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Abstract: Non-normality and heteroscedasticity are common in applications. For the 

comparison of two samples in the nonparametric Behrens-Fisher problem, different tests have 

been proposed, but no single test can be recommended for all situations. Here, we propose 

combining two tests, the Welch t test based on ranks and the Brunner-Munzel test, within a 

maximum test. Simulation studies indicate that this maximum test, performed as a 

permutation test, controls the type I error rate and stabilizes the power. That is, it has good 

power characteristics for a variety of distributions, and also for unbalanced sample sizes. 

Compared to the single tests, the maximum test shows acceptable type I error control. 
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1. Introduction 

Comparing two groups with regard to their location is a widespread statistical challenge. 

Often, the assumptions required for classical parametric tests, i.e. normality and homogeneity 

of variances, are violated. Nonparametric tests were developed for non-normal data, but 

heteroscedasticity can still distort these tests. The Welch t test and other more robust tests can 
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be superior to traditional tests, but “no one robust method is ideal for all situations” (Grissom, 

2000). Fagerland and Sandvik (2009a, 2009b) investigated several tests for skewed 

distributions and unequal variances, they also conclude that no single test can be 

recommended for all scenarios. Furthermore, transformations to overcome the heterogeneity 

of variances are also problematic (Grissom, 2000), in particular when samples are small 

(Neuhäuser, 2010). 

When no test is ideal for all situation, one can try to combine different tests. Recently, 

Neuhäuser (2015) combined the t test and Wilcoxon’s rank-sum test in a maximum test. This 

maximum test controls the type I error rate and is a more powerful strategy than always 

selecting one of the single tests. The principle of using the maximum of several competing 

test statistics as a new statistic, combined with using the permutation distribution of the 

maximum for inference, is common in areas such as statistical genetics (Neuhäuser and 

Hothorn, 2006).  

Here, we apply the idea of a maximum test to the non-parametric Behrens-Fisher 

problem. In the nonparametric Behrens-Fisher problem, one does not test the general 

alternative of any difference between the distribution functions of the two groups. Instead,  

one tests whether there is a tendency towards smaller, or larger, values in one group. An  

appropriate null hypothesis is 𝐻0
𝐵𝐹: 𝑝 = 0.5 , with p being the relative effect defined as  

p = P(Xi < Yj) + 0.5 P(Xi = Yj), where Xi and Yj are observations in group 1 and 2, respectively. 

The random variable 𝑋 tend to take smaller values than the random variable 𝑌 if 𝑝 > 0.5;  

𝑋 tends to take larger values than 𝑌, if 𝑝 < 0.5; stochastic equality holds if 𝑝 = 0.5 

(Neuhäuser, 2012; Brunner and Munzel, 2013).  

A possible test for the nonparametric Behrens-Fisher problem was proposed by 

Brunner and Munzel (2000). Other suitable test statistics might be the two-sample t test and 

the Welch t test, both based on ranks. The latter tests were proposed since stochastic equality 
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is equivalent to the equality of expected values of rank scores (Vargha and Delaney, 1998). 

However, it should be noted that these t tests have a heuristic justification only, their 

appropriateness and robustness for the nonparametric Behrens-Fisher problem is based on 

empirical studies only (Delaney and Vargha, 2002). In general, the rank transformation is not 

valid in the Behrens-Fisher problem (Brunner and Munzel, 2013). Indeed, even the rank 

Welch t test can become liberal (i.e. taking a true type I error rate greater than the nominal 

level) when the variance difference between the groups is large, and for discrete distributions 

when sample sizes are small. However, Cribbie et al. (2007) demonstrated in a simulation 

study that both the Brunner-Munzel test and the Welch t test based on ranks control the type I 

error rate for a wide range of situations. With regard to power, the Welch t test was superior 

to the Brunner-Munzel test across the situations explored.  

In this article, we investigate several tests, including some maximum tests, in a 

simulation study, and apply the proposed test to an example data set.  

