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BEHAVIOURAL CLASSIFICATION FORENHANCING
CRITICAL INFRASTRUCTURESECURITY

Abstract — Protecting critical infrastrtures from cyber-threats prevention measures and for developing improved security
in an increasingly digital age is a matter of growing urgency feschniques [9, 11]. A simplesystem can be created to
governments and private industriesross the globe. In a climaterepresent a larger infrastructure and allow for realistic testing
wherg (_:yber-securlty is an_uncertalnty, fresh and adaptive s_olutl%ls[ake place [12]. Simulation caumovide an effective role in
o existing computer security approaches are a must. In this papéesr,ting the capabilities infrastructures have in facing the

we present our approach to suppagtcritical infrastructure security. . ber-th . I id
The use of our critical infrastrure simulation, developed usinggrOWIng cyber-threat. Using emulators can provide an

Siemens Tecnomatix Plant Simulator and the programming langugective ways of developing new approaches to secure critical
SimTalk, is used to construct realistic data from a simulated nuclédirastructures [9].

power plant. The data collected from the simulation, when bothUSin our simulation. we construct realistic data. both
functioning as normal and during gyber-attack scenario, is done 9 ' !

through the use of an observer patieBy extracting features from When operating under normalraimstances and during an

the data collected, threats to the system are identified by model@#ack scenario. We collect the data from the simulation using

system behaviour and identifying changes in patterns of activity @pservers and then extract features which can be used to

using three data daification techniques. classify the data. Using this data, a pattern of behaviour is
formed to act as an inferencedel. From this model, we are

Index Terms— Critical Infrastructure, Cyber-Attack, DataSuPSequently able to identify attacks on the system using

Classification, Behavioural Obsation, Simulation, Tecnomatix ~ Mathematical classification techniques and computational

algorithms, to identify changes in activity.

L. INTRODUCTION o The remainder of the paper is as follows. Section 2 presents
The emergence of the new level of sophistication of cybgfyr approach for the use of behavioural observation for
attacks has given critical infrasature security an increasingsypporting critical infrastructure security. Section 3 details the
focus, in governments, industry and the media around #i&elopment of our power plant simulaton and data
globe [5]. Protecting critical infrastructures against cybegpnstruction. Section 4 details the data analysis and Section 5
threats is becoming a matter of urgency. discusses its classification. An evaluation of the results is

Intrusion detection systems (IDS) [6] and unified thre§scussed in Section 6. The paper is concluded in Section 7.
management systems (UTM) [7] both have the role of 2 SYSTEM APPROAC
ensuring critical infrastructuresre kept safe. The problem is, o : FM PPROACH o
both of these approaches areugyling to keep up-to paceGiven their highly sensitive nature, organisations are often

with the growing level of Comp|exity Cyber-attacks noWnWi”ing to part with data or detailed information about how
pOSSESS. their systems function. This poses difficulties for independent

) . researchers and security compartifind an effective way of

~ Consequently, we present antiauation of our research geyeloping new approaches to securing critical infrastructures.
into the. use of behaV|ourqI obs_ervatlop for th.e support ®firthermore, not only is effective security costly, the
critical infrastructure securityagainst this growing cyber-requirements individual criticahfrastructures have are often
threat [1, 2, 3, 4]. unique meaning their security systems have to be tailored to

In this paper, we present, initially, our simulation of Eatch their specific needs. As a result of these factors,
nuclear power plant using Siemens Tecnomatix Plainulation can play a key role the advancement of security
Simulator and SimTalk. Simulation has a key role in tfBeasures in a cheap, safe and effective way.

advancement of critical infrasirture protection. Its use iS  The recognition that simulatiois the best approach to
becoming a common technique for the testing of cyber-attggiéyenting cyber-attacks and improving responses is clearly



identified as the best way forward by governments aabstractions of the data [8]. Using the features, patterns of data
organisations around the globe [9]. Using simulation #@e created using data classification.

