PyCzBP. The calculated ΔEST values 

suggest that these materials may be TADF in nature.28 
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Figure 1. Structure of TADF gelators and corresponding DFT calculated HOMO and LUMO electron 

density distribution. 

Photophysical properties 

The DCM solution absorption and emission spectra of the TADF emitters are shown in Figure S9 and S10, 

respectively and the data are summarized in Tables S3 and S4. Both compounds exhibit a broad absorption 

band at 356 and 326 nm for 3PyCzBP and 4PyCzBP, respectively, assigned to an intramolecular charge 

transfer (CT) from the carbazole moiety to the BP. In degassed DCM both compounds exhibit broad 

emission spectra with a λmax at 497 nm and a photoluminescence quantum yield, FPL of 56% for 3PyCzBP 

and a λmax at 477 nm and a FPL of 52% for 4PyCzBP (Table S2 and Figure S9 and S10). Notably, the FPL 

decreased to 18% and 10%, respectively for 3PyCzBP and 4PyCzBP in the presence of O2 confirming that 

emission from triplet states, which are readily quenched in the presence of oxygen, contribute to the 
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radiative decays of these emitters. The emission is blue-shifted when the compounds are dispersed in 

PMMA films (10 wt%) with λmax at 450 and 449 nm for 3PyCzBP and 4PyCzBP, respectively. The FPL 

values under N2 are 23.4% and 21.0%, which decreased to 19.1% and 17.3% for 3PyCzBP and 4PyCzBP, 

respectively, in the presence of O2, an indication that triplet states are populated upon photoexcitation in the 

film.1The DEST values in 10 wt% doped PMMA film calculated from peak maximum of the fluorescence 

and phosphorescence spectra for 3PyCzBP and 4PyCzBP are 0.06 eV and 0.07 eV, respectively, while the 

estimate of DEST based on the emission onset is even smaller at 0.03 eV and 0.05 eV, respectively (Figure 

S11). Experimentally estimated DEST values (0.03 ~ 0.05 eV) are much lower than the calculated DEST values 

(0.41 and 0.45 eV); TD-DFT calculations often overestimate DEST.28-30
 The small experimental ΔEST values 

indicate that 3PyCzBP and 4PyCzBP are TADF materials with efficient thermal up-conversion from T1 to 

S1. The percent contribution of the delayed fluorescence to the overall emission decay for 3PyCzBP and 

4PyCzBP are 18.3% and 17.7%, respectively. 

The transient PL decay characteristics of 3PyCzBP and 4PyCzBP 10 wt% doped PMMA under 

vacuum are shown in Figure S12 and the data summarized in Table S3. Each of the transient decays is 

triexponential. Prompt fluorescence, tp, of 28.0 ns and 33.5 ns, respectively, for 3PyCzBP and 4PyCzBP 

were determined by TCSPC measurements. The delayed fluorescence lifetimes, td, were 0.55 µs, 12.54 µs 

for 3PyCzBP and 0.61 µs, 6.32 µs for 4PyCzBP, an indication of reverse intersystem crossing (RISC) from 

the triplet to the singlet excited state. Variable temperature transient PL spectra are shown in Figure S13 

and S14 and summarised in Table S3. As expected for materials emitting via a TADF mechanism, td for 

both compounds gradually increased with increasing temperature due to the thermally activated RISC. 

These transient PL decays corroborate the TADF assignment of the emission in doped PMMA films. 

Electrochemical measurements on 3PyCzBP and 4PyCzBP were carried out in MeCN. The cyclic 

voltammetry (CV) traces are shown in Figure S15. The oxidation potentials are for 3PyCzBP (Epa = 1.69 
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V vs SCE) and 4PyCzBP (Epa = 1.71 V vs SCE). The HOMO levels -6.11 and -6.13 eV for 3PyCzBP and 

4PyCzBP, respectively, were calculated from Epa
 versus Fc/Fc+ (EHOMO = Epa

 + 4.8 eV), which are deeper 

than the HOMO levels of related TADF emitters bearing an unsubstituted carbazole donor and ketone 

acceptor in D-A-D and D-A systems (ca. -5.7 eV).28,31 The calculated HOMO values for 3PyCzBP and 

4PyCzBP are 5.83 and 5.99 eV, respectively, which are shallower than the experimental values. A similar 

trend is observed for both calculated and experimental HOMO levels, with 4PyCzBP showing a deeper 

HOMO value than 3PyCzBP.       

Both compounds are soluble in tetrahydrofuran (THF) and methanol mixture (1:1 v/v) without the 

formation of aggregates. 3PyCzBP and 4PyCzBP are weakly emissive in THF:methanol and 

THF:methanol:water mixtures (vide infra). We initially examined the gelation propensity of the emitters in 

a 1:1:2 v/v/v THF:MeOH:H2O mixture, firstly in the absence of any additive. Under these conditions, 

neither 4PyCzBP nor 3PyCzBP showed gel formation. When one equivalent of diacid additive (SA or TA) 

was added to 3PyCzBP no gel formation was observed. However, when one equivalent of SA was added 

to 4PyCzBP, the colorless solution instantaneously turned to a yellowish green gel with enhanced green 

emission with λmax at 500 nm (Figure 2, and video in ESI). The critical gel concentration (CGC) for this 

system was found to be 5 mg/mL. However, as illustrated in Figure 2a, the gel was weak and flowed when 

the vial was inverted when succinic acid was used as the additive. 
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Figure 2. Photograph of gels formed with 4PyCzBP and a) succinic acid and b) L-Tartaric acid under 

ambient and UV light. 

In order to increase the gelation capacity of 4PyCzBP, we changed the additive from SA to TA. 

