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MULTISPIKE SOLUTIONS FOR THE BREZIS-NIRENBERG
PROBLEM IN DIMENSION THREE

MONICA MUSSO AND DORA SALAZAR

ABSTRACT. We consider the problem Awu + Au + u® = 0, u > 0, in a smooth
bounded domain € in R3, under zero Dirichlet boundary conditions. We obtain
solutions to this problem exhibiting multiple bubbling behavior at k different
points of the domain as A tends to a special positive value Ag, which we
characterize in terms of the Green function of —A — A.

1. INTRODUCTION
Let us consider the Brezis-Nirenberg problem

Au+Adu+uP =0 in Q,
(pxr) ¢ u>0 in {2,
u=0 on 09,

N+2

where Q is a smooth bounded domain in RV, N > 3, p = N5 and A is a real
positive parameter.

In this article, we are interested in obtaining solutions to this problem, in the
special case N = 3, that concentrate at k different points of 2, k£ > 2. In particular,
we analyze the role of the Green function of —A — X in the presence of multi-peak
solutions when A is regarded as a parameter.

Solutions to (py) correspond to critical points of the energy functional

1 A 1
JA(U):§A|vu|2—§/glu2—m/S)|U|p+l

Although this functional is of class C? in Hg (€2), it does not satisfy the Palais-Smale
condition at all energy levels, and hence variational arguments to find solutions are
delicate and sometimes fail.

Let Ay denote the first eigenvalue of —A with Dirichlet boundary condition. It
is well known that (p)) admits no solutions if A > Ay, which can be verified by
testing the equation against a first eigenfunction of the Laplacian. Moreover, the
classical Pohozaev identity [16] guarantees that problem (py) with A < 0 has no
solution in a starshaped domain.

In the classical paper [5], Brezis and Nirenberg showed that least energy solutions
to this problem exist for A € (A*, A1), where \* € [0,)\;) is a special number
depending on the domain. They also showed that if N > 4, then A* = 0 and in
particular (py) has a solution with minimal energy for all A € (0, A1).

When N = 3 the situation is strikingly different, since, as it is shown in [5],
A* > 0 and no solutions with minimal energy exist when A € (0,A*). In 2002,
Druet [6] showed that also for A = A* there is no solution with minimal energy,
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2 MONICA MUSSO AND DORA SALAZAR

which implies that A* can be characterized as the critical value such that a solution
of (py) with minimal energy exists if and only if A € (A*; A\1).

In the particular case of the ball in R?, Brezis and Nirenberg [5] also proved that
A* = 21 and that a solution to (p,) exists if and only if A € (4%, \). By the results
of Gidas, Ni, Nirenberg [8] and Adimurthi, Yadava [1] this solution is unique and
corresponds indeed to the minimum of the energy functional.

In dimension three a characterization of A* can be given in terms of the Robin
function gy defined as follows. Let A € (0,A1). For a given = € Q consider the
Green function G(z,y), solution of

CALGr -Gy = 6 yeq,
Gx(z,y) = 0 yeoQ,

where §, is the Dirac delta at x. Let Hy(x,y) = I'(y — 2) — Ga(z,y) with T'(2) =
ﬁ, be its regular part, and let us define the Robin function of G as gx(z) :=
Hy(z,x).

It is known that g)(z) is a smooth function which goes to +oo as « approaches
9. The minimum of gy in 2 is strictly decreasing in A, is strictly positive when A
is close to 0 and approaches —oo as A T Aq.

It was conjectured in [4] and proved by Druet [6] that A* is the largest A € (0, A1)
such that ming gy > 0. Moreover, Druet also proved that, as A | \*, least energy
solutions to (py) develop a singularity which is located at a point (y € €2 such that
gr+(Co) = 0. Note that (y is a global minimizer of gy« and hence a critical point. A
concentrating family of solutions can exist at other values of A. Indeed, del Pino,
Dolbeault and Musso [7] proved that if A\g € (0, A1) and (o € §2 are such that

9o (CO) = Oa v.g)\o (CO) = Ov

and either ¢° is a strict local minimum or a nondegenerate critical point of gy, then
for A — Ao > 0, there is a solution uy of (py) such that

ux(z) = wpc (14 0(1))
in Q as A — \g — 0, where

ag /2
(2 +1a =P

Q3 = 31/4,

Wy () =

¢—¢oand p=0(\— Ag).

The behavior described above, namely bubbling of a family of solutions, was
already studied in higher dimensions. Han [10] proved that if N > 4, minimal
energy solution of (p)) concentrate at a critical point of the Robin function gg as
A J 0. See also Rey [17] for an arbitrary family of solutions that concentrates at
a single point. Conversely, Rey in [17, 18] showed that attached to any C'-stable
critical point of the Robin function gy there is a family of solutions of (p,) that
blows up at this point as A | 0.

Unlike the case of dimension three, bubbling behavior with concentration at
multiple points as A | 0 is known in higher dimensions. Indeed, Musso and Pistoia
[14] constructed multispike solutions in a smooth bounded domain Q ¢ RV, N > 5.
To state precisely their result let us consider an integer £ > 1, let us write g =
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(ﬁl?"'7ﬂk) eRkv C:(Cl77<k) EQk? C’i #Cj fOFi#j, and define

1 N-2 N-2 1 k
¢k(ﬁ7C):§(M(C)ﬁ N T )*532%2
1=1

N—2 N-—-2

where 17> = (1% ,..., [, 2 ), and M(C) is the matrix with coefficients
mii(C) = go(Gi)s  mij(C) = —Go(Gi, ), for i # j.

Here B > 0 is a constant depending only on the dimension. It is shown in [14]
that if 15 has a stable critical point (f, {) then, for A > 0 small, problem (p,) has
a family of solutions that blow up at the k points (y,..., (s, with profile near ;
given by w,,, ¢, and rates p; ~ fi; A~=3. Musso and Pistoia also exhibit classes of
domains where such critical points of 1, can be found. A related multiplicity result
is given by the same authors in [15], where ) is a domain with a sufficiently small
hole. They show that for A < 0 small there is a family of solutions concentrating
at two points.

As far as we know, there are no works dealing with solutions with multiple
concentration in lower dimensions (N = 3 and N = 4), and it is not clear what
type of finite dimensional function governs the location and the concentration rate
of the bubbling solutions.

In this work we focus in dimension three. We give conditions on the parameter A
such that solutions with simultaneous concentration at & points exist and find the
finite dimensional function describing the location and rate of concentration. We
remark that the condition on A that we obtain for solutions with multiple bubbling
in dimension three is a non-obvious but natural generalization of the condition given
by del Pino, Dolbeault, and Musso [7] for single bubble solutions in dimension three,
and is somehow related to the result of Musso and Pistoia [14] for A* = 0 in higher
dimensions.

In order to state our results we need some notation. For a given integer k > 2
set

Qr ={C=(Cty---,C) €71 ¢ #( for all i # 5}

For ¢ = ((1,...,Ck) € f, let us consider the matrix

gx(C1) —G(C1,¢2) .. —GA(C1,Cr)
—Gx(C1,C2) ax(C2) s —=GA(Cy Cr)
My(¢) := . .
—G(C1, ) —GA(C2,C) - gx(Cr)

In other words, M) (¢) is the matrix whose 7j component is given by
9x(G) ifi=j
=GA(Gi,G) ifi# ]
Define the function
¥A(C) = det MA(C), ¢ €.
Our main result is the following.

Theorem 1.1. Assume that for a number A\ = \g € (0, A1) thereis ¢° = (¢V,...,¢0) €
Q such that:

(1) ¥, (¢%) =0 and My, (¢%) is positive semidefinite,
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(i) Dcwa, (¢%) =0,

(iil) DZc9r,(¢°) is non-singular,
(iv) %[,y (CO) <.

Then for A\ = Ao + &, with € > 0 small, problem (px) has a solution u of the form

k
1
u = wavgj —I—O(E?)

j=1

where p; = O(¢), (G — C]Q, ji=1,...,k, and O(aé) is uniform in ) as € — 0.

We remark that Theorem 1.1 admits some variants. For example, if %i)\* | A=A (€% >
0, then a solution with k£ bubbles can be found for A = A\g — &, with € > 0 small.
When k = 2 the assumption that M)y, (¢°) is positive semidefinite is equivalent to
92 (€7) > 0 or gy, (¢9) > 0.

As an example where the previous theorem can be applied, let us consider the

annulus

Qo ={zeR® : a<|z| <1},
where 0 < a < 1. From the work of Kazdan and Warner [13] it is known that for
any A < \; there is a radial positive solution in €2,.

For each k > 2, we prove that there exists 0 < a; < 1 such that if a € (ag, 1),
then problem (pa,+<) in Qq, € > 0 small, has a solution with & bubbles centered at
the vertices of a planar regular polygon for some Ag € (0,A1). As a byproduct of
the construction we also deduce that

/\0<>\*.

A detailed proof of these assertions is given in Section 7. The ideas developed
here can be applied to obtain two bubble solutions in more general thin axially
symmetric domains.

In dimension N > 4 qualitative similar solutions were detected by Wang-Willem
[19] for all A in an interval almost equal to (0, A1) by using variational methods.
The existence of this kind of solutions in dimension three was (to the best of our
knowledge) not known.

We should remark that multipeak solutions cannot be constructed in a ball, since
the solution of (p,) is radial and unique if it exists. This may indicate that if we
consider (py) in the annulus Q, with a > 0 sufficiently small there are no multipeak
solutions.

Finally, we mention that several interesting results have been obtained on the
existence of sign changing solutions to the Brezis-Nirenberg problem. See for in-
stance Ben Ayed, El Mehdi, Pacella [3], Iacopetti [11], Iacopetti and Vaira [12] and
the references therein. It is in fact foreseeable that the methods developed in this
work can also give the existence of multipeak sign changing solutions in dimension
3.

