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Research summary 

 

In this paper we analyze the impact of academic incubators on the quality of innovations pro-

duced by US research-intensive academic institutions. We show that establishing a university-

affiliated incubator is followed by a reduction in the quality of university innovations. The con-

clusion holds when we control for the endogeneity of the decision to establish an incubator using 

the presence of incubators at peer institutions as an instrument. We also document a reduction in 

licensing income following the establishment of an incubator. The results suggest that university 

incubators compete for resources with technology transfer offices and other campus programs 

and activities, such that the useful outputs they generate can be partially offset by reductions in 

innovation elsewhere. 

 

Managerial summary 

 

Do university incubators drain resources from other university efforts to generate innovations 

with commercial relevance? Our analysis suggests that they do: after research intensive US uni-

versities establish incubators the quality of university innovations, which we measure with pa-

tents, drops. This finding has immediate implications for practice as it suggests that the benefits 

and costs of incubation should not be analyzed in isolation. Rather, the effects of incubators ex-

tend to the overall innovation performance of the university.  It follows that measuring the net 

economic effect of incubators is challenging because besides the effects on innovation efforts the 

presence of an incubator may attract particular kinds of faculty and students, enhance the prestige 

of the university, generate economic multiplier effects and benefit the community as a whole.     
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1. INTRODUCTION 

Universities are increasingly tasked with fostering entrepreneurship and innovation, encour-

aged to generate revenues from research produced on campus and contribute to (local) economic 

growth (Etzkowitz, 1998, 2002; Etzkowitz et al., 2000; Goldstein and Renault, 2004). This view 

of the entrepreneurial university reflects two recent trends. First, universities are increasingly pa-

tenting research with commercial potential and subsequently seeking to increase their licensing 

revenues (Bulut and Moschini, 2009; Henderson et al., 1998). At the same time, universities are 

creating incubator facilities to assist faculty members, university graduates, community members, 

or other parties to start new firms that not only contribute to local economic growth, but also gen-

erate income for the university which often holds equity positions in the incubator’s tenant firms. 

Establishing university incubators and increasing university patenting reflect similar underly-

ing pressures: both are driven by reductions in public funding for academia and increasing pres-

sures for public accountability. Moreover, the resources and capabilities used to support start-ups 

and to generate patented inventions are largely shared; maintaining these two activities simulta-

neously involves leveraging the same academic knowledge and talent, devoting dedicated person-

nel for patent-issuing procedures and auxiliary services to start-ups, as well as directing signifi-

cant investments for research equipment that can be used not only by university faculty and staff 

but also by incubator tenants. By extension, the overlap of goals and resources between univer-

sity patenting and incubators suggests that decisions to increase university revenue and contribute 

to innovation and local economic growth through the twin channels of patenting and incubator 

activities are connected. This observation calls for reflection upon the basic, yet unexplored, 
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question of how each channel affects the other. In this paper we address that question by examin-

ing empirically whether the quality and economic value of university innovation efforts is influ-

enced by the creation of incubator facilities at research-intensive US universities. 

Theoretically, the creation of incubation facilities can improve the quality and economic 

value of university patents by facilitating knowledge flows between academic inventors and mar-

ket participants, knowledge that can not only help university patents articulate the commercial 

value of their inventions but also help generate ideas to university inventors that lead to valuable 

patents. Moreover, assuming that industry–academia collaboration often yields superior out-

comes, incubators can lead to higher-quality patents if incubator tenants collaborate with univer-

sity inventors. On the other hand, the presence of an incubator can reduce the quality of univer-

sity patents if auxiliary incubator services and patenting activities compete for the same scarce 

university resources such as funds and dedicated personnel. Similarly, the average quality of uni-

versity patents may fall once an incubator is in place if the university’s overall focus and associ-

ated investments and resources shifts towards, say, start-ups over high-quality patenting. Our re-

search aims to see which effect outweighs the other.  

We must keep in mind, however, that the decision to establish an incubator can be endoge-

nous; if incubators are followed by increases in patent quality, this could indicate that universities 

with good projects in the pipeline, and the prospect of high-quality patents down the road, choose 

to establish an incubator, even though there is no direct effect of incubators on patent quality. 

Likewise, a decline in patent quality following the establishment of an incubator could indicate 

that the university expects patent quality to decrease, and establishes an incubator as an alterna-

tive mechanisms for generating revenue and fulfilling its entrepreneurial mission. 

Theorizing about the connection between incubators and patent quality and empirically test-

ing that connection have not, as far as we are aware, been addressed in previous work. We also 
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add to the literature on the quality of university patenting which, in addition to insightful, mainly 

descriptive historical accounts (Henderson et al., 1998), has focused primarily on the effects of 

regulatory interventions such as the Bayh-Dole Act and the impact of university experience and 

other university-specific features (e.g. Mowery et al., 2002; Mowery and Ziedonis, 2002; Owen-

Smith and Powell, 2003; Sampat et al., 2003).  

Our empirical work follows convention in approximating quality. First, we proxy for the sci-

entific and economic value of a patent by recording the number of times a given patent is cited by 

subsequent patents (forward citations), adjusted for the age of the patent (e.g. Harhoff et al., 

1999; Lerner, 1994). Using a large sample of university patents, we then run a series of regres-

sions comparing patent quality before and after the university establishes an incubator, control-

ling for patent-, university-, and time-specific characteristics that may affect patent quality. To 

mitigate the aforementioned endogeneity, we also run instrumental-variables regressions; our 

identification strategy builds on the insight that universities compete with each other and tend to 

imitate their peer institutions, particularly those that are geographically close (Rey, 2001). Hence, 

we use the presence of incubators at similar, nearby (and potentially competitor) universities as 

an instrument for the focal university’s decision to establish an incubator. As an additional ro-

bustness check, we change the unit of analysis to the university and estimate how the establish-

ment of incubators affects licensing income, a primary goal of university patenting. We describe 

this exercise in more detail below. 

To build our dataset, we collect information on all 55,919 patents granted from 1969 to 2012 

to US-based universities that were members of the Association of American Universities (AAU) 

as of the end of 2012. These universities are research-intensive, they patent extensively, and those 

that have established incubators have done so in different years, which allows enough time varia-

tion in our sample.  
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Our results suggest that, in terms of generating useful innovation, the value-added of univer-

sity incubators may have been overstated: we find a strong negative association between the es-

tablishment of an incubator and the quality of patents produced subsequently by that university. 

This relationship holds across a variety of empirical specifications, using different control varia-

bles, adding indicators for university and year, and controlling for endogeneity using the instru-

ment described above. At the university level, we find that licensing revenues fall following the 

establishment of an incubator, controlling for university characteristics such as the size and expe-

rience of the technology-transfer office and the average quality of the university’s patents. Li-

censing revenues accrue both to patented and non-patented innovations, and not all patented in-

novations are licensed, so this can be regarded as an independent test. In other words, not only do 

university attempts to encourage innovation and entrepreneurship by incubating businesses seem 

to reduce the quality of subsequent scientific and technical innovations, but they also appear to 

reduce the income generated by innovative activities.   

Moreover, we find that the negative association between patent quality and the establishment 

of an incubator is larger for universities with less resource munificence (measured by research 

funding). This is consistent with the idea that resource constraints are driving our results. Foster-

ing startup companies requires financial, human capital, and organizational resources (Powers 

and McDougall, 2005), and the more resource-constrained the university, the more likely that 

budgets, facilities, and personnel supporting business incubation are withdrawn from other cam-

pus activities that support innovation.  

Our findings have important policy implications. University administrators, technology trans-

fer office officials, and other stakeholders generally show a keen interest on the effects of incuba-

tors and university patenting (Carlson, 2000; Guy, 2013). This interest is understandable because 
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patenting and incubation are two prime means for universities to fulfil their new roles of generat-

ing economic growth and securing income. If these two means compete for similar scarce re-

sources, then establishing an incubator may, on balance, reduce the quality of the innovative out-

puts produced by the university. Our work suggests that these innovation channels should be 

treated jointly, as alternative, and potentially competing, means of fostering innovation and eco-

nomic growth. In sum, adopting a new lens via which incubation and patenting are analyzed 

jointly can help decision makers in determining the most effective means for academic institu-

tions to meet the expectations that arise from their new roles. 

We organize the rest of the paper as follows: In the next two sections we review the relevant 

literature and develop our theoretical expectations on the effects of incubators on patent quality. 

In Section 4 we describe our econometric model and estimation procedures, and in Section 5 we 

review the data we use. In Section 6 we present the estimation results. Finally, we conclude in 

Section 7.  

2. UNIVERSITY EFFORTS TO FOSTER INNOVATION AND ENTREPRENEURSHIP 

Universities have long been central to the innovative process through generating, codifying, 

and communicating basic knowledge. Since the middle of the 20th century, universities have also 

played an increasingly important role in developing and using applied knowledge, particularly in 

the scientific and technical fields (Henderson et al., 1998; Mansfield, 1991, 1995). Universities 

often serve as “anchors” in the emergence of technology clusters (Stanford University being the 

best-known example) (Swann and Prevezer, 1996). Universities train scientists and engineers, 

partner with established and emerging technology firms, and develop their own in-house technol-

ogies. The desire to increase universities’ applied research outputs and give them a stronger role 

in the innovative process has led US policymakers to describe local economic development as a 
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“fourth mission” of the public research university (along with research, teaching, and service) 

(Etzkowitz et al., 2000; Youtie and Shapira, 2008). 

