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High performance lead zirconate titanate (PZT) ceramics with aligned porosity for sensing 

applications were fabricated by an ice-templating method. To demonstrate the enhanced 

properties of these materials and their potential for sensor and hydrophone applications, the 

piezoelectric voltage constants (g33 and g31), hydrostatic parameters (dh, gh, -d33/d31, dh·gh and 

dh·gh/tanδ) and AC conductivity as a function of the porosity in directions both parallel and 

perpendicular to the freezing temperature gradient were studied. As the porosity level was 

increased, PZT poled parallel to the freezing direction exhibited the highest dh, -d33/d31 and 

figures of merit dh·gh, dh·gh/tanδ compared to the dense and PZT poled perpendicular to the 

freezing direction. The gh, g33 and g31 coefficients were highest for the PZT poled perpendicular 

to the freezing direction; the gh was 150% to 850% times higher than dense PZT, and was 

attributed to the high piezoelectric activity and reduced permittivity in this orientation. This 

work demonstrates that piezoelectric ceramics produced with aligned pores by freeze casting 

are a promising candidate for a range of sensor applications and the polarisation orientation 

relative to the freezing direction can be used to tailor the microstructure and optimise sensitivity 

for sensor and hydrostatic transducer applications. 

 
Introduction 

 
Piezoelectric materials represent a popular class of active materials used in many areas[1-3], such as 
SONAR applications, vibration energy harvesting, structural health monitoring and non-destructive 
evaluation. For uniaxial sensing applications, the piezoelectric voltage constants g33 and g31 are 
important parameters since they represent the electric field produced per unit stress, and are of interest 
for accelerometers, force, pressure and acoustic sensors. Hydrophones that operate under hydrostatic 
conditions are also an important category of piezoelectric transducers, which are employed to detect 

acoustic signals in water by converting the mechanical vibrations of low frequency acoustic waves into 
an electrical signal[5]. For such applications, the important parameters are the hydrostatic charge (dh) 
coefficient, voltage (gh) coefficient, and hydrostatic figure of merit (FoM1=dh·gh), which define the 
actuating (transmit) capability of the material, sensitivity of the hydrophone, and the suitability for 
underwater sonar applications, respectively[6, 7]. At frequencies far below the resonance frequency, 
energy dissipation is mainly dominated by the dielectric loss (tan δ), thus an alternative figure of merit 
of FoM2=dh·gh/tanδ has also been proposed[8, 9].  



The hydrostatic figures of merit can be calculated from measured piezoelectric and dielectric properties 
as follows: dh=d33+2d31, gh=dh /𝜀""# 𝜀$, where, d33 and d31 are the longitudinal and transverse piezoelectric 

charge coefficients, 𝜀""#  is the relative permittivity at constant stress and 𝜀$ is the permittivity of the free 

space. These equations indicate that the important requirements for improved hydrostatic performance 
are a high hydrostatic charge coefficient (dh) and low permittivity (𝜀""# ). For many dense ferroelectric 
ceramic materials d33 ≈ -2d31 which leads to a low dh, and when combined with the high permittivity of 

dense ferroelectrics this leads to dense materials exhibiting a low dh, gh, and dh·gh, thereby limiting their 

performance as transducers under hydrostatic conditions. For uniaxial sensor applications, the 
combination of a high piezoelectric charge coefficient and low permittivity is also beneficial since 
g33=d33 /𝜀""# 𝜀$ and g31=d31 /𝜀""# 𝜀$.  