The paper is organized as follows. In Section 2 we introduce some notation and
give the energy expansion for a multi-bubble approximation. Sections 3 and 4 are
respectively devoted to the study of the linear and nonlinear problems involved in
the Lyapunov Schmitd reduction, which is carried out in Section 5. Theorem 1.1
is proved in Section 6. Finally, in Section 7 we give the details for the case of the
annulus Q.
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2. ENERGY EXPANSION OF A MULTI-BUBBLE APPROXIMATION
We denote by
as
Uiz) = ——F,
®= T pprr
the standard bubble. It is well known that all positive solutions to the Yamabe
equation

a3 = 31/4,

Aw+w’=0 inR?
are of the form

_ 1/2
w“vg(x) L= ,LL_I/2 U<x C = a3 M bl

f e cp)”

where ( is a point in R? and y is a positive number.

From now on we assume that 0 < A < A;().

For a given k > 2, we consider k different points (3, ..., (x € Q and small positive
numbers pu, ..., pur and denote by

Wi 2= Wy G

We are looking for solutions of (p,) that at main order are given by E?Zl w.
Since w; are not zero on 9N it is natural to correct this approximation by terms
that provide the Dirichlet boundary condition. In order to do this we introduce,

for each 1 = 1,...,k, the function m; defined as the unique solution of the problem
A7TZ'+)\’/T2' = 7)\’[1)1' n Q,
o= —w; on 01,

and then we shall consider as a first approximation of the solution to () one of
the form

US=U,+...+ Uy,
where
Ui(z) = wi(x) + m;(z).
Observe that U; € HE () and satisfies the equation
{ AU, +\U; = —w? inQ,

K3

U, = 0 on 0f). (2.1)

Let us recall that the energy functional associated to (py) when N = 3 is given by:

_1 2 A 2 1 6
B =g [[wup =5 [ [

Let us write ¢ = (C1,...,¢x) and g = (ug,...,u,) and note that U° = U%(pu, ¢).
Since we are looking for solutions close to U°(u, ¢), formally we expect Jx(U°(x, ¢))
to be almost critical in the parameters pu, (. For this reason it is important to obtain
an asymptotic formula of the functional (1, ) — Jx(U°(u,¢)) as u — 0.

For any § > 0 set

ng = {CE(C17"'aC/€) EQk dlSt(Claag) >6?|C’L_C]| >6a
i=1,.. k=1, ki%#j}

The main result in this section is the expansion of the energy in the case of a
multi-bubble ansatz.
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Lemma 2.1. Let § > 0 be fived and let ¢ € Q%. Then as p; — 0, the following
expansion holds:

k
JA(ZUi) =kao+a Z(Mzg/\ Gi) — ZM1/2 1/2G>\ (Gir G ) +az A Zlh
i=1

Ve =1

—agZ(fth G~ S 66 )+ 60,0,

J#

where 05\1)(@#) is such that for any o > 0 and 6 > 0 there is C such that

8m+n

1) 3—0—n

form=0,1,n=0,1,2, m+n <2, all small p;, i=1,2,...,k, and all(eQ’g.

The a;’s are the following explicit constants

1 1
R B CRRE YO 2.2
a0: =3 [ U= Jeam? (22
a1::27ra3/ U’ 28(0437T)2a (2.3)
]RS
a3 1 1 ) 1 5:| 2
ag = — — — ————— |U + = |2|U?| dzaz = (azm)~, 2.4
=5 LG grm)oe st e
5
as : = 5(4m3)2/ U* =120 (az7?)? (2.5)
RS

To prove this lemma we need some preliminary results. To begin with, we recall
the relationship between the functions m;(z) and the regular part of Green’s func-
tion, H)((;,x). Let us consider the (unique) radial solution Dy(z) of the following
problem in entire space

ADQ = *A Qs (7(1+\z1\2)1/2 — ﬁ) il’l RB’
Dy — 0 as |z| — oo.

Then Dy(z) is a C%! function with Dy(z) ~ |z|!log|z| as |z| — oo.

Lemma 2.2. For any o > 0 the following expansion holds as p; — 0

1 X
py 2mi(x) = —4mas Hx(z, G) + i Do(

_CZ) + /”'7,2_0 H(Mi,$7 CZ)

where form = 0,1, n = 0,1,2, m +n < 2, the function u?% O(piyy, G) is
bounded uniformly on y € 1, all small p; and (; in compact subsets of €.

Proof. See [7, Lemma 2.2]. O

From Lemma 2.2 and the fact that, away from x = (;,

Do(x — Ci) = O(pilog s,

i

the following holds true.
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Lemma 2.3. Let § > 0 be given. Then for any o > 0 and x € Q\ Bs((;) the
following expansion holds as p; — 0

_1 .
gy 2Ui(x) = dm oy G, G) + =7 Opa, 2, Gi)

where for m = 0,1, n = 0,1,2, m +n < 2, the function ﬂ?%é(ui,x,g) 18

bounded uniformly on x € Q\ Bs((;), all small p; and {; in compact subsets of .

We also recall the expansion of the energy for the case of a single bubble, which
was proved in [7].

Lemma 2.4. For any o > 0 the following expansion holds as p; — 0
INU;) = ao + a1 g (G) i + (a2 X — az gx($)?) 13 + 137 0(pi, &),

where for m = 0,1, n = 0,1,2, m +n < 2, the function uf% (i, C;) s
bounded uniformly on all small p; and ¢; in compact subsets of ). The a;’s are
given in (2.2)—(2.5).

Proof of Lemma 2.1. We decompose

n(>0) —;i(/ v+ Y [ vuve)
i=1 1 /@ i 7

i=

SR X [ g (S0

=t j#i pt
k L
= ;JA(Ui)JF QE;A[VUZ. VU, — AU, Uj)

) -3

Integrating by parts in Q2 we get

/VUi-VUj :/(—AUQUﬁ/ aU"Uj :/(—AUi)Uj,
Q Q aa On Q

where a% denotes the derivative along the unit outgoing normal at a point of 9.
From (2.1) one gets

/VU,--VUj:/(—AUi)Uj :/()\Ui—kwf’)Uj.
Q Q Q

Q Q Q
Hence,

k k L& . ) & s K )
JA(;Ui)zl;JA(UiHQ;;/Qwi Uj—G/Q[(;UZ—) —Z;U] (2.6)

Let p € (0,6/2) and denote by
0y = Q\Uj_, By((;)-

and so
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Let us decompose

[y -sul=x [ ms[ 5 e

i=1 p(<7)
where
E; ::[(Ui +Qi)° — Uﬂ -2 U7
J#i
=6(U2 Qi +U; Q0) + 15 (U QF + Q2 U +20U7 Q2 - YU (2.8)

J#i
and Qz = Zj#i Uj.
From now on, we write simply O(u") to indicate that some function is of the
order of (1 + ...+ pg)" for any r > 0.
Notice that, if s+t =6,

st _ S t __ 3
Ry ._/ Uz Ut = 0(i).
o

If, additionally, s > t,
>S,t . s _ :
R _7/ Ul U = O(i?).
Bp(Ci)

. . . . . _ 3 6 _ 3
This implies, in particular, that fop E; = O(p?) and that fB,J(Q) Uy = O(p?).
(i)If s =5 and ¢t = 1, then we have

/ UZSU]:/ wf’UJ+5/ wazU]“i’Rzlja (29)
Bp(Ci) Bp(Ci) Bp(ci)

1
Ry, = 20/ dr (1 - 7')/ (w; + 7)) 72 Uj.
0 By (¢i)

Using the change of variable x = (; + ;2 and calling B, = B% (0) we find that

where

1 1 _1
/| = | 0@ UG )

Hi

By Lemma 2.3 we have

1 2 UG + piz) = dmas Ga(G + piz, G) + 1570, i + 1132, G5).
We expand
GA(Gi + iz, GG) = GA(Gi, GG) + i € - 2 4 62(Gi + iz, ), (2.10)
where ¢ = D1G((;, () and [02(¢; + piz, ¢G)| < Cui |z]2.
By symmetry,

/ (c-2)US(2)dz =0
B

Hi
an so,

/B(C)

p(Ci

11
wf Uj dy :47T'Oé3 ,uiz ,u; G)\(Ci,Cj)/RS US(Z) dZ—FRi,j

1 1
=2ay p? p? Gx(Gi, G) + R, (2.11)
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where a; := 27 a3 [z U? and

R?] = —drag pf p; GA(QaCj)/ U®(2)dz

R3\B,,

1 1
+ dmag pf pl / UP(2) 02(¢i + piz, () dz

Hi
11 s A
+pl uf/ 157U (2) (g, Gi + paz, G5) dz.
From Lemma 2.2 and [7, Appendix], we have the following expansions, for any
o>0,as pu; =0

_1
p; 2G4 piz) = —Aras Hx (G + piz, G) + i Do(2) + 137 0w, G + piz, G;)

A
H\ (G 4 piz, G) = gx(Gi) + 3 il 2| + 00(Ciy G + piz)

where 0 is a function of class C? with 6,(¢;, ;) = 0.
The above expressions, combined with Lemma 2.3 and (2.10), gives

3 1 1 _1
/B (C)w?m Uj =p} ,uf/ Ut (2) py 2mi G+ paz) p 2 Us (G + paz) dz

Hi

= —uf 1} (4ras)? 92(G) Ga(G &) /R U dz Ry

2 3 1
=g G K 9r(G) GGy ) + RE 5, (2.12)
where az 1= 3 (4mas)? [, UL
From (2.9), (2.11) and (2.12), we get
11 301
/B “ UP Uy =2an i 13 G (G G) — 2 a3 p? 17 95 () Ga(Giy ) (2.13)

1 2 3 5.1
TRt R +OR ;R
(ii) If s =4 and ¢t = 2, we have

/ UtU; U, = / Wi UjUp + RS,
Bﬁ(Cz‘) Bp(Ci)

where )
R i = 4/ dr / (w; +77)> 70 Uj Uy
0 B, (¢i)

From Lemma 2.2, Lemma 2.3, and (2.10), we get

[ wt 0 U =i [ U (152 U 52)) (i U 02))
B, (Gi)

By,

= 5 (4700 G (66 €) G (G Go) [ UM+ RE

2
= 5 asz Wi g fm G}x((iv C]) G)\(Cia Cm) + R?,],m

Therefore,

2
/ (C)U:l Uj Um = gag i [ o G)\(CZ,C])G)\(CHCWL) +72?,]’,m‘FIR’?,]',WL' (214)
Bp i



10 MONICA MUSSO AND DORA SALAZAR

(iiii) If s = 3 and ¢ = 3, we have

/ Ul U =R;,
By (¢i)

where

1
’R?j ::/ wf’UJ‘?—i—i’)/ ds/ (wi+s7ri)27rl-Uj3.
B, (¢i) 0 B, (¢i)

To analyse the size of the remainders Rf] we proceed as in [7]. We have the
following

am+n

= Rt Oy (nto)

8C7naun 2 (HJ )

for each m = 0,1, n = 0,1,2, m+n < 2, £ = 1,...,8, uniformly on all small

(Ma C) € F6~ B
Analogous statements hold true for Rf; and Ri; with s +¢ = 6.