Universities also attempt to foster innovation and economic development directly by estab-

lishing business incubators. Business incubators (“incubators” for short) are organizations that 

help aspiring entrepreneurs translate ideas into profitable ventures. Incubators typically provide 

office space, consulting services, assistance in finding suppliers and distributors, access to ven-

ture capitalists and business angels, and sometimes direct financial support (Aernoudt, 2004; 

Finer and Holberton, 2002; Rothaermel and Thursby, 2005a). Incubators are operated by a vari-

ety of private and public actors including government agencies and NGOs, but more than half of 

US incubators are affiliated with higher-education institutions (Powell, 2013). University incuba-

tors (also called university technology business incubators or UTBIs) provide additional services 

to their tenant firms such as access to university labs and computing facilities, student workers, 

and faculty consultants (Mian, 1996). Their on-campus or near-campus location and close rela-

tionships with university personnel also make it easier for university faculty and students to es-

tablish their own ventures and become incubator tenants.1 By 2013 all but ten of the US AAU 

universities had established a campus incubator. Journalist Nicholas Thompson (2013) wrote of 

Stanford: “Students can still study Chaucer, and there are still lovely palm trees. But the center of 

gravity at the university appears to have shifted. The school now looks like a giant tech incubator 

with a football team.” 

Another approach for encouraging university innovation is to assist faculty, staff, and stu-

dents in patenting innovations developed within the university. The prospect of a patent provides 

                                                 
1 In emerging economies, incubators provide even more foundational support, helping firms establish basic supplier 

and customer relationships, write and enforce contracts, and so on – helping to establish market institutions rather 

than developing specific business capabilities (Dutt et al., 2013). 
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an important financial incentive for university personnel to devote time and effort to potentially 

valuable commercial technologies (Lach and Schankerman, 2008; Owen-Smith and Powell, 

2001; Thursby et al., 2001).2 To facilitate patenting, many universities have established technol-

ogy transfer offices to ease the administrative burden of the patent application process and to 

manage the use of patents that are successfully obtained. Most often the university itself will be 

the patent holder, sharing licensing income with individual scientists; in a few cases, faculty 

members retain patent rights. The Association of University Technology Managers (AUTM), 

which represents technology transfer offices, reports that universities earned $2.6 billion in li-

cense fees in 2012. Of course, not all innovations are patentable, and not all patentable ideas are 

innovative. Nonetheless, patents serve as a useful proxy for (quality of) innovation (Acs et al., 

2002; Igami, 2013), so we can draw inferences about the strength of a university’s innovative 

programs by examining its portfolio of university-owned patents. 

There is a large literature on the use of patents and patent citations as proxies for innovation. 

Importantly, “innovation,” as famously characterized by Schumpeter (1934), includes not only 

the introduction of new products and services, but refers also to the establishment of new produc-

tion methods, new sources of supply, new consumer markets, and new methods of organization. 

Nonetheless the innovation literature has tended to focus more narrowly on technological innova-

tion and to rely on patents as reasonable indicators of innovation (Acs et al., 2002; Igami, 2013). 

We follow that convention here. 

                                                 
2 Others have reached opposite conclusions about the incentives of academics to commercialize their research 

(Colyvas et al., 2002; Markman et al., 2004). More generally, a number of contributions have empirically shown that 

patents have a financial value (e.g Hoenen et al., 2014; Hsu and Ziedonis, 2013).  
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Like most of the recent literature on technological innovation, we focus on patent quality, not 

quantity. Citations of patents by future patent applications (“forward patent citations”) are com-

monly used to measure scientific quality (Harhoff et al., 1999; Igami, 2013; Park and Steensma, 

2013). The intuition behind the forward-citations measure is that higher citation levels imply su-

perior scientific significance or applicability. Indeed, studies have consistently shown that for-

ward citations correlate strongly with realized market value for a particular patent (e.g. Harhoff et 

al., 1999; Lerner, 1994).3 Of course, citations are not perfect measure of patent quality, just as ci-

tations to academic papers and journal impact factors do not perfectly capture the research quality 

(Costas et al., 2015; Ke et al., 2015; Wang et al., 2013). It is though conceivable that the presence 

of patent examiners, along with other aspects of the patent review process, may reduce the cita-

tion biases associated with academic publishing.  

Patent-citation measures must be used with care. More recent patents tend to receive fewer 

citations largely due to the effective time needed before they become visible. In the same vein, 

the secular increase in the annual number of patents over time implies that very early patents may 

also tend to have fewer citations than more recent patents, mostly because patents tend to receive 

the bulk of their citations in the first few years after issue. Other things equal, then, earlier patents 

should have fewer forward citations than later patents simply because there were fewer other pa-

tents available to cite it (Lanjouw and Schankerman, 2004). As we explain in section 4, we take 

these observations into account when specifying our empirical model. 

                                                 
3 Kotha et al. (2013) find that each additional forward citation, other things equal, increases the likelihood a univer-

sity patent will be licensed by 2 percent. Moser et al. (2015) show how forward citations correlate with objective 

measures of innovation in plant genomics. For additional evidence that patent value is well approximated by forward 

citations see recent work on patent auctions, a direct setting for measuring patent value; this work shows that forward 

citations are a strong predictor of the auction price paid to acquire a patent (Fischer and Leidinger, 2014; Sneed and 

Johnson, 2009). 
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3. THEORY AND HYPOTHESES 

How could the presence of a university incubator affect patent quality? Our analysis begins 

with the observation that universities, like other organizations, are bundles of resources, routines, 

and capabilities (Barney, 1991; Montgomery and Wernerfelt, 1988; Penrose, 1959). A university 

incubator or other commercialization program does not operate in isolation, but is part of a uni-

versity’s overall portfolio of innovative activities (Powers and McDougall, 2005). From a re-

source-based or capabilities perspective, the creation of an incubator will have a positive net ef-

fect on university innovation if it leverages resources and capabilities that are not fully exploited 

by the university’s other innovative activities such as research facilities and personnel and the 

technology transfer office (Lockett et al., 2005). Some university resources, such as land and 

buildings, are not easily divisible, creating the potential for excess capacity. Establishing an incu-

bator can be an effective way of leveraging underutilized resources.  

The presence of a university incubator can also create value by encouraging knowledge flows 

between academic researchers, students, and commercial firms that become incubator tenants 

(Rothaermel and Thursby, 2005b), increasing the likelihood of university personnel developing 

valuable, patentable innovations. Moreover, the presence of an incubator reduces the marginal 

cost for university personnel to establish their own ventures and become incubator tenants, in-

creasing the incentives to generate high-quality patents. Over time, these knowledge flows and 

learning effects suggest that innovative capabilities may increase. For all these reasons, the pres-

ence of a university incubator could lead to higher quality, patentable innovations, suggesting a 

positive relationship between the establishment of a campus incubator and the patent citations 

flowing to the focal university. 

On the other hand, if universities are resource constrained, and the effects of competition for 

resources outweigh the benefits of encouraging knowledge flows and capability development, 
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then university innovation efforts can have a negative effect on some innovative outcomes. 

Thursby and Thursby (2007: 622) note that [m]any, if not most university licensing endeavors are 

a net drain on university resources.” Incubators, likewise, can be costly to establish and maintain. 

Buildings must be constructed or expanded and operated, personnel and operating funds must be 

allocated, faculty time is needed, and so on. These resources could also be devoted to other cam-

pus organizations and activities that encourage innovation, such as research facilities and person-

nel, training, and the technology transfer office. If the opportunity cost of devoting these re-

sources to an incubator outweighs the benefits from incubation, the net effect of the incubator on 

university-based innovation will be negative. In short, the presence of an incubator could drain 

resources from other campus activities that encourage innovation, leading to lower-quality pa-

tenting. 

More generally, evaluating the net effect of university business-incubation programs on inno-

vation provides insight into the nature and utilization of university resources and capabilities, 

both tangible and intangible. Finding that incubation programs produce higher-quality or more 

valuable innovations would suggest excess capacity in that the university’s existing innovation-

related resources and capabilities—including tacit knowledge—such that diversifying into related 

activities such as incubation generates economies of scope (Montgomery and Wernerfelt, 1988; 

Penrose, 1959). The opposite finding, that incubation efforts lead to lower-quality or less valua-

ble innovations, suggests that some key resources cannot be leveraged for incubation and the uni-

versity is externally resource constrained, so that net innovation falls with related diversification.4  

                                                 
4 Our empirical approach, described in detail below, includes average patent quality and licensing income (as a proxy 

for the total economic value of patenting) as output measures. Because we do not have effective measures of the in-

puts devoted specifically to patenting—we can measure the size of the technology transfer office but cannot dis-

aggregate university expenditures on faculty, staff, research facilities, and other resources into those devoted to pa-

tentable innovations and those devoted to other academic pursuits—we cannot use innovation efficiency as our de-

pendent variable.  
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Of course, patent quality and value also depend on a host of university-specific factors such 

as the quality of the technology transfer office and the university’s legal staff, the attitude of the 

administration toward commercialization, and the overall culture of the university. We try to con-

trol for these factors, both observable and unobservable, in our empirical work, so that the results 

can be interpreted as a test of the resource-based argument described above. 

The theoretical literature on university innovation does not offer much guidance about the 

presence and magnitude of these effects, so we turn to the data to examine the net effect of estab-

lishing a university incubator on innovation. Using patent quality as our measure of innovation, 

our main hypothesis is as follows: 

H1: The presence of a university incubator increases the quality of university-owned pa-

tents, other things equal.  

The alternative hypothesis is that incubators and patent quality do not work in tandem, but work 

against each other, in which case we would find a negative relationship between the presence of 

an incubator and patent citations, other things equal. 

4. METHODS 

The general form of the empirical model we specify to test the two competing hypotheses is: 

𝑦𝑖𝑡 = 𝑋𝑖𝑡𝛽 + ∑ 𝑎𝑖𝐴𝑖 +

𝑖

∑ 𝛾𝑡Γ𝑡

𝑡

                                            (1) 

where 𝑦𝑖𝑡 refers to the number of forward citations through the end of 2012 received by a given 

patent submitted by university 𝑖 in year t, divided by the number of years since the date the patent 

was granted (FORWARD). 𝑋𝑖𝑡 is a vector of explanatory variables described below. The summa-

tion symbols represent university-specific and year-specific dummy variables.  
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4.1 Variables 

In our main set of regressions, the unit of analysis is the patent, and our primary dependent 

variable is forward citations per patent. To test the impact of incubators on patent quality we in-

clude a dummy variable (INCUBATOR) that takes the value of 1 if the application date of the fo-

cal patent is after the opening date of the university incubator and 0 otherwise. For universities 

that never established incubator facilities, the variable at hand takes the value of 0 for all patents. 