To date, a number of researchers have made significant efforts to reduce the permittivity of the sensor 
material by introducing porosity into the dense material[10-13]. However, the compromise between the 
mechanical strength and the volume fraction and type of porosity remains a limiting issue, especially 
for those porous ceramics with randomly distributed porosity, which is typically achieved by a 
traditional processing route of adding a polymeric pore-forming agent that burns out during solid-state 
sintering. Furthermore, the production of aligned piezoelectric structures has recently attracted 
considerable interest due to their ability to reduce the resistance of piezoelectric domain motion under 

an applied the electric field, where alignment has been explored using nanowires[14, 15], 
nanofibers[16], and nanopores[17].  
In this paper, we exploit the inspiration drawn from the high strength of natural nacre with a layered 
microstructure[18], and the ability of freeze casting, also called ice-templating[19-21] as an effective 
way to mimic the structure of nacre by building an oriented ceramic structure within a unidirectional 
temperature gradient, with the realisation of anisotropic properties in directions parallel and 
perpendicular to the temperature gradient/pore channel. To date, there have been a number of studies 
on freeze-cast piezoelectric ceramics that have utilised camphene-based[22-24], tert-butyl alcohol 

(TBA)-based[25-34] suspensions to achieve 3-1, 3-2 and 3-3 connectivity piezoceramic-based 
composites,  and water-based[35-41] suspensions for 2-2 connectivity composites. The majority of the 
investigations above were focused on the properties of the freeze-cast parallel to the temperature 
gradient/pore channel, and there is little work on comparing the piezoelectric properties of  freeze-cast 
ceramics both parallel and perpendicular to the temperature gradient/pore channel. TBA-based 
0.94Bi0.5Na0.5TiO3-0.06BaTiO3 [31] and K0.5Na0.5NbO3 [32] suspensions were used to achieve an 
aligned porous ceramic by freeze casting, whose piezoelectric constants (d33 and g33) and strain were 

examined, with differences between parallel and perpendicular orientations. However, camphene is 
potentially flammable and has been demonstrated to exhibit higher toxicity than water [42], while  TBA 
is not only a flammable, toxic and carcinogenic substance[43, 44], but is also an emerging 
environmental contaminant[45]. Moreover, laminated 2-2 connectivity based piezoelectric and 
pyroelectric composites are of interest due to their simple architecture and superior actuation and 
sensing abilities [46-48]. Therefore, using water as the solvent in the freeze casting process would be a 



more environmentally friendly choice with lower processing cost. In addition, our previous work[49, 
50] has demonstrated that porous ceramics with an aligned porous structure formed by freeze casting 
water-based suspension exhibited an improved mechanical strength compared to traditional porous 
ceramic and also lead to a significantly reduced permittivity and heat capacity compared to that of the 

dense material. Since the aligned structure maintained high pyroelectric properties parallel to the 
freezing direction a higher charging voltage and energy was achieved when charging a capacitor via the 
pyroelectric effect for energy harvesting applications. However, apart from our previous research on 
energy harvesting applications [49], there have been no reports on the piezoelectric properties by freeze 
casting water-based piezoelectric suspensions and their assessment in both parallel and perpendicular 
directions for sensor and hydrostatic applications.  
Therefore, this paper provides a first insight into the properties of porous piezoelectric ceramic with 
aligned porosity by water based freeze casting for sensor and hydrostatic applications. The piezoelectric 

voltage constants (g33 and g31), hydrostatic parameters (dh, gh, -d33/d31, dh·gh and dh·gh/tanδ) and AC 
conductivity are assessed when the material was poled parallel and perpendicular directions to the 
freezing temperature gradient using a simple water-based suspension.  Significant benefits will be 
demonstrated for many of the properties compared to the monolithic (dense) material, depending on the 
polarisation direction. 
 

Methods 
 
The raw materials used for water-based freeze casting process to fabricate the aligned porous PZT were 
reported in our previous study on energy harvesting[49]. A schematic illustration is shown in Fig. 1. 
The PZT suspensions were ball-milled for 24 h in zirconia media to generate homogeneous and fine 