beneficial in that it can be affective tool for implementing Stage two is the comparing odal-time behaviour with a

new approaches to security anrealistic environment. It can ) .
pp ty tabase of known patterns of correct behaviour in order to

also provide an insight into how effective a new approaChiqentify changes in behaviour as a result of anomalous activi
security would be and provide proof of applicability an 9 Y-

performance evaluation. igure 1 displays this approach._ In both cases, data is
collected from the components using observers. The use of
In our research to date, we have explored the useobfervers prevents the operator or an analysis engine from
behavioural observation for itical infrastructure security being overwhelmed with dathecause data is filtered and
support [1, 2, 3, 4,]. However, in order do this; a significanustomised by the observer. Thlgservers extract the features
amount of data is required. Riat reason, a simulated criticafrom the data. (The features ivh are extracted are discussed
infrastructure is essential to provide the data needed ifoiSection 3).
testing and to develop our system. In this section, an overview
of the approach for using behaviour observation to support 3. DATA CONSTRUCTION
security is presented. Our appetbhanonitors the operations ofAs critical infrastructure data is highly sensitive, it is clear that
an infrastructure and identifies any abnormalities, which ocaimulation can provide realistic data without being restricted
in its operation, as a result, @n attack on the system. by security constraints. For the purposes of our research, a
a}ﬂge data set of realistic critical infrastructure behaviour is
é;rrﬁ*ated. In order to construct th_e data,_ a simulation of a
tlear power plant is crucialThis section presents the
velopment of a simulation of a nuclear power plant and its

Patterns of behaviour are monitored, in real-time,
through the use of data classification, threats to the syst
caused by changes in the patterns, are identifiéq}t']é'.

et Stagx 2

o use for data construction. Attacking a nuclear power plant is
@ { Dot Base of Soored Petheras ]| Pers Clpedin ﬂ_ the doorway to causing a huge impact. For that reason, we felt
that developing a simulation environment representation of a

N [ nuclear power plant would be ideal.

All other critical infrastructures depend on power plants
‘"; functioning and, given their clear importance, realistic data is
sensitive and hard to come by. Not only that, the impact of an

! | orchestrated attack on a nuclear power plant could have
e TR serious consequences due to the nuclear element involved [10].
[9 ][ \ A successful attack could not only affect the population but
peeT—— also the environment. Nuclepower plants are prime targets
f f for cyber-attacks [10].

Fomae Dyrsace

3.1 Smulation

rats Colecibsn

The simulation design consists of an external water source,
two water storage tanks, two pumps, a nuclear reactor and a
steam generator. Pipes are also included, which carry the
water and steam to and from the water tanks and reactor. The
design is based on a nuclear power plant which would contain
each of the components in the design.

& . PlantOverview EventContra,. 2 |

Time: £:00:00:00.0000

Fig. 1. System Design

Controls | Settings

Our approach involves two stages. The first stage is | [ ®/(=/oeib
development of a database of normal behaviour for the sys| " ~
Using observers to collect data from various components — . g
the system when it is functioning normally, a database | . . ; H &
expected system behaviour is constructed. The collected « :
then has features extracted from it. The features are

Fig. 2. Simulated Power Plant



Figure 2 displays an overview of the whole system. It c83 components in total, including connections and interfaces,

be broken down into four main groups of objects. The grougs figure 2 displays.
include:

When linked together, the system functions, as shown in
1. A Water Source: The production of water is suppliegigure 3. The individual blue blocks represent a visualisation
by three sources. Two infinite sources, representinghBmaterial flow. In this case, they are units of water travelling
lake or ocean, and one water tower. The wal§fiough a network of pipes in the system. Exiting the

?ntroduced into this simulation requires filtering bej'forﬁenerator, units of energy are passed to the output and the
it can be sent to the water tanks. The generation é?fergy unit output is monitored.

