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ABSTRACT  

  To examine the risk of transgenerational transfer of organotin compounds (OTs) in fish, 

tributyltin (TBT) and triphenyltin (TPT) compounds and their breakdown products were 

determined in both parental females and offspring of viviparous surfperch Ditrema tem-

mincki collected from Japanese coastal waters. TBT concentrations (Mean±SD) in the off-

spring (34±5.7 ng Sn g-1 wet wt) were significantly higher (10–17 times) than in the paren-

tal females (2.8±1.0 ng Sn g-1 wet wt). In the offspring, TBT was the predominant butyltin 

compound (82±1.6% ∑BTs=TBT+DBT+MBT), and represented a greater proportion than in 

the parental females (51±9.3% as TBT). TPT concentrations were significantly lower than 

TBT, and the ratio of TPT in parental females, relative to offspring, was different from TBT. 

TPT concentrations in the offspring (0.8±0.3 ng Sn g-1 wet wt) were almost identical to those 

in the parental females (1.0±0.5 ng Sn g-1 wet wt). TPT was the predominant phenyltin 

(∑PTs=TPT+DPT+MPT) in both offspring (73±12% as TPT) and parental females (72±18% 

as TPT). Results suggest that the transfer rate of TBT from parent to offspring could be 

much faster than its degradation rate in the offspring, accounting for higher accumulation 

of TBT in the latter. In contrast, the transfer rate of TPT is slower than its biodegradation, 

leading to a lower concentration of TPT in the offspring. It is therefore likely that the off-

spring might be at a higher risk from TBT than the parental females during their early 

growth stage in ovary in the viviparous surfperch whereas exposure to TPT is comparable 

in both generations. 
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INTRODUCTION 

  Among organotin compounds (OTs), tributyltin (TBT) and triphenyltin (TPT) have been 

used worldwide as biocides in marine antifouling paints, to prevent the attachment and 

growth of marine organisms such as barnacles, mussels and algae on ships’ hulls (Snoeij et 

al., 1987; Blunden & Evans, 1989; Bosselmann, 1996). These chemicals are responsible for 

many deleterious effects on non-targeted aquatic life, including fish (Fent & Meier, 1994; 

Grzyb et al., 2003). In 1990, the International Maritime Organization (IMO) issued a series 

of recommendations on the use of TBT antifoulings, including a ban on its use on vessels 

less than 25 m length overall. In Japan, in the same year, bis(tributyltin)oxide (TBTO) was 

designated a Class 1 Specified Chemical Substance under the Law Concerning the Exami-

nation and Regulation of the Manufacture of Chemical Substances, and 7 triphenyltin 

(TPT) species and 13 further tributyltin (TBT) species were designated as Class 2 Specified 

Chemical Substances under the same law. Japanese legislation firstly restricted applica-

tions of TBT usage in shipyards and subsequently banned all application in 1991, including 

its use on vessels less than 25 m length overall.  

  In spite of these regulations, OT compounds have been detected at elevated concentra-

tions in water, sediment, and biota from harbours, marinas, and estuaries, particularly 

where boat activity is high and water movement is restricted (e.g. Harino et al., 1998; Tse-

lentis et al., 1999). Because of similar observations of persistence worldwide, IMO adopted 

the International Convention on the Control of Harmful Antifouling Systems (AFS Conven-

tion) in October 2001, which prohibited the use of OTs as active ingredients in antifouling 

systems for ships. This convention was adopted by a majority of signatories leading to a ban 

on the use of TBT across much of the global fleet in 2008. However, high concentrations of 

TBT and TPT are still detected in some aquatic ecosystems (Ohji et al., 2007a; Harino et al., 

2008a), especially, in sediment near shipyards, due to slow degradation rates (Harino et al., 

2007; Langston et al., 2015).  

  Numerous studies have been carried out on the toxic effects of OTs in marine organisms, 
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from the molecular to the population level (Bryan et al., 1986; Jha et al., 2000; Ohji et al., 

2002a, b, 2003a, b). However, most of these are single generation studies and the signifi-

cance of transgenerational factors, for example, the transfer of TBT and TPT from parent to 

offspring, is poorly understood (Gauthier et al., 1998; Focardi et al. 2000; Tanabe et al., 

1998; Harino et al., 2008b). 

  The surfperches (Embiotocidae) have the most evolved viviparity among the teleost fish. 

Ditrema temmincki, which belongs to this family, mainly inhabit sea grass beds and rocky 

reefs in temperate regions in Japan and the Korean Peninsula (Matsuura, 1984; Nakabo, 

1984). Their mating season lasts for three months, from early September to early December 

(Nakazono et al., 1981). After the eggs ripen during November and December, parturition 

occurs during May and June (Nakazono et al., 1981; Tamura et al., 1981). The offspring 

generally spend several months in the parental female (Tamura et al., 1981). During this 

long gestation (6 months), nutrients are provided by the parental female to the young 

(Webb & Brett, 1972; Wourms et al., 1988; Nakamura et al., 2004) and transfer of 

non-essential materials, including pollutants, can also take place. This inculdes any TBT 

and TPT to which the viviparous surfperch may have been exposed during their life history. 

