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Abstract 

This paper combines experimental and modelling studies to provide a detailed examination of the influence 

of porosity volume fraction and morphology on the polarisation-electric field response of ferroelectric 

materials. The broadening of the electric field distribution and a decrease in the electric field experienced by 

the ferroelectric ceramic medium due to the presence of low-permittivity pores is examined and its 

implications on the shape of the hysteresis loop, remnant polarisation and coercive field is discussed. The 

variation of coercive field with porosity level is seen to be complex and is attributed to two competing 

mechanisms where at high porosity levels the influence of the broadening of the electric field distribution 

dominates, while at low porosity levels an increase in the compliance of the matrix is more important. This 

new approach to understanding these materials enables the seemingly conflicting observations in the existing 

literature to be clarified and provides an effective approach to interpret the influence of pore fraction and 

morphology on the polarisation behaviour of ferroelectrics. Such information provides new insights in the 

interpretation of the physical properties of porous ferroelectric materials to inform future effort in the design 

of ferroelectric materials for piezoelectric sensor, actuator, energy harvesting, and transducer applications. 
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1. Introduction 

Ferroelectric materials are an important class of electro-active dielectrics that exhibit high levels of 

polarisation, high permittivity, large electromechanical coupling, and a number of functional properties [1] 

such as piezoelectric, pyroelectric, electrostrictive, and electro-optic properties for applications related to 

sensors, actuators, energy harvesters, and transducers [2, 3]. A small amount of porosity is present in all 

ferroelectric ceramics and is usually considered a defect introduced due to processing imperfections; 

however, it may also be introduced deliberately to create a composite material system using porosity as a 

second component [4-6] to provide beneficial effective properties for specific applications. As a result, a 

thorough understanding of the influence of porosity on the properties of ferroelectric materials remains an 

important topic. To date, porosity in ferroelectric and piezoelectric materials has been considered at the 

micro-scale [7] and nano-scale levels [8], including bulk materials [9-12], textured materials[13], aerogels 

[14] and thin films [8, 15].  

One reason for deliberately introducing porosity into a bulk material is to reduce its acoustic impedance, Z= 

(ρY)0.5, where ρ is material density, and Y is the Young’s modulus of the material. A reduced acoustic 

impedance improves matching between the piezoelectric material and the fluid, biological medium or 

material under evaluation when used sensor or transmitter in SONAR, medical ultrasound or non-destructive 

testing applications [12]. Porosity has also been added to ferroelectric ceramics and/or composites in an 

effort to reduce the permittivity of the material. The reduction of permittivity leads to an increase in 

performance for applications related to piezoelectric sensing, pyroelectric sensing and energy harvesting 

since a variety of performance figures of merit are inversely proportional to the material permittivity at 

constant stress (𝜀33
𝑇 ) [16, 17]. Examples include a variety piezoelectric voltage coefficients (gij), such as 

𝑔33 = 𝑑33 𝜀33
𝑇⁄ , pyroelectric sensitivity, Fv = 𝑝 𝑐𝐸 . 𝜀33

𝑇⁄ , along with associated harvesting figures of merit 

[7], such as FOM= 𝑑33
2 𝜀33

𝑇⁄ ; where d33 is the longitudinal piezoelectric charge coefficient, p is the 

pyroelectric coefficient and cE is the specific heat. The inclusion of pores also results in an increase in the 

difference between the longitudinal (d33) and transverse (d31) piezoelectric coefficients which gives rise to 

improved hydrostatic performance, such as 𝑔ℎ = (𝑑33 + 2𝑑31) 𝜀33
𝑇⁄  for a transversely isotropic medium [2, 

4]. The possible influence of porosity on the fatigue properties of ferroelectric materials during multiple 

polarisation reversals has also been considered, for example, for ferroelectric memory and high-strain 
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actuator applications [18]. Piezoelectric surface charges are also thought to influence biological cell 

attachment and growth, and the fabrication of porous piezoelectric composites with well-defined 

interconnected pores has been considered to provide a favourable environment for bone ingrowth and osseo-

integration [19]. In addition to ceramic systems, porous ferroelectric polymers are also of interest as the 

presence of poled pores within a polymer matrix can lead to ferroelectret effects [20]. 

The influence of porosity on the physical properties such as dielectric permittivity and elastic stiffness are 

relatively well-known, and a number of models that allow prediction of the piezoelectric coefficients are 

available [5, 6, 17, 21, 22]. However, these models are generally based on the assumption that ferroelectric 

regions in the porous-ceramic mixture are fully poled in a specific direction. Ferroelectrics are poled by 

applying an electric field, Ef, that is greater than the coercive field of the material, Ec, to align ferroelectric 

domains in grains and achieve a remnant polarisation in the bulk material. In a dense bulk ferroelectric 

material, the electric field distribution is relatively homogenous [12], leading to a fully poled structure when 

Ef > Ec. However, when pores with a significantly lower permittivity than the bulk ferroelectric are 

introduced into the microstructure, the applied electric field concentrates in the low-permittivity pore region, 

which leads to an inhomogeneous electric field distribution throughout the structure [12, 23-26]. The fields 

are reported to be particularly inhomogeneous close to pore-ceramic interfaces, where low-field regions exist 

on boundaries aligned parallel to the poling field Ef vector, and high-field regions occur perpendicular to the 

Ef vector [27]. The level of electric field inhomogeneity increases with the number of pores and number of 

boundaries, along with the distribution of the pores; this inhomogeneous field distribution has led to interest 

in using porous ferroelectric ceramics as a material with a high degree of tunability by exploiting nonlinear 

and electric field dependent dielectric properties[11, 23, 27-29]. 

