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ABSTRACT 

Cholesterol is a major constituent of the plasma membrane in higher-order eukaryote 

organisms. The effect of cholesterol on the structure and organisation of cell 

membranes has been studied extensively by both experimental and computational 

means. In recent years, a wealth of data has been accumulated illustrating how subtle 

differences in the structure of cholesterol equate to considerable changes in the 

physical properties of the membrane. The effect of cholesterol stereoisomers, in 

particular, has been established, identifying a direct link with the activity of specific 

membrane proteins. In this study, we perform extensive molecular dynamics 

simulations of phospholipid bilayers containing three isomers of cholesterol, the 

native form (nat-cholesterol), the enantiomer of the native form (ent-cholesterol), and 

an epimer of cholesterol that differs by the orientation of the polar hydroxyl group 

(epi-cholesterol). Based on these simulations, an atomic-level description of the 

stereospecific cholesterol-phospholipid interactions is provided, establishing a 

potential mechanism for the perturbation of membrane properties, specifically the 

membrane dipole potential.  
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INTRODUCTION 

Phospholipid bilayers serve as the fundamental scaffold of all biological membranes, 

forming a barrier between the cell interior and the surrounding environment. Integral 

membrane proteins are responsible for the controlled passage of substances across this 

barrier. Cholesterol is particularly abundant in the plasma membrane of higher-order 

eukaryotes, and is an important requirement for the functioning of a diverse range of 

membrane proteins, whilst acting as a crucial regulator of membrane fluidity.1 As a 

result, the specific effect of cholesterol on the structure of a phospholipid bilayer has 

been under discussion for much of the last century.2 Arguably the most striking 

response to membrane cholesterol is the ‘condensing effect’, whereby the area per 

lipid molecule is noticeably lower than would be observed during ideal mixing, and 

the membrane thickness is increased concordantly, indicating changes in lipid 

organisation.3 

In recent years, significant interest has been focused toward characterising the 

physical effect of naturally occurring cholesterol analogues, as well as synthetic 

cholesterol isomers and derivatives on lipid membranes. The native form of 

cholesterol (nat-cholesterol) is an asymmetric amphiphilic molecule, composed of a 

hydroxyl group attached to a tetracyclic sterane backbone, exhibiting a smooth α face 

and rough β face (Fig. 1A). The enantiomer of nat-cholesterol (ent-cholesterol) is the 

non-superimposable mirror image (Fig. 1B), exhibiting physiochemical properties 

indistinguishable to native cholesterol, except for the rotation of plane-polarised 

light.4-7 Subtle changes in cholesterol membrane structure have been shown to exert 

profound effects on innate physiochemical properties. Certain attributes are known to 

significantly diverge in membranes containing related cholesterol molecules, 

including but not limited to epi-cholesterol, a stereoisomer of cholesterol, which 

differs in the orientation of the hydroxyl group (Fig. 1C), and 7-dehydrocholesterol 

and desmosterol, cholesterol precursors that differ by a double bond.8-13 Membrane 

dipole potential, the potential difference within the membrane bilayer, exemplifies 

this phenomenon. A significant increase in dipole potential is observed upon 

cholesterol replenishment of both model and natural membranes, a lesser increase 

when 7-dehydrocholesterol and desmosterol are present, whilst replacement with epi-

cholesterol causes the dipole potential to decrease, thus demonstrating that this 

property is highly dependent on the exact cholesterol structure.14-17 The molecular 
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mechanism underlying the regulation of membrane dipole potential via cholesterol 

and related molecules is currently unclear, however.  

It has also been demonstrated that variations in cholesterol structure can modulate the 

functioning of specific membrane proteins, including but not limited to inwardly 

rectifying potassium channel Kir2.1,18 ligand-gated ion channel receptor GABAA
19 

and G-protein coupled receptor 5-HT1A.20 Membrane cholesterol has been suspected 

to regulate membrane proteins by a direct mechanism, where direct coordination of 

cholesterol provokes conformational changes in the receptor, or an indirect 

mechanism, by modifying the membrane properties. Unnatural isomers, ent- and epi-

cholesterol, have proven to be useful experimental probes to determine the exactitude 

of the interaction of cholesterol with such membrane proteins, and consequently the 

mechanism of cholesterol action.6, 18-21 Ent-cholesterol, in particular, is a useful 

candidate to elucidate specific cholesterol effects, as the membrane properties are 

unchanged. 