suspensions. The prepared suspensions were de-aired (Fig. 1 (A)) before casting into a cylindrical 
polydimethylsiloxane (PDMS) mould which was transported to a conducting cold plate in a liquid 
nitrogen container for freeze casting process (Fig. 1 (B)); in this figure the freezing direction is from 
the base and upwards which leads to the structure shown in the image. After freezing, the frozen bodies 
were demoulded and freeze-dried in a vacuum at -50 °C to sublimate the ice crystal (Fig. 1 (C)). Finally, 
the green bodies were sintered at 1250 °C for 2 h under a PbO-rich after organic additives burnt out at 
600°C for 3 h. Each porous PZT cylinder was poled parallel and perpendicular to the freezing direction, 

denoted as PZT║ and PZT┴, respectively for the following microstructure and assessment of 
piezoelectric properties.   
The microstructures of the powders and sliced PZT ceramics were examined by a scanning electron 
microscopy (SEM, JSM6480LV, Tokyo, Japan). The apparent porosity was derived from the density 
data. The remnant polarization and coercive field of the ceramics were measured using a Radiant 
RT66B-HVi Ferroelectric Test System on initially unpoled materials. The longitudinal piezoelectric 
strain coefficient (d33) and the transverse piezoelectric strain coefficient (d31) were measured using a 
Berlincourt Piezometer (PM25, Take Control, UK) after corona poling by applying a DC voltage of 14 

kV for 15 min at 120 °C. The AC conductivity, σ, of the sintered ceramics were carried out from 0.1Hz 



to 1MHz at room temperature using an impedance analyzer (Solartron 1260, Hampshire, UK) and 
calculated from equation (1)[51], 

                                                                  σ =	 '(

'()*'")
∙ -
.
                                                               (1) 

where 𝑍0	and 𝑍"are the real and imaginary parts of the impedance, A is the area of the sample and t is 

the sample thickness.  

 
Figure 1 Schematic of porous PZT preparation by freeze casting. (A) water-based PZT suspension, (B) freezing of the water 
from the cold base, (C) freeze drying leading to a layered PZT structure. The freezing direction is indicated (form bottom to 
top) along with the polarisation direction for samples poled along freezing direction (PZT║) and perpendicular to freezing 

direction (PZT┴). 

 

Results and discussion 
 
Figure 2 shows images of the PZT powders before and after ball milling. It can be seen that the original 
as-received PZT powders exhibited a sphere-like morphology due to the spray drying processing, whose 
agglomerate particle diameter was about 40 µm, as shown in Fig. 2(A). According to our previous 
research[52, 53], the ceramic particle size has a strong influence on the rheological properties of the 
suspension, which is crucial not only for the stability of the suspension for pore preparation by freeze 
casting, but also the pore size of the porous channel and finally the corresponding properties. Normally, 
the particle size of the ceramic[54] in the suspension should range from submicron to less than 3 µm in 

order to exhibit suitable stability and viscosity for freeze casting[55-58]. Therefore, in order to improve 
the rheological properties of the suspension for achieving the defect-free ceramic layer by freeze casting, 
a high-speed ball milling treatment in ethanol was utilised, and the particle size of the PZT powders 
with uniform shape were reduced to about 1 µm on average in Fig. 2(B).  

   



  
  

Figure 2 SEM images of PZT powders (A) without ball milling (‘as-received’), (B) after ball milling for 48h. 

 
Figure 3 (A-D) show SEM micrographs of the porous PZT poled parallel and perpendicular to the 
freezing direction. It can be seen that a lamellar pore channel and dense lamellar ceramic wall with 
dendritic details on both the top (Fig. 3(A)) and side faces (Fig. 3(B)) were achieved.  From the macro-
scale point of view, there were multiple orientations on the top face, as shown in Fig. 3(A) which is 
equivalent to looking from above in Fig. 1(C), compared to the side face in Fig. 3(B) which is equivalent 

to looking from the side of Fig. 1(C).  This is due to the random nature of ice nucleation in the single 
vertical temperature gradient condition[59]. Clear alignment of the PZT material with good parallelism 
of the lamellar ceramic layer can be readily observed under a relatively low magnification (scale bar of 
500 µm) for both PZT║ and PZT┴, as shown in the Fig. 3(C) and (D), although part of the lamellar layers 
were covered by their adjacent layers with the dendrites forming links in the PZT┴ shown in the Fig. 
3(D). 