While there are numerous publications related to the influence of porosity on the stiffness, permittivity, 

pyroelectric and piezoelectric coefficients of ferroelectric materials [4, 6, 10, 22], less work has examined 

the effect of porosity on the overall polarisation - electric field (P-E) behaviour, including the shape of the 

hysteresis loop, remnant polarisation and coercive field. An understanding of this topic is important since the 

level of polarisation will ultimately affect the final piezoelectric and pyroelectric properties of any porous 

ferroelectric. Work to date on understanding the polarisation-field response of porous ferroelectrics has 

considered modelling [23, 30] and experimental approaches [8-10, 15, 31-34], along with combinations 

thereof [2, 7, 11, 12, 24, 25, 27, 28, 35], which will now be discussed in detail. 
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1.1 Impact of porosity on polarisation – field behaviour 

The current literature on the impact of porosity on the polarisation-field characteristic of ferroelectric 

materials is rather mixed and often contradictory, at both modelling and experimental levels. A typical 

ferroelectric polarisation - electric field loop contains a saturation polarisation (Ps), remnant polarisation (Pr) 

and zero polarisation that is related to the coercive field (Ec). It is generally agreed that the porosity reduces 

both Ps [11, 12] and Pr [2, 7, 10, 12, 14, 15, 32-34, 36-38], and one reason is that a porous ferroelectric 

ceramic has a lower amount of the active component compared to the dense counterpart and is therefore 

expected to have a smaller level of polarisation [11]. Nagata [31] showed that experimental data for the 

remnant polarisation of a porous material reduced more quickly than predicted by a simple volume-fraction 

relationship given by, 

                                                                        Pr = Pr
0(1-vp)                                                                   (Eqn. 1) 

where Pr
0 is the remnant polarisation of the dense material, and vp is the porosity volume fraction. This 

indicated that there was an additional depolarisation factor due to the presence of the pores, rather than 

simply a smaller volume fraction of the active ferroelectric component.  

An understanding of the impact of porosity on the coercive field of porous ferroelectric materials is less clear. 

Banno [30] reported that modelling showed that there is no dependence of coercive field on porosity, and 

this was in agreement with experimental measurements by Nagata on lead lanthanum zirconate titanate 

(PLZT) materials [31]; the experimental results actually indicated a small increase in Ec with increasing 

porosity. Zhang et al. [32] experimentally observed either a small or no decrease in coercive field with 

increasing porosity for a porous lead zirconate titanate (PZT), depending on the pore-forming agent and Li et 

al. observed no change in Ec with porosity for PZT [37]. This insensitivity of the coercive field with porosity 

was thought to be due to space charge accumulation at the pore surface. Geis et al. [14] observed a decrease 

in coercive field with increasing pore volume fraction for porous PZT aerogels when compared to the dense 

material. The slope of the polarisation-field loop, or degree of rectangularity, was higher for the dense 

material, and this was considered to be due to the inhomogeneous electric field in the porous material leading 

to domain switching at different applied electric fields. Okazaki et al. [9] examined the influence of porosity 

on the properties of PLZT ceramics, and in this case an increase in coercive field was observed with 

increasing porosity; it was stated that this was due to the space charge field increasing with increasing 

porosity. Barabanova et al. [33] also observed an increase in coercive field with increasing porosity fraction 
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with Ec = 4.4 kV/cm for the dense PZT and Ec = 6 kV/cm for the same material with 25 vol.% porosity. 

Porous lead free materials were examined by Yap et al. [36] who stated the coercive field remained stable 

with porosity content, although the experimental data indicated a small increase in Ec with porosity, although 

the potential for silicone oil to infiltrate pores during testing was highlighted. Work by Bacaric et al. [10] on 

porous PZT indicated that the introduction of 30 vol.% of fine-scale pores reduced the Ec value to 6.8 kV/cm 

compared to the dense material (Ec = 7.8 kV/cm), while larger pores at the same volume fraction led to an 

increase in Ec to 8.1 kV/cm. The influence of pore geometry on the coercive field of PZT materials was also 

investigated by Khachaturyan et al. [2]. The experimentally measured coercive field of the dense PZT 

material (Ec =14 kV/cm) was lower than a porous PZT with anisometric (elliptical) pores (Ec =16 kV/cm), 

but higher compared to a material with isometric (equi-axed) pores (11 kV/cm). Finite element simulations 

were used to indicate that the domain switching times were smeared out by introducing porosity into the 

material structure. The broadening of the switching times was greatest for elliptical pores that were 

perpendicular to the applied field. Nb-doped PZT materials were examined by Stoleriu et al. [34, 35] and 

porosity led to the polarisation-field loops becoming less rectangular with more distributed coercivities. 

First-order reversal curves (FORC) were used to show how dipolar units are spread to higher and lower 

fields for a porous material, indicating an inhomogeneous ferroelectric system. The dense material exhibited 

more homogeneous switching properties, since domains are subjected to similar local applied electric fields. 

It was also thought that the presence of pores to relax the level of mechanical clamping[35]. 

In the majority of the aforementioned bulk ferroelectric materials, porosity is at the micro-scale level. For 

nanoporous lead titanate thin films, Castro et al. [8] observed that the presence of porosity reduced the 

coercive field compared to the dense thin film and the presence of nano-scale porosity increased the 

switching ability. This was thought to be due to porosity triggering the crystallisation of the film at lower 

temperatures and reduced constraining effect of the substrate on the more compliant porous films. Stancu et 

al. [15] observed a higher coercive field for the dense PZT thin film compared to the porous films for pore 

fractions up to 30%, although the dependency with porosity was not clear. The switching characteristics of 

the porous film was said to be more gradual with applied field and it was thought that the porosity led to 

different orientations of crystallites within the film. 
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The most detailed studies of the effect of porosity on ferroelectric and dielectric properties have been 

examined by Padurariu et al. [11, 23, 27, 29]. The motivation was to exploit the inhomogeneous electric field 

to provide high tunability. Finite element modelling of porous materials based on lead zirconate titanate 

niobate (PZTN) based materials indicated that a large component of the electric field was concentrated in the 

low permittivity pore space and the bulk ceramic is subjected to electrical fields that are very different to the 

applied external field [11]. Experimental measurements carried out on PZTN indicated that porosity reduced 

the hysteresis area and a reduction in the rectangularity of the loop (Pr /Ps), which relates to tilting of the 

polarisation field-loop as a result of a broadening of the field distribution. The experimental work indicated 

that the introduction of approximately 45 vol.% porosity reduced the coercive field compared to the dense 

material, and the exact level depended on the connectivity of the porous samples; 0-3 or 3-3 connectivity as 

defined in [22]. A detailed study on Nb-doped PZT ceramics was undertaken by Gheorghiu et al. [12] using 

experimental characterisation and finite element modelling combined with Preisach modelling to predict 

polarisation-field loops. Experimental measurements indicated more tilted loops on increasing the porosity 

from 5 vol.% to 30 vol.%, along with a reduction in rectangularity. The Preisach modelling indicated that 

higher electric fields were needed to switch non-180 domains for the more porous material due to the high 

field in the pore space and the resulting lower electric field in the ferroelectric component; however, the 

experimental results showed that the dense material exhibited a higher coercive field compared to the porous 

materials. 