From (2.8) and the previous analisys we get that

/ E,:es/ UfQi+15/ UtQ? +R
Bp((i) Bp(Ci) Bp(ci)

:6Z/Bp<<i)Ui5Uj+15ZZ/B Ui Uj Un + R.

i g#i i BelGi)

This expression together with (2.13) and (2.14) yields

11 3 1
/ E; =6 ZPal wi? Ga(Giy GG) — 2az pf 1 gx(Gi) G/\(Ciacj)}
B, (¢i) i
#6373 [as i 15 1 GA(Gir ) Ga(Gis G|
J#i m#i
11 3 1
=6 Y [2a1 ] 1} GG G) — 2as 1 1 0a(G) GG &)
J#i
2
+6as3 p; (Z 1 GA(Gi Cj)) :
J#i
Combining relations (2.6), (2.7), (2.8), (2.11), Lemma 2.4 and the above expression
we get the conclusion. For the statement of this lemma 9&1) is defined as the sum

of all remainders.
The formula

/°°< r )q dr _T(5%)T(%%)
o \1472/) patl 2T(q)
yields that

ay = 8(azm)?,  az =120 (azn?)>.
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3. THE LINEAR PROBLEM
Let u be a solution of (py). For € > 0, we define

v(y) = e ?uley).

Then v solves the boundary value problem

Av+e2 v = —v® in Q.
v > 0 inQ, (3.1)
v = 0 on 09,

where Q. = ¢! Q. Thus finding a solution of (p)) which is a small perturbation
of Zle U; is equivalent to finding a solution of (py) of the form

k
> Vit
i=1
where

Vi(y) = e2Ui(ey) = w1 (y) +eimi(ey) y € e,

fori=1,...,k, and ¢ is small in some appropriate sense.
Notice that V; satisfies

AV, +e2 NV, = _wf/.,cf in Q.,
Vi = 0  ondQ.,
where
=t g4 (32)
g (3

Then solving (3.1) is equivalent to finding ¢ such that,

L(¢) = —N(¢)—-FE inQ,
{ o = 0 on 09, (3.3)
where
L(¢) = A¢p+e* X+ 5V o,
N(¢) = (V+¢)° - V> -5V,
k
i=1
and

k
V=> V. (3.5)
=1

In what follows, the canonical basis of R? will be denoted by
e;1 = (1,0,0), ex=1(0,1,0) e3=1(0,0,1).
Let z ;, 1 = 1,2, be given by
{ zij(y) = Dawy(y)-e; j=1,2,3

Owur ¢

zia(y) o (Y):
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We recall that for each ¢, the functions z; ; for j = 1,...,4, span the space of all
bounded solutions of the linearized problem:
4 _ w3
Az+5wu§’qz—0 in R”.

A proof of this fact can be found for instance in [17].
Observe that

/ wi&,gfzi,jzi,l:() if j # 1.
gs  FiSi

In order to study the operator L, the key idea is that, as € — 0, the linear operator
L is close to being the sum of

A+ 5wy o1,
i=1,...,k.

Rather than solving (3.3) directly, we will look for a solution of the following
problem first: Find a function ¢ such that for certain constants c¢;;, ¢ = 1,2,
7 =1,2,3,4,

L(¢) = —-N(¢)—-E+ Zi’j Cij wi£7<£ zij in Q,
=0 on 0€),, (3.7
fQE wi;’g zij¢ = 0 for all i, 5.

After this is done, the remaining task is to adjust the parameters ¢/, ) in such a
way that all constants ¢;; = 0.

In order to solve problem (3.7) it is necessary to understand its linear part. Given
a function h we consider the problem of finding ¢ and real numbers c¢;; such that

L(gf)) = h —|— Zi,j Cij wﬁ;7<1/ Zij iIl Qe,
=0 on 0., (3.8)
Jo, Wiy crzigd = 0 for all 4, j.

We would like to show that this problem is uniquely solvable with uniform bounds
in suitable functional spaces. To this end, it is convenient to introduce the following
weighted norms.

Given a fixed number v € (0,1), we define

11l = sup (wly) ™ [F@)] + @)™ V@)

yeQ.
[ £llex = sup w(y)~ ) £ (y),
yEQe
where
u -1
wly)=> (1+ly—dl)
=1

Proposition 3.1. Let 0 < a < 1. Let § > 0 be given. Then there exist a positive
number €y and a constant C > 0 such that if 0 < e < g, and

5 )
i — ¢l > = i# 4 dist(¢,00:) > . and 6 < pi <6t i=1,...,k (3.9

then for any h € C%%*(Q.) with ||k« < 0o, problem (3.8) admits a unique solution
¢ =T(h) € C>*(Q.). Besides,

|7 < Cllllee and ey < Chllees =1, ky j=1,2,3,4. (3.10)



MULTISPIKE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM IN 3D 13

Here and in the rest of this paper, we denote by C a positive constant that may
change from line to line but is always independent of €.
For the proof of the previous proposition we need the following a priori estimate:

Lemma 3.2. Let 6 > 0 be a given small number. Assume the existence of sequences
(€n)nen, (g,n)neN” (147 )nen such that e, >0, &, — 0,

8
i = Sl > i# g dist((],,,09¢,) > and & < i, <0 ', i=1,...k,

and for certain functions o&n and h,, with ||h, ||** — 0 and scalars ¢y, i =1,... .k,
7=1,2,3,4, one has
L(¢n) = hn+3,;chw: P zhin Qe
¢on = 0 on 0€), , (3.11)
fQ wul ol Zisdn = 0 for all 4, j,

where the functions zj; are defined as in (3.6) for ¢;, and ;. Then
tim g . =0.
n—oo

Proof. Arguing by contradiction, we may assume that ||¢,||. = 1. We shall estab-
lish first the weaker assertion that

lim ||¢nlle = 0.
n—00

Let us assume, for contradiction, that except possibly for a subsequence

nl;rrgo lonlloo =7, with0 <y <1. (3.12)
We counsider a cut-off function n € C*°(R) with
n(s)=1 fors< g, n(s) =0 for s >4.
We define
ziy(y) == n(2enly — Gl 212 (). (3.13)

Testing (3.11) against z}, and integrating by parts twice we get the following rela-

tion
E Cu/ ”ngnz ziy = /Q (z17) /2 hn zjy.-

Since z7, hes on the kernel of

577

Lk = A + 5’LU / /
writing L(z},) = L(z}) — Li(z3,), it is easy to check that

ycors

En

=0(1) ||pnlls forl=1,2,3,4.

To obtain the last estimate, we take into account the effect of the Laplace operator
on the cut-off function 7 which is used to define z}}, and the effect of the difference
between the two potentials V4 and wﬁ; <l which appear respectively in the definition
of L and Lk.

On the other hand, a straightforward computation yields

‘ / hoz| <
QEn,

n || %ok -
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Finally, since

o B . (1 ifi=k
/Q Wyt ¢l 25z = C 0 651 +o(1) with ;) = { 0 itk

we conclude that

lim ¢% =0, forallz,j.
n—oo

Now, let y,, € €., be such that ¢, (y,) = 7, so that ¢,, attains its absolute maximum
value at this point. Since ||¢n |« = 1, there is a radius R > 0 and ¢ € {1,...,k}
such that, for n large enough,

Defining J)n(y) = ¢n(y + (/) and using elliptic estimates together with Ascoli-
Arzela’s theorem, we have that, up to a subsequence, bn converges uniformly over
compacts to a nontrivial bounded solution ¢ of

A¢+5w ,OQS = 0 inR3,

fR3 Wi g 02050 = 0 forj=1,23,4,

which is bounded by a constant times |y|~!. Here zp ; is defined as in (3.6) taking
¢i = 0 and p; := lim, e i}, (up to subsequence). From the assumptions, it
follows that ¢ < u/ < 5L

Now, taking into account that the solution wyy 0 18 nondegenerate, the above
implies that ¢ = ijl a; 20,;(y) and then, from the orthogonality conditions we
can deduce that o; = 0 for j = 1,2,3,4. From here we obtain ¢~> = 0, which
contradicts (3.12). This proves that lim,,_, [|¢n|lcc = 0.