  

  
 Figure 3 SEM micrographs of (A) porous PZT║, (B) PZT┴, (C) and (D) are high magnification of (A) and (B), respectively.  

 



Figure 4 (A-E) and (F-J) show SEM micrographs of the microstructure parallel (PZT║) and 
perpendicular (PZT┴) to the freezing direction as the porosity fraction is increased from 20-60 vol.%, 
respectively. With an increase of porosity, the lamellar pore size decreased while the number of the 
dendrites decreased accordingly in both the PZT║ and PZT┴ materials. In the 20 vol.% PZT, a large 

quantity of the dendrites on the lamellar surface can be found, and most of the dendrites were connected 
with the adjacent ceramic layer, as shown in Fig. 4 (A) and (F). These additional dendrites are beneficial 
not only for piezoelectric phase connection, but also for the improvement of mechanical strength. It can 
be seen that when the porosity reached 60 vol.%, the surface of the lamellar layers became relatively 
smooth with ceramic links on the edge of the layers, as shown in Fig. 4(E) and (J). In the freeze casting 
process, a low freezing rate can provide a longer period for ice growth, which is the replica of the 
lamellar pore in the SEM images, while a low solid loading can provide a low viscosity which facilitates 
ceramic particle rearrangement.  Both of the above conditions can lead to a large lamellar pore size and 

the high porosity materials exhibiting a smaller number of dendrites.  
 

  

  



  

  

  
 

Figure 4 SEM images of porous PZT║ with the porosity of (A) 20, (B) 30, (C) 40, (D) 50, and (E) 60 vol.% and 
PZT┴ with the porosity of (F) 20, (G) 30, (H) 40, (I) 50, and (J) 60 vol.%. 

 

Figure 5 shows the remnant polarisation (Pr) and coercive field (Ec) of the initially unpoled porous PZT 
as a function of the porosity ranging from 20 to 60 vol.%, respectively. It can be observed that the Pr of 
both PZT║ and PZT┴ decreased with an increase of porosity, which were 2.1-5.5 and 3.1-10.0 times 
lower than the dense PZT, respectively. The decrease of Pr with increasing porosity results from reduced 
fraction of piezoelectric phase and its connection (Fig. 3A) which also leads to a decrease of 



piezoelectric properties[49], such as d33 and d31. The decrease in Pr with porosity is more rapid than 

predicted by 𝑃2
342456=𝑃278968Í(1-p) where p is porosity [60]; this is due to the porosity also restricting 

polarisation of the ceramic since the electric field concentrates in the lower permittivity pore space.  
The PZT║ material exhibited a 1.5-1.8 times higher Pr compared to the PZT┴ due to the improved 
connectivity of piezo-active material along the freezing direction and therefore the lower fraction of 
unpoled areas in PZT║[49, 61]. The Ec values of both PZT║ and PZT┴ increased as the porosity increased, 
see Fig. 5B, and the PZT┴ exhibited the highest Ec values in all ranges of porosity. The increase in Ec 

with porosity is due to the concentration of the applied electric field in the low permittivity pore space, 
leading to higher applied electric field being required to achieve domain switching in the higher 
permittivity ferroelectric phase. For the same reason, a higher Ec is observed for the PZT┴ material as 
there is a reduced connection of ferroelectric along this poling direction as a result of the overlapped 
lamellar layers, see Fig. 3(D), resulting in a reduced piezoelectric response[62] and a higher Ec in PZT┴.   
Interestingly, the PZT║ with the porosity of 20 vol.% exhibited the lowest Ec of 7.7 kV/cm compared 
to both the dense (8.7 kV/cm), and all the PZT┴ materials, demonstrating easier switching of 