Clearly there are a number of conflicting and contradictory observations from both experimental and 

modelling of the polarisation-field response of porous ferroelectrics. The aim of this paper is to provide new 

insights and a definitive understanding of the role of porosity on the polarisation-field response of 

ferroelectric materials. This will be achieved by a combination of finite element modelling and careful 

experimental investigation to understand the influence of porosity volume fraction and morphology on 

electric field distribution and level of polarisation of a range of porous ferroelectric ceramics with controlled 

levels and shape. In this work, a lead-free material, barium calcium zirconate titanate whose chemical 

formula is 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3, hereafter abbreviated as BCZT, was utilised to explore 

the effect of porosity on the polarisation-field response experimentally, and corresponding modelling work is 

also presented. One reason for selecting a lead-free ferroelectric system is that it mitigates lead-loss during 
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the high temperature sintering stage, which may especially important for highly porous and high surface area 

PZT-based ceramics.  

 

2. Manufacture and characterisation of equi-axed and aligned porosity 

To examine the influence of pore fraction on the shape and key parameters of the polarisation-field loop, the 

first stage is to manufacture ferroelectric ceramics with either equi-axed or aligned porosity at a wide range 

of volume fractions, up to 40 vol.% porosity.  The BCZT powders were synthesised by the traditional solid-

state reaction method using BaCO3 (99+%, Acros Organics), CaCO3 (99.9%, Sigma Aldrich), TiO2 (99.9%, 

rutile, Sigma Aldrich) and ZrO2 (99%, Sigma Aldrich). The raw materials were weighed according to the 

stoichiometric formula. The mixed powders were then ball-milled with ethanol and ZrO2 balls for 4 h. 

Thereafter, the obtained mixtures were dried and calcined at 1200 °C for 3 h and followed by additional ball-

milling for 24 h.  

To fabricate ceramics with randomly distributed equi-axed pores the burned out polymer spheres (BURPS) process 

was used where the milled powders were mixed for 12h with ethanol with different weight fraction additions of a 

pore forming agent, polyethylene glycol (PEG) (0, 3, 5, 9, 13, 16, 20, 23 wt.% based on the calcined powders). This 

was followed by mixing with 1 wt.% polyvinyl alcohol (PVA) binder to aid cold uniaxial pressing. After drying, 

the powders were uni-axially pressed to form pellets of 13 mm in diameter and 1.5 mm in thickness.  The sample 

with 0 wt.% PEG addition is the ‘dense’ material that will be used as a reference for comparison with the porous 

BCZT. 

To generate aligned porosity, freeze casting was carried out by pouring water-based BCZT suspensions with 

different levels of BCZT solid loading levels into a transparent cylindrical polydimethylsiloxane (PDMS) mould 

and subjecting the mixture to unidirectional freezing. This was followed by a freeze drying process reported in our 

previous studies [7, 39-41] to remove the ice crystals and produce aligned BCZT powder sample. Water was 

utilised as the solvent to disperse the ceramic for freeze casting, which has been widely explored to obtain 

long-range ordered anisotropic aligned pore channels [42].  

To sinter the porous materials made by both BURPS and freeze casting, the pressed BCZT pellets and freeze-dried 

green bodies were initially heated to 600 °C for 3h to remove organic additives and then sintered at 1400 °C for 4 h 

in air to achieve the final sintered samples. The bulk densities of the sintered materials were measured using the 

Archimedes’ principle. For evaluation of the electrical properties, silver paint was coated on both faces of the 
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sintered samples to form electrodes. The saturation polarisation, remnant polarization and coercive field were 

measured using a Radiant RT66B-HVi Ferroelectric Test system on initially unpoled materials to ensure no 

impact of a previous poling process on the P-E loop. The samples were tested in air to mitigate any impact of 

oil in the pores on the P-E response, as highlighted by Yap et al. [36]. For the modelling activities the 

relative permittivity of the unpoled and poled material was measured using a Solartron 1260 and 1296 

Dielectric Interface. 

 

3. Experimental results 

3.1 Equi-axed and randomly distributed porosity 

Figure 1 (A-H) shows scanning electron micrographs of BCZT with different porosities from 4-40 vol.%, 

which correspond to PEG additions from 0 to 23 wt.%. The micrograph in Figure 1(A) is related to a BCZT 

ceramic with no pore-forming agent addition, and this sample is dense with a measured porosity of ca. 4 

vol.%.  