A positive sign of the associated coefficient would provide support for the hypothesis that incu-

bators increase patent quality, while a negative sign would indicate the opposite.  

Following previous literature (e.g. Czarnitzki et al., 2011; Sapsalis et al., 2006) we include 

several control variables in the analysis. First, we add the number of inventors and assignees in a 

given patent (INVENTORS, ASSIGNEES). Collaborative efforts generally enhance patent value, 

so we expect positive signs on the coefficients of both variables. To test whether there are moder-

ating effects between the two variables we add their interaction as an additional regressor. We 

also include five patent-specific variables. The first measures the number of non-patent refer-

ences (academic literature, government reports, and so on) included in the focal patent (NON-

PATENTREF). The second depicts the number of patents listed in the references list of a given 

patent (PATENTREF). Based on previous findings we expect non-patent references to be nega-

tively associated with patent quality and the opposite for patent references (Sapsalis et al., 2006). 

Moreover, because patents that span a wide range of fields are often more valuable than more 

narrowly focused patents, we include the number of different four-digit International Patent Clas-

sification categories assigned to the focal patent (SCOPE) as an indicator of scope (e.g. Gans et 

al., 2008; Harhoff et al., 2003). We expect a positive sign on the coefficient for scope.  

Patents that incorporate more applied knowledge, or borrow from different scientific fields, 

may also accumulate more forward citations precisely because more inventors may build on 
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them. To account for such observation we include two dummy variables that take the value of 1 if 

the patent is classified as biotechnology or information & communication technology-related re-

spectively (BIOTECH and ICT), 0 otherwise. Both scientific fields in question have immediate 

commercial applications while building on different knowledge bases (see Pisano, 2006 for the 

case of biotechnology) which is why we expect them to have a positive relationship with the de-

pendent variable. 

Prompted by previous findings that experience in patenting generates tacit knowledge and ca-

pabilities and is instrumental for university patent quality (Mowery et al., 2002), we also include 

two variables to capture university experience. The first variable, EXPERIENCE, measures the 

number of successful patent applications submitted by the focal university in the year before the 

application date of a given patent. We expect a positive sign for this variable. Besides capturing 

knowledge and capabilities, this variable also indicates the total patent activity of the focal uni-

versity, which helps control for diminishing returns (as the number of patents generated by the 

university increases, the quality of the marginal patent likely decreases).5 The second variable, 

FOREXPERIENCE, is designed to capture the university’s experience in producing quality pa-

tents. It measures the average number of lifetime forward citations per year garnered by the appli-

cations, once they are granted patent rights, used to construct the EXPERIENCE variable.  Given 

path dependencies (Teece et al., 1997), we expect a positive sign for this variable. 

Finally, we include a set of university-specific dummy variables to account for unobservable 

characteristics of particular universities that might influence the quality of their patents. These 

                                                 
5 We choose a one-year lag to capture contemporary effects and to account for diminishing returns, which we expect 

to occur in a short time. Specifically, as we also explain below, the values for the experience variables at t = 0 are 

similar to those at t – 1, letting us better control for contemporary effects that can lead to diminishing returns. Still, 

when specifying different lags, we do not observe major changes to our estimates.  
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include the underlying quality of the university faculty, the organizational structure of the aca-

demic institution, the effectiveness of rewards that encourage patenting, and the general attitude 

among the faculty members towards the commercialization of research via patenting.6 Along the 

same lines, to account for year-to-year fluctuations that can also influence patent quality we in-

corporate in the analysis a set of year-specific dummy variables that match the publication year of 

the focal patent.7 Such fluctuations may reflect, for instance, the spinoff activity of the focal uni-

versity which may influence patent quality as firm formation and patent quality draw upon the 

same depleting resources. Along the same lines, the year dummies also account for the aforemen-

tioned observation that the secular increase in the annual number of patents over time may trans-

late to less citations for early patents because there are only few other patents available to cite it 

(given that most patents receive their citations within a short window after issue).8 

Before presenting our data and sources in detail we note two significant considerations that 

relate to our modeling choices and the overall study design. First, we include in our sample only 

incubators with a physical presence on campus (i.e., a standalone building or location in another 

university building) whose primary function is to assist faculty members with entrepreneurial 

projects and are formally tied to the particular university.9 We exclude from the analysis “virtual” 

                                                 
6 We considered including additional measures of university quality such as the number of faculty awards and the 

number of faculty who are members of the Academy of Science. We decided to use dummy variables because con-

sistent, comprehensive data on university quality from such sources as the National Science Foundation, AUTM, and 

the Chronicle of Higher Education are available only for the later years of the analysis. Including such variables re-

duces our sample by more than half. Also note that in our dataset 42 universities account for more than 85 percent of 

the observations. We limit the university dummies to those universities. 

7 In our dataset 20 years account for almost 80 percent of the publication years. We limit the year dummies to these 

years.  

8 Note that all our covariates are measured at the time of patent award. In principle, we could include some time-var-

ying covariates, e.g., for university quality, in case a change in the reputation of a particular university affects cita-

tions to previous patents held by that university. We do not expect adopting this model structure to have a substantial 

impact on the findings.   

9 This is not to imply that such incubators only host faculty entrepreneurs but to emphasize that faculty entrepreneurs 

tend to be core in the cohort of incubators we study.  
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or “soft” incubators that typically assist recent graduates in starting businesses by providing small 

soft loans. We focus on physical, campus incubators based on a) the theoretical expectation that 

these types of incubators are more likely to be sharing university resources with activities that 

could also support patenting (leading to a negative relationship between incubators and patent 

quality) and b) the behavioral assumption that these types of incubators are more likely to gener-

ate knowledge flows towards university-based investors (leading to a positive relationship).  

The second consideration refers to our definition of “university” we employ and the implica-

tions of that definition for our empirical strategy. For universities with one main campus, which 

comprise the majority of the academic institutions in our sample, the definition is straightforward. 

For universities that are part of a system (in particular, the University of California and State Uni-

versity of New York systems), the unit of analysis could be either the system or the individual 

campus, as long as the latter is an AAU member. There are practical implications of adopting 

each definition. If there are significant knowledge flows across campuses within system universi-

ties, and if patenting or/and incubation activities are influenced heavily by the central administra-

tion, then treating campuses from the same system as one university seems appropriate. Defining 

universities by campus emphasizes local-decision making but assumes that knowledge flows and 

overall direction are confined within campuses. In our baseline estimates we consider each sys-

tem campus as a separate academic institution. Even when we define a system as a university the 

results remain qualitatively similar.10  

                                                 
10 A drawback of treating each system as a university, and assigning patents to systems rather than individual cam-

puses, is that systems include campuses that are not AAU members (the University of California system campuses at 

Merced, Riverside, San Francisco, and Santa Cruz, and the SUNY campuses at Albany and Binghamton). 
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4.2 Identification strategy 

Our analysis explains patent quality in terms of the presence of incubators, university-specific 

features, and university dummies that proxy for the scientific talent of university faculty, which 

should also influence patent quality. However, faculty quality at a given university typically var-

ies over time, from learning by existing faculty and the addition of new faculty. As such, univer-

sity-specific dummy variables may not fully capture scientific talent over the sample period. This 

creates an endogeneity problem if scientific talent is related to the establishment of incubators 

(i.e. universities establish incubators only when they have promising faculty or projects in house 

or as an alternative mechanism for generating revenue and fulfilling their entrepreneurial mission 

when faced with lesser quality talent) and scientific talent is not adequately measured (with the 

unobserved part ending up in the error term). To account for such potential endogeneity, we need 

an instrument that is correlated with the decision of a given university to establish an incubator 

and uncorrelated with the scientific talent of the focal university.  

To construct the instrument we exploit the fact that universities, like other organizations, are 

highly isomorphic—they are strongly influenced by the behavior of their peers (Meyer and Ro-

wan, 1977; Powell and DiMaggio, 1983; Stensaker and Norgård, 2001). A university is more 

likely to establish an incubator if its peers (actual or aspirational) are doing the same. We thus 

construct an instrumental variable for the establishment of each university’s incubator at time t as 

the number of incubators established before time t at peer institutions.11 We define peer institu-

tions as those sample universities in either the same state as the focal university or an adjacent 

                                                 
11 Here we follow the empirical literature on corporate structure, in which diversification, vertical integration, and 

similar behaviors are analyzed with peer behaviors as instruments—e.g., the number of same-industry firms that are 

already diversified as an instrument for the focal firm’s decision to diversify (Campa and Kedia, 2002; Klein and 

Saidenberg, 2010). 
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state. We do so based on findings demonstrating that universities compete with, and are influ-

enced by the decisions of geographically close institutions (e.g. Gonzalez Canche, 2014; 

McMillen et al., 2007).12 The presence of incubators in nearby institutions may influence the de-

cision to establish an incubator, reflecting a form of institutional isomorphism, but should be un-

related to the scientific talent of the focal university.  

Still, location in the same state or a neighboring state is not a perfect definition of a peer insti-

tution. However, by and large, all the sample universities (as AAU members) are of considerable 

size, prestigious, research-intensive universities, so we are drawing from a fairly homogeneous 

population. Another potential problem is that a neighbor incubator may draw resources from the 

focal firm (e.g., Stanford establishes an incubator, so high-quality faculty migrate from UC-

Berkeley to Stanford, thus affecting the quality of Berkeley’s patents). As noted below, we con-

trol for university quality, which should pick up the effects of such faculty migration. Anecdo-

tally, we do not expect this to matter much, as in our sample patents we observe relatively little 

mobility among patent-holders. A more difficult problem is the potential for researchers at the fo-

cal university to collaborate directly with colleagues at a neighboring school, such that the estab-

lishment of an incubator at the neighbor affects the research activities of the faculty at the focal 

university. Again, anecdotally, we do not think this is a major issue, given the ubiquity of collab-

orations among geographically dispersed faculty members. Moreover, as we explain in section 6, 

the instrument performs well in our empirical tests.   