To elucidate how cholesterol and related molecules evoke differences in the physical 

properties of the membrane and the dynamics of membrane proteins, a high-

resolution description of the specific interactions is required. As a consequence, 

molecular dynamics (MD) simulations have become an established method to typify 

the impact of cholesterol on membrane lipids and proteins, in atomic detail.22-24 In this 

study, we have performed all-atom MD simulations of phospholipid bilayers 

containing 30% nat-, ent- and epi-cholesterol, as well as a 100% phospholipid bilayer, 

in order to determine the atomic behaviour of the cholesterol isomers. The simulations 

were 500 ns in length, significantly improving the timescale of prior MD simulations 

examining the dynamics of epi-cholesterol, which were executed for 2 ns.25 Key 

biophysical properties, including area per lipid, cholesterol tilt-angle and solvent-

accessible-surface area, as well as the identity of crucial cholesterol-phospholipid 

interactions, were derived from the simulations. The results indicate potential 

mechanisms by which epi-cholesterol influences the membrane dipole potential and 

interfere with the functioning of membrane proteins. This is particularly relevant for 

the functioning of 5-HT1A receptor, as ligand binding is abated in the presence of the 

epi-cholesterol.20 

Figure 1. Chemical structure of (A) nat-cholesterol, (B) ent-cholesterol and (C) epi-

cholesterol molecules. (D) Representative snapshot of a simulation system: a lipid 

bilayer is solvated in a water box with a final concentration of 150 mM final of KCl. 

Phosphate atoms of the phospholipid molecules, and oxygen atoms of the cholesterol 
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molecules are represented by a brown and red spheres, respectively, to indicate the 

position of the headgroups. Carbon atoms are shown in cyan. 

 

METHODS 

System Setup 

Membranes containing 1- palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

molecules and nat-cholesterol molecules were generated using the CHARMM-GUI 

Membrane Builder.26 27 28 The  POPC membrane contained 244 POPC molecules, and 

the mixed bilayer contained 196 POPC molecules and 84 cholesterol molecules which 

represents ~30% cholesterol content to mimic known experimental conditions. The 

mixed POPC/nat-cholesterol membrane was then modified to generate additional 

membranes containing the epimer and enantiomer of cholesterol. The combined 

system was then solvated to produce a rectangular water box of dimensions (92 x 92 x 

80) Å3. K+ and Cl- ions were added using the Autoionise Plugin of VMD, to neutralise 

the system and obtain a 150 mM concentration.29 The final systems contained 

approximately 60,000 atoms, and can be seen in Fig. 1D.  

Molecular Dynamics Simulations 

NAMD2.9 was employed to perform molecular dynamics (MD) simulations of the 

systems throughout.30 CHARMM36 parameters were used for phosholipids31, with 

standard parameters for ions32 and the TIP3P33 model for water. The modified 
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CHARMM36 parameters by Lim et al were used for nat-cholesterol, and manually 

modified to accommodate the ent- and epi-cholesterol molecules.34 All systems were 

equilibrated using the documented CHARMM-GUI protocol.27 Unrestrained 

dynamics for each system was then performed in the NPT ensemble for 500 ns. The 

Particle Mesh Ewald method was used for the treatment of full-system periodic 

electrostatic interactions; interactions were evaluated every second timestep with a 

value of 1 Å to determine grid spacing.35 Electrostatic and van der Waals forces were 

calculated every timestep and up to a cut-off distance of 12 Å. A switching distance 

of 10 Å was chosen to smoothly truncate the non-bonded interactions. Only atoms in 

a Verlet pair list within a cut-off distance of 13.5 Å were considered, with the list 

reassigned every 20 steps.36 The SETTLE algorithm was used to constrain all bonds 

involving hydrogen atoms to allow the use of a 2 fs timestep.37 The Nose-Hoover-

Langevin piston was employed to control the pressure with a 200 fs period, 50 fs 

damping constant and a desired value of 1 atmosphere.38 39 The systems were coupled 

to a Langevin thermostat to sustain a temperature of 298 K throughout, in line with 

the experimental conditions used for radiolabel binding assays by Jafurulla et al.20  

Trajectory Analysis 

The atom names of the cholesterol and POPC molecules referred to in the following 

text are defined Fig. S1 in the Supplementary Material. MEMBPLUGIN was used to 

perform analyses of (1) membrane thickness, (2) area per lipid, (3) the carbon-

deuterium (SCD) order parameter, (4) lipid tilt angle, and (5) lipid interdigitation.40 

To begin with, the membrane thickness was calculated as the distance between the 

projected mass distributions of the P atoms in the phospholipid headgroups in the 

upper and lower leaflets. To calculate the area per lipid, the simulation box was 

divided into a Voronoi diagram, based on the coordinates of atom O3 in cholesterol 

molecules and atoms C2, C21 and C31 in POPC molecules (see Supplementary Fig. 