Next we shall establish that ||@,||x — 0 where

6]l = sup w(y)™ |o(y)l.
Q

ye €
Defining

Unl@) = 2 0n(). weO

we have that ,, satisfies

4
A+ rtn = e =5l (1 T Ui ) ehitn

g Y, 2wl ncmzn} in Q,
wn =0 on 89,
where Hin = En u;’n, Ci,n En Cl ns gn( ) = hn(%) and Zﬂ (5 )
Let ; € Q be such that, after passing to a subsequence, |Cz,n Gl < % for all
n € N. Notice that, by the assumptions, Bs (&) C 2 and B%(Q) %(C ) =10 for

i # j. From the assumption ||¢,|« = 1 we deduce that
k

1 174
[¥n ()] < (an+|xgn|> , VoeQ.

i=1
Since limy, o0 || Ain]|+x — 0,
k

1 24v
l9n ()] < o(1) 5%—&-» (Z ) for z € Q.

i—1 En + |(E - Cz,n|
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From Lemma 2.3 we know that, away from ¢; ,,
Ulhﬂ,m(i,n (JC) = CE}L/Z (1 + 0(1)) G,\(:E, Cz,n)

Moreover, it is easy to see that also away from (; r,
4
—v n 4 n __
en’ D ¢ 2y =0(1) asen =0,
j=1

and so, a diagonal convergence argument allows us to conclude that ¢, (z) converges
uniformly over compacts of Q\ {(1,...,{x} to ¥(z), a solution of

“AY+Ayp=0 inQ\{G&,...,¢}, ¥P=0 ondQ,

which satisfies

k 1 v
sl (X 2e) . veen
i=1 b

Thus ¢ has a removable singularity at all ;, ¢ = 1,...,k, and we conclude that
¥(x) = 0. Hence, over compacts of Q\ {C1,...,Ck}, |¥n(x)] = o(1). In particular,
this implies that, for all z € Q \ (UleB% (Cin)), [¥n(2)] < o(1). Thus we have

k
[6n()| < o(1)er, forally € ., \ (| Boe (¢ha)): (3.14)
i=1

Now, consider a fixed number M, such that M < %, for all n € N.
Since ||¢n|lco = 0(1),

(L+1y— ¢ ul) 1on(y)| < o(1) for all y € Bar((l,,). (3.15)
We claim that

(L+ 1y = Gal) Ion(y)] < o(1) forally € A, . (3.16)

where A, v = B%( Z'n) \ B ( in)

The proof of this assertion relies on the fact that the operator L satisfies the weak
maximum principle in A, s in the following sense: if u is bounded, continuous
in A, v, u € HY(A., a) and satisfies L(u) > 0 in Ao,y and u < 0 in 9 Ac, a1,
then, choosing a larger M if necessary, v < 0 in A, ps. We remark that this result
is just a consequence of the fact that L(|ly — ¢;,[7") < 0 in A, provided that
M is large enough but independent of n.

Next, we shall define an appropriate barrier function. First we observe that there
exists 1 — 0, as &, — 0, such that

ly =GP I L(gn)| <)y in Ac, (3.17)

On the other hand, from (3.14) we deduce the existence of n2 — 0, as ,, — 0, such
that

e lon()l < i i |y — ol = 0/4en, (3.18)
and from (3.15) we deduce the existence of n3 — 0, as &, — 0, such that
Mgy <1y iy — Gl = M. (3.19)

Setting 7,, = max{n.,n%,n3} we find that the function

en(y) =mnly = CGul™
can be used for the intended comparison argument.
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Indeed, for each ¢ = 1,...,k we can write
Llly = Gl ™) = = (v (1 =) = (X450 + Vo)) Iy = Gl )y — &Ll ~CH)
v(l-v) ’ = (24)
- 9 |y Ci,n'
provided |y — (] | is large enough, and then
1 —
L(py) < —¥ M [y = Cin ~CH)in A

provided M is fixed large enough (independently of n). This together with (3.17)
yields that |L(¢n)| < —CL(p,) in A., m. Moreover, it follows from (3.18) and
(3.19) that |¢,(y)| < Con(y) on 0 A;, pr and thus the maximum principle allows
us to conclude that (3.16) holds.

Thus, we have shown that ||¢,||x — 0 as n — oo. A standard argument using an
appropriate scaling and elliptic estimates shows that ||¢||. — 0 as n — oo, which
contradicts the assumption ||¢, ||« = 1. O

Proof of Proposition 3.1. Let us consider the space:

H:{¢€H§(Q€):/ wﬁ,_czij¢:07i:1,...,k,j:1,273,4}
Q PRATA

=

endowed with the inner product:
bul= [ Vo-vu-2a[ ov.
Qg Qe

Problem (3.8) expressed in weak form is equivalent to that of finding a ¢ € H such
that
[0, 9] = / [5(V1 +Va)te — h—} ¢ forall ¥ € H.
Q

With the aid of Rieszs representation theorem, this equation gets rewritten in H
in the operational form ¢ = K(¢) + h, for certain h € H, where K is a compact
operator in H. Fredholm’s alternative guarantees unique solvability of this problem
for any h provided that the homogeneous equation ¢ = K(¢) has only the zero
solution in H. Let us observe that this last equation is precisely equivalent to (3.8)
with h = 0. Thus existence of a unique solution follows. Estimate (3.10) can be
deduced from Lemma 3.2. O

It is important, for later purposes, to understand the differentiability of the
operator T : h — ¢ with respect to the variables p} and ¢/, i = 1,...,k, for & fixed.
That is, only the parameters p; and (; are allowed to vary.

Proposition 3.3. Let p/ := (u},..., 1)) and ¢’ == (¢1,...,¢.). Under the condi-
tions of Proposition 3.1, the map T is of class C' and the derivative D, ¢ DT
exists and is a continuous function. Besides, we have

1Dy, ¢ T(A) |« + |1 Dpr, ¢ D T(R) ||+ < OB

Proof. Let us begin with differentiation with respect to ’. Since ¢ solves problem
(3.8), formal differentiation yields that X,, := J(¢ry, ¢, n = 1,...,3k, should satisfy

L(Xn) =-5 [8(4/)nV4] ¢ + Z C;’-Ij wﬁ;’q Zij + Z Cij 3(</)n [U)ii’g Zij] in QE

i,j 0,J
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together with

/Qanﬁm zij+/ﬂ ¢ 0, [w;t,i@ zij] =0 forj=1,234, (3.20)

where ¢ = 9(¢1y,, cij-
Let us consider constants b,,,; such that

/ (Xn = D btz ) w0y ¢ 205 = 0,
Qe m,l

where 2z, is defined in (3.13). From (3.20) we get

mel/ Wiyt ¢1 Zij Bl = / B¢y [Wr c1 2]
ol . T

fori=1,...,k,j =1,2,3,4. Since this system is diagonal dominant with uniformly
bounded coefficients, we see that it is uniquely solvable and that

bt = O(l|9]l+)
uniformly on ¢/, ¢/ in Q.. On the other hand, it is not hard to check that
160, V7., < Clills.

kk

Recall now that from Proposition 3.1 ¢; j; = O(]|h||«). Since besides

01 [ty ¢ 25 @) | < Cly =) 7
we get

i’j KK
Setting X = X, — Zm 1 bmi Zimy, we have that X satisfies

— n 4 .. N
=f+ E Cij Wy ¢r 2 In Q.,

where
f = Z bt L(Zml) -5 ¢)8(</)nV4 + Z Cij a(cl)n IZUJ?L;’C; Zij] .
m,l %,
The above estimates, together with the fact that @]« < C||h||. implies that
[fllee < C A

Moreover, since X € H{ () and
/ Xw CIZU—O for all 14, j,

we have that X = T(f). This computation is not just formal. Indeed, arguing
directly by definition, one gets that

Oy ® =Y bz +T(f) and [0y, dlle < Clhllss-
m,l

The corresponding result for differentiation with respect to the p;’s follows similarly.
This concludes the proof. [
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4. THE NONLINEAR PROBLEM

In this section we consider the nonlinear problem (3.7), namely,

L(¢) = —N(@)-E+X, cijw,y oz; Qe
=0 on 0€),, (4.1)
fQE wi’.,gf zij¢ = 0 for all 4, j,

and show that it has a small solution ¢ for € > 0 small enough.

We first obtain an estimate of the error E defined in (3.4). Assuming (3.9) it is
possible to show that E satisfies | E||«. < Ce. However, for the proof of the main
theorem, we require a stronger estimate. In order to find it, we need to impose
certain extra assumptions on the parameters.

Let us use the notation

,u%: D | eRF.

Lemma 4.1. Assuming that the parameters p;, ¢; satisfy (3.9), where § > 0 is fived
small, we have the existence of €1 > 0, C' > 0, such that for all e € (0,¢1)

|Ellx < C2MAQ? |+ %)
Proof. We recall that

k

k
B = (Y lwwa ) +mn)]) =Y wl g, ve o

i=1
First we note that
k

[B(y)] < Ce, ify e =0\ | Bs/e(¢)),
j=1

and this implies that

sup w(y)~ ™ |E(y)| < 5. (4.2)
ye,L

For y € B;;.(¢})) and j # 4, thanks to Lemma 2.2 we have

eimi(ey) = 0(e), wu ¢ (y)+e2m(ey) = Ofe).

Hence, using Taylor’s theorem and the fact that u; = O(e) (which follows from
(3.9)), we find that

1 1
B(y) = 5w, (0)* (A mi(e ) + D wu o (0) + ed (e )
J#i
+ 0wy ¢ (y)’e®) + O(e),  for y € B (C)). (4.3)
Now, Lemma 2.2 guarantees that, for y € Bs,.((;),

1

miley) = —Amasp? Hy(ey, G) + O(u) = —dmaguf gr(G) + O(3).  (4.4)
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Similarly, Lemma 2.3 yields that, for y € Bs,.((;)) and j # i,
wy ¢ (y) +e2mi(ey) = Vi(y) = e2Uj(ey)
=4r ageéuj% Gi(ey, ¢) + O(u?ia)
= dmagetp? GA(Gi () + O(E2). (4.5)
Using (4.3), along with (4.4) and (4.5), we find that
1

E(y) = 20mazezwy o (y)* (*u? aa(G) + > GG, Cj))
J#i
+O0(wy 1 (y)°*) + O(e°),  for y € B (7)), (4.6)
which implies

~CH B < Cet|—puZ ar(C: 3 (6] + 02
sup  w(y) [E(y)] < Ce?|—pZgn(G) + > 2 GA(Gi,G)| + Ce.
y€Bs/:(¢7)) g

O

This together with (4.2) yields the desired estimate.
We note that just assuming that p;, ¢; satisfy (3.9) we have |M,\(§)/ﬁ| < Qe

and hence
|E || < Ce. (4.7)

However, this estimate is not sufficient to prove the main theorem. An essential
part of the argument is to work with ¢ and p so that My (¢)u? is smaller than 2.