                                                 
12 For instance, McMillen et al. (2007) reveal that the market for college students is in large part shaped by how close 

other similar universities are as net tuition is inversely related to distance between institutions and Gonzalez Canche 

(2014) report similar findings in the context of the non-resident student market. 
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5. DATA 

In our baseline regressions the unit of analysis is the patent. To construct our sample we begin 

with the 62 members of the AAU as of 2012. We excluded the two Canadian members of AAU 

to have a set of universities more comparable in terms of the motives and means to support incu-

bators and licensing. Of the remaining 60 universities, 6 are members of the University of Cali-

fornia system and 2 of the New York state university system. We were unable to obtain infor-

mation for the University of Oregon, which reduces the number of universities to 59. As we ex-

plain below, the University of California, Berkeley is also excluded from the sample because we 

could not identify which of the UC system patents belonged to that campus. As such, the final da-

taset reflects patents assigned to 58 AAU universities. Accordingly, the final dataset reflects pa-

tents over time for 58 AAU universities. 

To source the patent data for each university in the sample we searched the patent database 

maintained by Thomson Innovation using the name of each sample university; we then retrieved 

information on patent application and grant dates, the number of forward citations, and the list of 

inventors and assignees to construct the variables described above. The resulting dataset includes 

information on all 55,919 patents granted by the United States Patent and Trademark Office 

(USPTO) from 1969 through 2012 to a) single campus US universities that are AAU members 

(except the University of Oregon) and b) to all universities, including non-AAU members, of the 

system universities of California and New York. 

To assign patents from the system universities to campuses we employ the patent Network 

Dataverse maintained by Harvard Business School which lists the location address of all inven-

tors listed in patents granted by the USPTO. Based on this location information we measure the 

distance of each patent inventor to each of the system campuses, and assign the patent to the clos-

est campus. In cases where the inventor(s) were located between multiple campuses we omit the 
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patent from the analysis (see Table 1 for details). This procedure eliminates 6,621 patents from 

the analysis and reveals that 358 patents were assigned to campuses of system universities that 

were not AAU members. Omitting these patents results in our final sample of 48,940 patents. 

These patents were granted from January 28, 1969 to December 25, 2012 (the corresponding ap-

plication dates are March 29, 1957 to May 29, 2012). 

For each sample patent, forward citations are measured as of December 2012. We collected 

information on campus incubators, including founding dates, from university websites, Lexis-

Nexis and other news databases, and direct contacts with universities and their technology trans-

fer offices.  

Figure 1 shows the numbers of patents granted, licensing income, and the number of incuba-

tors established during each of our sample years. 

--- Figure 1 about here --- 

As seen in Figure 1, the last two decades have witnessed a secular increase in university pa-

tenting and associated licensing income. University incubators have been also been established 

with increasing frequency.  

The number of patents per year increases steadily until 1999, stays at high levels with small 

yearly deviations from 2000 to 2009, and picks up again in 2010. Not shown in Figure 1, from 

1969 to 1989 the sample universities were granted 282 patents per year, on average; the corre-

sponding figure for the 1990–99 period is to 1,344. Since 2000 the AAU universities as a whole 

have patented 2,274 inventions per year. The establishment of incubators proceeds more une-

venly but close to 80 percent (36 of the 47) started after 1999. Interestingly, this is also the period 
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in which patenting is becoming a university priority.13 Purdue established the first university in-

cubator in 1961, followed by Georgia Tech nearly two decades later in 1980. Also note that in 

support of the one-year patent lag we employ in the empirical specification, for the most part, 

spikes and downturns of licensing income in time t match with spikes and downturns in the rate 

of patenting in t-1 (see licensing income in 2007 and 2011 as examples)  

Descriptive statistics are provided in Tables 1, 2, and 3. Table 1 presents the number of pa-

tents per university across the study period and the average licensing income per university from 

1991 to 2012. The most patent-intensive campus is MIT, with its patents accounting for 8.4 per-

cent of the sample patents. The University of Texas at Austin, Stanford, Cal Tech, and the Uni-

versity of Wisconsin round out the top five, followed by a group of mostly land-grand universi-

ties with more than 1,000 each. Note that the table underreports patenting at the University of 

California system of universities. Several campuses are located close to each other (e.g. UC 

Berkeley and UC San Francisco), and some UC system patents were excluded from the analysis 

because the inventor(s) were located equally near both campuses and we could not identify the 

home institution of those inventors.14 If we include these patents and treat the UC system as a sin-

gle university, UC is the most prolific patenting institution with more than 8,000 patents in the 

sample period. With regards to licensing income, New York University tops the list with on aver-

age $111 million per year, followed by Columbia University, Northwestern, the University of 

Wisconsin, and Stanford. 

                                                 
13 Nine our sample universities did not have an incubator by the end of 2012: the University of Pennsylvania, the 

University of California–San Diego, Washington University in Saint Louis, University of Colorado, University of 

California–Santa Barbara, University of California–Irvine, Tulane University and Brandeis University.  

14 Previous works have opted to drop system observations altogether (Wong and Singh, 2010).  
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--- Table 1 about here --- 

Table 2 summarizes the variables we use in the analysis. Our primary dependent variable, for-

ward citations per year, is skewed, with a mode of zero: most university patents in our sample did 

not receive any forward citations. As indicated by the difference between the standard deviation 

(2.44) and the mean (1.36), there is significant variability in forward citations. In the year before 

the application date of the focal patent, our sample universities, submitted, on average, 52 patent 

applications (that were later granted patent rights) listing 3 inventors and 1 assignee. Most patents 

were listed under one 4-digit IPC code and had, on average, 16 and 22 patent and non-patent ref-

erences, respectively. Note that the modal values of 0 both for PATENTREF and NONPATEN-

TREF come mostly from early patents of the 1960s and the 1970s. More recent patents tend to 

have more extensive lists of backward references. Indeed, the differences in the backward refer-

ences are strongly indicated by the large standard deviations of PATENTREF and NONPATEN-

TREF compared to their mean values. Thirty percent of the patents were classified as biotech and 

thirty nine percent as information and communication technology.15 Finally, more than 26 per-

cent of the sample patents (13,039 of the 49,840) were applied for after the host campus estab-

lished its incubator. 

--- Table 2 about here --- 

As seen in Table 3, the correlation coefficients of the variables used in the analysis are rela-

tively weak which should help us to estimate the net effect of each of the independent variables 

on the value of university patents.   

                                                 
15 To assign patents to technology areas we matched the IPC codes of the sample patents withe the lists of Biotech 

and ICT related IPC codes provided by the OECD. 
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--- Table 3 about here --- 

6. RESULTS 

6.1 Baseline estimates 

We start with an OLS regression, reported as our baseline estimates in Table 4. For all the es-

timates we report robust standard errors clustered at the university level. The fit statistics at the 

bottom of Table 4 indicate that the OLS model has reasonable explanatory power, though it ex-

plains a rather limited portion of the observed variance. The multicollinearity index is somewhat 

inflated, above the threshold level of 30, yet well below the worrisome level of 100 (Belsley et 

al., 1980). Elevated condition indices could inflate the standard errors and subsequently impact 

inference. Nevertheless, the inferences in models we present as robustness checks, which have 

lower multicollinearity indices, and in the baseline models are almost identical, indicating that 

multicollinearity does not hamper our estimates materially. 

To address endogeneity we use the Two-Stage Residual Inclusion (2SRI) method pioneered 

by Terza et al. (2008). In the first stage we regress the probability that university i estab-

lishes/maintains an academic incubator at time t, defined as the application date of the focal pa-

tent, as a function of the number of already established incubators at peer institutions and univer-

sity-specific characteristics.16 We present the first-stage regression in Appendix Table 1. As ex-

pected, the more peer institutions that have established an incubator previously, the higher the 

                                                 
16 To populate the list of regressors for the first stage estimation we adopt the view that incubators  and other auxil-

iary services towards commercialization are set in place chiefly as a means to expand the opportunity set of academ-

ics and others that have an inclination towards entrepreneurship (Fini et al., 2011; Mian, 1996).  As such, we would 

expect universities to establish incubators when the on campus research has elevated commercial potential. Accord-

ingly, because medical inventions tend to be more marketable than inventions from other disciplines (Powers, 2003), 

we include a dummy variable that takes the value of 1 if the university has a medical school and 0 otherwise. In the 

same vein, we include the EXPERIENCE variable to capture the intensity of innovation efforts on campus and a 

dummy variable that takes the value of 1 if the university is private and 0 otherwise as a means to account for the 

culture of universities and the overall attitude towards applied research (Friedman and Silberman, 2003).  
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chance the focal university will establish an incubator. In the second stage we include the residu-

als from the first stage in our baseline regression explaining licensing income. Model 2 of Table 4 

presents these estimates. Also in support of our choice of instrumental variable, the residuals of 

the first stage are statistically significant in the second stage.17   

--- Table 4 about here --- 

The overall conclusions from the OLS and the 2SRI estimates agree. We find that the estab-

lishment of on campus incubators is followed by a reduction in patent quality. But, the 2SRI esti-

mate on INCUBATOR is larger than the OLS estimate18 which implies that the OLS estimate 

presents a lower bound on the (detrimental) effect of incubators on patent quality. In the remain-

ing of the manuscript we refer only to the baseline estimates.     

The baseline coefficient of INCUBATOR suggests that patents applied for after the establish-

ment of an incubator receive 0.215 fewer forward citations per year. Besides the statistical signif-

icance, the size of that coefficient is also meaningful. To illustrate, if we evaluate the 0.215 figure 

at the mean value of the dependent variable, 1.36, as reported in Table 2, it suggests that the num-

ber of forward citations per year of the average patent decreases to 1.15—a 16 percent reduction. 