It can also be seen that after the addition of PEG pore-former from 3 wt.% to 23 wt.%, the number of the 

pores in the ceramic matrix increased, and a microstructure with a fully densified polycrystalline matrix can 

be seen for all porous ferroelectrics in Figure 1(B-H). These morphologies indicate that the BCZT powders 

were well sintered under the processing condition and the microstructures for all levels of porosity exhibited 

homogeneously distributed and equi-axed spherical pores in the ceramic matrix. Pore size and 

interconnection was found to increase with increasing fraction of pore forming agent as neighbouring pores 

tend to coalesce, e.g. the pore size of 50 µm for the porous ceramic with 10 vol.% porosity shown in Figure 

1(B), compared with the pore size with approximately 100 µm when the porosity volume fraction was 25 % 

shown in Figure 1(E). It was also seen that a continuous porous network was formed in the porous BCZT 

ceramics and the homogeneous pore distribution led to the formation of a strong pore wall network. By 

control of the weight fraction of the PEG pore-former, a range of porous ceramics was readily achieved. The 

pore network, electromechanical properties and modelling of porous PZT-type materials have also been 

described by Filippov et al. [43] in the porosity range from 5 to 57 vol. % with similar porous structures 

observed in the PZT-type [43] when compared to the BCZT samples in Figure 1, although the impact of the 

pores on the polarisation-field behaviour was not studied. 
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Figure 2(A-C) shows the effect of porosity volume fraction on the P-E loop, remnant polarisation and 

coercive field for the dense material (4 vol.% porosity) and the porous BCZT ceramics with randomly 

distributed equi-axed porosity ranging from 10 vol.% to 40 vol.%. As can be seen from Figure 2(A), the 

remnant polarisation (Pr) gradually decreased with an increase in the fraction of porosity. The dense material 

had a Pr of 7.7 µC/cm2, which compares favourably with previously reported values [36, 44, 45] that range 

from 6.3-8.0 µC/cm2. As the porosity volume fraction is increased, the reduced fraction of the ferroelectric 

piezo-active ceramic leads to a reduction in Pr from 6.2 µC/cm2 at vp = 10 vol.% to 1.3 µC/cm2 at vp = 40 

vol.%, as seen in Figure 2(B). A decrease in Pr with increasing porosity has been observed elsewhere [2, 10, 

12, 32, 36] and it can been seen in Figure 2(B) that the experimentally measured Pr decreases at a faster rate 

compared to the volume rule of mixtures given by Eqn. 1, similar to that observed by Nagata [31] and 

Gheorghiu [12]. This indicates that the reduction in the fraction of ceramic is not the only reason for the 

decreased Pr and there is an additional depolarisation factor due to the presence of pores, which will be 

discussed in more detail in relation to the modelling results described later.  

In contrast to the continually decreasing Pr with increasing porosity level, Figure 2(C) shows that the 

coercive field initially decreased from 2.36 kV/cm to 1.94 kV/cm as the porosity volume fraction increased 

from 4 vol.% to 25 vol.%; with an almost unchanged rectangularity (Pr /Ps  0.79). As the porosity level 

increased from 25 vol.% to 40 vol.% the coercive field then increased from 1.94 kV/cm to 3.39 kV/cm with 

a relatively sharp decrease in rectangularity from 0.79 to 0.65. The increased tilting of the polarisation-field 

loops with increasing pore volume fraction in Figure 2(A) and reduced rectangularity at porosity fractions 

over 25% in Figure 2(C) is indicative of domain switching occurring over a wider range of electric field 

levels in the higher porosity materials, compared to the more dense materials. 

3.2 Aligned porosity 

Figure 3(A-D) examines the effect of porosity volume fraction on the polarisation-field behaviour, remnant 

polarisation and coercive field of dense BCZT (with a porosity of 4 vol.%) and the porous materials formed 

by freeze casting with aligned porosities that range from 10 vol.% to 40 vol.%. The morphology of the pore 

channels obtained with different porosities are similar to previous observations for a variety of other 

ferroelectrics and ceramics dispersed in water-based suspension during freeze casting, such as 

hydroxyapatite[41], PZT[7], and hydroxyapatite/barium titanate composite[19]. As an example, the 
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microstructure of the porous freeze-cast BCZT with a porosity volume fraction of 40 vol.% is shown in 

Figure 3(A), where the arrow indicates the freezing direction, along which the pore channels and ceramic are 

aligned. In this case the polarisation-field loops in Figure 3(B) are all measured parallel to the freezing 

direction. 

The porosity dependence of the remnant polarisation for materials with aligned pore channels has some 

similarities to the material with randomly distributed equi-axed pores, as seen by comparing Figure 2(B) and 

Figure 3(C). The Pr gradually decreased from 6.5 to 3.1 µC/cm2 as the porosity fraction increased up to 40 

vol.%, however it can be seen that the Pr of the freeze-cast materials decreased more slowly with an increase 

in pore fraction compared to materials with equi-axed porosity, and was therefore closer to that the Pr value 

predicted by Eqn. 1, demonstrating improved domain switching in the ceramics with aligned porosity. 

Figure 3(C) shows that the Ec decreased to a small extent from 2.3 to 2.0 kV/cm as the porosity fraction 

increased from 4 vol.% to 20 vol.%. At the higher porosity fractions, there was again an increase in Ec from 

2.0 to 3.5 kV/cm as the porosity increased to 40 vol.%, with a corresponding decrease in rectangularity from 

0.80 to 0.72 and increased tilting of the polarisation-field loops in Figure 3(B). On comparing Figure 2(C) 

and Figure 3(D), it can be seen that the Ec and rectangularity of the material with the aligned porosity is less 

sensitive to the porosity volume fraction compared to the materials with equi-axed pores.  

To summarise, the main experimental observations are as follows: 

(i) Pr decreases with increasing pore fraction and at a rate that is more rapid than Eqn. 1, indicating that 

there is an additional depolarisation factor and it is not simply related to a reduction in the volume 

fraction of the ferroelectric material,  

(ii) Pr falls at a more rapid rate with porosity for materials with randomly distributed and equi-axed pores 

(a decrease from 6.2 to 1.3 µC/cm2 as porosity increases from 10 to 40 vol.%) compared to materials 

with pores aligned along the polarisation direction (a decrease from 6.5 to 3.1 µC/cm2 as porosity 

increases from 10 to 40 vol.%), 

(iii) the presence of porosity leads to tilting of the polarisation-field loop, in particular at high pore volume 

fractions (vp > 25 vol.%), 

(iv) when vp > 25 vol.% the introduction of porosity leads to an increase in Ec and a reduction in 

rectangularity and materials with increasing porosity fraction,  
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(v) when vp > 25 vol.% materials with equi-axed pores exhibit a larger increase in Ec and greater decrease 

in rectangularity compared to materials with aligned pores, 

(vi) when vp < 25 vol.% the introduction of porosity leads to a reduction in Ec with increasing porosity 

fraction. 