impurities in the water was set to 1% meaning that the

level of discrepancies remained small but had to beThe flow of material can be demonstrated in a Sankey
monitored. The water tower has a limited productidfiagram of system flow which is a way of visualising the
source of water, which can only supply for the duratidtpw of the system. In the case of our simulation, the Sankey
of 10 hours. 1 unit of water represents 1 litre in ogiiagram shows the flow of water, steam and energy
system. The water supplied is fed into one large pigroughout the system. The flow is represented by the
which is then filtered for impurities before beinghickness of the lines in the diagram in figure 4. The thicker

pumped into the Water Tanks. the line, the more traffic passes through the connection.
Two Water Tanks: These consist of two storage tanks,

with a pipe to and from each tank. The tanks act as ¢ K &
place for the water to collect and effectively act as a R e

way of controlling the wateflow to the reactor. The ..
water distribution is controlled by a Flow Control
which gives tank 1 priority over tank 2. This, in effect, | (= i

makes tank 2 act as an overflow for when tank 1 gets === e
too full. The water is then pumped to the Reactor by| __ . |
two pumps, one for each tank.
A Reactor: This combines thetake of water with heat e o S

from a nuclear reaction toqutuce steam and feed it to

a generator. A source generates the Nuclear Reactior
It is combined with the units of water in an assembly
station to produce heat. In a nuclear power plant the
water acts as a coolant for the reactor, some water id\s Figure 4 displays, the heaviest traffic can be seen on the
therefore, recaptured asstnot turned into steam. pipes heading into the reactor and the energy output pipe.

A Generator: It consists of two steam pipes into which 3.2 Behaviour Analysis
the reactor feeds steam aadurbine which is turned

by the steam entering theystem. Each unit of steamy, |
turns the generator once.

Fig. 4. Sankey Diagram of Material Flow

The behaviour of the system can be analysed at any time,
t for the purposes of our research, observers were inserted

to collect data from specified components. Taking pipe4 as an
example, an inserted TimeSequence acts as an observer, and it

.—I . records the values for the number of units of water passing

: ﬂ”uﬂ through pipe4. Active sampling was done every 0.25 seconds.

—

4 Hz. From these components we extracted features.
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Fig. 3. System Functioning
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The features we use comprigkeaspects which identify the
system and regular occurrences in system behaviour. Overall
water volumes, steam outputda@nergy creation are recorded
as features. In total we take 9 features from the system as a
whole including the mean, maxdamin values every hour for:

1. Water in system
2. Steam in system

3. Energy or Reaction in system

Each of the groupings are given a graphical icon to|n addition to the 9 systerfeatures, 3 features from 10
represent its function more clearly. They can be opened ugdémponents in the system are recorded. The features collected
show the different objects which allow the system to functidgibm the components include aspects such as:

and be interconnected. The simulated power plant consists o{

Speed of flow



2. Mean level taken into account. Using observational services would allow
for fast identification of anomalies by monitoring the system
functions and recognising patterns of behaviour.

In this paper, we collect data from 10 components in the

system, resulting in the creation of 39 features in total: _9 . U
system features and 30 compan features. These featuresystem which supports security in critical infrastructures. The

were chosen because theypnesent characteristics of the%lata constructed by the simulat_ion is used for creating an

system behaviour inference model of system behaviour. In_orde_r to detect th_reats
' to the system, such as cybéiaaks, we identify changes in

In order for our data classification to be effective botpatterns of activity using data classification techniques

normal behaviour data and attack data is needed. Using p@sented in Section 5.