 

2. Methods 

We compare two independent random samples 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑚, where 𝑋𝑘  ∼   𝐹1 

i.i.d., 𝑘 = 1, . . , 𝑛, and 𝑌𝑖  ∼   𝐹2 i.i.d. , 𝑖 = 1, … , 𝑚, 𝑁 = 𝑛 + 𝑚. The distribution functions 𝐹1 

and 𝐹2 are arbitrary distributions, but one-point distributions are excluded. We perform two-

sided tests for the non-parametric Behrens-Fisher problem, i.e. 

𝐻0
𝐵𝐹: 𝑝 = 0.5  versus  𝐻1

𝐵𝐹: 𝑝 ≠ 0.5. 

In the case of symmetric distributions with finite expected values, testing stochastic 

equality is equivalent to the test of equality of expected values. Therefore the classical 

parametric Behrens-Fisher problem is a special case of the non-parametric Behrens-Fisher 

problem (Neuhäuser, 2012).  

As test statistics we consider the classical t test as well as the Welch t test (both based 

on ranks), and the test proposed by Brunner and Munzel (2000). Brunner and Munzel’s test 
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statistic is based on ranks too; for min(n, m) ≥ 10 its null distribution can be approximated by 

a t distribution (Brunner and Munzel, 2000). 

As a new test we combine two of the three above-mentioned test statistics. In order to 

make the statistics comparable, they are standardized by dividing each statistic 𝑡𝑖 by its 

standard deviation 𝑠𝑑𝑖. Since the statistics used are approximately t distributed, the standard 

deviation 𝑠𝑑𝑖 is approximated by the corresponding degrees of freedom, i.e. 𝑠𝑑 = √
𝑑𝑓

𝑑𝑓−2
 . 

Because we consider the two-sided test, the absolute values of the standardized test 

statistics are used to construct the maximum test statistic as follows: 

𝑡𝑀𝐴𝑋  = max ( |
𝑡1

𝑠𝑑1
| , |

𝑡2

𝑠𝑑2
|) 

with 𝑡1 and 𝑡2 one of the above-mentioned test statistics 𝑡𝑟𝑎𝑛𝑘, 𝑡𝑊𝑟𝑎𝑛𝑘 or 𝑡𝐵𝑀. 

The single tests as well as the maximum tests are performed as permutation tests, i.e. 

the inference is based on the permutation null distribution of the test statistic (see e.g. Berry et 

al., 2016). Thus, the tests can also be used in the presence of ties as well as for small samples. 

The p-value of the permutation test is the proportion of permutations where the corresponding 

absolute value of the respective test statistic is higher than or equal to the absolute value of the 

statistic computed for the original data. The permutation test can be based on all possible 

permutations, in total (𝑁
𝑛

) permutations, or as an approximate permutation test based on a 

simple random sample of permutations. 

Permutation tests require the exchangeability of the observations (see e.g. Berry et al., 

2014), thus they can be carried out for the general alternative 𝐹1 ≠ 𝐹2. This is not guaranteed 

for our situation because the two distributions functions 𝐹1 and 𝐹2 can differ under 𝐻0
𝐵𝐹. 

However, Neubert and Brunner (2007) showed that a permutation test with the Brunner-

Munzel test statistic can guarantee the type I error asymptotically for testing 𝐻0
𝐵𝐹. Therefore, 

and because of their simulation results, Neubert and Brunner (2007) proposed the permutation 
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test with the Brunner-Munzel statistic. We also use this approach of Neubert and Brunner 

(2007) including the way they compute the variance of the Brunner-Munzel statistic.  

Note that, by choosing 𝑡𝑟𝑎𝑛𝑘 as the test statistic, the Wilcoxon rank-sum test is applied 

indirectly, because  𝑡𝑟𝑎𝑛𝑘 is a monotone function of the Wilcoxon rank-sum statistic (Conover 

and Iman, 1981). 

In order to evaluate differences between the actual type I error rates and the nominal 

significance level α, Bradley’s (1978) liberal criterion is used. According to this criterion for 

robustness, applied by other recent investigations such as Haidous and Sawilowsky (2013) 

and Nguyen et al. (2016), an actual rate between 0.5α and 1.5α is deemed acceptable.   