Lemma 4.2. Assume that !, u, satisfy (3.9) where § > 0 is fized small. Then
there exist e1 > 0, C1 > 0, such that for all € € (0,e1) problem (4.1) has a unique
solution ¢ that satisfies

I« < C(e2|MA(Q)p?| + 2). (4.8)

Proof. In order to find a solution to problem (4.1) it is sufficient to solve the fixed
point problem

o= A(¢),
where

A(¢) = =T(N(¢) + E), (4.9)

and T is the linear operator defined in Proposition 3.1. -

Now, for a small v > 0, let us consider the ball F, := {¢ € C()| [|¢]l« < 7}
We shall prove that A is a contraction in F, for small € > 0. From Proposition 3.1,
we get

[A(@)[+ < CIN(D)[lax + [1E][s] -

Writing the formula for N as

1
N(¢) = 20/ (L—t) [V +tg]®dt ¢?,
0
we get the following estimates which are valid for ¢,, ¢2 € F,,
IN(61)[ < ClignllZ,
[N(¢1) = N(¢2)[lex < Cyldp1 — p2l]- (4.10)
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Thus, we can deduce the existence of a constant C' > 0 such that
1Al < C [ + | Ellss] -

From Lemma 4.1 we obtain the basic estimate ||E||.. < Ce with C independent of
the parameters (u, () satistying (3.9). Choosing v = 2C||E||.« we see that A maps
F, into itself if v < 55, which is true for € > 0 small. Using now (4.10) we obtain

|A(p1) — A(@2)[l« < Cv||dp1 — ¢«

for ¢1,¢2 € F,. Therefore A is a contraction in F, for small € > 0 and hence a
unique fixed point of A exists in this ball. The solution ¢ satisfies

|8l <7 =2C| Ellos < Ce2MA(Qn? | + ), (4.11)
by Lemma 4.1. This concludes the proof of the lemma. (I

We shall next analyze the differentiability of the map (¢, p') — ¢.
First we claim that:

Lemma 4.3. Assume that the parameters p;, ; satisfy (3.9). Then

Dy Ellis < Ce, (4.12)
[D¢r Ellx < Ce. (4.13)
Proof. First we observe that
5 s (ly =GP ) I _as /(v =¢)
wi Wi = 7 /12 2y3’ S /12 23"
2 Mz(ly—Czl +Mi) (|y_Cz| —I—,ul-)
and hence
|aﬂ§wlé;§£| < Cw,%’q and |DC1’ wué;(ﬂ < szLC{ (4.14)

Let us prove (4.13), the other being similar. Let us assume without loss of generality
that ¢ = 1. Recall that

k
E=VP=} wig
i=1

and so

_ 4 4
D¢; B =5V Dy Vi = 5wy o Dej wyy ¢

k 4 k 4
4
=5 {(Z Wy ¢p + %) - w,ul,g] Dejwpg ¢ +5 (Z Wy ¢+ soi) De; 1,
i=1 i=1

where ;(y) = e'/?7;(ey). By (4.14), we have that, for y € Bs/(¢1),
k A \
’ ((Z Wy ¢p ‘Pi> - wu;,q) Dejwg ¢
i=1

k
=2

< Cewpy - (4.15)

+1il) ) 1Des ;)
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Note that from Lemma 2.2, |D¢r¢1(y)| < Ce?. Then, for y € By/((f),

<C (wﬁ’pCi + 64) g2

k
4
5( wue + 1) Degen
i=1

< Cetwpy o (4.16)

1951

Using (4.15) and (4.16) we find that

sup w(y)_(2+”)|DqE(y)| < Ce.
y€Bs,-(¢1)

The supremum on the rest of Q. can be estimated similarly and this yields (4.13).

U

Lemma 4.4. Assume that ¢, p satisfy (3.9). Then
D¢ olls < CUIElsr + [ D¢ Ell s ) (4.17)
1Dy 0l < CUIE||xx + [|1Dpr Els)- (4.18)

Proof. To prove differentiability of the function ¢(¢’) we first recall that ¢ is found
solving the fixed point problem

¢ = A1/, ()

where A is given in (4.9) but now we emphasize the dependence on ', (’. Formally,
differentiating this equation with respect to ¢} we find

D¢ = 0 A(gs 1 (') + 03 A5 1, ') D 9. (4.19)
The notation we are using is D¢, for the total derivative of the corresponding

function and d;; for the partial derivative. From this fixed point problem for D¢/ ¢
we shall derive an estimate for || D¢/ o).

Since A(¢;p',¢") = =T(N(¢; 1, ¢") + E5 ', (") we get
O A pt', (') = =0 T(N (o 1", () + B ', {') = T (9 N (5 14/, ¢ ', ¢')
~T(Dg B, ().
From Proposition 3.1 we see that
IT(De; B 1, C)lls < CDey Bl s
Using Proposition 3.3 and estimates (4.11) and (4.10), we find that
10T (N(ds ', ¢") + Espt, )|+ < ClIN (5 1',¢) + Ell s < Ol B
Similarly,
IT(0eN (51, )5 1!, )l < CllOGN (51, les < CligIIZ < OB,
Therefore,
D¢ Ay 1, )l < ClE] o (4.20)
Next we estimate
105 A5 1", ¢ Desllls = 1T (0pN (¢34, C)[De; B I«
< (196N (5 ', ) [Der )| s
< Cl@ll« 1D ¢l
< CE[ D¢« (4.21)
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From (4.20), (4.21) and the fixed point problem (4.19) we deduce (4.17). The proof
of (4.18) is similar. O

As a corollary of the previous lemma and taking into account (4.12), (4.13), and
(4.7) we get the following estimate

5. THE REDUCED ENERGY

w0l < Ce. (4.22)

After Problem (3.7) has been solved, we will find a solution to the original
problem (3.1) if we manage to adjust the pair (', ¢’) in such a way that ¢;(¢’, ¢') =
0,i=1,2,3,4. This is the reduced problem and it turns out to be variational, that
is, its solutions are critical points of the reduced energy functional

L( 1) = AV +¢) (5.1)
where Jy is the energy functional for the problem (3.1), that is,

- 1 A 1
JA(U):§/Q|VU|2—€2§/Q 02—6/9 S,

the function V' is the ansatz given in (3.5) and ¢ = ¢(¢’, 1’) is the solution of (3.7)
constructed in Lemma 4.2 for € € (0,¢1).

Lemma 5.1. Assume that (!, p; satisfy (3.9) where & > 0 is fized small and 1 > 0
is small as in Lemma 4.2. Then I is C* and V + ¢ is a solution to (3.1) if and

only if
Do (¢, 1) =0, DI\ 1) =0. (5.2)
Proof. Differentiating I with respect to u!, and using that ¢ solves (3.7) we find
O IN(C' 1) = DINV + ¢) [0, V + O 0]

:—ZC”/ 'LUICIZ” 8 V“ra ¢)

Similarly
DC/I)\ C ,LL ZC”/ i C! Zij Dg/V—FDg/ d))

Since all terms in these expressions depends continuously on ¢’, i’ we deduce that
I)\ is Cl.

Clearly if V + ¢ is a solution to (3.1) then all ¢;; = 0 and hence (5.2) holds.
Reciprocally, if (5.2) holds, then

Zcij \/Q wﬁlﬂcé Zij (8H;1V + (9”;1@/)) =0

" ’ (5.3)
Zcij / wﬁ;7<£ Zig (DQLV -e;+ Dqlgf) : Gl) = O,
ij Qe

for all n =1,..., k. Thanks to (4.22) we see that

4 4
/Q Whr ¢ %1 Ot 0 = 0, /Q Wht,p #5 D@ = 0,

€
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as € = 0. Also, by (3.6) and the expansion in Lemma 2.2 we find that

/Q Wh ¢ %63 OtV = 8ja G / ws o(Bpwpr 0) + (1)

R3

and
/Q Wy 1 %5 DoV - e = dir O /Rg Wy o(Vw o - e1)” +o(1)

as € — 0, for some pi’ € (4, 1).
Therefore the system of equations (5.3) is invertible for the ¢;; when ¢ > 0 is
small, and hence c;; = 0 for all 4, 7. [l

A nice feature of the system of equations (5.2) is that it turns out to be equiv-
alent to finding critical points of a functional of the pair (¢’, 1) which is close, in
appropriate sense, to the energy of k bubbles Uy + ... + Uk.

Lemma 5.2. Assume the same conditions as in Lemma 5.1. Then

k

L w)y = O U) +02(¢ ), (5.4)

=1

where 0 satisfies
1
00 == [ | [ 190 = 220?51 4500162 as,
0 5

where ¢ = ¢(¢', ') is the solution of (4.1) found in Lemma 4.2.

Proof. From Taylor’s formula we find that

L 1) = (V) + DIAV + ¢)[g] + 00 (¢ 1),

where
(2 ey
62 (¢ p) = — / SD2N(V + 56)[6%] ds. (5.5)
0
But since ¢ satisfies (3.7), we have that
DLV +0)g] == ¢ /Q Wi 1 2ij® = 0,
ij e

which implies (5.4). O

We remark that assuming (3.9) we get

’9§\2)(</,,LL/) S 652,

since (4.8) holds.
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6. CRITICAL MULTI-BUBBLE
Let k > 2 be a given integer. For § > 0 fixed small we consider the sets
QF ={¢= (G, 5 ) € Q8 dist(¢,09) > 6,|G—¢| > 6i=1,....k j#i}
Recall that the main term in the expansion of .Jy (Zle Ui) is the function

k

FA(Cv ) - kaO"‘alZ(/‘zg)\ Cz Z/Jl/z 1/2GA Cvaj >+(12)\ Z/J'z
i=1 Ve
k
—as Z(Mz [N Cz Zul/z 1/2 CZ,C])) 5

J#i

where ¢ € QF, p = (p1,..., ) € (RT)* and the constants a; are given in (2.2)—
(2.5).