3. Number of times 0 recorded

Using this data we propose a behavioural-based observation

simulation attack data was constructed by implementing — —T 5T o
failure to the steam pipes which would occur 50% of the timQPOIQ;IQS'gIme W;I_F fll 1p2 53 4 ; 1 ; 2 5 SpP1 §pP2
during runtime. This results in each steam pipe turning off ant—4753> — 111 o 33 5
on during the simulation and causing a knock-on effect— 07535 7 111 11T 9 3 35 3p P
throughout the rest of the system, which will be highlighted i 07:53.7 7 11011 ¢ 353 P
Section 4. 0754.0 7 14 11 d 35 3p P
0754.2 7 (11 11 g 9 35 3p [
Random failures are implementing an Availability 07:54.5 6 [11 11 0 3p 3p P
Percentage. The Availability Percentage refers to the chancgs 8;52‘5‘-3 g ﬂ i g g; g 2
o_f a maqhme_ or components being ready to use at any giver—g7=ss =TT 10— 5
time taking into account failures and blockages, which i$——p7555 5 T 11 10 0 35 36 D
calculated using the formula: 07:55.7 6 | 11 11 4 35 3p L 9 5
. 07:56.0 6 |11 11 g d 35 3p [
Availability = MTBF/(MTBF+ MTTR) 07562 5 110 11 0 36 36 [
(1) 07:56.5 6 | 14 11 J 35 3p [
07:56.7 6 | 14 11 9 d 35 3p [
Where MTTR is the Mean Time To Repair and MTBF is 07:57.0 5 11 11T 9 4 36 3p £ 9§ 3
the Mean Time Between Failures. 07:57.2 5 117111 0 3 3p L
0757.5 5 | 1] 11 d d 36 3p [
Due to the fact that power plasystems are designed to be 07:57.7 5 | 11 10 0O 35 3p [L
enduring, the failure of key agponents such as the reactor, 07:58.0 5 [ 11 10 @ 3p 3p L
water pumps and Flow Controls, is ordinarily set at 0.1 pet 8;522'2 g il i 8 3 g’ gg 1
ce_nt for 'the simulation, meaning thgt' any nat.urally occuring—g7sg~ =111 o 3; 51T
failures in the system would be minimal. This was done t( 075900 5111 11 0 36 36 I
make the system behaves differently each time it runs and [0 07:59.2 4 [ 11 11T 0o 36 3p [
account for minor system faultehich occur in real-life 8;123-5 3 ﬂ i 8 39 gg 1
i ; :59. b
critical infrastructures. SET00 Ot 5
08:00.2 4 [ 17 10 O 36 3p [
4. DATA ANALYSIS 08:00.5 7111 11 0 4 36 3p £ 9 5
The types of data the system can construct includes: 08:00.7 4 11711 9 § 36 3Pp [
performance data, material fladata, re-source allocation, and 83%-‘2’ j L ij g ] 2; gg 1 s
system load data. 08:01.5 7111 11 9 3 36 3p [
; 08:01.7 3 | 14 11 36 3p P
4.1 Observer for data collection 08020 —t 1o e
The data the observers collect in our simulation refer to the  08:02.2 3 |17 11 9 4 3¢ 3 P
units of water and is sampled4ttiz (which is every 0.25 of a 8?82'5 g ﬂ i 8 g; gs 8
second). Therefore the datasetabhis generated is extremely 05030 T T ¢ 26350
large after one simulated daydaoonsists of 366,000 records
of data for each Component_ Table 1 Normal Behaviour Data

Table 1 displays a sample of the flow of water, where theEach component is explained below:

value refers to the number ohits of water being processed | \wTp (Water Tower Pipe): the WTP provides a fixed
by the component at a given time. For example, between the 5 ount of water to the system every hour of the
times 7:53.0 and 7:56.0, p4 the amount of units of water  gjnulation.

changes between 3 and 4. In the data sample displayed in table

1, above 10 components are displayed in abbreviation format.2. P1 (Pipe 1): P1 connects the first infinite water source

. . . . L ) to the water filter.
In an industrial environment, real-time monitoring is

essential. Large numbers of physical parameters, such a8 P2 (Pipe 2): Similarly to P1, P2 connects the second
temperatures, pressure, speed and flow rate factors must be infinite water source to the water filter.