S1 for notation), and the resulting area of the polygons was evaluated, for each bilayer 

leaflet. The SCD order parameter was calculated as 𝑆𝐶𝐷 = −
1

2
〈3 cos2 𝜃 − 1〉, to 

gauge the motility of the C-H bonds on the phospholipid acyl chains.41 The tilt angle 

was calculated as the angle between the vector defined by the C10 and C13 

cholesterol atoms and the bilayer normal, which is aligned to the z-axis throughout 

the simulation trajectories. The degree of acyl chain interdigitation was measured via 

a coordination-based fraction, obtained by evaluating the number of heavy atoms 
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within 4 Å (default value) of atoms in the opposing leaflets.40 Density profiles were 

calculated using the Density Profile Tool of VMD.42 The solvent-accessible surface 

area and radial distribution functions were also calculated using built-in VMD tools. 

Further analysis was performed using in-house TCL scripts. A 4 Å distance cut-off 

was used for the calculation of intermolecular charge pairs and atomic interaction 

pairs between heavy atoms. A 3.5 Å distance and 35° angle cut-off was used for the 

calculation of H-bonding. The lifetime of epi-cholesterol dimers was calculated by 

considering the period between H-bond formation and disruption of the H-bond for a 

minimum of 0.5 ns. Reformation after this interval is considered as a new dimer, and 

hence lifetime. The initial 200 ns of the simulation trajectories were considered as an 

equilibration period, following assessment of the fluctuations of the membrane 

thickness and area per lipid (Table S1). These properties were regarded as converged 

by 500 ns, thus all analysis is performed on the 200-500 ns time interval. 

RESULTS 

In the first instance, global membrane properties have been calculated to elucidate the 

differences detectable using the MD simulation protocol described in this study, and 

the conformance of such results with known experimental data. In the POPC 

simulation, the membrane thickness and the area per lipid are calculated as 40 ± 1 Å 

and 63 ± 1 Å3 respectively (Table 1), in close agreement with accepted experimental 

values.43 The addition of cholesterol causes a net reduction of total bilayer area, with 

the overall average area per lipid in the system reducing to 45 ± 1 Å3 in CHL and 46 ± 

1 Å3 in ENT, characteristic of the well-known condensing effect of cholesterol.3 This 

effect is slightly offset in EPI, with an overall average area per lipid of 48 ± 1 Å3, 

primarily as a result of an increased area of POPC molecules (Table 1). 

Correspondingly, an increase in membrane thickness is observed in CHL (46 ± 1 Å), 

ENT (46 ± 1 Å) and to a lesser degree in EPI (45 ± 1 Å). The extent to which the 

components of the upper and lower leaflets overlap, known as lipid interdigitation, are 

expectantly inversely correlated, displaying an increase in interdigitation alongside a 

decrease in thickness (Table 1). 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

 

Table 1. Summary of key membrane physical properties (± SD) obtained from MD 

simulations on the 200-500 ns time interval. 

 POPC CHL ENT EPI 

Thickness (Å) POPC 39.8 ± 0.9 46.3 ± 0.9 45.9 ± 0.9 44.8 ± 1.0 

Sterol - 35.7 ± 0.8 35.6 ± 0.7 33.2 ± 0.8 

Area per Lipid 

(Å3) 

POPC+Sterol 62.5 ± 1.2 45.4 ± 0.7 45.9 ± 0.7 47.4 ± 0.9 

POPC 62.5 ± 0.9 53.3 ± 0.7 53.9 ± 0.6 55.7 ± 0.8 

Sterol - 27.2 ± 0.8 27.0 ± 0.8 28.1 ± 1.1 

Tilt Angle (°) Sterol - 14.4 ± 1.2 15.3 ± 1.2 19.0 ± 1.5 

Interdigitation (%)  5.6 ± 0.4 3.4 ± 0.2 3.5 ± 0.2 3.8 ± 0.2 

 

Figure 2. (A) Distribution of cholesterol tilt angles, normalized to 1 with a bin width 

of 1. SCD order parameter of (B) 16:0 saturated acyl chain at the glycerol sn1 

position (C3) and (C) 18:1 unsaturated acyl chain at the glycerol sn2 position (C2). 