Proof of Theorem 1.1. By Lemma 5.1, v = V + ¢ solves (3.1) if the function
I({', 1) defined in (5.1) has a critical point.

In the sequel we will write also I((, 1) for the same function but depending on
¢, i, which we always assume satisfy the relation (3.2) with ¢’, .

Using the expansion of J) (Zle UZ-) given in Lemma 2.1, together with Lemma 5.2,
we see that I (¢, p) has the form

IA(C; ,LL) = FA(Ca :U‘) + GA(Ca :U‘)
where 0, ((, 1) = 95\1) (¢, u)+0§\2) (¢, ), 05\1) is the remainder that appears in Lemma 2.1

and 9&2) the remainder in Lemma 5.2.
It is convenient to perform the change of variables

Ai= ) (6.1)

where now A = (Aq,...,A;) € R¥, and write, with some abuse of notation,

k
Fr(C,A) —ka0+a12(A (G = ST A A, G C,,C])+a2/\ZA4
=1 VE)

—a3Z(A ()~ M Ga(6n ()

J#i

Note that 0, Ix(u',¢") = 0 is equivalent to O, Fx = 0, whenever A; # 0.
The function F) can be expressed in terms of the matrix M) as

k k
FA(G,A) = kag+ar A"My(OA + a2 X Y A} —ag YA (MA(Q)A)].

i=1 i=1
In what follows we write o1(g, () for the smallest eigenvalue of My({) where A =
Ao + €. Using the Perron-Frobenius theorem or a direct argument as in [2] the
eigenvalue o1(g,() is simple and has an eigenvector vi(g,¢) with |vi(g,¢)] = 1
and whose components are all positive. By a standard application of the implicit
function theorem, we have that o1 (e, () and vy (e, () are smooth functions of € and
¢ in a neighborhood of (0, ¢?).
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We also have the following properties as a consequence of the hypothesis:

0
D¢o1(0,¢%) =0, Dggal (0,¢) is nonsingular, %(07 ¢%) <o.

These assertions can be proved by observing that

Yap+e() = det My, 1(¢) = 01(¢,()ox (g, C),

where o, (g, () is the product of the rest of the eigenvalues of My,1.(¢). Since o is
a simple eigenvalue and My, (¢°) is positive semidefinite, we have . (0,¢%) > 0 and
this is still true for €, in a neighborhood of (0,¢°). Then the properties stated
above for o1 follow from our assumptions on 1y, < (¢).

Since %(0, ¢%) < 0, we deduce that there are eg > 0 and ¢ > 0 such that

01(81 C) < 07 for e € (0750)7 C € Bc(,\/g(é-o)' (62)
Next we construct a k x k matrix P(e, () for € and ¢ in a neighborhood of (0, ¢°)
with the following properties:

a) the first column of P is vy (g, (),

b) columns 2 to k of P are orthogonal to v (g, (),

c¢) P(g,() is smooth for € and ¢ in a neighborhood of (0, ¢Y),

d) P(0,¢%) is such that M, (¢°) = P(0,¢°)DP(0,¢%)T with D diagonal,
e) P(0,¢")"P(0,¢%) =1.

To achieve this we let ©1,...,7; be an orthonormal basis of R* of eigenvectors of
M, (¢°) such that vy = v1(0,¢°%). We let, for € > 0 and ¢ close to (°,

vi(e,¢) = 0; — (Ui - v1(g, Q)i (e, ¢), 2<i <k,

and P be the matrix whose columns are v (¢, (), ..., v(¢, ().

We remark that although it would be more natural to consider a matrix P(e, (),
which diagonalizes M) ({), this matrix may not be differentiable with respect to ¢
and (. For this reason we choose to work with P as defined before.

Let us perform the following change of variables

A =lo1['*P(e, ¢)A. (6.3)
Note that the quadratic form AT M, (¢)A can be written as

ATMA(QA = 01 (e, )l (e, QAT + o (e, OIA) T Q(e, A,

where
Ay

A= o Q(e,¢) = PI(E:?C)TM)\OJrs(C)P/(Ev ¢)
Ay
and P’'(e,() = [va,...,vx] is the matrix formed by the columns 2 to k of P(g, ().
Thus I,(¢,A) = FA(¢,A) + 05(¢, A) can be written as
I)\(Ca A) = kaO + aj [ — 01 (57 C)2A% + |01 (57 C)|(‘/_V)TQ(Ea C)Al
+o1(e,0)% Polya(e, ¢, A) + 01 (¢, A), (6.4)
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where

ko k
Polyy(e, ¢, A) Z(ZP” g, QA )4

j=1

_“3i{(zp”(5’mj) (e onse OB + 375 Oael D PO A

j=21=1

[

and 0, (¢, A) denotes the function 6 (¢, 1) where we have used the transformations
(6.1) and (6.3).

Note that Polys(e,(, A) is a polynomial in the variables A1, ..., Ay of degree 4
whose coefficients are functions of ¢ and (.

We need to solve the equations D¢y = 0, g—/{\*l =0,..., gf\* = 0. Because of
the the absolute value of o1 appearing in (6.4) it is a bit more convenient to modify
this function by defining

Fx(¢A) = kag — a101(¢,¢)* AT — ar01 (g, Q) (A) " Q(e, A
+ 01(g,0)? Polya(e, ¢, A) + 05(C, A),

which coincides with I, when o7 < 0.
Next we compute

DCF/\ = —2@10'1 (Dca'l)[i% — a (Dco’l)(]\/>TQ/_\/ —a101 (A,)T(DCQ)/_\/
+ 201 (Deor) Polys + o? D¢Polys + Dc6,

OF 0 o0
- —2a101A1 + 01 7K —Polys + —— A
1

O\, 0N’

OF) b 0 90,
A __9 A; l

o, a101jz;Qg 1,0—1 +U13Ap0y4+aA

with 1 =2,... k.

Observe that, whenever o < 0, the equations DCF,\ =0, gf* =0,n=1,...,k,

are equivalent to

0= —2a,A%(D¢oy) — %(Dgal)(f\’)TQl_V —a (M) (DQ)A

1
2(D<01) Polys + o1 D¢ Polys + ;Dge)\, (6.5)

1

- 0 1 00,
0= —2a;A;1 + B Poly4 + 2 (')A (6.6)
k
= 0 1 39,\

0=—2a; JZZ:Q Qj—l,l—lAj + o1 aA POly4 + — o1 aA (67)
with [ = 2,... k. Note that we have normalized the equations (the first one was

divided by o1, the second by o7 and the last ones by o).

We claim that there exists 9 > 0 such that for each € € (0,¢¢) the system (6.5),
(6.6), (6.7) has a solution (¢(g), A(e)) such that oy(e,((g)) < 0, thus yielding a
critical point of I 4.

We will prove that (6.5), (6.6), (6.7) has a solution using degree theory in a ball
centered at a suitable point (A, (%) and with a conveniently small radius.
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To find the center of this ball, let us consider a simplified version of equations
(6.6), (6.7), by omitting the terms involving # and evaluating at ¢ = 0, ¢ = ¢°. Us-
ing that Q(0, °) is the diagonal matrix with entries oy, ..., o, where 0,04, . .., 0%
are the eigenvalues of M), (¢?), we get

_ P _

0= —2a1A1 + fpoly4(0, Co,A), (68)
oA

0= —20,10'1111, 1227...,]6. (69)

We note that there is a solution of (6.8), (6.9) which has the form A° = (A,...,A?)
with
AV=0 foralll=2,...,k

and

_ a
A = S —. (6.10)
2a2X0 D2, Pi1(0,¢°)

For later purposes it will be useful to know that the linearization of the functions
on the right hand side of (6.8) and (6.9) around A® define an invertible operator.
Since the right hand side of (6.9) is a constant times the identity it is sufficient to
study the expression —2a;A; + %Poly;;(o, Co, ). A straightforward computation
yields

k

0 . 0 - - _
9K, —2a1A; + 377\173013/4(0, o, M) | (A%) = —2a; + 12a2)0 (Z P (0, C0)4) (A9)?

i=1

= 4(31,17 (611)

which is nonzero.
We now introduce one more change of variables

Aj=A;—A%, 1<j<k

Define
T(C,A) = A(CA) +R(C D),
where
A(¢,A) = (Ao(G, ), AL(G,A), -, Ak(GA)))
with

Ao(¢,A) = —a1(A?)2DZ.01(0,¢°)(¢C — ¢),
2

i~ 9 -
_— 0 AO A Dr— 0 AO 0
8AjaA17701y4(0,< JAP)A G+ 48A1P01y4(0,c A (=Y,

k
Al(C, A) = 4a1A1 =+ Z
j=2
Al(CaK) = *2@10’[!‘[7 1:27"'7ka

and

R(C,A) = (Ro(¢,A), Ri(G,A), ..., Ri(¢,A)))
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with
Ro(¢,A) = —a1(A9)?(D¢on (e, ¢) — DE1(0,¢°)(¢ = ¢7))
— 24, (2897, + A?)Deoy (e, C)

~ Do (R) Qe OF —ar (B (DeQ(e, N
+2(D¢o1) (Polya(e, ¢, A% + /A\) — Poly4(0,¢° A%) + oy D¢Polya(e, ¢, A+ /AX)

1 L
+ ;D49,\(C, A%+ A7),
1

~ 0 0 -
Ri(GA) = % Poly4(5 ¢, A +A) - a—Poly4 (0,¢%, A% Z Pozy4(0 %, A%)A,
9 1 aeA .
— D¢—— 0 A0 0 2N+ A

Ri(¢, A —2012 (Qj—1,1-1(g,¢) — jl)A + o1 (e, C) 8 Poly4(€ ¢, A° +A)

j=2
1 00
o1(e,¢) O

Let us indicate the motivation for the definition of Ag. In equation (6.5) we combine
the terms —2a; A% (Do) and 2(D¢oy) Polyy into the expression

—2a;A}(D¢oy) +2(Deay) Polys
= —2(11(/_\(1))2(D40'1) — 2a1 (2/_\(1)K1 + K%) (Dgal)
+2(D¢o1) Polya (0, o, Ao) + 2(D¢o1) (Polys — Polya (0, ¢°, Ao)).