If evaluated at the median value, the reduction of forward citations per year exceeds 42 percent. 

                                                 
17Following Terza et al. (2008) we employ bootstrapped standard errors to account for the presence of the first-stage 

residual in the model of the second stage. In general, applications of the 2SRI method can be found in a number of 

areas including policy analysis (Beaudry and Allaoui, 2012) and strategic management (Berry, 2013). Cai et al. 

(2011) discuss in detail the (desired) asymptotic properties of the 2SRI method when, as in our case, the first stage is 

a probabilistic model. 

18 What may explain this difference is that universities may mistakenly think that incubators will lead to better pa-

tents. When they anticipate a future improvement in their innovative capabilities (e.g., they have just gotten some 

new grants or endowment funds, they have just hired some star professors, they have just built some new labs, etc.) - 

developments that, independently of an incubator, should give them better patents - they establish an incubator. Thus 

even though incubators have a detrimental effect, the fact that they are established under those circumstances makes 

this effect appear smaller. 
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What is going on? If resources, tangible and intangible, are constrained, then inputs that sup-

port activities related to the incubator are less valuable, on the margin, then inputs supporting 

other innovative activities on campus. For example, given that university-based firms are more 

successful when faculty founders are more actively involved (Fuller and Rothaermel, 2012) fac-

ulty have strong incentives to invest time on incubator-related issues (administrative work, re-

cruiting personnel, meeting with potential tenants, etc.); this time would otherwise have been 

spent on research related to innovation, leading to a decline in the quality of that research. Incu-

bator tenants may also be using equipment, laboratory facilities, student labor, and other re-

sources that are not available for other campus activities. Our results suggest that these effects, 

ceteris paribus, must outweigh the positive spillovers between incubator and non-incubator activ-

ity usually described in the literature on academic incubators.  

The results for the experience variables are particularly interesting. While the focal univer-

sity’s previous year experience in patenting has an unexpected negative and statistically signifi-

cant effect on patent quality, its economic magnitude is tiny, suggesting that university experi-

ence has a limited impact on patent value. In unreported models we replace the one year experi-

ence lag with different lag structures including t = 0 and t−3 (strong correlations between the lags 

prompt us to not include all the lag structures simultaneously). In these models the results re-

mained unchanged. This is a relevant observation because it reinforces our conclusion that the 

volume of recent patent activity of the focal university has a statistically significant positive but 

economically weak effect on patent quality. As such, it alleviates concerns that the intensification 

of patenting activities can come at the expense of patent quality (note that the values for the expe-

rience variables at t = 0 are similar to those t = 1, hence the lag structure essentially also captures 

potentially contemporary effects). What appears to matter more is the experience of universities 

in producing higher-quality patents. Patents coming from universities with previous high-quality 
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patents received 0.182 more forward citations than patents of universities with less experience in 

high quality patents. 

Contrary to expectations, biotech patents receive less forward citations per year but in line 

with theory the opposite holds for ICT patents. The variables that capture the effects of collabora-

tion suggest that patents with more inventors (but not with more assignees) tend to be more valu-

able. However, the negative sign of the interaction term implies that the relationship between 

number of inventors and assignees is subject to diminishing returns. Finally, the remaining con-

trol variables we use in the analysis imply that a) patent scope has a significant impact on patent 

value, b) an increased number of patent references is associated with more forward citations, and 

c) the number of non-patent references does not impact patent value. Not shown in Table 4, most 

of the university- and year-specific coefficients are statistically significant and this suggests that 

year to year differences as well as a time-invariant university features also matter for university 

patent quality. 

To test the robustness of our baseline findings we perform a series of checks which are pre-

sented in Table 5.19 

--- Table 5 about here --- 

In section 3 we discussed how resource scarcity can drive the deteriorating effect of incuba-

tors on innovation quality. Models 1 and 2 of Table 5 test whether this theoretical mechanism is 

supported by empirical evidence. In model 1 we limit the analysis to the less research-endowed 

                                                 
19 Besides the robustness checks we present here, we have performed additional tests which are available upon re-

quest. These tests include: (a) inclusion of student incubators when constructing the INCUBATOR variable, (b) de-

fining only same state institutions as peers when defining the instrumental variable (c) drop from the analysis the 

ICT, BIOTECH and EXPERIENCE variables which have the highest Variance Inflation Factor among all variables 

(d) replace the 1 year lag for the patent-specific variables with a 5 year average, (e) run a robust regression to test the 

impact of the outliers and (f) include a variable indicating whether the focal university is single or multi-campus. In 

all these tests, the results are qualitatively equivalent to the baseline estimates and further reinforce our main conclu-

sions. 
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universities in the sample (i.e. those whose average research budget in the last 5 years is below 

the median among the sample universities). In model 2 we limit the analysis to the most resource-

endowed cohort of sample universities. In line with the resource-based argument we set forth in 

section 3 we find that the deteriorating effect of incubators on innovation quality is more pro-

nounced among the less research-endowed universities. More specifically, the incubator coeffi-

cient for the more resource-endowed universities is −0.20, while the corresponding coefficient for 

the less resource - endowed schools is −0.25. Therefore, while the deteriorating incubator effect 

holds among all universities, it is 25 percent stronger for those universities with less resources. 

Model 3 tests the sensitivity of our conclusions to the effective time needed for a given patent 

to accumulate citations. Because we measure citations per year we might discount the value of 

earlier patents as they might not have enough time to accumulate citations, while favoring older 

patents which have had longer to garner them. Following previous works (e.g Burke and Reitzig, 

2007; Nemet, 2009) we construct the dependent variable for model 3 using only the citations ac-

cumulated within 5 years of the patent publication.  The results are similar to those in the baseline 

estimates, though the coefficient of the INCUBATOR variable is now smaller.20 

In model 4 we employ a negative binomial estimator to conduct the analysis instead of the 

OLS estimator we use for the baseline estimates. The two estimates yield qualitative similar re-

sults. As such, we conclude that the effects we reveal are not sensitive to the estimation tech-

nique.   

                                                 
20 Because we measure citations through the end of 2012, the 5-year citation window is truncated for patents granted 

in later years. To test whether this truncation impacts our results we also run the baseline analysis in a sample includ-

ing only patents granted up to 2008, thus giving all patents five years to accumulate citations. The estimates from this 

test are qualitatively similar to the estimates we present here. 



28 
 

The baseline estimates rely on the implicit assumption that the impact of incubators on patent 

quality takes place shortly after the establishment date of the incubator. Model 5 tests the sensi-

tivity of our estimates to the possibility that the effective time needed before this impact material-

izes is not immediate. Specifically, we consider as “post-incubator” only patents that have been 

applied at least one year after the establishment date of the incubator. The estimates in model 5 

are nearly identical to the estimates of the baseline model and reinforce our main conclusions.  

6.2 Effects of Incubators on Licensing Income 

As noted above, we base our analysis on the premise that patent forward citations are a mean-

ingful measure of economic value, as is conventional in the innovation literature (Gambardella et 

al., 2008; Harhoff et al., 2003). Our expectation is formed, in large part, by the notion that “uni-

versities patent in order to license” (Thursby and Thursby, 2007) and the finding that patents in-

crease the likelihood of licensing agreements (Elfenbein, 2007; Gans et al., 2008). Accordingly, 

we expect a) patented inventions to generate most of licensing income and b) more valuable pa-

tents to generate higher licensing income (Dechenaux et al., 2008).21 However, unpatented inven-

tions can also generate licensing income (Kotha et al., 2013) and, as we theorize, if the incubator 

effect extends to all university-based innovation efforts, including both patented and unpatented, 

we should observe such effect in licensing income changes.  

Accordingly, as an additional check on the overall effect of incubators, we run a new set of 

tests looking at university licensing revenues, rather than patent quality, as an outcome variable. 

                                                 
21 Note that licensing revenue per patent is driven by two factors, the probability that the patent will be licensed, and 

the amount of revenue going to those that are licensed. As Elfenbein (2007) points out, these drivers may have differ-

ent sources (e.g., for the former, the reputation of the lead scientist, and for the latter, the capabilities of the univer-

sity’s technology transfer office).  
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Even if establishing an incubator has a negative effect on average patent quality, a few high-qual-

ity patents—“home runs”—could generate enough additional licensing revenue to justify their 

cost, including the direct and indirect costs of establishing and maintain the incubator. (Whether 

this is consistent with the university’s scientific and educational mission is another question.) If 

there are not enough high-quality patents to compensate for the reduction in patent quality, then 

total licensing revenue will fall.  

Specifically, we construct a second sample using the university as the unit of analysis and the 

university’s total licensing revenue per year as the dependent variable. We obtain licensing in-

come per university from 1991 to 2012 from the Association of University Technology Managers 

(AUTM).22 We started with the same 58 AAU universities we analyze in the baseline estimates. 

But, because for system universities (University of California and the New York system) AUTM 

reports licensing income only for the system we follow previous works (Wong and Singh, 2010), 

and drop the system campuses from the analysis. Accordingly, the final dataset reflects licensing 

income over time for 51 AAU universities. The AUTM data are based on licenses matched to in-

novation disclosures, only some of which are patented, so this is not a specific measure of the li-

censing income derived from university patents, but a general measure of the financial returns to 

university innovation efforts. 