 

3. Simulation Study 

In a simulation study performed with R (using the libraries stats and lawstat), we evaluate the 

maximum tests as well as the single tests. All tests were carried out as permutation tests. As 

mentioned above, in the non-parametric Behrens-Fisher problem we cannot conclude that a 

permutation test guarantees the nominal significance level. Therefore, it is important to 

investigate the actual type I error as well as the power of the investigated tests. 

We consider different distributions, including the distributions discussed by Neubert 

and Brunner (2007). The distributions are: 

(i) Two normal distributions 𝑋 ∼ 𝑁(0,1) and 𝑌 ∼ 𝑁(𝑠ℎ𝑖𝑓𝑡, 𝜎𝑌
2) 

(ii) Two uniform distributions 𝑋 ∼ 𝑈[0,1] and 𝑌 ∼  𝑈[𝑠ℎ𝑖𝑓𝑡, 𝑠ℎ𝑖𝑓𝑡 + 𝜎𝑌 ]   

(iii) Two Poisson distributions 𝑋 ∼  𝑃𝑜𝑖𝑠(𝜆  = 5) and  𝑌 ∼  𝜎𝑌 ∙  𝑃𝑜𝑖𝑠(𝜆 = 5) +

𝑠ℎ𝑖𝑓𝑡 

(iv) Two log-normal distributions 𝑋 ∼ 𝑙𝑜𝑔𝑁𝑜𝑟𝑚(𝜇 = 0, 𝜎2 = 1) − 1 and 

   𝑌 ∼ 𝜎𝑌 ∙ (𝑙𝑜𝑔𝑁𝑜𝑟𝑚(𝜇 = 0, 𝜎2 = 1) − 1 − 𝑠ℎ𝑖𝑓𝑡) 

(v) Two exponential distributions 𝑋 ∼ 𝐸𝑥𝑝(𝜆 = 2) −
ln(2)

2
 and  
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  𝑌 ∼ 𝜎𝑌 ∙ (𝐸𝑥𝑝(𝜆 = 2) −
ln(2)

2
− 𝑠ℎ𝑖𝑓𝑡) 

 

By choosing the values 1, √2, and 2 for the parameter 𝜎𝑌 , we realize the variance ratios (VR) 

1:1, 1:2 and 1:4. The distributions in situations (iv) and (v) are shifted by 1 or 
ln(2)

2
, 

respectively, in order that their medians are 0, thus for 𝑠ℎ𝑖𝑓𝑡 = 0 the medians of both groups 

are equal.  

The distributions discussed in Neubert and Brunner (2007) are a normal distribution 

against one 𝜒2 distribution and two bimodal distributions: 

   (vi)   A normal distribution 𝑋 ∼ 𝑁(𝜇 = 2.5745, 𝜎2 = 2) against a 𝜒2 distribution 

           𝑌 ∼ 𝜒𝑑𝑓=3
2 + 𝑠ℎ𝑖𝑓𝑡   

   (vii)  Two bimodal distributions 𝑋 ∼ 0.7 ∙ 𝑁(𝜇 = 4, 𝜎2 = 1) + 0.3 ∙ 𝑁(𝜇 = 8, 𝜎2 = 1) and                                              

           𝑌 ∼ 0.3 ∙ 𝑁(𝜇 = 2.07 + 𝑠ℎ𝑖𝑓𝑡, 𝜎2 = 2) + 0.7 ∙ 𝑁(𝜇 = 3 ∙ (2.07 + 𝑠ℎ𝑖𝑓𝑡), 𝜎2 = 2)  

 

The VR in (vi) is 1:3 and the VR in (vii) is 1:2. By setting 𝑠ℎ𝑖𝑓𝑡 = 0 in (vi) and (vii) the 

relative effect 𝑝 is equal to 0.5. 

Simulations were performed for balanced and unbalanced sample sizes with (𝑛, 𝑚) =

(10,10), (10,20), and (20,10), combined with the different variance ratios mentioned above. 

For each configuration, 10,000 simulation runs were performed, in each run 1,000 

permutations were chosen to compute p-values. 