The surfperch D. temmincki therefore represents a valid and simple model to evaluate the 

potential for transfer of TBT and TPT between parent and juvenile viviparous fish. 

  The aim of the present study was to examine the difference in the accumulation pattern 

of butyltin compounds (BTs) including TBT and its derivatives, dibutyltin (DBT) and 

monobutyltin (MBT), and phenyltin compounds (PTs) including TPT and its derivatives, 

diphenyltin (DPT) and monophenyltin (MPT), between parental females and offspring in D. 

temmincki Bleeker collected from Japanese coastal waters. And to provide some clues as to 

the mechanism and significance of transgenerational transfer of OTs in viviparous fish. 

 

Materials and Methods 

Sample collection 
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  Five mature female D. temmincki were collected by set net at Otsuchi Bay located in 

Iwate Prefecture on the Pacific side of northeastern Honshu Island, Japan, on July 23th, 

2003. The offspring were taken from these five parental females (P1 to P5) by dissecting the 

ovaries and weights and length determined (Table 1). The offspring were considered to be 

almost at the same developmental stage, just before oviposition. The number of offspring in 

each parental female ranged from 17 to 23 individuals. Three replicate samples of five indi-

vidual offspring from each parent were analysed for OT body burdens (O1 to O5) (Table 1). 

To test whether analysis of BTs in a single offspring was feasible, the OT concentrations in 

three individual offspring [O2 (1 ind.)] taken from one parental female (P2) were deter-

mined (Table 1). The OT concentrations in each parental female were also analysed. All bi-

ological samples were stored in a freezer at -80˚C until chemical analysis. Seawater samples 

were also collected at a depth of 0.5 m at the time of fish collection, using 1 l polycarbonate 

bottles. The seawater samples were acidified with 1 ml of 1 M HCl immediately and stored 

at 4°C, in the dark, until chemical analysis.  

 

Chemical analysis of organotins in specimens 

The method used to determine the concentrations of OTs in the biological samples was 

based on that of Ohji et al. (2006b) with some modifications. One gram (for analysis of one 

individual offspring) or five grams of homogenated fish (for pooled samples) was spiked in a 

centrifuge tube with 100 µl acetone containing 1 µg ml-1 each of OT standards tributyltin 

monochloride (TBTCl)-deuterium (d)27, dibutyltin dichloride (DBTCl)-d18, monobutyltin tri-

chloride (MBTCl)-d9, triphenyltin monochloride (TPTCl)-d15, diphenyltin dichloride 

(DPTCl)-d10, and monophenyltin trichloride (MPTCl)-d5 (Hayashi Pure Chemical Industries, 

Ltd, Osaka, Japan). The mixture was extracted with 10 ml of 1 M HCl-methanol/ethyl ace-

tate (1/1) by shaking for 10 min. After centrifugation for 10 min, the residue was extracted 

with a further aliquot of solvent and centrifuged again in the same way. The combined su-

pernatants and 30 ml of saturated NaCl solution were extracted twice in a separating fun-
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nel using 15 ml of ethyl acetate/hexane (3/2). Fifty milliliters of hexane were mixed with the 

combined organic layers and the mixture allowed to stand for 30 min. After removal of the 

aqueous layer, the organic layer was dried with anhydrous Na2SO4, concentrated up to 

trace level by a rotary evaporator, and then further concentrated by means of a nitrogen 

purge. The analytes were diluted with 3 ml of ethanol, 3 ml of acetic acid-sodium acetate 

buffer (pH 5.0) and 10 ml of distilled water, and ethylated using 1 ml of 5% NaBEt4. After 

standing overnight, the lipids were saponified with 5 ml of 1 M KOH–ethanol solution by 

shaking for 1 h. Forty milliliters of distilled water and 10 ml of hexane were added to the 

solution and ethylated OTs extracted in the organic layer by shaking for 10 min. The aque-

ous layer containing residual OTs was extracted again by shaking for 10 min with 10 ml of 

hexane. The combined organic layers were dried with anhydrous Na2SO4, concentrated to 1 

ml by a rotary evaporator and nitrogen gas, and cleaned using a Florisil Sep-Pak column 

(Waters Associates Inc.) The analytes were eluted with 5% diethyl ether/hexane, and 

TeBT-d36 and TePT-d20 were added as an internal standard. The final solution was concen-

trated to 0.2 ml.  

The analytical method of OTs in seawater was based on that described by Ohji et al. 

(2007a) using a Hewlett-Packard 6890 series gas chromatograph equipped with a mass 

spectrometer (5973) for selected ion monitoring. Following splitless injection (1 µl) sample 

separation was carried out by capillary column coated with 5% phenyl methyl silicone (30 m 

length x 0.25 mm i.d., 0.25 µm film thickness, J&W Scientific Inc.). The column tempera-

ture was held at 60˚C for the first 2 min, then increased to 130˚C at 20˚C/min, 210˚C at 

10˚C/min, 260˚C at 5˚C/min, and 300˚C at 10˚C/min. Finally, the column temperature was 

maintained at 300˚C for 2 min. The interface temperature, ion source temperature and ion 

energy were 280˚C, 230˚C and 70 eV, respectively. The concentrations of OTs in biological 

samples and seawater samples are expressed as Sn4+ in the present study.   