ferroelectric domains with applied electric field. The presence of a small amount of porosity (~20 vol.%) 
may initially provide a state of reduced internal stress or restriction of domain motion, while at higher 
porosity levels the applied electric field concentrates in the pore volume and leads to higher applied 
electric fields being required to provide domain switching. Therefore, although the existence of porosity 
can facilitate the switching of the domain walls to some extent[63, 64], the increased electric field 
concentration[61] in the low permittivity pore space leads to a higher Ec which reached to 8.9 µC/cm2 
compared to the dense with the Ec of 8.7 µC/cm2 when the porosity was higher than 50 vol.%.  This is 
also reflected in the reduced rectangularity (Premnant/Psaturation) of the materials as the porosity level 

increases, as seen in Fig. 5(C). 
 



            

 
 

Figure 5 (A) Remnant polarisation (Pr), along with estimation based on 𝑃2
342456=𝑃278968Í(1-p) , (B) 

coercive field (Ec) of the porous freeze-cast PZT, and (C) rectangularity ratio of with Pr / Ps various porosities. The 
dense material is also shown.  

 

 
Figure 6 (A-F) show the anisotropy factor[65] -d33/d31, hydrostatic charge (dh), voltage coefficient (gh), 
piezoelectric voltage coefficients (g33 and g31), relative permittivity (𝜀""#  ) and figures of merit (dhgh and 
dhgh/tanδ) of the porous PZT as a function of the porosity ranging from 20 to 60 vol.% and dense PZTs. 

It can be seen from Fig. 6(A) that PZT┴ exhibited a lower -d33/d31 than the dense PZT at all porosities, 
while porous PZT║ exhibited a higher -d33/d31 and therefore higher anisotropy than the dense PZT. The 
-d33/d31 PZT║ increased with increasing porosity and was 1.2-2.0 times higher than that of PZT┴. The 
increase in piezoelectric anisotropy for PZT║ is advantageous since it leads to higher dh values that were 
determined from the d33 and d31, as shown in Fig. 6(B). It can be seen the PZT┴ exhibits a gradual 
reduction in dh with increasing porosity, due to a reduced -d33/d31 while the PZT║ exhibits an increase 
in dh with increasing porosity. It should be also noted in Fig. 6(B) that the dh of the PZT║ was higher 

than the dense PZT when the porosity exceeded 40 vol.%. The increase in dh for the porous material 
compared to the dense material is relatively modest, this is due to the fact that the dense material has a 
relatively high -d33/d31 of ~3 (see Figure 6A); typically -d33/d31 is close to 2 for dense PZT based 
materials. 
 
While the PZT┴ materials exhibited relatively poor dh values it exhibits advantageous gh values that are 
1.2 to 2.1 times and 1.5-8.5 higher than PZT║ and monolithic dense PZT, respectively; see Fig. 6(B), 



i.e. 40.1×10-3 Vm/N for PZT║, and 83.5 ×10-3 Vm/N for PZT┴ both at 60 vol.% porosity compared to 

that of dense PZT (9.0×10-3 Vm/N). This was due to the reduced relative permittivity, shown in Fig. 

6(C) and (D), of the PZT┴ (𝜀""#  ~ 380 to 16) compared to PZT║ (𝜀""#  ~ 1407 to 581) and the dense material 
(𝜀""#  = 2158); at 1 kHz from the inset of Fig. 6(C) and (D). The gh value of the PZT║ was also 1.3-4.1 
times higher than that of the dense PZT (see Fig. 6(B)) since the dense material exhibited a much higher 

permittivity, Fig. 6(C).  
 
A similar trend is observed on examination of the piezoelectric voltage coefficients (g33 and g31) in Fig. 
6 (C) where both g33 and g31 of PZT┴ were 1.8-5.2 and 2.0-10.0 times higher than PZT║, and also 2.3-
12.5 and 2.5-14.7 times higher than dense PZT. This indicates that PZT┴ is attractive as a piezoelectric 
force/pressure sensor. Fig. 6(D) shows that both the dh·gh and dh·gh/tanδ figures of merit for the PZT║ 
increased with increasing porosity, and were much larger than both the dense material and PZT┴. 