Mass density profiles of cholesterol (D) C3 and (E) O3 atoms, in the lower (left) and 

upper (right) leaflets, following alignment of the POPC phosphate atoms, normalized 

to 1 with a bin width of 0.5. SASA per (F) POPC and (G) cholesterol molecule, 

normalized to 1 with a bin width of 10 and 1 respectively. CHL, ENT, EPI and POPC 

simulations are displayed in red, blue, green and black respectively. 
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Such differences in the membrane physical properties arise from differences in the 

position and orientation of cholesterol in the bilayer, and the synergistic interaction 

with other bilayer components.44 Cholesterol tilt angle is an important quantity, which 

is closely related to the ability of cholesterol to order its environment.45 In this 

example, CHL and ENT display the narrowest distribution of tilt angles, with mean 

values of 14 ± 1 ° and 15 ± 1 °, respectively, representing a conformation almost 

parallel to the bilayer normal (Fig. 2A). The distribution of tilt angles in EPI is 

noticeably more spread, with an increased mean of 19 ± 2 °. This effect is reflected in 

the calculated SCD order parameter, which is commonly used as a measure of lipid tail 

organisation, and can be directly compared to experimentation.46-48 Overall, SCD 

values increase in the cholesterol-containing bilayers, relative to POPC alone (Fig. 

2B-C), indicative of the ordering effect of cholesterol that is well established in the 
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literature.49 This effect has been attributed to lipid packing around the rigid 

cholesterol frame. EPI exerts a weaker ordering effect overall, relative to CHL and 

ENT, with the greatest differences observed in the saturated regions of the acyl 

chains. These results contribute to a wealth of previous literature, which note the 

specificity of membrane ordering with regards the atomic structure of cholesterol.50 

To directly compare the position of the cholesterol hydrophobic ring system and the 

hydrophilic hydroxyl group in the membrane, the mass density profiles of the C3 and 

O3 atoms (defined in the Supplementary Fig. S1), following alignment of PC 

phosphate atoms, can be calculated (Fig. 2D-E). The C3-O3 maxima of EPI overlap at 

~5.5 Å resulting from the axial conformation of the hydroxyl group, suggesting that 

whilst C3 adopts a shallower position in the membrane (~6 Å in CHL and ENT), O3 

is more buried (~5 Å in CHL and ENT).  

Figure 3. (A-B) Average interaction frequency between cholesterol and POPC atoms 

(specified). Interactions are calculated using a 4 Å criterion between heavy atoms.  
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To assess how this altered position affects the organisation of the membrane on an 

atomic-level, the average interaction frequency between individual POPC and 

cholesterol atoms has been calculated (Fig. 3). In general, headgroup atoms exhibit an 

average interaction frequency of ~0-10% of POPC, whilst tail atoms and those in the 

linker region, display average interaction frequencies in the 10-30% range, with EPI 

consistently presenting lower values. The carbonyl groups of the ester linkages (O22 

and O32) are the exceptions to this, with average interaction frequencies in excess of 

40% and elevated average interaction frequencies in EPI (54%, 56%) are relative to 

CHL (42%, 41%) and ENT (49%, 40%). The observed net increases can be attributed 

to enhanced interactions with C1, C5, C6 and C7 atoms, offsetting the reduced 

contact interface with O3. 

To assess the impact of such differences at the membrane-water interface, the solvent 

accessible surface area (SASA) per molecule has been calculated for POPC and each 

sterol species (Fig. 2F-G and Table 2). The SASA of POPC in a single component 

membrane is calculated as ~220 Å3, which reduces by ~15 Å3  in CHL, 12 Å3  in ENT 

and remarkably increases by ~5 Å3 in EPI, despite a decrease in the area per lipid for 

all cholesterol isomers relative to POPC-only. These observations provide evidence 

that SASA, and hence POPC-solvent interactions, are modulated by specific lipid-

cholesterol interactions. It is interesting to note that the hydration of POPC 

headgroups decreases by ~4% in CHL and ENT, and 2% in EPI, as calculated from 

the individual RDFs of all POPC atoms (Fig. S2).  