Besides the incubator effect, we expect university features and characteristics of the patents 

that lead to licensing to also affect licensing income.23 As such, we include in the analysis a num-

ber of variables that describe each focal university and its patents. We expect a one-year lag of 

                                                 
22 The panel is unbalanced as not all universities report their licensing income for all years. 

23 While patenting is the typical means to generate licensing income (Thursby and Thursby, 2002), there are cases 

under which unpatented inventions also yield licensing income (Kotha et al., 2013). Our data source does not de-

scribe such unpatented inventions and hence we cannot include them in the analysis.  This is a limitation of our 

work. A priori, though, we cannot approximate the scope of this limitation as the most comprehensive evidence on 

unpatented inventions leading to licensing comes only from one university (Kotha et al., 2013). This university is not 
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the dependent variable (LAG) to account for path dependencies that determine licensing income 

(Heisey and Adelman, 2011). To account for the experience of the Technology Transfer Office 

and its size we include a variable that measures it’s age (TTO_AGE) and a variable that measures 

the number of employees (in full time equivalent) devoted to licensing (TTO_SIZE). Private and 

public universities may provide different royalty rates from licensing towards faculty and this 

may affect licensing income (Lach and Schankerman, 2008), so we include a dummy variable for 

private schools (PRIVATE). Finally, to account for the possibility that licensing income is a func-

tion of the volume of patent activity, we include the number of patents granted to the focal uni-

versity in the previous year (EXPERIENCE).   

As already introduced, with regards to patent-specific features, we expect more valuable pa-

tents that raise the cost of imitation to generate higher licensing income (Dechenaux et al., 2008). 

To capture this we include a forward-citations measure aggregated to the focal university, i.e., the 

average number of citations per year received by all university patents granted in year t−1, with t 

being the focal year (FORWARD). Following arguments discussed above we construct and in-

clude in the analysis two variables (BIOTECH and ICT) that measure the number of patents in 

year t−1 from those two industries.   

We include additional university-specific variables similar to those used in the forward-cita-

tions models (all measured in the year prior to the focal year), such the average number of differ-

ent four-digit International Patent Classification categories assigned to university patents 

(SCOPE) along with the average number of assignees for university patents and inventors granted 

(ASSIGNEES, INVENTORS). We also include a variable that measures the average number of 

                                                 

identified in the study in question, hence we are not aware on whether it is in our database. More importantly, we 

cannot know whether the patterns in that university are reflective of the population of universities, including those in 

our sample. 
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non-patent references (academic literature, government reports, and so on) included in the univer-

sity patents (NONPATENTREF) and a variable that measures the average number of patents 

listed in the references list of the university patents (PATENTREF).  

Finally, we include a set of university-specific and time-specific dummy variables to account 

for unobservable characteristics of particular universities that might influence their licensing in-

come and for year-to-year fluctuations (Lach and Schankerman, 2008). 

With regards to descriptive statistics of the new sample used to construct the models explain-

ing yearly licensing income per university, the dependent variable has an average value of 18.74 

million with a standard deviation of 51 million and the INCUBATOR variable takes the value of 

1 for more than one third of the observations. Of the universities represented in our sample, about 

half are private (48 percent). The average university TTO is 20 years old and employing 7.6 

FTEs for licensing. On average each university was granted 32 patents in the year preceding the 

focal year and the modal value was 10. Ten of those patents where related to biotechnology appli-

cations and more than 12 to ICT.  

--- Table 6 about here --- 

Table 6 presents the estimates from the models explaining yearly licensing revenue for the 

sample universities. Model 1 is the reference specification, model 2 is the instrumental variable 

model (exploiting the peers instrument described previously where, in this case, we model the 

probability that an incubator is established in a given year) and models 3 to 7 are robustness 

checks. The models have strong explanatory power but the underlying data exhibits high multi-

collinearity, which could lead to erroneous inference. As we explain later, the conclusions of 

model 6, with a significantly lower multicollinearity index agree with the conclusions of model 1; 

hence multicollinearity does not appear to come at the expense of incorrect inference. 
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 The results largely corroborate our findings using forward citations as the dependent varia-

ble. As seen in Table 6, average licensing income falls after the establishment of an incubator, 

hence, again, a deteriorating effect. However, as we explain in footnote 20, we do not account for 

unpatented ideas that can generate licensing income. Hence, we treat these results with caution. 

Because the dependent variable is in logarithmic form and the independent variables in levels we 

can interpret the estimated coefficients as semi-elasticities. The INCUBATOR estimate of model 

1 suggests that the establishment of an incubator is followed, on average, by a 14 percent de-

crease in licensing income. To illustrate the economic significance of the coefficient, we evaluate 

it at the median value of the dependent variable (not in log), 4.4 million: it suggests that licensing 

income decreases by more than $0.6 million per year. This is an important finding indicating that 

the effects we reveal in the baseline estimates presented in Table 4 are not specific to the variable 

of interest (forward citations) but reflect larger changes.  

In line with previous works (Heisey and Adelman, 2011), we find that one-year lagged licens-

ing income is a strong predictor of licensing income at time t. This finding likely emanates from 

the fact that licensing agreements are typically in effect for multiple years. Further, one additional 

biotechnology patent in the previous year increases licensing income by 1.1 percent. On the other 

hand, increased values of patent scope associate, somewhat surprisingly, with decreases in licens-

ing income. The remaining patent-specific variables we include in the analysis do not have signif-

icant explanatory power. With regards to university-specific features, we do not observe a differ-

ence between public and private institutions but the experience of the TTO and its staff size dedi-

cated to licensing, have a statistically significant but small correlation with increased licensing 

revenue. The volume of patent activity of the focal university in the previous year does not ex-
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plain licensing income either. Not shown in Table 6, most of the university- and year-specific co-

efficients are also statistically significant; year to year differences and a time-invariant university 

features can also matter for licensing income. 

The instrumental variable results presented in model 2 are similar to the reference estimates 

and the significance of the residuals indicates that the peer instrumental variable has desirable 

properties.  

In the reference estimates we describe the patents granted in t-1 assuming that the bulk of the 

licensing income is derived from them. In model 3 we investigate the sensitivity of our results to 

that assumption; we replace the patent-specific variables (and the lagged dependent variable) at t-

1 with corresponding variables for patents in t-2 (unreported results using a t-3 lag yield identical 

estimates). The main conclusions remain intact. Interestingly, the INCUBATOR coefficient in 

model 3 is larger than the INCUBATOR coefficient in the reference model.   

The list of regressors includes forward citations to control for patent market value and for ad-

ditional patent-specific variables (e.g. scope and size of inventors team) that capture remaining 

factors that can increase licensing income. However, the latter group of variables can also influ-

ence patent value (e.g. Czarnitzki et al., 2011; Sapsalis et al., 2006) leading, thus, to endogenous 

variables. Against this background, in model 4 the analysis omits patent-specific variables that 

can explain forward citations. The results indicate that the potential endogeneity in question does 

not hamper the estimates.24 

In model 5 we omit from the specification the lagged dependent variable. The main conclu-

sions side with the conclusions we derive from the reference estimates. However, the magnitude 

                                                 
24 We reach identical conclusions when we omit only the forward citations variable. 
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of the INCUBATOR coefficient increases. A potential driver behind this finding is that the IN-

CUBATOR variable is picking up effects captured by the one year lag. Unreported results, which 

are available upon request, where we include a one year and a two year lag in the analysis, sup-

port this proposition. In model 6 we omit all variables that inflate the multicollinearity condition 

index. Inference remains largely unchanged. 

The incubator effect might be different in multi-campus universities where central decision 

making and knowledge flows may be different than single campus schools. To account for such 

possibility in model 7 we add a variable that takes the value of 1 if the focal university has more 

than one campus, 0 otherwise. We do not find evidence of such effect as the results are nearly 

identical to the baselines estimates and the single campus variable is not statistically significant.    

7. DISCUSSION AND CONCLUSION  

University incubators, like other technology business incubators, are generally seen as effec-

tive mechanisms for translating academic research into commercially useful innovations and 

value-adding start-up companies. Indeed, some incubators, like Georgia Tech’s—the second-old-

est among AAU universities—have an impressive record (Rothaermel and Thursby, 2005b) in 

spawning new ventures, contributing to innovation and local economic growth. But most of the 

existing literature on incubators looks at an incubator’s outputs, not the change in the university’s 

overall innovative performance before and after an incubator is established. Such an approach ig-

nores the fact that the decision to establish an incubator is not made in isolation, but reflects an 

overall philosophical shift towards commercialization at the university in question.25 Accord-

ingly, even if incubators generate useful and commercializable knowledge, they may also com-

pete with other university programs that also attempt to foster innovation and generate revenue.  

                                                 
25 Our conversations with university commercialization personnel consistently emphasize this point.  
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Our work complements previous literature that demonstrates the positive contributions of in-

cubators on innovation (e.g. Colombo and Delmastro, 2002; Kolympiris and Kalaitzandonakes, 

2013; Markman et al., 2004) by suggesting that such contributions may come at the expense of 

other, equally valuable academic innovative activities. Specifically, we find that the establish-

ment of a university incubator is followed by a decline in the average quality of the university’s 

patents, controlling for patent-, university-, and time-specific characteristics. The results hold 

while also controlling for the potential endogeneity of the decision to establish an incubator. 

Along the same lines, we document a detrimental effect of incubators on university innovation 

efforts when we examine how overall university licensing income changes after the establishment 

of incubators. 

To be clear, our results do not imply that incubators destroy value, as university incubators 

serve many purposes, educational as well as commercial.26 This is a point worth emphasizing as 

ultimately, the net economic effect of incubators is the variable of interest. The presence of an in-

cubator may attract particular kinds of faculty and students, enhance the prestige of the univer-

sity, generate economic multiplier effects and benefit the community as a whole. Because we do 

not measure these other outcome variables, or capture positive spillovers more generally, we can-

not quantify the net effects of university incubators on innovation and on economic value as a 

whole. However, much of the public discussion around incubators focuses on their specific im-

                                                 
26 An OECD handbook on incubators urges universities not to emphasize the educational aspects of their incubators, 

however. “[When universities are closely involved in the set-up of the incubator, there can be a conflict of views on 

the role of the incubator as a training tool (i.e. the view of education policy) and as a generator of high-potential 

start-ups (i.e. the view of business support policy). These approaches need to be reconciled, bearing in mind that a 

business incubation program that has a purely educational function is questionable and likely to produce poor value 

for money, though training and mentoring do play an important role in this policy. . . . When incubators are estab-

lished within campuses, there is a danger that a wrong message about the contents of the program is transmitted to 

potentially interested participants. The incubator management will have to make it clear that training and teaching for 

tenant firms is of practical rather than academic nature” (OECD, 2010 pp 5). 
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pact on patenting, which generates licensing and other revenues. The decision to establish an in-

cubator should thus be informed by large scale estimates of these specific effects. Our results 

suggest that university incubators may not generate net benefits for campus innovation. These are 

important findings for university administrators, policy makers, and remaining stakeholders who 

seek to promote innovation via the commercialization of academic research. 