Although a reduced inter-connection of the piezoelectric phase was observed with an increase of 
porosity (see Fig. 4), the high degree of alignment of the pore channel along the poling direction can 
compensate for the reduction in interconnectivity, especially in PZT║. This is due to a combination of, 
relatively high piezoelectric activity (Fig. 5), high piezoelectric coefficients, high anisotropy and low 
permittivity achieved through the introduction of the porosity. These results compare favourably with 

previous analysis[49] that demonstrated the higher d33· g33 piezoelectric and pyroelectric harvesting 

figures of merit ((pyroelectric coefficient)2/ permittivity x heat capacity) in PZT║.  

 

The highest values of hydrostatic figures of merit were achieved for PZT║ when the porosity increased 

to the maximum value of 60 vol.% in this work; this corresponded to hydrostatic figures of merit that 

were 2.7-10.2 and 2.0-10.9 times higher than the dense materials and PZT┴, respectively, as shown in 

Fig. 6(D). The 60 vol.% was chosen as a maximum since for higher porosity levels the material will 
exhibit reduced mechanical properties, and an even higher coercive field; leading to a low d33 and 
therefore a low dh. In addition to the advantages of high mechanical strength reported previously[49, 
50], the freeze-cast samples exhibited comparable or even higher hydrostatic figure-of-merit than most 

of other processing methods, especially PZT║ which exhibit a higher piezoelectric coefficient and lower 

permittivity, as shown in Table 1. 
 



      

             

     
 

 Figure 6 (A) hydrostatic charge (dh) and voltage coefficient (gh), (B) piezoelectric voltage coefficients (g33 and g31),  (C) (D) 
relative permittivity (𝜀""# ), and (E) (F) hydrostatic figure of merits (dhgh and dhgh/tanδ) of the porous freeze-cast PZT with 

various porosities. The dense material is also shown. 

 

Table 1 Comparison of hydrostatic parameters with different processing methods for PZT composite. 
 

Production method Composite Connectivity PZT 

Volume % 

dh 

(pC/N) 

gh 

(10-3 Vm/N) 

dhgh 

(10-12 m2/N) 

Ref. 

Freeze casting  
 

PZT║ 

PZT┴ 
PZT-air 2-2 40 

206 

12 

40.1 

83.5 

8.26 

1 
this work 

 
 

   
   

 

 
 

   
   

 

BURPS (Burnout of Polymer 

Spheres) 

 

PZT-air 3-0 

3-1 

3-3 

3-0 

54.5 

59 

~60 

68 

~35 

- 

102 

- 

~16.4 

~42 

72 

~48 

~0.57 

~5 

7.3 

5 

[40][66] 

[41][67] 

[11][11] 

[42][68] 

Ionotropic gelation process PZT-air 3-1 ~44 ~222 - ~5.6 [43][38] 



Pore-forming agent PZT-epoxy 3-1 45-60 60 69 ~4.01 [44][69] 

Polymer injection 

(PZT rods embedded in polymer) 

PZT-polymer 1-3 40 ~95 ~18 ~1.71 [45, 46][70, 

71] 

Direct-write  PZT-polymer 2-2 ~30 <190 <0.38 <0.72 [47][72] 

Dice-and-fill PZT-polymer 

PZT-cement 

1-3 

2-2 

40 

40 

~135 

<100 

~37 

<0.2 

~5 

<0.02 

[48][73] 

[49][74] 

 