Table 2. Average SASA (± SD) of membrane lipids  

SASA (Å2) POPC CHL ENT EPI 

POPC 220 ± 75 205 ± 67 208 ± 68 225 ± 81 

Sterol - 22 ± 16 23 ± 16 28 ± 18 

 

With regard to the SASA of cholesterol, CHL (22 Å3) and ENT (23 Å3) display 

similar values, increasing to 28 Å3 in EPI (Table 2). This increase can be attributed to 

numerous effects, such as the increased area per cholesterol and tilt angle, the 

elevated position in the membrane and exposure of ring atoms as a result of the 

orientation of the hydroxyl group. The net increase in hydration in EPI is ~10%, 

relative to CHL and ENT, as calculated from the individual RDFs of all cholesterol 

atoms (Fig. S3). It is worth noting that a decrease is observed for O3, signalling that 
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interactions with hydrophobic atoms are solely responsible for the observed increase. 

This will likely perturb the electrostatics of the cholesterol-water interfacial region.  

H-bonding is a further important feature of the membrane-water interface. 

Approximately, all CHL and ENT molecules participate in at least one H-bond, via 

the cholesterol hydroxyl group, with 42% of molecules associated with PC 

headgroups and 60% of molecules H-bonding with water, in both cases. In contrast, 

70% of EPI molecules are involved in H-bonding, as a result of diminished 

interactions with both PC headgroups (25%) and solvent (37%), and the evolution of 

cholesterol homo-dimers (8%). Dissection into the individual components of the PC 

headgroup (Fig. 4A, see Fig. S1 for atom names), identifies the largest reduction of 

H-bonding with atoms O13 (-3%) and O14 (-3%) in the phosphate group, and O22 (-

6%) at the apex of the unsaturated acyl chain at the sn2 acyl position, whilst H-

bonding with O32 on the saturated acyl chain at the sn1 position is generally 

conserved. The remaining reductions can be attributed to atoms C12, C13, C14, C15, 

O11 and O12). The total number of interactions with the cholesterol hydroxyl group 

displays an analogous pattern, as shown in Fig. 1C.  

With regards to the hydration of the PC headgroups, approximately 18% of POPC 

molecules H-bond with CHL and ENT, whilst 10% H-bond with EPI. The reduction 

in PC-sterol H-bonds in EPI is overcompensated for by an increase in solvent H-

bonds, resulting in a total of 9.4, 9.4 and 9.5 H-bonds per POPC molecule, in the 

CHL, ENT and EPI simulations respectively. Thus it is effectively unchanged by the 

presence of different cholesterol isomers. This is noticeably less than in the pure 

POPC membrane simulation (~10.3 H-bonds per POPC molecules), which can largely 

be attributed to elevated H-bonding of phosphate oxygen atoms (O13 and O14; -

32%), choline methyl groups (C13, C14, C15; -21%) and carbonyl atoms within the 

ester linkages (O22, O32; -20%) in the absence of cholesterol (Fig. 4B). 

Figure 4. (A) Frequency of PC-sterol H-bonds, per cholesterol molecule. (B) 

Frequency of PC-water H-bonds, per POPC molecule. CHL, ENT, EPI and POPC 

simulations are displayed in red, blue, green and black respectively. (C) Licorice 

representation of a POPC molecule coloured according to the percentage interaction 

with the cholesterol hydroxyl group. A distance criterion of 4 Å between heavy atoms 

is used in this case.  
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Charge-pairs also contribute significantly to the dynamics of the membrane 

headgroup region. Intermolecular charge-pairs can be formed between the methyl 

groups of the positively charged choline moiety of PC, and negatively charged groups 

in cholesterol and PC headgroups, including the cholesterol hydroxyl (O3), the non-

ester phosphate oxygen atoms (O13, O14) and the carbonyl atoms within the ester 

linkages at the apex of the acyl chains (O22, O32). The frequency of CHL-PC charge 

pairs is significantly perturbed in EPI, likely as a direct result of the orientation of the 