Figures 1 and 2 display simulated actual type I error rates for the three possible 

maximum tests. The Brunner-Munzel test is denoted by BM, the Welch t test based on ranks 

by Wrank, and the t test based on ranks by Trank. For both the normal (Fig. 1) and the 

uniform (Fig. 2) distribution Trank, i.e. the t test based on ranks, is not robust, its size can be 

outside the limits set by Bradley’s liberal criterion. As a consequence, a maximum test 

including Trank, is not robust, either (see Fig. 2). In contrast, the maximum test using Wrank 
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and BM has a type I error rate much closer to α. Therefore, we propose the maximum test 

with Welch t statistic on ranks and the Brunner-Munzel statistic. As the displayed results 

indicate, this maximum test has a type I error rate relatively close to the nominal level 5%, 

often closer to 5% than the single tests, in particular when the smaller sample has the higher 

variance, a situation where all the single tests are liberal. Further results for this maximum test 

using Wrank and BM are presented below. 

   Fig. 1 and 2 about here 

Tables 1 to 3 show the simulated type I error rates and the power of the proposed 

maximum test with Welch t statistic on ranks and the Brunner-Munzel statistic (abbreviated 

by MAX) and the single tests used to construct this maximum, for different distributions (log-

normal, exponential, and Poisson). Again, the tests are robust according to Bradley’s criterion, 

the maximum test's control of the type I error rate seems acceptable and is usually better than 

that of the single tests. The results for the distributions (vi) and (vii) are similar, see Table 4. 

For all  investigated distributions the maximum test stabilizes the power; the power of 

the maximum is always between the powers of the single tests, often the maximum test has a 

power similar to that of the more powerful of the two single tests.  

Above, the nominal significance level 5% was used. However, we also investigated 

the nominal levels 1%, 2.5% and 10%. In these cases, the results are analogous, see 

Supplementary tables 1-3. The tests Wrank, BM and the proposed maximum test consisting of 

these two tests are robust according Bradley’s criterion. The proposed maximum test violates 

Bradley’s criterion only in the case of α = 1% with a variance ratio 1:4 (smaller group has 

larger variance) for the exponential and the Poisson distribution: in these two cases the 

simulated type I error rate is 0.016 (Supplementary table 1), slightly outside the range 0.005 

to 0.015 defined by Bradley’s liberal criterion. The single tests violate Bradley’s criterion 
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more clearly and a few times more often. However, there are also scenarios where one of the 

single tests has a type I error closer to α than the maximum test, in particular for α = 10%. 

Table 1. Simulated type I error rates and power in the case of the log-normal distribution 

(α=5%) 
 

(n,m)=(10,10)  

VR= 1:1 1:2 1:4

shift= 0 1.5 0 1.5 0 1.5

Wrank 0.046 0.759 0.051 0.759 0.060 0.755

BM 0.050 0.737 0.054 0.725 0.056 0.717

MAX 0.050 0.749 0.054 0.746 0.058 0.744

(n,m)=(10,20)

VR= 1:1 1:2 1:4

shift= 0 1 0 1 0 1

Wrank 0.049 0.780 0.054 0.821 0.067 0.839

BM 0.048 0.747 0.051 0.769 0.056 0.774

MAX 0.050 0.780 0.056 0.817 0.067 0.835

(n,m)=(20,10)

VR= 1:1 1:2 1:4

shift= 0 1 0 1.4 0 1.4

Wrank - - 0.061 0.738 0.065 0.732

BM - - 0.062 0.714 0.063 0.706

MAX - - 0.059 0.713 0.059 0.709

   
 
 

Table 2. Simulated type I error rates and power in the case of the exponential distribution 

(α=5%)  
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(n,m)=(10,10)

VR= 1:1 1:2 1:4

shift= 0 0.55 0 0.5 0 0.55

Wrank 0.049 0.772 0.050 0.742 0.060 0.788

BM 0.051 0.760 0.053 0.717 0.058 0.754

MAX 0.052 0.767 0.054 0.729 0.060 0.777

(n,m)=(10,20)

VR= 1:1 1:2 1:4

shift= 0 0.4 0 0.4 0 0.35

Wrank 0.049 0.816 0.054 0.864 0.066 0.811

BM 0.048 0.792 0.050 0.826 0.054 0.75

MAX 0.049 0.815 0.054 0.862 0.065 0.808

(n,m)=(20,10)