Figure 7 (A) and (B) show the AC conductivity (σ) of the PZT║ and PZT┴ at frequencies ranging from 
0.1 to 106 Hz at room temperature respectively. It is clear from these two figures that the AC 
conductivity decreased with an increase of the porosity in both PZTs and were lower than that of the 

dense PZT at all the porosities and the frequencies; this includes the lowest frequencies where the 
conductivity is becoming less frequency dependent and is approaching the DC conductivity. The PZT║ 
possessed a higher AC conductivity than the PZT┴ at the same porosity and frequency, e.g. 1.3-1.5 times 
at the frequency of 1 kHz, as shown in the insets in Fig. 7 (A) and (B). This is likely to be due to the 
high permittivity of the PZT║ resulting from the contribution of the dielectric phase to the overall 
conductivity (ωεrε0)[75]. Generally, there are two well-known models for interpreting the effects of 
porosity on electrical conductivity, where the solid phase has a small, but finite conductivity, and the 
pores have a very small (almost negligible) conductivity. For a composite consisting of both PZT and 

air, the low frequency conductivity parallel to the poling direction σ║ (parallel connected) and PZT 
perpendicular to the freezing direction (series-connected) σ┴, which can be calculated as σ║ = vPZT·σpzt + 

vair·σair and σ┴ = ;<=>·;@AB
C@AB·;<=>*C<=>·;@AB

, where vPZT and vair are the volume fractions of PZT and air, σpzt and 

σair are the electric conductivity of the dense PZT and air[76]. Although σpzt » σair, no linear relation was 
found between conductivity σ and the porosity, as shown in the insets in Fig. 7 (A) and (B), owing to 
the existence of the dendritic ceramic link between the adjacent ceramic layers shown in Fig. 4, which 
means the pore regions were a mixture of the PZT ceramic links and the air. Similar situations can be 
also found in the piezoelectric and pyroelectric properties[49]. Furthermore, along the electric field 
direction during the impedance measurement, much more effective interface areas between the active 

phase PZT and the passive phase air were formed in the porous PZT║, therefore, the better ability of the 
domain movement and carrier mobility were the main reasons for the higher conductivity in the porous 
PZT║, making it be a more suitable candidate for hydrostatic sensor applications. 

 
  



Figure 7 AC conductivity (σ) of the (A) PZT║ and (B) PZT┴ with various porosities. Insets in (A) and (B) are σ values 
of the PZT║ and PZT┴ at 1 kHz as a function of porosity, respectively. The dense material is also shown.  

 

Conclusions 
 
Freeze casting using a water based suspension has been utilised and demonstrated to be an 

effective method to prepare high performance porous PZT for sensor applications with 

unidirectional pore channels over a range of 20-60 vol. % porosity. The hydrostatic and sensor 

properties of PZTs poled parallel (PZT║) and perpendicular (PZT┴) to the freezing direction 

were examined in detail. Significant improvements in the hydrostatic figures of merit were 

observed compared to the dense monolithic material. In terms of dh·gh and dh·gh/tanδ, the PZT║ 

and PZT┴ were 2.7-10.2 and 2.0-10.9 times higher than that of the dense material. These highly 

attractive properties are due to their relatively high d33, reduced d31 and significantly reduced 

permittivity. While the PZT║ exhibited the best dh, dh·gh and dh·gh/tanδ, the PZT┴ exhibited the 

highest gh, g33 and g31 coefficients which was attributed to the lower permittivity of the material 

in this orientation. In addition, the PZT║ showed 1.3-1.5 times higher AC conductivity than the 

PZT┴ at the frequency of 1 kHz. In addition, it is shown that the properties are improved 

compared to piezoelectric composite materials manufactured by more complex methods. The 

PZT┴ exhibited the highest gh, g33 and g31 coefficients; up to 1.5-8.5, 2.3-12.5 and 2.5-14.7 

times higher compared to the dense materials; this was attributed to the low permittivity of the 

material in this orientation. The coercive field increased with an increase in porosity for the 

materials, and this was attributed to the concentration of electric field concentration in the lower 

permittivity pore space. This work demonstrates water-based freeze casting provides an 

environmentally friendly and promising route to fabrication porous piezoelectric for both 

uniaxial and hydrostatic sensing applications with potential for control of the coercive field of 

ferroelectric materials. It is also demonstrated that changing of the poling condition relative to 

the freezing direction can enable control and optimisation of the relevant performance figures 

of merit for specific applications.  
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