O3 hydroxyl (Fig. 5A). Relative to the POPC-only membrane, the number of PC-PC 

charge-pairs is increased by approximately 15%, 14% and 3%, in CHL, ENT and EPI 

respectively. The number of charge-pairs involving O13 and O14 (POPC < EPI < 

CHL ≈ ENT) is inversely correlated in the observed trend for the values calculated for 

the area per lipid (POPC > EPI > CHL ≈ ENT) (Fig. 5B). It is apparent, however, that 

the distance between PC headgroups does not dictate the frequency of choline charge-

pairs with O22 and O32 (Fig. 5C-D), and instead is likely directly influenced by the 

cholesterol headgroup. As a result, the number of charge-pairs for O22 displays the 

trend EPI ≈ POPC < CHL ≈ ENT, whilst the trend EPI < POPC ≈ CHL ≈ ENT is 
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observed for O32. Thus, the increased frequency of O13/O14 choline charge-pairs in 

EPI, relative to POPC, is offset by the reduction in O32 choline charge-pairs, 

resulting in an overall pattern of EPI ≈ POPC < CHL ≈ ENT. 

Figure 5. Radial distribution function of (A) cholesterol O3, (B) lipid O13/O14, (C) 

lipid O32, and (D) O22 atoms with C12, C13 and C14 atoms of the lipid headgroup 

choline region, to represent the distribution of intermolecular charge pairs. CHL, 

ENT, EPI and POPC simulations are displayed in red, blue, green and black 

respectively. 

 

A further phenomenon worth considering is the formation of cholesterol dimers. The 

calculated RDF of the cholesterol C3 atoms, up to a distance of 10 Å, is shown in Fig. 

6A. According to this data, all cholesterol isomers are guaranteed to be within ~6.5 Å 

of another cholesterol molecule, yet the nature in which such molecules interact is 

considerably different in EPI. The first RDF peak in CHL and ENT lies at 4 Å, 

whereas in EPI the first RDF peak ~5 Å and is approximately twice as probable, 

suggesting the alternative orientation of the hydroxyl group simultaneously acts as a 

spacer and a stabiliser. These results are consistent with the noticeable population of 

intermolecular cholesterol H-bonds identified in EPI by prior H-bond analysis. Using 

H-bond frequency as an indicator of dimer formation, the average lifetime of epi-

cholesterol dimers has been calculated as 0.9 ± 1.1 ns, with a maximum lifetime of 

~11 ns (Fig. 6B). Characterisation of the interfacial region between two bound 

molecules (Fig. 6C) reveals the crucial interactions are localised in the hydroxyl 
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region, with the oxygen interacting with ~4 atoms on the adjacent molecule 

simultaneously; the most probable interactions in descending order are O3, C3, C6 

and C1 (Fig. 6D).  

Figure 6. (A) RDF of cholesterol C3 atoms. CHL, ENT and EPI systems are shown in 

red, blue and black respectively. (B) Weighted histogram of dimer lifetime, calculated 

as the continuous occurrence of inter-cholesterol H-bonds. (C) Average number of 

interaction pairs between epi-cholesterol molecules exclusively involved in dimers 

(D) Interaction frequency between a hydroxyl O3 and an adjacent epi-cholesterol 

molecule. 

 

DISCUSSION 

Of the cholesterol isomers in this study, nat-cholesterol exhibits the greatest influence 

on the physical properties of the membrane, almost exactly replicated by its 

enantiomer. Epi-cholesterol, on the other hand, exerts a weaker ordering effect as 
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represented by the SCD order parameter, manifesting in a decrease in bilayer thickness. 

Such deviations can be attributed to adjustment of the position and tilt angle of epi-

cholesterol in the phospholipid bilayer, and modification of the cholesterol surface 

available to interact with other cholesterol and phospholipid molecules.  

The simulations presented here establish a direct link between the isomerisation of the 

cholesterol hydroxyl group and the occurrence of cholesterol dimers. Despite 

significant interest in cholesterol aggregation and raft formation, experimental 

evidence concerning the existence of cholesterol dimers is negligible. Face-to-face 

dimers, stabilised by van der Waals interactions between the cholesterol α-faces, were 

first proposed by Martin and Yeagle,51 and have been examined in detail in recent 

years by computational means.52 A study by Bandara et al, using unbiased MD 

simulations, calculated dimer lifetime at the order of hundreds of picoseconds, with 

instances of a nanosecond lifetime more prevalent at higher cholesterol and 

sphingomyelin concentrations.52 Furthermore, Andoh and coworkers used 

thermodynamic integration to calculate the free-energy profile of cholesterol 

dimerization.53 Cholesterol molecules separated by ~10-15 Å and interspersed by 

POPC acyl tails displayed an attractive interaction, with a well depth of -3.5 kJ mol-1. 