VR= 1:1 1:2 1:4

shift= 0 0.4 0 0.6 0 0.5

Wrank - - 0.056 0.857 0.065 0.755

BM - - 0.057 0.840 0.063 0.729

MAX - - 0.053 0.838 0.060 0.729  
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Table 3. Simulated type I error rates and power in the case of the Poisson distribution (α=5%) 
  

(n,m)=(10,10)

VR= 1:1 1:2 1:4

shift= 0 3 0 3.5 0 5

Wrank 0.047 0.795 0.056 0.769 0.061 0.826

BM 0.048 0.799 0.052 0.765 0.056 0.82

MAX 0.049 0.800 0.054 0.768 0.057 0.823

(n,m)=(10,20)

VR= 1:1 1:2 1:4

shift= 0 2.75 0 3 0 4

Wrank 0.050 0.752 0.052 0.779 0.061 0.827

BM 0.050 0.747 0.047 0.774 0.049 0.816

MAX 0.049 0.739 0.050 0.775 0.060 0.828

(n,m)=(20,10)

VR= 1:1 1:2 1:4

shift= 0 2.75 0 3.25 0 5

Wrank - - 0.059 0.810 0.067 0.796

BM - - 0.057 0.809 0.063 0.783

MAX - - 0.055 0.802 0.058 0.776  
  
 
 

Table 4. Simulated type I error rates and power in the case of the distributions discussed by 

Neubert and Brunner (2007) (α=5%) 
 

VR=1:3  distribution (vi)

(n,m)= (10,10) (10,20) (20,10)

shift= 0 2 0 1.75 0 1.75

Wrank 0.051 0.752 0.051 0.769 0.056 0.774

BM 0.052 0.777 0.046 0.777 0.056 0.784

MAX 0.053 0.777 0.051 0.773 0.054 0.779

VR=1:2  distribution (vii)

(n,m)= (10,10) (10,20) (20,10)

shift= 0 2.25 0 1.75 0 2

Wrank 0.055 0.736 0.058 0.881 0.060 0.726

BM 0.056 0.717 0.054 0.844 0.057 0.703

MAX 0.058 0.728 0.057 0.878 0.059 0.698   
 
 

  

The actual type I error and the power of the single tests were also simulated based on 

the approximate t distributions. The results are very similar to those based on the permutation 

approach (results not shown). 
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4. Example 

As an example we consider data presented by Hand et al. (1994), see Table 5. Survival times 

were obtained for 6 patients with ovary cancer and 11 patients with breast cancer (there are no 

censored observations). Hence, sample sizes are small and unbalanced (for further details see 

also Cameron and Pauling, 1978). There are no ties, the empirical variances are 1206875 for 

ovary cancer and 1535038 for breast cancer, which indicates heteroscedasticity. 

 

Table 5: Survival times of cancer patients 
 

Ovary 1234 89 201 356 2970 456

Breast 1235 24 1581 1166 40 727 3808 791 1804

3460 719  
Data Source: Hand et al. (1994, p. 255) 
 
 

There seems to be a tendency for the patients with breast cancer to have larger values. 

However, the tests are not significant: the p-values are 0.312 for the Welch t test on ranks, 

0.320 for the Brunner-Munzel test, and 0.309 for the maximum test based on these two tests 

(exact permutation tests). This example shows that the maximum test can have a smaller p-

value than both single tests. The absolute values of the standardized statistics are 1.041/1.100 

= 0.946 for Welch t test on ranks, and 0.995/1.089 = 0.914 for the Brunner-Munzel test. Thus, 

the test statistic of the maximum test is 0.946. The R code written to analyze this example is 

available from the Dryad Digital Repository.  

 
    

5. Discussion 

Non-normal data are common in practice. Different tests have been proposed for this case, 

especially for the situation when non-normality is combined with heteroscedasticity. In the 

literature there is a large variety of studies comparing the different tests. The usual conclusion 

is that no single test can be recommended for all scenarios (see Introduction). A 

straightforward solution in such a case is to combine different tests. This combination is 
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possible in a maximum test. For such tests, inference can be based on the permutation null 

distribution of the maximum, this is useful especially when the distribution of the maximum 

is not known.  