 

4. Finite element modelling of polarisation-field loops in porous ferroelectrics 

To improve our understanding of the experimental results, finite element modelling of the electric field 

distribution in porous ferroelectric materials is now undertaken. This aims to study the impact of the electric 

field distribution on the polarisation-field response. The effect of both randomly distributed equi-axed pores, 

such as those in Figure 1, and aligned pores based on the structures produced by the freeze casting method, 

as in Figure 3A, will be investigated.  

A finite element mesh was initially formed that consisted of 40 x 40 x 40 (i.e. 64,000) cubic elements. 

Elements were assigned the properties of either unpoled BCZT with a relative permittivity of εr = 1192 that 

was measured experimentally, or air with εr = 1. To create a model that represented randomly distributed and 

equi-axed porosity, elements were selected at random in the model and associated with the properties of air 

until the desired volume fraction of porosity had been achieved; the remaining elements had the properties of 

BCZT. An example of a model with equi-axed porosity is shown in Figure 4(A).  

To create a model consisting of aligned porosity that were typical of freeze casting, pore channels were 

initially created to form an ideal 2-2 type composite structure [22] that consisted of layers of ceramic or air. 

Since freeze cast structures have some interconnection between the pore channels, see Figure 3(A), some 

ceramic elements were introduced at random in the pore channels and a small fraction of porosity (air) was 

introduced into the ceramic channels, see Figure 4(B) for an example of an aligned model. The voltages at 

the top and bottom surfaces of the model were coupled to simulate electrodes.  

Polarisation-electric field (P-E) loops were simulated by applying a voltage profile similar to those applied in 

the experimental measurements, shown in Figure 4(C), to an initially unpoled material and sweeping the 

polarity to positive and negative direction. After each step, the electric field in each BCZT element in the 

finite model was analysed and when the local field in the z-direction (i.e. the poling axis) was greater than 

the coercive field of BCZT for the dense material (Ec = 2.4 kV/cm from experiment in Figure 2(C)) the 

material properties of the element were changed from unpoled BCZT to that of poled BCZT (εr = 2590, 
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determined experimentally). The model took into account only two possible poling directions for the BCZT 

sample, namely +z and –z; other directions were initially considered but found to have little effect on the 

results. A schematic of the modelling process to generate P-E loops is shown in Figure 4(D). The model was 

designed to investigate the effect of porosity on the coercive field of ferroelectric materials due to the 

inhomogeneous field distributions as a result of the difference in permittivity between the low-permittivity 

pores and the high permittivity ferroelectric matrix, and the material properties of the ferroelectric 

component were assumed to be the same as those measured from the dense material across the range of 

porosities investigated. The change in polarisation was calculated from the measured change in capacitance 

from the initially unpoled BCZT to the poled BCZT and was normalised with respect to the fully dense 

material. 

 

4.1 Finite element model results and discussion 

The modelled polarisation-field loops are shown in Figure 5(A) and (B) for randomly distributed equi-axed 

pores and aligned porosity, respectively. A gradual reduction in remnant polarisation is observed as porosity 

in introduced into the structure, along with increased tilting of the polarisation-field loops that is in 

qualitative agreement with the experimental data in Figures 2(A) and 3(B). 

The variation of remnant polarisation with porosity for both equi-axed and aligned porosity in BCZT is 

shown in Figure 5(C) and experimental data is plotted alongside for comparison, where all data is normalised 

with respect to the dense BCZT material. Good agreement between the model and experimental data is 

observed, where the Pr decreases with increasing porosity and at a faster rate for the randomly distributed 

equi-axed porous structures compared to the aligned structures. The model data also indicates that the 

remnant polarisation falls more quickly that that predicted by Eqn. 1. 

The variation of coercive field with pore volume fraction for the two types of pore structure is shown in 

Figure 5(D), along with experimental data for comparison. The coercive field of the randomly distributed 

equi-axed porous BCZT increased with increasing porosity, although not as fast as the experimentally 

measured data. The rate of increase was higher for the more porous materials. The model data for the aligned 

porous structure showed very little change in coercive field with increasing porosity, with a slight initial 

decrease followed by a small increase above 40 vol.% porosity. 
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In order to understand the influence of porosity of the polarisation-field response it is informative to examine 

the electric field distribution as a function of pore volume fraction and shape for both the equi-axed pores, 

Figure 6(A), and aligned pores, Figure 6(B). The plots in Figure 6(A)-(B) indicate the frequency at which 

different local electric fields exist in the direction of the applied field (z-direction) in the ceramic elements, 

normalised with respect to the applied field. For simplification, we examine the case when the applied 

electric field is significantly lower than the coercive field so that there is no switching in the model from 

properties in the unpoled state to the properties in the poled state.  

We now consider the electric field distribution in Figure 6(A) in the model with randomly distributed equi-

axed porosity. In the dense material (4 vol.% porosity) the electric field is relatively homogenous with a 

strong peak slightly below Elocal / Eapplied = 1. This homogenous field throughout the material leads to a 

rectangular polarisation field-loop in Figure 5(A), with limited tilting of the loop since poling occurs 

throughout the material when the applied electric field is equal to the coercive field.   As equi-axed porosity 

is randomly introduced into the structure, and the Elocal /Eapplied peak shifts to lower values of field, see Figure 

6(A), so that the mean and mode field in the ceramic is lower than the applied electric field. This occurs 

since to the electric field is concentrating in the low permittivity pores; Figure S1(A) shows the increased 

field in the pore elements. Increasing the fraction of porosity results in a further reduction in the observed 

field in the high permittivity ceramic phase. The distribution of the electric field also broadens, see Figure 

6(A), as the porosity volume fraction increases since the field distribution throughout is becoming more 

complex in the porous structure. This broadening of the electric field distribution leads to a switching 

behaviour over a broader range of applied electric fields and tilting of the polarisation-field loop, as seen in 

both the experimental and model data in Figures 2(A) and 5(A) respectively.  This shift in peak electric field 

to lower values with increasing porosity also explains the increase in coercive field with porosity level 

predicted by the model, see Figure 5(D), since higher applied fields are required to switch the net 

polarisation orientation of the porous material compared to the dense material. 