Due to the higher number of hydrogen bonding sites present in TA a stronger gel formed when one 

equivalent of TA was added to 4PyCzBP, with a CGC value reduced from 5 mg/mL to 3 mg/mL (Figure 

2b). The emission of the 1:1 4PyCzBP:TA gel phase shows broad green emission with λmax at 510 nm. The 

TA gel shows red-shifted emission (10 nm; 493 cm-1) compared to the SA gel due to stronger packing 

between the emitter in the presence of TA compare to SA (vide infra). This observation is consistent with 

the observed lower CGC values (3 mg/mL) for the TA gel compared to the SA gel (5 mg/mL); increased 

viscosity is observed in the TA gel.  

The ratio of the TA to 4PyCzBP was varied from 0.5 to 2 equivalents. In the presence of 0.5 

equivalents of TA with 4PyCzBP a very weak gel formed with an 11-fold emission enhancement (Figure 

3a). Both the gelation strength and emission enhancement (60-fold) were increased in the presence of 1 

equivalent of TA additive. However, the emission enhancement decreased from 60 to 22 times when the 

amount of TA was increased further to 2 equivalents. This observed quenching is due to the free TA in the 
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mixture. This excess of TA destroys the self-assembled gel, which leads to quenching of the emission. 

Based on the ratio of additive and gelation control experiments a schematic representation for the molecular 

arrangement in the gel phase is proposed in Figure S16. The formation of gel fibres is presumed to be the 

result of H-bonding between pyridine and tartaric acid units. UV-vis absorption spectra show that 4PyCzBP 

absorbs at 324 nm in THF:MeOH:H2O (1:1:2 v/v/v). In the presence of one equivalent of SA and TA this 

absorption band is red-shifted to 389 and 410 nm, respectively, indicating a J-type aggregation promoted 

in the gel phase (Figure S17).32-33 The TA gel shows a red-shifted (1316 cm-1, 21 nm) absorption spectrum 

compared to the SA gel, which corroborates a stronger packing of TA gel compared to that of the SA gel. 

The enhancement in photoluminescence quantum yields for 4PyCzBP:TA as a function of gelation is also 

evident in the solid state, Figure 3b. There is a five-fold enhancement upon gelation from 6.0% (neat film) 

to 36.1% (xerogel gel). 
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Figure 3. a) PL spectra of 4PyCzBP with various ratios of TA and b) comparison of PLQY in neat film 

and gel (4PyCzBP:TA). 

The presence of H-bonding in the gel has been confirmed by FT-IR where intense peaks at ca. 3265 

cm-1 indicate H-bonded –OH of the TA. The peak at ca. 1679 cm-1 (acid) indicates H-bonded –CO– 

stretching of TA (Figure S18). The H-bonded –CO– stretch is shifted to lower energy compared to pristine 

TA (1734 cm-1), suggesting that TA molecules hydrogen bond with each other and with 4PyCzBP (see 



 10 

Figure S16). The carbonyl stretching (ketone) of 4PyCzBP is slightly shifted to lower energy (1648 cm-1) 

in the gel compared to the pristine emitter (1668 cm-1), which suggests that the ketone is weakly involved 

in H-bonding. 

 

Figure 4. Transient PL spectra of xerogel (1:1 ratio of 4PyCzBP:TA). 

Transient PL measurements were carried out to confirm that the gels remain TADF. Figure 4 shows 

the characteristic presence of both prompt (tp = 20 ns) and delayed (td = 2.3 µs) emission, which supports 

the TADF nature of the gel. Powder XRD studies (Figure S19) of the dried gel did not reveal the presence 

of any sharp peaks, which indicates that the gel fibres are amorphous in nature. Atomic force microscopy 

(AFM) images of the dried gel formed with 4PyCzBP and SA (xerogel) reveal long and bundled fibres that 

form highly dense entangled networks (Figure S20). The average diameter of the fibre is in the range of 

25-30 nm. The images show fibre heights ranging between 15-20 nm. Intriguingly, the xerogel formed with 
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4PyCzBP and TA shows long and bundled homogeneous nanofibers. The average diameter of the fibre is 

20 nm and the average nanofiber height is 15 nm (Figure 5a). Laser scanning confocal microscopy (LSCM) 

shows the fluorescing gels (Figure 5b). The confocal microscopic image of 4PyCzBP:TA gel shows a dense 

3D network of greenish fluorescent fibres. 

 

 

 

 

 

Figure 5. a) AFM image and b) LSCM image of 4PyCzBP: TA gel. 

The morphology was further corroborated by transmission electron microscopy (TEM), as shown in 

Figure 6. Importantly, the fibre morphology was not damaged by high vacuum, suggesting that these 

nanofibers are very stable and can be potentially applied as emitting materials in OLEDs. 

a b 
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Figure 6. TEM image of 4PyCzBP: TA gel. 

 

CONCLUSIONS 

In summary, we synthesized two pyridine-decorated TADF emitters 3PyCzBP and 4PyCzBP. Compound 

4PyCzBP shows robust two-component gel formation in the presence of either TA or SA. By contrast, 

3PyCzBP does not form gels. The red-shifted absorption bands of the gels compared with those of THF: 

MeOH: water (1:1:2 v/v/v) solution were attributed to J-type aggregation in the fibres. Interestingly, these 

gels show significantly enhanced emission compared to solution. Transient photoluminescence spectra 

confirm that the xerogels are TADF emitters. Gelation strength and emission energy can both be tuned by 

varying the additive from succinic acid to tartaric acid. These nanofibers are promising candidates as self-

assembled emitting networks in thin films in lighting devices. OLEDs fabrication using these luminescent 

gels in the emitting layer are currently under progress in our laboratory.  

ASSOCIATED CONTENT 
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