Our findings also have implications for innovation research. The literatures on incubators and 

academic patenting have, for the most part, developed independently, but our approach and re-

sults suggest grounds for integration. Further research can explore these links in greater depth. 

Another promising avenue for future research would be to examine more closely the specific 

mechanisms by which incubators affect university-based innovation, along the lines of Rothaer-

mel and Thursby (2005a, b). Similarly, qualitative work can shed new light on the effect of aca-

demic entrepreneurs on the relationship between incubators and patent quality. More generally, a 

fruitful avenue for future work would be to use the university as the unit of analysis and try to de-

termine how a given university should direct the marginal dollar to promote innovation (or other 

outputs)—to the incubator, the tech transfer office, laboratories, personnel, or academic pro-

grams? This question obviously has important implications for practice as well.   

Our study has a number of limitations that can be addressed in future work. First, because we 

theorize that incubators may drain overall university resources, we do not distinguish between in-

cubator-affiliated and non-incubator-affiliated patents. Making that distinction is not feasible in a 

large sample like ours; we would have had to investigate by hand all 48,940 patents, and the rele-

vant information may not even be in the patent filing itself. University incubators do not maintain 

(or at least will not share) lists of patents they claim as incubator-related and, even so, it would be 
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hard to establish a consistent definition across incubators of what counts as incubator involve-

ment. Still, smaller-sample, perhaps qualitative, research looking separately at incubator- and 

non-incubator-affiliated patents would be useful. 

Second, our models using licensing revenue as the dependent variable do not distinguish pa-

tented and non-patented innovations, both of which can generate licensing income. In other 

words, while we know that total licensing revenue falls following the establishment of an incuba-

tor, and that average patent quality falls, we do not know if the reduction in licensing income 

comes specifically from reductions in licensing income accruing to patents. Follow-up works 

could investigate the impact of unpatented inventions on licensing revenue in depth.  

Third, the lack of comprehensive data in the early years of the analysis prevents us from in-

corporating additional university-specific attributes in the analysis. Fourth, we focus exclusively 

on research-intensive universities and this may limit the generalizability of our results to remain-

ing institutions that also establish incubators but boost their innovative efforts not so much via 

encouraging in house research but more so via alternative routes such as the promotion of student 

entrepreneurship. Fifth, we do not distinguish among different types of university incubators, 

e.g., treating life-sciences-oriented incubators differently from engineering-focused incubators. 

We do not have enough diversity in our incubator sample to handle these differences econometri-

cally. However, we specifically excluded virtual and student-oriented incubators, so our incuba-

tor sample is fairly homogeneous in any case. Again, these all present opportunities for future 

work. 
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Table 1. Patents, licensing and incubators from 1991 to 2012

University

Average licencing 

income per year 

(million)

Average number 

of patents per 

year

Incubator 

Establishment 

Year

University

Average licencing 

income per year 

(million)

Average 

number of 

patents per 

year

Incubator 

Establishment 

Year

New York University 111.02 39 2009 Texas A&M 6.73 23 2011

Columbia University 97.19 48 1995 Tulane University 6.41 6 no incubator

Northwestern University 81.36 27 2012 University of Chicago 6.23 43 2004

University of Wisconsin 55.43 83 1984 Cornell University 5.88 55 2002

Stanford University 50.76 93 2011 Vanderbilt 5.36 17 2002

University of Texas 50.51 103 1989 Case Western 5.15 15 2010

Massachusetts Institute of Technology 41.04 136 2012 Rutgers 5.15 25 2002

Emory University 40.09 17 no incubator University of Virginia 4.82 15 2012

University of Washington 37.28 40 2012 Indiana University 4.07 10 2004

University of Minnesota 30.51 39 2006 University of Missouri 4.00 16 2009

Princeton University 27.81 22 2012 Purdue University 3.33 24 1961

University of Florida 26.66 52 2012 University of Pittsburgh 3.17 26 2002

University of Rochester 25.77 16 2010 University of Southern California 2.82 30 1998

Michigan State University 15.54 35 2012 Georgia Institute of Technology 2.50 39 1980

Harvard University 14.23 36 2010 University of Illinois 2.19 39 2001

University of Pennsylvania 12.18 46 no incubator University of North Carolina 1.91 30 2013

Yale University 11.08 23 2007 University of Kansas 1.86 8 2010

University of Michigan 10.22 59 2011 Boston University 1.60 15 2005

University of Iowa 9.85 21 1984 Penn State 1.55 30 1993

University of Colorado 9.22 20 no incubator Ohio State University 1.42 19 2005

Duke University 9.17 33 2009 Brown University 1.23 9 2009

Johns Hopkins University 8.65 66 2011 University of Maryland 1.01 34 1983

WUSTL 7.08 25 no incubator University of Arizona 0.67 8 2003

Iowa State University 6.93 29 1987 Brandeis University 0.35 4 no incubator

Carnegie Mellon 6.80 18 2010 Rice University 0.23 13 2000
a The sample universities were also granted 6621 patents which we did not include in the analysis because they could not be assigned to separate campuses for the following reasons: The inventors of 

3996 University of California System patents were located in between two or more campuses with the most common case being the University of California - Berkeley and the University of California - 

San Francisco. 502 University of California System patents had inventors in the Los Alamos Laboratory. 372 University of California System patents had inventors that were not residing in California 

(mostly foreign inventors). The inventor of 1 University of California System patent had a dual appointment with two University of California System universities. 1547 patents in the sample had more 

than 1 in-sample assignee. 203 patents assigned to the System of New York Universities had inventors not residing in the state of New York. Also note that 358 patents were assigned to system 

uiversities that were not AAU members. These patents are not included in the baseline analysis.



Academic Incubators and University Innovation 
 

Table 2.  Descriptive Statistics

Variable Description Variable Code
Number of 

Observations
Mean Std Dev Minimum Maximum Median Mode

Dependent 

variable

(Number of times the focal patent has been cited by other patents since its grant 

date) / (December 31 2012 - grant date) 
Forwardyear 48940 1.36 2.44 0.00 49.57 0.50 0.00

Number of successful patent applications submitted by  the focal university in the 

year before the application date of a given patent
Experience 49298 52.07 40.80 0.00 204.00 41.00 18.00

Average number of forward citations per year gathered by patents used to 

construct the Experience variable
Forexperience 48406 1.60 0.93 0.00 22.72 1.44 0.00

Number of non-patent references included in the list of references in the focal 

patent
Nonpatentref 48940 22.14 44.51 0.00 1045.00 7.00 0.00

Number of patent references included in the list of references in the focal patent Patentref 48940 15.75 31.63 0.00 837.00 7.00 0.00

Number of inventors of the focal patent Inventors 48940 2.70 1.62 0.00 22.00 1.00 2.00

Number of assignees of the focal patent Assignees 48940 1.11 0.35 0.00 6.00 1.00 1.00

Number of IPC categories the focal patent belongs to Scope 48888 2.24 1.54 1.00 18.00 2.00 1.00

Variable that takes the value of 1 if the focal patent has a biotechnology related 

IPC code and 0 otherwise
Biotech 48940 0.30 0.46

Variable that takes the value of 1 if the focal patent has an ICT related IPC code 

and 0 otherwise
ICT 48940 0.39 0.49

Variable that takes the value of 1 if the application date of the focal patent is after 

the opening date of the university incubator and 0 otherwise
Incubator 48940 0.26 0.44

Continuous 

variables

Binary 

variables
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Table 3. Correlation Coefficients between Variables Used in the Analysis (excluding year and university - specific dummies)

1 2 3 4 5 6 7 8 9 10 11 12

1. Forwardyear 1.000

2. Incubator -0.056 1.000

3. Experience 0.069 0.043 1.000

4. Forexperience 0.187 -0.114 0.310 1.000

5. Biotech -0.100 -0.005 -0.011 0.023 1.000

6. ICT 0.098 -0.027 0.089 0.063 -0.135 1.000

7. Nonpatentref 0.012 0.054 0.051 0.005 0.250 -0.061 1.000

8. Patentref 0.095 0.047 0.088 0.011 -0.041 0.001 0.481 1.000

9. Inventors 0.058 0.020 0.108 0.064 0.054 -0.001 0.126 0.113 1.000

10. Assignees -0.009 0.008 0.013 0.004 0.085 -0.047 0.113 0.074 0.311 1.000

11. Inventors * Assignees 0.028 0.011 0.071 0.037 0.079 -0.027 0.133 0.103 0.826 0.711 1.000

12. Scope 0.052 -0.009 0.035 0.093 0.368 0.062 0.184 0.080 0.130 0.076 0.123 1.000
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Variables / Model

Intercept 0.152 0.374

(0.217) (0.124)

Incubator -0.215 *** -0.432 ***

(0.045) (0.049)

Number of patents in t-1 -0.002 ** -0.002 ***

(0.001) (0.001)

Forward citations of patents granted in t-1 0.182 *** 0.182 ***

(0.028) (0.021)

Biotech -0.662 *** -0.665 ***

(0.061) (0.024)

ICT 0.398 *** 0.398 ***

(0.051) (0.023)

Nonpatentref 0.000 0.000

(0.001) (0.000)

Patentref 0.008 *** 0.008 ***

(0.001) (0.001)