Electric field distributions are shown in Figure 6(B) for aligned porosity that has pore channels and ceramic 

aligned parallel to the direction of applied field, as in Figure 3(A) and Figure 4(B).   These porous structures 

can be seen to have a more homogenous electric field distributions compared to randomly distributed equi-

axed pores. In this case, as material is aligned in the direction of applied electric field there is no significant 

reduction in mean electric field, compared to Figure 6(A), although a small degree of broadening of the field 
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distribution is observed compared to the dense material with 4 vol.% porosity. Figure S1(B) also reveals a 

less broad field distribution in the pore region, compared to the system of equi-axed pores in Figure S1(A).  

To understand why porosity leads to a broadening of the electric field distribution within the material, we 

now show Figure 6(D) that represents a two-dimensional electric field nodal contour plot of a pore in an 

unpoled BCZT ceramic medium. While the presence of randomly distributed pores leads to an overall 

reduction in the mean field in the BCZT medium, Figure 6(A), it can be seen in Figure 6(D) that regions 

close to the pore edges that are parallel to the direction of the applied field experience electric field 

concentrations. Yap et al. also observed high and low electric field intensities around pores [36]. This leads 

to the ferroelectric material in these high field regions becoming poled, or in the case of the P-E loop 

measurements, undergoing switching at applied fields below the coercive field.  Regions at the pore edges 

that are perpendicular to the applied electric field experience electric fields lower than the applied field, and 

higher applied electric fields are necessary to pole these regions. The presence of these field distributions 

leads to tilting of the polarisation-field loops in Figure 5(A), broadening of the field spectra and a reduction 

of mean field in Figure 6(A), and an increase in coercive field with an increase in porosity in Figure 5(D). 

The remnant polarisation decreases with increasing porosity at a more rapid rate compared to a simple 

volume fraction dependency, as in Eqn. 1, since the field distribution and the existence of field 

concentrations in the low permittivity pore space (Figure S1) both represent an additional depolarisation 

factor. It should be highlighted that Figure 6(D) is a relatively simple model to understand the electric field 

distribution around a single pore, while for high porosity volume fractions the interaction of electric fields 

and pores can occur; as in the larger models of Figure 4. 

Increasing the aspect ratio of pores in the direction of the applied field, such as the case in the freeze cast 

structures, leads to a higher volume of material at pore edges which are parallel to the applied field being 

subject to high electric fields, which explains the slight decrease in Ec with increasing porosity for the 

aligned porous structures in Figure 5(D), and why some regions experience local fields greater than the 

applied field (Elocal /Eapplied > 1) in Figure 6(B). This is more clearer in Figure 6(C), which is a comparison of 

the electric field distribution for dense BCZT (4 vol.% porosity) and BCZT for approximately 50 vol.% equi-

axed and aligned porosities. A small secondary peak for the aligned porous BCZT is observed that is likely 

to arise from isolated ceramic elements/bridges in the pore channels. If the pores were aligned perpendicular 
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to the applied electric field, higher Ec values would be expected, as has been observed in freeze-cast PZT 

materials [7]. 

It is now possible to explain the majority of the experimental observations, points (i)-(vi), based on the finite 

element modelling. 

(i) Pr decreases with increasing porosity and at a rate that is more rapid than Eqn.1, see Figure 5(C), due 

to an additional depolarisation mechanism that results from the reduction in electric field in the high 

permittivity ceramic, Figure 6(A), and a concentration of electric field in the lower permittivity air 

region (Figure S1). 

(ii) Pr falls at a more rapid rate for ferroelectric materials with randomly distributed equi-axed pores 

compared to materials with pores aligned along the polarisation direction. This is due to a combination 

of the more complex field distribution in porous materials with randomly distributed equi-axed pores 

compared to the aligned porous structures, and the greater fraction of pore-ceramic interfaces 

perpendicular to the applied field that are subject to electric fields far below the applied field, see 

Figure 6(C and D).  

(iii) Broadening of the field spectra due to the presence of porosity leads to tilting of the polarisation-field 

loop in both experimental and modelled polarisation-field loops, in particular at high pore volume 

fractions, since poling is taking place over a greater range of applied electric fields, see Figures 2(A), 

3(B), 5(A) and 5(B).  

(iv) The experimental data indicates the introduction of porosity leads to an increase in Ec when vp > 25 

vol.% and the modelling indicates that this is due to a reduction in electric field experienced by the 

ferroelectric. The rate of increase is larger in the experimental data compared to the model, however, 

the model assumes a discrete switching point at Ec, whereas in reality a variety of domain types exist 

in real materials that have a range of switching fields, as in Figure 2(A) for the dense material.  

(v) Materials with equi-axed pores exhibit a larger increase in Ec at high porosity volume fractions 

compared to aligned porosity materials in the modelling and experimental data, see Figure 5(D). This 

is due to the lower electric field in the equi-axed materials, Figure 6(C).  