4. P3 (Pipe 3): P3 sends tlitered water impurities to
the waste. i _ |
4.0000 + A pipedReal
5. P4 (Pipe 4): P4 connects the water sources to the wi, ., .'"'I'll'"'“""'"'l
tanks. i A A .
. t““. “* kS dccicickAdcaich B pipedAttack
6. T1 (Water Tank 1): Water is divided evenly betwee|, .oq0 - | |
both water storage tanks. However, T1 is the prima, : |
water tank for the system. Both tanks store the wa ; — Linear
which is supplied to the reactor core. 15000 ! ' (pipetical
7. T2 (Water Tank 2): Theegond water tank also storef;zzsz | — Linear
water produced by the water sources. The level in b(~ | (plpedatisck)
tanks regularly increases and decreases dur”®% j ; ' '
simulation. 0 i 0 L 9 2

8. R (Reactor): In the Reactor core, A source generates Fig. 5. Pipe4 Data Normal and Attack Behaviour

the Nuclear Reaction. It is combined with the units of Figure 6 displays the data constructed for pipe3. As before
water in an assembly station to produce heat. Intree triangles represent normal behaviour and the squares
nuclear power plant the water acts as a coolant for #fepresent attack behaviour. The change in behaviour as a
reactor, some water is therefore, recaptured as it is retult of the attack caonce again be seen but in the case of
turned into steam. this component it is not as clear. The linear line for both

9. SP1 (Steam Pipe 1): The reactor feeds steam anaog\mal and_attack behaviour, however, shows a clear change
once again in the average value.

turbine which is turned by the steam entering the
system. Each unit of steam turns the generator once. The aim of our research is tdentify these variations in
10, 2 (Steam P 21 Steam Pie 1 and 2 bon R 1 Ao cheer o e changes s
consistently even levels of steam passing through them y o . _ Y ‘ 9
to the generator. IS data classifiers are trained to automatically detect threats

to the system.

The data displayed in Table one refers only to the normal . .
behaviour data, however, as previously mentioned, two dﬁtalln both of the graphs displayed, figures 5 and 6, one feature

. om two different components is selected to show subtle
sets were created for both attack and normal behaviour. . . )
comparisons with normaind attack behaviour.

Using the features extractddom the two datasets for

normal and attack behaviougcords are created. Records ¢ ***° | 44 : SES5
data are used for training an algorithm to learn what nornj o000 = A&~ 4 f
behaviour is and subsequently identify when norm ooso - m ™4 SESFSSL A pipe3Real
behaviour is not occurring. 48 records of data are crea .., A ® WAR -
consisting of 39 features. 24 records used for norn e m B L B pipe3Attack
behaviour and 24 for attack behaviour. 00230 T T fif IS

The 24 records for each are created as the simulation — w® EEEW —— S

L EE=SE ISSS t = (pipe3Real)

operated for a day and every hour the features are extra| ***°
from the data collection. 0.0100 - ;;?;:;Mack)

4.2 Normal and Attack Behaviour S

0.0000 -+ 1 t
The difference between normal behaviour and atta 0 5 10 15 20 25

behaviour can be seen both in figures 5 and 6. Two
components were chosen as a representation of the differences
in data between attack and normal system behaviour. The feature is the mean value of water in the component

Normal behaviour is represented by the triangles and att k" the penod of an hour_. In_ the case of figure 5 the chan_ge
ehaviour can be easily identified. However changes in

behaviour represented by the squares. The x-axis number rhhaviour as a result of an attack taking place can often be

records of data taken from 1 to 24. The y-axis displays . . .
mean value for the units of water in the component over & tle and hard to |dgnt|fy, as sh(_)wn by figure 6. For that
reason, data classification is essential.

hour.