Inventors 0.139 *** 0.140 ***

(0.028) (0.022)

Assignees 0.026 0.029

(0.145) (0.062)

Inventors * Assignees -0.041 ** -0.042 ***

(0.019) (0.015)

Scope 0.088 *** 0.087 ***

(0.027) (0.009)

Residual of first stage a 0.059 ***

(0.010)

Year Dummies Included YES YES

University Dummies Included YES YES

R2 0.112 0.113

Adjusted R2 0.111 0.111

Multicollinearity Condition Index 38.329 38.332

Number of Observations 48058 48058

*** .01 significance, ** .05 significance, * .10 significance

a The estimates of the first stage are presented in Appendix Table 1

Table 4. Baseline Estimates. The dependent variable is the number of forward citations per year 

(unit of analysis is the patent)

1. OLS 

estimation

2. Two-stage residual 

inclusion estimation a

Note: For model 1 robust standard errors, adjusted for heteroskedasticity and clustered by 

university, are reported in parentheses. For model 2 the standard errors are calculated using the 

bootstrap method

 



Academic Incubators and University Innovation 
 

Table 5. Robustness Checks of baseline estimates

Variables / Model

Estimate Estimate Estimate Estimate
Marginal 

Effects
Estimate

Intercept -0.027 0.231 -0.095 -0.547 0.145

(0.504) (0.195) (0.093) (0.082) (0.217)

Incubator -0.253 *** -0.203 *** -0.073 *** -0.241 -0.263 *** -0.210 ***

(0.077) (0.044) (0.024) (0.032) (0.047)

Number of patents in t-1 -0.003 * -0.002 * 0.001 * -0.003 -0.003 *** -0.002 **

(0.002) (0.001) (0.000) (0.000) (0.001)

Forward citations of patents granted in t-1 0.147 *** 0.214 *** 0.051 *** 0.110 0.126 *** 0.183 ***

(0.036) (0.040) (0.008) (0.010) (0.028)

Biotech -0.497 *** -0.750 *** -0.217 *** -0.521 -0.546 *** -0.662 ***

(0.076) (0.079) (0.019) (0.020) (0.061)

ICT 0.376 *** 0.408 *** 0.152 *** 0.272 0.322 *** 0.398 ***

(0.067) (0.071) (0.016) (0.015) (0.051)

Nonpatentref 0.001 -0.001 0.001 * 0.000 0.000 0.000

(0.001) (0.001) (0.000) (0.000) (0.001)

Patentref 0.009 ** 0.008 *** 0.005 *** 0.006 0.007 *** 0.008 ***

(0.004) (0.001) (0.001) (0.000) (0.001)

Inventors 0.159 ** 0.132 *** 0.053 *** 0.081 0.093 *** 0.138 ***

(0.071) (0.035) (0.009) (0.012) (0.028)

Assignees 0.323 -0.131 0.059 0.034 0.039 0.025

(0.396) (0.105) (0.065) (0.046) (0.145)

Inventors * Assignees -0.069 -0.029 -0.021 *** -0.027 -0.031 *** -0.041 **

(0.065) (0.020) (0.008) (0.009) (0.019)

Scope 0.031 0.123 *** 0.012 * 0.045 0.052 *** 0.088 ***

(0.027) (0.037) (0.007) (0.005) (0.027)

Year Dummies Included

University Dummies Included

R2 (pseudo when applicable)

Adjusted R2 (pseudo when applicable)

Multicollinearity Condition Index

Number of Observations

*** .01 significance, ** .05 significance, * .10 significance

Note: Robust standard errors, adjusted for heteroskedasticity
and clustered by university, are reported in parentheses.

1. Conduct the baseline 

analysis only for 

universities whose yearly 

average research budget is 

below the median budget 

of the sample universities

2. Conduct the baseline 

analysis only for universities 

whose yearly average 

research budget is above the 

median budget of the sample 

universities

3. Conduct the baseline 

analysis using citations 

accumulated within 5 years 

from the patent publication 

date to construct the 

dependent variable (citations 

per year).

4. Estimate the baseline specification 

using a negative binomial estimator

5. Considering as post-

incubator patents applied 

after 365 days from 

incubator's founding date

YES YES YES YES YES

YES YES YES YES YES

0.115 0.115 0.146 0.063 0.112

0.112 0.113 0.145 0.062 0.111

42.567 40.467 38.329 38.329 38.295

18090 29968 48058 48058 48058
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Variables / Model

Intercept 3.713 *** 3.851 *** 5.311 *** 3.070 *** 16.786 *** 2.087 *** 3.823 ***

(0.843) (0.782) (0.957) (0.664) (1.079) (0.392) (0.894)

Incubator -0.140 ** -0.325 ** -0.271 ** -0.133 ** -0.613 ** -0.083 ** -0.132 *

(0.063) (0.148) (0.108) (0.060) (0.269) (0.037) (0.067)

Number of patents in t-1 -0.002 -0.001 -0.007 0.003 0.000 -0.002

(0.004) (0.004) (0.005) (0.002) (0.010) (0.004)

Technology tranfer office age 0.000 ** 0.000 0.000 *** 0.000 ** 0.001 *** 0.000 *** 0.000 **

(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000)

Technology tranfer office size 0.011 *** 0.011 *** 0.015 *** 0.011 *** 0.054 *** 0.009 *** 0.011 ***

(0.003) (0.003) (0.005) (0.003) (0.010) (0.003) (0.003)

Licensing income in t-1 0.787 *** 0.784 *** 0.685 *** 0.806 *** 0.882 *** 0.788 ***

(0.038) (0.034) (0.049) (0.042) (0.022) (0.038)

Average number of cumulative forward citations received by university patents granted in t-1 0.000 0.000 0.000 0.000 0.000 0.000 ** 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Average number of non-patent references of university patents granted in t-1 -0.002 -0.002 -0.002 -0.001 0.001 -0.002

(0.002) (0.002) (0.003) (0.004) (0.002) (0.002)

Average number of patent references of university patents granted in t-1 0.002 0.002 -0.002 0.003 0.000 0.002

(0.004) (0.003) (0.007) (0.007) (0.004) (0.004)

Average number of inventors in university patents granted in t-1 -0.023 -0.025 -0.099 -0.243 -0.029 -0.021

(0.048) (0.059) (0.065) (0.202) (0.032) (0.048)

Average number of assignees for university patents granted in t-1 -0.014 -0.010 0.325 0.218 -0.087 -0.022

(0.279) (0.245) (0.269) (0.577) (0.212) (0.281)

Biotech 0.011 ** 0.012 ** 0.012 * 0.026 ** 0.011 **

(0.005) (0.005) -0.006 (0.011) (0.005)

ICT 0.002 0.002 0.012 ** 0.002 0.003

(0.005) (0.005) -0.006 (0.013) (0.005)

Average scope of university patents in t-1 -0.109 *** -0.107 ** -0.061 -0.243 ** -0.031 -0.109 ***

(0.032) (0.052) -0.080 (0.097) (0.029) (0.032)

Private 0.002 -0.048 -0.033 -0.037 -0.581 -0.020

(0.162) (0.100) -0.242 (0.176) (0.774) (0.189)

Single campus -0.105

(0.175)

Residual of first stage a 0.080 ***

(0.019)

Year Dummies Included

University Dummies Included

R2 0.886 0.886

Adjusted R2 0.876 0.876

Multicollinearity Condition Index 102.013 103.266

Number of Observations 908 908

*** .01 significance, ** .05 significance, * .10 significance

Note: For model 1,3,4,5 and 6 robust standard errors, adjusted for heteroskedasticity and clustered by university, are reported in parentheses. For model 2 the standard errors are calculated using the bootstrap method
a The estimates of the first stage are presented in Appendix Table 1

Table 6. Estimates when the dependent variable is the logarithm of yearly university licensing income (the unit of analysis is the university)

1. OLS estimation
2. Two-stage residual 

inclusion estimation a

3. Replace the 1 year lag 

structure of Model 1 with 

a 2 year lag structure

4. Omit from Model 1 

variables that can drive 

patent value in the 

baseline analysis

5. Omit lagged dependent 

variable from Model 1

6. Omit variables that 

inflate the 

multicollinearity condition 

index from Model 1

7. Add a variable 

indicating whether 

the focal university 

has more than one 

campus

NO YES

YES YES YES YES YES NO YES

YES YES YES YES YES

0.841 0.884 0.703 0.873 0.8859

0.826 0.874 0.678 0.872 0.875

102.272 62.564 67.341 49.582 109.096

861 913 937 908 908
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Appendix Table 1. First stage of two stage residual inclusion estimation. The dependent variable is the probability of a given university having established an incubator at a given time

Variables Estimates Marginal Effects Estimates Marginal Effects

Intercept -0.662 0.090

(0.616) (0.229)

Number of competing universities that had established an incubator previously 0.627 ** 0.070 0.428 *** 0.088

(0.269) (0.074)

Experience 0.000 0.000 0.006 *** 0.001

(0.003) (0.001)

Variable that takes the value of 1 if the university is private, 0 otherwise -3.168 ** -0.384 -1.340 *** -0.268

(1.326) (0.219)

Variable that takes the value of 1 if the university has a medical school, 0 otherwise -0.867 -0.108 -1.551 *** -0.347

(0.939) (0.223)

Year Dummies Included YES YES

University Dummies Included YES YES

Pseudo R2 0.366 0.286

Adjusted R2 0.364 0.230

Wald test of overall model significance 10814.710 *** 226.880 ***

Multicollinearity Condition Index 8.471 7.871

Number of Observations 48940 1021

*** .01 significance, ** .05 significance, * .10 significance

Note: Robust standard errors, adjusted for heteroskedasticity and clustered by university, are reported in parentheses.

Estimates for baseline specification presented in 

Table 4 (dependent variable in the second stage is 

the forward citations per patent)

Estimates for specification presented in Table 6 

(dependent variable in the second stage is the 

yearly licensing income per university)

 

 