While the finite element model can be used to interpret the majority of the experimental observations, it 

cannot explain why for low pore volume fractions, vp < 25 vol.%, the introduction of porosity leads to a 

reduction in Ec with increasing porosity, as shown in Figure 2(C) and 3(D). 
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The porous model discussed here only considers the complex electric field distributions that occur on 

application of an external electric field and its impact on properties, such as coercive field. Comparing the 

experimental and the modelled data in Figure 5(D), it appears there are two competing mechanisms that 

occur when porosity is introduced into these materials. Firstly, the experimental data presented here shows a 

decrease in the coercive field for relatively low fractions of porosity (vp < 25 vol.%). Stoleriu et al. [35] 

indicated that the presence of pores can relax mechanical clamping of the ceramic material. For thin film 

materials, Johnson-Wilkie et al. [46] describe an increase in ferroelectric response due to the introduction of 

low levels of porosity, where a reduction in the constraining effect of the substrate at small fractions of 

porosity can improve domain motion. While electric field enhancement near the pores, as in Figure 6(D), 

was discussed as a potential mechanism for the decrease in Ec the large changes in ferroelectric properties for 

relatively low pore fractions was thought to be more likely to be the result of an increase in compliance 

which facilitates ferro-elastic reorientation. At low porosities (< 25 vol.%) the contribution from the effect of 

the complex field distribution due to the difference in permittivity between the pore and the ferroelectric 

component on the coercive field is relatively small with less than a 10% increase in Ec predicted by the 

porous network model at 25 vol.% porosity. However, when porosity is greater than 30 vol.% the effect on 

the electric field distribution within the material becomes more pronounced and, therefore, the dominant 

mechanism, hence the observed increase in coercive field around this porosity.  The transition may be 

influenced by a number of factors, such as the morphology and distribution of the pores, the level of domain 

mobility (hardness) and the elastic compliance of the ceramic matrix or any substrate effects if the material is 

in a thin-film form. 

 

5. A re-examination of the literature reporting the coercive field of porous ferroelectrics 

It is now of interest to examine if our understanding of the impact of porosity on the polarisation-field 

behaviour can be used to address the conflicting reports in the literature. As the decrease in remnant 

polarisation with porosity level is consistent and relatively clear, the focus is on the coercive field data when 

contradictory reports of a decreasing or increasing coercive field with increasing porosity are reported. Table 

1 and Figure 7 summarise the effects of the porosity volume fraction on the Ec value of the porous 

ferroelectric ceramics from the literature and this work; the data has been separated to those where vp < 25 

vol.% and vp > 25 vol.%. It can be seen in Table 1 and Figure 7 that when the porosity volume fraction is low 
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(vp < 25 vol.%) the Ec tends to decrease with increasing porosity irrespective of whether the pore 

morphology is random or aligned.  The increase in Ec with increasing pore fraction is thought to occur in the 

higher porosity materials and agrees with our hypothesis that high pore contents lead to a lower magnitude 

and broader electric field distribution in the ceramic component. Not all systems behave the same and this 

may be due to the factors such as the size of the pores, the pore size distribution or introduction of defects 

rather than the controlled pore distributions examined in the porous materials manufactured in this study. It 

is worth noting that the pore size in the models is relatively small compared to the sample thickness, which is 

representative of a bulk material. However, for thin films the electric field distribution can be more 

homogenous if the pores on the same scale as sample thickness. The greatest deviations in Figure 7 are 

related to the work of Liu et al. [47] where calcium was used both as a pore former and dopant to change the 

ferroelectric properties and Stancu et al. [15] who indicated that for thin films the pores can also influence 

the electrode/PZT interface properties. Lead-loss in highly porous materials can also have an impact on 

ferroelectric response and it has been suggested that space charges can cluster around inhomogeneities [9] 

and can inhibit domain motion in ceramic grains.  

 

Conclusions 

This paper has provided a detailed examination and description of the influence of porosity on the 

polarisation-electric field behaviour of ferroelectric materials. The effects of volume fraction and 

morphology of pores on the polarisation-electric field loops have been examined both experimentally and by 

modelling, along with its impact on remnant polarisation and coercive field. The introduction of a low 

permittivity pore in a high-permittivity ceramic matrix has been shown to lead to a broadening of the electric 

field distribution in the ceramic component and a decrease in the electric field experienced by the ceramic 

due to a concentration of the electric field in the lower permittivity pore region. This leads to a reduction in 

the remnant polarisation Pr and tilting of the polarisation-field loops of the porous material. The variation of 

coercive field Ec with changes of the porosity level is more complex. The addition of a relatively low volume 

fraction of porosity (< ca. 25 vol.%) is observed to lead to a decrease in coercive field with increasing 

porosity, and this is likely to be due to increased compliance of the ceramic matrix which facilitates non-

180 domain switching. At higher porosity levels (> ca. 25 vol.%) the electric field is reduced significantly 
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in the ceramic component so that higher externally applied electric fields are required for switching and the 

coercive field begins to increase with increasing porosity levels. Equi-axed pores influence the electric field 

distribution in the ceramic to a greater extent compared to material with pores aligned in the direction of 

applied field. 

This work has enabled the seemingly contrasting and conflicting observations in the existing literature to be 

understood and provides a new approach to understand the influence of pore fraction and morphology on the 

polarisation behaviour of modern ferroelectric materials. Such information provides new insights in the 

interpretation of ferroelectric properties of porous materials and can inform future approaches for the design 

of porous ferroelectrics for sensors, actuators, harvesting and transducer applications. 
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Figure captions 

Figure 1 Scanning electron micrographs of fracture surfaces of (A) dense (4 vol.%) and porous 

BCZT with the porosity of (B) 10 vol.%, (C) 15 vol.%, (D) 20 vol.%, (E) 25 vol.%, (F) 30 vol.%, 

(G) 35 vol.%, (H) 40 vol.%. 

Figure 2 (A) polarisation-field loop for range of vp, (B) remnant polarisation and (C) coercive field, 

EC , of BCZT with randomly distributed porosity; microstructures are in Figure 1.  

Figure 3 (A) Scanning electron microscopy image of porous freeze-cast BCZT with porosity of 40 

vol.%, (B) polarisation-field loops along freezing direction with different pore volume fractions, (C) 

remnant polarisation and (D) coercive field and rectangularity of freeze-cast BCZT.  

Figure 4 Example model geometry for (A) equi-axed pores (30 vol.% porosity) and (B) aligned 

pores (33 vol.% porosity), (C) Voltage profile applied to the model to generate polarisation-field 

loops, and (D) is a schematic of the modelling process.  

Figure 5 Polarisation-field loops for (A) BCZT with random porosity and (B) for BCZT with 

aligned porosity, and variation of (C) remnant polarisation and (D) coercive field with porosity of 

both model and experimental data (normalised to the properties of the dense BCZT sample).  