Figure 5 displays the data constructed for pipe 4. The result 5. DATA CLASSIFICATION
of the attack on the steam pipe has an effect which can b&he aim of our research is to identify these subtle variations
clearly seen by the increasetie average value per hour. in behaviour and alert an operator of changes in patterns of
activity which could constitute a threat to the system. The data

Fig. 6. Pipe3 Data Normal and Attack Behaviour



is classified to automatically thet threats to the system. If It shows true positive, false positive, true negative and false
analysed in real-time a change in the pattern of expectemative values. Diagonal elements show the performance of
behaviour would result in an alarm being signalled and ttie classifier while offliagonal presents errors.
operator being alerted to the change in activity.
The first confusion matrix, in Figure 7, presents the results
for UDC, which shows 95.8% correct results for initial object
Using the database of features extracted from tblassification.
simulation, data classification algorithms were applied to

5.1 Data Classification Approach

create a model of correct befaur for the system and the True | Estimated Labels
identification of threats. Initially, this was done randomly, by Labels | 1 2 | Totals
dividing the data, using MATLAB, into a 50% training set ________ i i i
with the rest of the 50% assigned to a test set. Using three 1 | 12 0 | 12
different classifiers which are discussed below: | 1 11 12
e Firstly, Linear Discriminant Classifier (LDC) is = ======== et e e

implemented as it is a technique which can be used when Totals | 13 5 T 24

two classes are not normally distributed [13]. It works by

sorting or dividing data into groups based on characteristics Fig. 7 UDC Confusion Matrix 95.8%

in order to create a classification. A discriminant function is . _
obtained by monotonic transformation of posterior In contrast, LDC produces rét) which are lower. It is
probabilities. In other words, it performs an ordere83.3% successful in accurately classifying the data, into its
transformation of unknown qutities. It does this using the correct groups. This is shown the Confusion Matrix in

formula: Figure 8.
gi(x) = log[P(w)p(x|w)], i=1,..,c @ True | Estimated Labels
Labels | 1 2 | Totals
e Secondly, we chose a Quadratic Discriminant . _____ [ P—— [ —
Classifier (QDC-Bayes Normdl). This technique works 1 | 12 | 1
by assuming that the classes aormally distributed with I & g | 12
class specific covariance matrices, which is the changing of - = -
two random variables. Again, this is achieved using the =777 777° e i JeE——
formula below: Totals | 16 8 | 24
g_(i) ()=w_i0+w_i"T x+x T w_i X - Fig. 8. LDC Confusion Matrix 83.3%

] i QDC again gives a lower percentage of 79.2 as shown in
e Thirdly, we used an Uncrelated Normal Density Figyre 9).

based Classifier (UDC- Bayes Normal-U). UDC works in a

similar way to the QDC classifier but computation of a True | Estimated Labels
quadratic classifier, between the classes in the dataset, is Labels | 1 2 | Totals
done by assuming normal densities with uncorrelated — ________ T ST R
features. Quadric Bayes takes decisions by assuming . - 12
different normal distribution oflata. It leads to quadratic i ' i | -
decision boundaries [14]. 2 ! 5 7 1 12
52 Observations T LR e ks
Totals | 17 7 | 24

Using the above data classifiers, the results of each initial
experiment is displayed in figures 7 to 9 in order of successful Fig. 9 QDC Confusion Matrix 79.2%

data classification. The experiments show that abnormal behaviour is

Each figure displays a confusion matrix which determinétentified for improving the level of security and assisting the
the distribution of errors across all classes [15]. It displagperator with attack detections. The best result is achieved
how successful each techniquesvat classifying normal andusing UDC, which has, in this case, 95.8% accurate
threat behaviour. classification of behaviour.

TP+TN
TP+FP+TN+FN

6. EVALUATION

In order to give a more accurate evaluation of which of the
classifiers is most successfahd consistent, the experiments
were conducted 30 times. The reason the classification




experiments are conducted 3fnhdéis is to account for errorssignificantly lower than it is for both QDC (95.8 %) and UDC
and to give consistency [16]. Statisticians identify th#95.8%) analysis. In table 2 the results from each of the 30
experiments conducted 30 times provide an adequate realistiperiments for the three clasis are displayed with the

average [16].

mean average for each presented.