In this expression we combine

—2a, (A?)Z(Dgal) +2(D¢o1) Polys (0, O Ap) = 2(D¢oq) [—al(ﬁ(l))Q + Poly,(0, ¢°, /_\0)}.

2 AN, =2,k

But an explicit computation using (6.10) gives

— a1 (A%)2 4 Polys(0, ¢, A) = —%al(l_\?)z.

Then

= 2a1(A7)*(D¢o) + 2(Deot) Polys(0,¢°, Ao)

= —a1(A})*(D¢o)

= _al(]\(l)) nggl( )(C—CO) —a (]\0)2((D<01) Dgggl( C (¢ - CO))
We define Ag as —aq (AY) D%cal (0,¢°)(¢ — ¢°) and we leave all the others terms in
Ro.

Then the equations (6.5), (6.6) and (6.7) for the unknowns Kj, 1<j<kand(
are equivalent to

T(¢,A) =0.
We are going to show that the this equation has a solution in the ball
B={((.h) e R¥* xR* :|(¢~¢*, B)| < '}
with a fixed and small o > 0, using degree theory.
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The linear operator (¢, A) — A(¢C — ¢, A) is invertible thanks to hypothesis (iii)
in the statement of the theorem and (6.11). Hence there is a constant ¢ > 0 such
that

JA(C,A)] > ¢l((¢ ¢, M),

o~

for (¢,A) € 9B, if we take £ > 0 sufficiently small. To conclude that the equation
A(C,A) +R(¢,A) = 0 has a solution in B, it suffices to verify that

IR(¢,A)] < ofe'7)

uniformly for (¢, K) €Base—0.
Before performing the computations we recall the assumptions we are imposing
on p, ¢. From (6.1) and (6.3) we have

nz =loi(,Q)[* P(e, OA.
Then for ((,K) € B,
¢ =¢%l<el™” (6.12)
and
A=A"+A, |Al<e'. (6.13)
Using Taylor’s theorem we see that, for |¢ — (9| < e!=7,
—c1e < 01(g,() < —coe (6.14)
with ¢1,c9 > 0, and in particular
lpil < Ce, i=1,...,k.
Also for |¢ — (O] <el77,

|Dcoy(e,¢)| < Cet. (6.15)
We will also need the following estimates: for (¢,A) € B we have

|DcOA(C,A° 4+ A)| < 77, (6.16)
0y, <o 3
— (¢ A"+ A ‘ < o/2 1
oh, ((,A"+A)| < Ce , (6.17)
69)\ A0 n 3—0o
P2 (¢, R +A)‘§Oe L 1=2... k. (6.18)
N

We will prove these estimates later on.
For (¢,A) € B let us estimate Ro((,A). We start with

[(AD)?(Deoi(e,¢) = DEca1(0,¢°) (¢ = ¢))]
< C|D¢o1(e,¢) — Deor(0,¢)| + C|Deo1(0,¢) — Deon(0,¢°) = DZear(0,¢%)(¢ = ¢°)|
< Ce+ Ce?727 < Ck,
since |¢ — (%) < e'79. Next,

|2A9A; + A3) Do (e, )| < Ce*2
because |A1| < =7 and D¢01(0,¢°%) = 0. To estimate D%T(K’)TQ(E, ¢)A’ we note
that (6.14) together with (6.15) implies

‘Dgal(&', C)
01(674)

’ < Ce™°



30 MONICA MUSSO AND DORA SALAZAR

and so
Dco'l
ap——
o1

< 062730'

(A)7Q(e, N

Next, using (6.16) we estimate
|a1(A)T(DeQ(e, Q)N | < Ce*2,
|2(Dcor) (Polya(e, ¢, A° + &) — Polys(0,¢°, A%))| < 727,
lo1(g,¢) D¢ Polya (e, ¢, A° + K)| < C¢,

1 IR
nge)\(C,AO + A) < 062_0
01

This proves that
[Ro(¢,A)| < Ce (6.19)
for (¢,A) € B, if we have fixed o > 0 small.
Let us estimate |R1(¢, A)| for (¢,A) € B. By Taylor’s theorem we have that
2

o o 0 <0 o
8A1’Poly4( C,A+A) 8T7>ozy4(o ¢O A% ZaA 6A1P01y4(0 L0, AO)A,

~ Doz Polyn(0,¢", R)(¢ — )] < e+ C1c — ¢ + CIRP < e
On the other hand by (6.17) we have

1 90x
0'1 8A1

=2 (¢, A% + A)' < Celmo/2,

This shows that
[R1(C. )] < Ce'o/? (6.20)
for (¢,A) € B

Finally, using (6.18), we have that for (C,/AX) € Bandl=2,...,k, the following
holds

S 052720'

)

k
21112 Qj—1,1-1(5,¢) — 6;1)A;
j=2

o1(g,¢) i Polyy(e, ¢, A° —&—A)’ < Ce?72,
and
1 00 0, o
A < Ce“°.
g ARG+ B < e
Therefore,
IRUC,A)| < Ce¥20, 1=2,...k (6.21)

for ({,/A\) €B.
Combining (6.19), (6.20) and (6.21) we obtain

IR(C,N)| < Ce'=/%, W(¢,A) e B
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A standard application of degree theory then yields a solution of Y((, JA\) = 0 in the
ball B. Note that for (¢,A) € B we are in the region where (6.2) holds, and hence
01(¢, A% + A) < 0. Therefore we have found a critical point of I, (¢, 1), which was
the desired conclusion. (]

Proof of (6.16), (6.17), (6.18). By Lemma 2.1 (using the satement with § instead
of o) we get directly the estimates

DOV (¢ )| < Clul*~/? < cP0/2, (6.22)
96"
A= (G| < Cluft < ot (6.23)

To estimate DCHE\Q), we recall formula (5.5) which gives

1
00 (Cn) = [ DIV 506 ds.

1
= / s U |Vo|? —e?Xp? — 5(V + 5(1))44252} ds
0 Q.
and therefore

c
D03 (¢ ] < Clll|1Deoll. + 11611

‘We can compute

k
MA(Qpt = | [FMAPA = [ [ (v As + > aully ),
1=2
and thanks to (6.14) we see that
[My(Qut| < Cet™,
which in turn implies
1Bl < Ce*7,  lg]l < Ce™7.
From this we deduce
05 (¢, )] < C=42.
We can write (4.6) in the form (near (})

E(y) = —20maseZw,, o (y)Map? + 0w, o1(y)e?) + O(?)

k
= —20770436%10”;@1( (y)|01|% (0101111 + Z 61111) + O(wy ¢/ (y)*e?) + O(£%).
1=2
/

The O(+) terms are bounded together with their derivatives with respect to ¢’, p'.
Differentiating F with respect to ¢/ and A;, taking into account the last expression,
and thanks to (6.12), (6.13), (6.14) and (6.15), we find that for |y — (;| < g the
following hold

DC/E = O(Ezfg)w#;,g (y)4 + O(w#(“q (y)352) + 0(55),

Dx, E = O 7wy ¢;(9)" + Owyy ¢ (y)°e?) + O(),
and for [ =2,...,k
D5, E = O()wyy ¢t (y)* + O(wyy ¢ (y)°*) + O().
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From this and analogous estimates outside of all the balls Bj/.(¢}) it follows that

K3
”DC’(b”* §52_J> HDI_\l(bH* SEQ_U? HDI_\I(bH* <e 1=2,...,k
AS a consequence,

DO (¢ m)| < C¥7, |Dx, 0 (¢, )| < Ce*=2, Dy, 02 (¢, )| < C2°,

(6.24)

for I =2,...,k. (Here we are assuming o > 0 small so that 3 — o < 4 — 20).
Combining (6.22), (6.23) and (6.24) we obtain the estimates (6.16), (6.17), (6.18).
O

7. THE CASE OF THE ANNULUS

Let 0 <a <1 and
Qu={zecR® : a<|z|<1}.
We want to show in this section that solutions with an arbitrary number of peaks
exist for certain ranges of the parameter a.

Proposition 7.1. Let k > 2 be fized. Then there exists ax, € (0,1) such that for
a € (ag, 1) there is A > 0 and a solution of (py) with k concentration points.

Explicit values of ap seem difficult to get, but one can obtain estimates that
show that for a low number of peaks the annulus does not need to be so thin. In
particular for two bubbles we have the following estimate.

Proposition 7.2. For a € ({5,1) there is A\ > 0 and a solution of (px) with 2
concentration points.

Let us give first a lemma about the behavior of the Green function for a thin
domain. For this we write now G§(x,y), Hi(x,y), g5(x) = Hf(x,x) for the Green
function, its regular part and the Robin function respectively for A = 0 in the
domain €.

Lemma 7.3. Let xg,yo be fized so that |xg| = |yo| = 1 and yo # xo. Then
Gi(y,x) =0 (7.1)
as a — 1 uniformly for y = ryo with r € (a,1) and © = r'zy with ' € (a,1).
Moreover,
n(lliangg — 00 (7.2)
as a— 0.