Figure 6 Electric field distributions from modelling with (A) equi-axed porosity (vol.%) distributed 

at random in the structure, (B) aligned porosity (vol.%) aligned to the direction of the applied field, 

to simulate the type of structure obtained via the freeze casting process, and (C) a comparison of the 

spectra for dense BCZT (4 vol.% porosity) and BCZT with ~50 vol.% equi-axed and aligned 

porosities. (D) Electric field contour plot from two-dimensional finite element model demonstrating 

the inhomogeneous field distribution in the vicinity of a single pore. 

Figure 7 Change of coercive field Ec with porosity in porous ferroelectric materials [2, 7, 9-12, 14, 

31, 32, 34, 36, 37, 47]. PZT film is plotted in inset since Ec is much higher than other materials.  
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Table 1 Summary of coercive field Ec in porous ferroelectric materials with porosity volume fraction (vp). 

Porosity 

(vp) range 

Coercive field (Ec) 

trend with 

increasing porosity 

Material Porosity fractions 

(vp) 

Remarks and pore morphology Ref. 

vp ˂ ~25 

vol. % 

Decrease PZTN (bulk) Dense, 20 % Rounded pores [12] 

Decrease PZT (bulk) Dense, 30 % Spherical pores, small pore size [10] 

Decrease PZT (bulk) Dense, 2, 6, 10, 

12, 15, 23 %  

- [14] 

Decrease PZT (bulk) Dense, 20, 30 % Aligned pores [7] 

Decrease BCZT (bulk) Dense, 10, 15, 

20 % 

Aligned or spherical pores This work 

Decrease BCZT (bulk) Dense, 3.9, 

20.8 % 

Spherical pores, elongated and 

oriented pores. Ec decreased 

when vp ˂ 20.8 % 

[36] 

Decrease PZT (bulk) Dense, 7, 12, 

20 % 

Irregular pores [32] 

Constant PZT (bulk) Dense, 8, 15, 

23 % 

Spherical pores, applied electric 

field were not the same for all 

porosity levels 

[32] 

Constant PZT (bulk) Dense, 16.6 % Elongated pores  [37] 

Constant PLZT (bulk) 1 to 1.9 % Porosities range explored low   [9, 31] 

Decrease PT (thin film) Dense and porous Porosity was not mentioned; 

thickness of the film was 100 

nm with the pore size of 50 nm 

[8] 

Increase BCZT (bulk) Dense, 3.9, 

20.8 % 

Spherical pores, elongated and 

oriented pores. Ec increased 

when vp ˂ 20.8 % 

 [36] 

Vp  25 

vol. % 

Increase PZT (bulk) 25 % - [33] 

 Increase PZT (bulk) 30 % Spherical pores, large pore size  [10] 

Increase PZT (bulk) 30, 40, 50, 60 % Aligned pores [7] 

Increase BCZT (bulk) 25, 30, 35, 40 % Aligned or spherical pores This work 

Increase PZT (bulk) 37 % Aniso-metric pores [2] 

Decrease PZT (bulk) 37 % Iso-metric pores [2] 

Decrease PZT (bulk) 35, 41 % Irregular pores, applied electric 

field were not the same for all 

porosity levels 

[32] 

Almost constant PZT (bulk) 32, 38 % Spherical pores, applied electric 

field were not the same for all 

porosity levels 

[32] 

Decrease PZTN (bulk) 44.5 % 0-3 and 3-3 connectivity 

between PZTN and 

pore (spherical and irregular 

morphology) 

[11] 

Decrease PZT (bulk) 38, ~41.5, ~46.5, 

52.6, 55.5 % 

Ca-doping to provide porosity [47] 

Decrease PZTN (bulk) 37 % Nb-doped, lamellar pores [34] 

Increase/Decrease PZT (film) 25, 30, 40 % Nano-scaled pore size from 

microscopy observation 

At 40% highest Ec, and at 30% 

lowest Ec  

[15] 
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Figure 1 Scanning electron micrographs of fracture surfaces of (A) dense (4 vol.%) and porous 

BCZT with the porosity of (B) 10 vol.%, (C) 15 vol.%, (D) 20 vol.%, (E) 25 vol.%, (F) 30 vol.%, 

(G) 35 vol.%, (H) 40 vol.%. 
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Figure 2 (A) polarisation-field loop for range of vp, (B) remnant polarisation and (C) coercive field, 

EC , of BCZT with randomly distributed porosity; microstructures are in Figure 1.  
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Figure 3 (A) Scanning electron microscopy image of porous freeze-cast BCZT with porosity of 40 

vol.%, (B) polarisation-field loops along freezing direction with different pore volume fractions, (C) 

remnant polarisation and (D) coercive field and rectangularity of freeze-cast BCZT.  
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Figure 4 Example model geometry for (A) equi-axed pores (30 vol.% porosity) and (B) aligned 

pores (33 vol.% porosity), (C) Voltage profile applied to the model to generate polarisation-field 

loops, and (D) is a schematic of the modelling process.  
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Figure 5 Polarisation-field loops for (A) BCZT with random porosity and (B) for BCZT with 

aligned porosity, and variation of (C) remnant polarisation and (D) coercive field with porosity of 

both model and experimental data (normalised to the properties of the dense BCZT sample).  
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Figure 6 Electric field distributions from modelling with (A) equi-axed porosity (vol.%) distributed 

at random in the structure, (B) aligned porosity (vol.%) aligned to the direction of the applied field, 

to simulate the type of structure obtained via the freeze casting process, and (C) a comparison of the 

spectra for dense BCZT (4 vol.% porosity) and BCZT with ~50 vol.% equi-axed and aligned 

porosities. (D) Electric field contour plot from two-dimensional finite element model demonstrating 

the inhomogeneous field distribution in the vicinity of a single pore. 
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Figure 7 Change of coercive field Ec with porosity in porous ferroelectric materials [2, 7, 9-12, 14, 

15, 31, 32, 34, 36, 37, 47]. PZT film is plotted in inset since Ec is much higher than other materials. 