In this section, an evaluation of the classification uDC LDC Qbc
algorithms used is presentedrmd with a discussion on the 1 95.8 83.3 79.2
results and how this approach will benefit critical 2 95.8 79.2 100
infrastructure security. 3 100 375 100
6.1 Results 4 100 95.8 95.8

UDC scored best and is consistent throughout, with a mean 5 100 95.8 917
average of 97.3 per cent accurate classification of system 6 | 100 79.2 100
behaviour data overall. 7 95.8 83.3 95.8

8 95.8 83.3 100
100 TARGOR A 9| 958 | 875 | 958

95 “f ’7: * 10| 958 | 792 | 542

90 11 il 11| 100 79.2 91.7

85 1 12| 958 100 95.8

€0 A 13| 958 87.5 54.2

75 4 14| 958 83.3 95.8

70 + 15 95.8 62.5 87.5

65 16 95.8 95.8 100

60 17 100 70.8 83.3

55 — 18| 95.8 70.8 95.8

50 +—r— T T 19 95.8 83.3 87.5

1357 911131517192123252729 20 100 83.3 100
, T _ 21| 100 83.3 87.5
Fig 10 Graph of Classification Comparison 2 100 792 958

Figure 10 displays a line graph of the varying results of the 23| 95.8 95.8 83.3
data classification for the 30 times the classifiers were applied 24 95.8 70.8 83.3
to the data. 25| 95.8 70.8 87.5

1000 273 26 | 100 87.5 62.5

90.0 27 91.7 95.8 95.8

80.0 28 100 83.3 70.8

20.0 29 100 75 95.8

60.0 30 95.8 95.8 100

0.0 Ave| 97.3 83.6 88.9

40.0 Table 2 Classification Comparisons

300

20.0
10.0
0.0

ubc LDC Qapc

Fig 11 Classification Mean Success Percentage

6.2 Discussion

In our previous work, the best result was achieved using
LDC, which had 80% accurate classification of behaviour [4].
This is a percentage of correctly classified data that is lower
than what could be ideal in aitical infrastructure security
environment. In the case of critical infrastructures, it is
important to achieve a high aess rate. In this paper, the

can be seen in Figure 11, which displays the mean avergggstructive feature extraction as well as a larger number of
score of each approach to behavioural anomaly detection. featyres extracted from the system.

UDC performs consistently; however, LDC and QDC also gyr system will use all three classifiers and provide the
achieve high results but have lower consistency. The highgsrator with the ability to perform various analyses of the
result for each is 100 per cent, although the mode value 9&tem to gain a more accuratsight into whether the system
LDC (83.3 %), the value whichcours the most frequently, isjs ynder attack. Using and coaring three classifiers allows



for the number of false positives and false negatives to be ket also investigate how patterns of behaviour, including

to a minimum.

The experiments show that abnormal behaviour can g{?
identified for improving the level of security and assisting the
operator with attack detections.

6.3 System Function [1]

The system functions by allowing the operator to customise
data collection through use of an observer pattern. This E]
done with a HMI interface wher features to be extracted
from system data, can be chosen.

The system enhances criticalfrastructure security by 3
monitoring physical behaviour of the system and allowing the
operator to detect changes in behaviour which could be the
result of an attack taking placéhe changes in behaviour are [41
detected using the data cldigsition techniques presented in
this paper, from data which is collected by an observer pattefs).

7. CONCLUSION AND FUTURE WORK

Our research presents a way of improving criticaf6]
infrastructure security by identifying threats, and unusudl]
activity, through behavioural observation. Our technique, for
critical infrastructure goport, adds to the defence in depth that
is currently in place. Using o@pproach, multi-level security [g)

is enhanced.
. L . o 9]
In this paper, a critical infrastructure simulation is used to
create substantial datasets. The behaviour of the system

remains consistent during each simulation however subltid

threats, can be processed @alrtime and investigate the use
multiple datasets and differeattack scenarios to enhance
r results further.