Recently, Neuhäuser (2015) proposed a maximum test for the location-shift model, i.e. 

when there is no difference in the variances of the two groups. In that case Student’s t test and 

the Wilcoxon-Mann-Whitney test can be combined. Here, we generalize this idea for the 

nonparametric Behrens-Fisher problem. We propose a maximum test based on Welch’s t test 

computed on ranks and the Brunner-Munzel statistic. Our simulation study indicates that the 

proposed maximum test controls the type I error and stabilizes the power. Thus, we 

recommend the maximum test. When applying the maximum test there is no need to select a 

single test. We also investigated the maximum test with all three considered single tests; 

however, this maximum test seems to be not better than the recommended test (results not 

shown). 

For large sample sizes, a permutation test can be performed using a simple random 

sample of permutations. SAS and R programs to carry out permutation tests are given by, for 

example, Zieffler et al. (2011) and Neuhäuser (2012). Our R code is available from the Dryad 

Digital Repository. 

Finally, it should be noted again that the Welch t test based on ranks, and therefore the 

recommended maximum test as well, have a heuristic justification only. However the Welch t 

test based on ranks was investigated and suggested in several studies, the appropriateness and 

robustness is based on large empirical studies. 
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Figure 1: Simulated type I error rates in the case of the normal distribution (α=5%, sample 

sizes: n = 10, m = 20) 
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Figure 2: Simulated type I error rates in the case of the uniform distribution (α=5%, sample 

sizes: n = 10, m = 20) 
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Supplementary table 1. Simulated type I error rates for α = 1% 

level=1% sample size: 10,10

VR: 1:1 1:2 1:4

normal Wrank 0.010 0.013 0.012

BM 0.012 0.014 0.013

MAX 0.012 0.014 0.013

uniform Wrank 0.011 0.012 0.014

BM 0.012 0.012 0.014

MAX 0.012 0.012 0.013

poisson Wrank 0.009 0.014 0.014

BM 0.010 0.014 0.013

MAX 0.009 0.013 0.013

sample size: 10,20

VR: 1:1 1:2 1:4

normal Wrank 0.011 0.010 0.009

BM 0.011 0.009 0.007

MAX 0.011 0.009 0.008

uniform Wrank 0.012 0.009 0.011

BM 0.012 0.007 0.006

MAX 0.011 0.008 0.008

poisson Wrank 0.011 0.012 0.011

BM 0.010 0.010 0.008

MAX 0.011 0.010 0.010

sample size: 20,10

VR: 1:1 1:2 1:4

normal Wrank - 0.015 0.016

BM - 0.015 0.016

MAX - 0.014 0.014

uniform Wrank - 0.017 0.019

BM - 0.017 0.018

MAX - 0.015 0.015

poisson Wrank - 0.016 0.019

BM - 0.015 0.018

MAX - 0.015 0.016  
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level=1% sample size: 10,10

VR: 1:1 1:2 1:4

log-normal Wrank 0.012 0.011 0.016

BM 0.011 0.012 0.015

MAX 0.011 0.012 0.015

exponential Wrank 0.012 0.012 0.017

BM 0.011 0.012 0.015

MAX 0.011 0.012 0.015

sample size: 10,20

VR: 1:1 1:2 1:4

log-normal Wrank 0.010 0.013 0.014

BM 0.010 0.011 0.011

MAX 0.010 0.012 0.013

exponential Wrank 0.012 0.011 0.014

BM 0.012 0.010 0.011

MAX 0.013 0.011 0.012

sample size: 20,10

VR: 1:1 1:2 1:4

log-normal Wrank - 0.016 0.019

BM - 0.016 0.018

MAX - 0.015 0.015

exponential Wrank - 0.014 0.020

BM - 0.015 0.019

MAX - 0.014 0.016  
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Supplementary table 2. Simulated type I error rates for α = 2.5% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