This value approximates to a thermal energy of ~310 K, highlighting the temperature 

dependence of the dimerization process.53 Additional computational studies have 

noted the instability of artificial aggregates that rapidly dissociate to approximately 

monomeric units,54 and the increased likelihood of cholesterol aggregates at elevated 

concentrations,55 as well as the direct observation of raft formation in both all-atom 

and coarse-grained MD simulations.22, 56-58 In this case, it is apparent the H-bonding 

properties of epi-cholesterol significantly enhance the stability of the dimer, resulting 

in an average lifetime at least one order of magnitudes greater than those previously 

calculated. The increased frequency of such assemblies inadvertently reduces the 

availability of the cholesterol α-face, which forms the dimer interface, and can 

therefore modify the molecular interaction between other cholesterol and 

phospholipid molecules, as well as membrane proteins. A growing number of studies 

predicate a direct relationship between membrane cholesterol and GPCR 

oligomerisation,59-61 with the involvement of the face-to-face dimer in the formation 

of a GPCR functional dimer postulated in earlier works.62 It is therefore conceivable 

that evolved epi-cholesterol dimer species may directly interact with membrane 

proteins, translating as the observed functional changes. In the 5-HT1A receptor, for 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

example, the binding affinity of extracellular ligands is directly related to the presence 

of specific cholesterol isomers, nat- and ent- cholesterol in solubilized native 

hippocampal membranes.20 Specific interactions between cholesterol and the 5-HT1A 

receptor will be explored in future computational studies.  

Bandari and coworkers have identified a close correlation between the activity of the 

5-HT1A receptor and the membrane dipole potential.17 Dipole potential has been 

implicated in the modulation of channel gating in voltage-gated ion channels,63 the 

formation of lipid rafts,64 the clustering and ligand binding affinity of receptor 

tyrosine kinases64 and the mechanism of anaesthetic action, and other small 

molecules.65 

The membrane dipole potential emanates from the ordered orientation of lipid 

headgroups and associated water dipoles in the polar region separating the 

hydrocarbon interior from the solvent.66 Regulation of membrane dipole potential by 

cholesterol has been ascribed to a number of factors, including (1) membrane 

condensation, resulting in increased charge density, (2) an ordered water network in 

the interfacial region, (3) reorientation of the P+-N- dipole in the phospholipid 

headgroup towards the membrane plane, and (4) the inherent dipole of cholesterol 

molecule itself.14, 63 These hypotheses will be discussed in relation to the known 

experimental trend for the bilayer compositions under investigation: epi-cholesterol 

(~338 mV) < POPC-only (~369 mV) < ent-cholesterol (~480 mV) < nat-cholesterol 

(~500 mV).17  

Immediately, it can be proposed that membrane condensation has a minor effect on 

the dipole potential, as the calculated area per lipid is similar in the cholesterol 

isomers examined in this study. The relationship between headgroup hydration is 

more complex, however. The interaction of water with phospholipid bilayers has been 

investigated in detail in numerous studies;67-70 revealing water molecules specifically 

orientate parallel to the bilayer normal, with hydrogen atoms directed towards the 

membrane, thus providing positive contributions to the dipole potential.63 In theory, 

therefore, further hydration will increase the membrane dipole potential, whilst 

disruption will decrease it. Using MD simulations Villareal and coworkers attributed 

the observed changes in dipole potential of DMPC membranes in the presence of 

trehalose to replacement of lipid-water H-bonds with lipid-trehalose H-bonds, despite 

maintenance of the overall number of H-bonds.71  
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Here, we observe the loss of a single H-bond when cholesterol isomers are included in 

the bilayer systems. As a uniform decrease in dipole potential is not observed 

experimentally for the isomers we have examined, it seems unlikely that the 

organisation of ordered water molecules around the phospholipid headgroups 

underlies the experimental trend of the dipole potential, in contrast to the conclusions 

by Villareal et al concerning the DMPC-trehalose system.  