REFERENCES

Removed for blind review. (2012). Behavioural Observation for
Critical Infrastructure Support. 13th Annual Post Graduate Symposium
on the Convergence of Telecommunications, Networking and
Broadcasting, June 2012.

Removed for blind review. (2012). Operational Support for Critical
Infrastructure Security. ICESS 2012. The 9th IEEE International
Conference on Embedded Software and Systems.

Removed for blind review. (2012). Managing Critical Infrastructures
through Behavioural ObservationThe 3rd I|EEE International
Conference on Networked Embedded Systems for Every Application
(NESEA) 2012.

Removed for blind review. (2013). Protecting Critical Infrastructures
through Behavioural Observation. Imgeience International Journal of
Critical Infrastructures.

Abu-Nimeh, S.; Foo, E.; Fovino, N.; Govindarasu, M.; Morris, T.
(2013). Cyber Security of Networ#eCritical Infrastructures [Guest
Editorial]. IEEE Network Jorunal Vol 27 (1) pp 3-4.

B. Mukherjee, L. Heberlein and K. i, Network inttusion detection,
IEEE Network Journal, 8(3), 26-41, 1994.

Y. Zhang, F. Deng, Z. Chen, Y. Xue and C. Lin, UTM-CM: A
Practical Control Mechanism Solution for UTM System, Proceedings
of the Second IEEE International Conference on Communications and
Mobile Computing, pp. 86-90, 2010.

T. Bass, Intrusion Detection Sgsts and Multisensor Data Fusion,
Communications of the ACM, vol. 43(4), pp. 99-105. 2000.

European Commission Press Release (2010) Digital Agenda: cyber-
security experts test defences in first pan-European simulation.
IP/10/1459

E. Knapp, J. Broad. Industridletwork Security: Securing Critical
Infrastructure Networks for Sma@rid, SCADA and Other Industrial

changes in data patterns can be seen due to normal random congrol Systems. Syngress, Elsevier, Waltham, MA 02451, USA, 2011.

variations in system behaviour. Using the data constructed wg
present a way of improving critical infrastructure security by

identifying threats, and unusual activity, through behaviour&E]
observation.

The novel contribution of our work includes the collectior[llgl
of physical data from multiple components using an observer
pattern and the classification of the data collected using d&t
classification algorithms. Our research focuses on the use of
component behaviour rather than network data to develop a
system which can accuratelyeiatify threats to the system.  [15]

Future work will include the development of a hybrid
model which would not only look at patterns of normal
behaviour and identify deviations but also look at threat dat&fl
This combines both signature based detection with anomaly
detection to produce a moréestive security approach. We

European Commission Press Release (2010) Digital Agenda: cyber-
security experts test defences in first pan-European simulation.
European Commission. Brussels, Belgium 04.11.2010.

Davis, C., & Tate, J. (2006). SCADA cyber security testbed
development. 2006. Power Sgosium 2006. NAOS 2006 38th North
American. |IEEE. doi: 10.1109/NAPS.2006.359615

L. I. Kuncheva, Ed., Combining Pattern Classifiers: Methods and
Algorithms. NewYork: John Wiley & Sons, 2004.

F. Lotte, "Study of Electroenpbalographic Signal Processing and
Classification Techniques towardthe use of Brain-Computer
Interfaces in Virtual Reality Applications " PhD, National Institute of
Applied Sciences in Rennes, Rennes, 2009.

N. D. Marom, L. Rokach, and A. Shmilovici, "Using the confusion
matrix for improving ensemble classifiers,” in Electrical and
Electronics Engineers in Israel (IEEEI), 2010 IEEE 26th Convention of,
2010, pp. 000555-000559.

N. J. Salkind, Statistics for peophho (think they) hate statistics , 3rd
ed. Sage Publications, 2008.