level=2.5% sample size: 10,10

VR: 1:1 1:2 1:4

normal Wrank 0.024 0.028 0.030

BM 0.026 0.030 0.029

MAX 0.026 0.030 0.030

uniform Wrank 0.026 0.028 0.034

BM 0.027 0.028 0.030

MAX 0.027 0.029 0.029

poisson Wrank 0.023 0.028 0.030

BM 0.023 0.028 0.028

MAX 0.023 0.028 0.029

sample size: 10,20

VR: 1:1 1:2 1:4

normal Wrank 0.027 0.025 0.024

BM 0.027 0.023 0.019

MAX 0.027 0.025 0.023

uniform Wrank 0.027 0.024 0.032

BM 0.027 0.020 0.021

MAX 0.027 0.023 0.030

poisson Wrank 0.026 0.029 0.028

BM 0.026 0.024 0.022

MAX 0.026 0.027 0.026

sample size: 20,10

VR: 1:1 1:2 1:4

normal Wrank - 0.029 0.032

BM - 0.029 0.031

MAX - 0.028 0.029

uniform Wrank - 0.033 0.038

BM - 0.033 0.037

MAX - 0.031 0.032

poisson Wrank - 0.033 0.037

BM - 0.032 0.035

MAX - 0.030 0.031
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level=2.5% sample size: 10,10

VR: 1:1 1:2 1:4

log-normal Wrank 0.025 0.025 0.033

BM 0.026 0.027 0.032

MAX 0.027 0.027 0.032

exponential Wrank 0.025 0.026 0.035

BM 0.026 0.029 0.033

MAX 0.026 0.029 0.033

sample size: 10,20

VR: 1:1 1:2 1:4

log-normal Wrank 0.024 0.030 0.035

BM 0.025 0.028 0.026

MAX 0.024 0.029 0.032

exponential Wrank 0.027 0.029 0.034

BM 0.026 0.026 0.026

MAX 0.026 0.028 0.031

sample size: 20,10

VR: 1:1 1:2 1:4

log-normal Wrank - 0.032 0.039

BM - 0.033 0.036

MAX - 0.031 0.034

exponential Wrank - 0.031 0.041

BM - 0.032 0.040

MAX - 0.030 0.036  
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Supplementary table 3. Simulated type I error rates for α = 10% 

level=10% sample size: 10,10

VR: 1:1 1:2 1:4

normal Wrank 0.094 0.100 0.113

BM 0.098 0.102 0.110

MAX 0.099 0.104 0.114

uniform Wrank 0.098 0.103 0.112

BM 0.102 0.104 0.105

MAX 0.103 0.107 0.111

poisson Wrank 0.094 0.105 0.111

BM 0.097 0.102 0.102

MAX 0.096 0.105 0.107

sample size: 10,20

VR: 1:1 1:2 1:4

normal Wrank 0.100 0.102 0.108

BM 0.101 0.098 0.091

MAX 0.100 0.104 0.109

uniform Wrank 0.101 0.098 0.121

BM 0.100 0.089 0.098

MAX 0.101 0.100 0.123

poisson Wrank 0.105 0.107 0.113

BM 0.104 0.100 0.097

MAX 0.105 0.107 0.113

sample size: 20,10

VR: 1:1 1:2 1:4

normal Wrank - 0.107 0.116

BM - 0.107 0.109

MAX - 0.105 0.106

uniform Wrank - 0.108 0.126

BM - 0.107 0.114

MAX - 0.103 0.112

poisson Wrank - 0.112 0.117

BM - 0.107 0.113

MAX - 0.106 0.109  
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level=10% sample size: 10,10

VR: 1:1 1:2 1:4

log-normal Wrank 0.098 0.101 0.117

BM 0.104 0.102 0.112

MAX 0.105 0.104 0.118

exponential Wrank 0.095 0.103 0.119

BM 0.100 0.103 0.114

MAX 0.100 0.105 0.118

sample size: 10,20

VR: 1:1 1:2 1:4

log-normal Wrank 0.099 0.110 0.127

BM 0.099 0.104 0.112

MAX 0.100 0.113 0.129

exponential Wrank 0.101 0.112 0.129

BM 0.101 0.107 0.110

MAX 0.101 0.114 0.130

sample size: 20,10

VR: 1:1 1:2 1:4

log-normal Wrank - 0.110 0.125

BM - 0.109 0.119

MAX - 0.104 0.116

exponential Wrank - 0.111 0.129

BM - 0.110 0.122

MAX - 0.105 0.119  
 

 

 

 

 

 

 

 

 

 

 

 