Proof. To prove (7.1) let us write e =1 —a > 0 and let ¢ — 0. We also change the
notation G§ to G§, 2, to Q. and shift coordinates so that the annulus is centered
at —ey:
Q. ={zcR¥:1—c<|z4e| <1},
where e; = (1,0,0). Without loss of generality we can assume that yo = 0. Our
assumption now is that |zo + e;| = 1 and z¢ # 0.
By the maximum principle

0<Go(yz) <T(y—x), VyeQ\{z},
for any z € Q.. Let p = w > 0. Then there is C' such that
0 < Gily,z) <C, VyeQ.NB,(0),
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for any z in the segment {tzo + (1 —t)(—e1) : ¢ € (a,1)}.
Let

() = Giley/ ) o € 29N B,(0))

Then G¢ is harmonic and bounded in 1(Q.NB,(0)). By standard elliptic estimates,
up to a subsequence, G5 — G Wthh is harmonic and bounded on the slab S =
{(z1,22,23) : =1 < 21 < 0}, and vanishes on the boundary of this slab. We can
then extend G by reflections to a bounded harmonic function in R3. By the Liouville
theorem G is constant but then G = 0. Because the limit is unique we have the
convergence for all ¢ — 0, that is, G°(y’) — 0 uniformly on compact subsets of
1(Q. N B,(0)). Therefore Ge(y') — 0 uniformly for ' € {(v},0,0) : ¢, € [-1,0]}.
Changing variables back we obtain (7.1).

We now prove (7.2). We will use the maximum principle to compare the Green
function of Q, with the Green function of suitable domains. First, Let G, denote
the Green function of the unit ball By = By(0):

-A,Gp,(y,x) =6, inB, Gp(y,x)=0 yecdB.

If z € Qg, the maximum principle guarantees that G&(y,x) < Gp, in Q4. This
implies that g§(x) > gp, (z) where gp, () denotes the Robin function in By. It
is well known that gp, () > cdist(z,0B1)~! for some ¢ > 0. This implies that
ming, g§ > 1= O

To prove Propositions 7.1 and 7.2 we consider a configuration of points in the
xy plane at equal distance from the origin and spaced at uniform angles, that is,

G(r) = (re?™ "7 0) € R, j=1,....k

where the notation we are using for z € C and t € R, is (z,t) = (Re(z),Im(z),t).
Define then the matrix M) restricted to this configuration as

M (r) = Mx(¢(r)),
where ((r) = (¢1(7), ..., x(r)). Similarly we define
da(r) = 9a(¢(r),

and denote by &;(\, ) the eigenvalues of M) (r) with &, the smallest one.

Proof of Proposition 7.1. Let k > 2 be given. By Lemma 7.3, if @ > 0 is small, we
have

G;(0,r) >0, Vre(al),j=1,...k (7.3)
9o(C1(r)? = Go(Ci(r), ¢ Gir NE>0 Vre(al), j=2...,k (7.4)

Now, we define

Ao =sup{A € (0,\):o;(N,r) >0 Vre(al), j=1....,k XN €(0,N} (7.5
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Then Ag is well defined by continuity and (7.3). We will need the following prop-
erties:

gA(G(r)? = GA(G(r), G(r)* >0 YA€ [0,h0),7 € (a,1), j=2,....k (7.6)
Ao < A1, (77)
&1(Xo,7) > 0 and there exists ro € (a, 1) such that o1(Ag,70) =0, (7.8)
Gj(Ao,7) >0 forallre(a,1)and j=2,...,k, (7.9)
%gg}(Ao,r)<< 0, Vre (a,l). (7.10)

Let us prove (7.6). If this fails, then for some A € [0, A\g), some ry € (a,1), and some
J=2,...,k, wehave gx(¢1(r))>—=Gx(¢1(r),¢;(r))? < 0. This condition implies that
the matrix My (r) has a nonpositive eigenvalue. This follows from the criterion that
asserts that a symmetric matrix A = (a; j)1<i j<k is positive definite if and only if
all submatrices (ai,j)lgi,jgm are positive definite for m = 1,..., k (we apply this to
M,y (r) after the permutation of the rows 2 and j, and the columns 2 and j). But
this contradicts the definition of Ay (7.5).

Let us prove (7.7). For this we recall that ming, go > 0 and ming,_ gy — —o0 as
A T A1. Therefore there exists r € (a,1) and A € (0, A1) such that g\(¢1(r)) = 0.
This implies that g (¢1(r))? — GA(Ci(r),¢;(r)? < 0 for any j = 2,...,k. By (7.6)
this value of A is greater or equal than A\g. It follows that Ay < A1.

Since A9 < A1 by continuity we deduce the validity of (7.8). We also deduce
from this and the way we have arranged the eigenvalues that o;(Ag,r) > 0 for all
j=2,...,kand for all 7 € (a,1).

To continue the proof of the stated properties we need a formula for the eigen-
values of a circulant matrix. We recall that a matrix A of k& x k is circulant if it
has the form

ap ap—1 QAg—2 ... a2 Qi
aq ap ar—1 ... A3 Qs
A= ag a1 aq ... Q4 as
ag—1 Gx—2 Gk—3 ... G1 Gag
for some complex numbers ag, . .., ax—1. (This means each column is obtained from

the previous one by a rotation in the components). We note that the matrix My ()
has this structure with

ao = ga(C1(r)),
aj:—G)\(Cl(T),Cj+1(T)), jZl,...,k—l,
since GA(Q(7), Gi(r)) = GA(G1(7), G41(7))-

It is known that the eigenvalues v; (I = 0,...,k — 1) of the circulant matrix A
are given by

k—1
v=3 ajeti 1=0,.. k-1
§=0
These numbers coincide up to relabeling the indices with the numbers &;(\, r). We

note that since M A(r) is symmetric, the eigenvalues are real. We claim that

vy < Vj j=2,...,k—1.
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Indeed, since the v; are real

v = gxa(Cu(r ZR@ [GA Ci(r ng(r))eQ:‘ﬂ]

> ga(Ci(r ZG/\ C1(r), Gi1(r)) = vo,

T

where the strict inequality holds because there are point e*#9! in the sum which
are not colinear and Gx((1(r),(j+1(r)) > 0. This proves (7.9) and also that

g1(Ar) = ga(Gu(r ZGA CG1(r), Gi+1(r)), (7.11)

for all A € [0, \g] because for this range of A we know that the eigenvalues ; are
nonnegative. From this formula we obtain

951 r “ G,
W(/\J‘)Z B\ Z r),G+1(r)) <0

Jj=1

for A € [0, Ag], which proves (7.10).

Let us see that we are almost in a situation where Theorem 1.1 can be applied.
Let rg be the number found in property (7.8). The eigenvalue &1(Ag,70) is zero
and My, (ro) is positive semidefinite (assumption (1)), we have Doy (A1, ((rg)) = 0
because () is a global minimum for o1 (Ao, -). Condition (iv) follows from (7.10).

The only hypothesis in Theorem 1.1 which has not been verified is the nondegen-
eracy of ((rg) as a critical point of o1(\g,-). In fact this nondegeneracy does not
hold because the problem is invariant about rotations about the z (or z3) axis. We
could impose a symmetry condition on the functions involved so that degeneracy
by rotation is eliminated, but still we do not know whether we have nondegeneracy
in the radial direction. Instead of this assumption, we will see that a slight modi-
fication of the argument in the proof of Theorem 1.1 yields the desired conclusion.
Basically, the nature of the critical point of F) in this case is stable with respect to
C" perturbations.

We recall from Section 5 that to construct a solution it is sufficient to find a
critical point of the function jA(Zle Vi + ¢) and

A (Zf: Vi +6) = Ja (i U;) + ofe?)

where o(g?) is in C! norm. Therefore it is enough to ensure that Jy (Z Uj) has
a critical point that is stable under C' perturbations. _

In the case when Q, is an annulus, and (;(r) = (reg’”'%ﬂ) using that gx({;(t))
only depends on r and considering g = p1 = ... = ug, by Lemma 2.1 we have that

JA(ZU) Ex(,7) + Ba(po),

where
Fx(p, 1) = kao + 2a1/fx(r) + kasAp® — agp® fa(r)?
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with

and
Ra(p,m) = O(1*~7).
for some o € (0,1).

As was observed previously, for A € [0, o], fa(r) is precisely the eigenvalue
1(A,r) (see (7.11)). Therefore (7.8) gives f,(r) > 0 and then there exists rog €
(a,1) such that fy,(r¢) = 0.

Since we have (7.10) we deduce that for A = A\g 4+ with € > 0 small enough and
r close to ro, we have fy(r) < 0 and so the equation
580 =0

has a solution given explicitly by

—ay fa(r)
Ar)=—""-"—>0.
/UO( ,’I") kag)\—a3f)\(7")2 >
We consider this expression only for r in a neighborhood of rg, so that f(r) < 0.
Then

%(Fm,r) C Ra(ur) = 0

has a solution u(A,r) close to ug(A, 7). Note that since S%LRA(M’ r) = O0(u?=7), we
have
1\ 7) = po(A )| < CLAA() P77
Replacing p(A,r) in Fy we find
_ aifi(r)?
kag A — asgfa(r)
From this formula, (7.10) and the property

Ex(u(\,),m) + Ra(p(\, 1)) = + O(IA()P~).

(r) =500 as r—oaorr—1,

we get that Fx(u(A,7),7)+ Ra(u(A,7),r) has a critical point ry for which fy(ry) <
0. (I

Proof of Proposition 7.2. The argument is the same as in Proposition 7.1, except
that for this result we claim that properties (7.3) and (7.4) hold for a € (75,1). In
the case k = 2 both properties actually follow from the following claim: if a € (4, 1)

49>
then
go(z) > Go(z, —x), V€. (7.12)

To prove this we use an explicit formula for the Green function in the annulus €,
which can be found in [9], to obtain that:

go(x) = wig Z P, (z) and Go(z,—zx)= %2 ﬁ - Z(_l)mpm(x) )
m=0

m=0
where
a2m+1 o 2a2m+1|x|2m+1 + ‘x|2(2m+1)

P, =
(f) (2m + 1)|$|2(m+1)(1 _ a2m+1)
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Notice that P,,(x) is nonnegative for all m > 0, and therefore,

1 1

go(z) — Go(z, —x) = o —m

+ ) [+ (=)™ Pule)

1 1
— | ——— + 2P, Qq.
= |: 2] + 0(1’)} Vz €

A sufficient condition to have (7.12) is then

a—2alz|+|z|* _ 1
ST S~ VreQ,.
ePT-a) o

This in turn holds if a € (35, 1). O
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