Modification of the dipole potential has also been traced to conformational changes in 

the phospholipid headgroup, specifically the behaviour of the P+-N- dipole. The 

orientation of the P+-N- dipole has been proposed as a significant contributor to the 

difference in dipole potential observed between PC and PE headgroups, as well as the 

dynamics of the interfacial water.72 The PE P+-N- dipole is thought to occupy a 

position more parallel to the membrane, relative to PC, maintain optimal contacts 

with the phospholipid acyl chains. Concurrently, the negative contribution to the 

dipole potential is reduced, resulting in a more positive overall value. This theory is 

supported by quadrupole splitting of NMR spectra of deuterated phospholipids.  

In the context of this study, the calculated intermolecular charge-pair frequency can 

be directly correlated to the orientation of the P+-N- dipole. The increased number of 

charge-pairs involving phosphate oxygen atoms, for all isomers, can be qualitatively 

attributed to the decreased area per lipid. However, differential effects are observed 

for the carbonyl oxygen atoms involved in the ester linkages, suggesting a 

conformational change of the P+-N- dipole is responsible. Naturally, formation of 

charge pairs between the choline methyl groups and the carbonyl oxygens involved in 

the ester linkages cannot be formed when the P+-N- dipoles lie perpendicular to the 

membrane plane. Interestingly, the bilayer containing epi-cholesterol displays the 

lowest frequencies for O22 and O32 and therefore, the most perpendicular, with the 

latter value in close agreement with the POPC-only bilayer. The combined values are 

in overall agreement with the experimental trend for the dipole potential (epi-

cholesterol < POPC-only < ent-cholesterol < nat-cholesterol).  

Following this, the molecular mechanism underlying this phenomenon can be 

proposed. In terms of cholesterol-phospholipid atoms, we have demonstrated that the 

ester linkage of POPC forms the closest interactions with individual cholesterol 

molecules. However, the nature of the interactions differs significantly when 

comparing nat- and ent-cholesterol with epi-cholesterol. The number of interactions 

with the ester carbonyls is considerably increased when epi-cholesterol is present, 
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inadvertently obstructing potential interactions with other molecules in the system. 

Furthermore, polar interactions between the ester carbonyls and the hydroxyl group of 

nat- and ent-cholesterol are dominant, whereas the ester carbonyls primarily interact 

with the hydrophobic carbon backbone in epi-cholesterol. It is evident, therefore, that 

the formation of polar interactions between the ester carbonyls and other molecules in 

the system, in particular, will be less favourable when epi-cholesterol is present. 

These simple steric and electrostatic arguments can, therefore, be used to rationalize 

the diminished likelihood of charge-pair formation with the ester carbonyls observed 

when epi-cholesterol is present, which promotes the perpendicular orientation of the 

P+-N- dipole, relative to the bilayer surface. Overall, interpretation of the data 

presented in this study reveals the dynamics of P+-N- dipole in the phospholipid 

headgroup play a major role in modulation of the dipole potential of the membrane. 

 

CONCLUSIONS 

Using extensive MD simulations, totalling 2 μs, the behaviour of epi-cholesterol in an 

unsaturated phospholipid bilayer has been characterised, and compared to nat-

cholesterol and ent-cholesterol, as well as a cholesterol-free phospholipid bilayer. 

Slight differences in membrane thickness, area per lipid, interdigitation fraction and 

SCD order parameter are observed, relative to nat-cholesterol and ent-cholesterol 

which display identical properties throughout, in agreement with experimental 

studies. This can be attributed to minor deviations of the position and tilt angle of epi-

cholesterol, as well as an observable population of long-lasting epi-cholesterol 

dimers, which are directly stabilised by H-bonding of the axial hydroxyl group on the 

cholesterol α-face.  

Noteworthy variations are evident in the membrane-water interfacial region when epi-

cholesterol is present, with the phospholipid SASA and interaction profile more 

closely resembling that of a cholesterol-free membrane. Following this, we have 

considered in detail how the divergent atomic-level interactions directly influence the 

dipole potential of the membrane, and provide a comprehensive mechanism for the 

action of cholesterol in this respect.  

The membrane dipole potential is known to regulate transport processes, directly 

through the plasma membrane and also via embedded proteins. Consequently, 

understanding how the membrane dipole potential is modulated by various factors, 

such as the inclusion of small molecules, is of intense interest in the pharmaceutical 
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industry. Therefore, it is desired that the outcomes of this study provide crucial 

insights in this area, and contribute to our current understanding of the behaviour and 

role of the cholesterol in the cell membrane.  
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