  Quality control of the analytical procedure was confirmed by spiking fish tissues with 1 

µg of BTs and PTs. The recoveries of BTs and PTs were 86-101% and 72-90%, respectively, 
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and their relative standard deviations (RSD) were in the range of 2.2-4.5 and 3.9-6.7%, re-

spectively. Additional quality control tests for BTs in the biological samples were carried 

out using certified reference material [Institute for Reference Materials and Measurements 

(IRMM) CRM 477]]. Measured values of BTs were within confidence intervals of the certi-

fication values. The detection limits of each BT, based on a signal-to-noise ratio of 3, were 

0.1 ng Sn g-1 wet wt for biological samples and 1.0 ng Sn l-1 for seawater. 

  In the present study, the ratios of each OTs burden in offspring to each OTs concentra-

tion in parental female, i.e. the ratio of bioaccumulation, were calculated. 

 

Statistics 

  A statistical comparison of the OT concentrations between mother and offspring, and be-

tween samples of one and five individual offspring, were carried out using the 

Mann-Whitney U-test (Sokal & Rohlf, 1995). 

 

RESULTS 

Butyltins 

   The values of the total BTs (∑BTs=TBT+DBT+MBT) in the parental females (n=5) and 

the offspring (n=5, grouped; n=15 per parent) were 5.3 ± 1.1 (Mean±SD) and 41 ± 7.2 ng Sn 

g-1 wet wt, respectively (Fig. 1, Table 2). The values of ∑BTs in the offspring were signifi-

cantly higher (7.1 – 9.7 times) than those in the parental females (Mann-Whitney U-test, 

p<0.005). Among BTs, TBT values were highest, with concentrations in parental females 

(n=5) and offspring (n=5, grouped; n=15 per parent) at 2.8 ± 1.0 and 33.7 ± 5.7 ng Sn g-1 wet 

wt, respectively (Fig. 1, Table 2). The levels were significantly higher (9.5 – 17 times) in ju-

veniles compared with maternal levels as well as ∑BTs (Mann-Whitney U-test, p<0.005). 

The ∑BT and TBT concentration measured in single individuals [O2 (1 ind.)], 44 ± 2.0 and 

31 ± 0.8 ng Sn g-1 wet wt, respectively (n=3) (Table 2), was not significantly different to that 

determined in groups of five individuals, suggesting that BTs analysed in single individuals 
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were representative of the wider population. The TBT, DBT and MBT values of seawater 

samples were below the detection limit. 

  The proportion of TBT, DBT and MBT in parental females was 51 ± 9.3%, 21 ± 2.2% and 

28 ± 7.2% of the ∑BTs, respectively (Fig. 2), compared to 82 ± 1.6%, 13 ± 0.6% and 5.3 ± 1.6%, 

respectively, in offspring (n=5, grouped; n=15 per parent). The proportion of TBT in off-

spring was thus higher than that of the parental females. The proportion of TBT, DBT and 

MBT in offspring analysed singly (72 ± 2.6%, 14 ± 1.2% and 14 ± 1.7%) was comparable to 

the larger sample size (n=5, grouped; n=15 per parent). This suggests again that BTs ana-

lysed in a single fish is representative of a larger sample size. 

 

Phenyltins 

   The values of the total PTs (∑PTs=TPT+DPT+MPT) were similar in the parental females 

(n=5) and the offspring (n=5, grouped; n=15 per parent) - 1.1 ± 0.3 (Mean±SD) and 1.3 ± 0.5 

ng Sn g-1 wet wt, respectively (Fig. 1, Table 2). Among PTs, the TPT values were highest and 

concentrations were similar in the parental females (n=5) and the offspring (n=5, grouped; 

n=15 per parent) at 0.8 ± 0.3 and 1.0 ± 0.5 ng Sn g-1 wet wt, respectively (Fig. 1, Table 2). No 

significant differences were observed in the values of ∑PTs and TPT between generations. 

The ∑PT and TPT concentrations in individuals analysed singly were 1.9 ± 0.2 and 1.0 ± 0.0 

ng Sn g-1 wet wt, respectively (n=3) (Table 2) comparable with ∑PT and TPT concentrations 

analysed in groups of five. This result confirms that PTs as well as BTs could be analysed 

usefully in one individual only, conserving biological resources. The ratio of ∑PT concentra-

tions in offspring / parental females was 0.5 – 1.8, and was similar to the bioaccumulation 

ratio of TPT concentrations 0.4 – 1.9 (Table 2). The TPT, DPT and MPT values of seawater 

samples were below the detection limit. 

  In the parental females, the proportion of the ∑PTs present as TPT, DPT and MPT was 72 

± 18%, 14 ± 3.6% and 14 ± 19%, respectively, not significantly different to proportions in 

offspring at 73 ± 12%, 17 ± 3.6% and 9.8 ± 9.0%, respectively (Fig. 2). The proportions of PTs 
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were comparable whether using single offspring or five individuals. This result suggested 

that PTs as well as BTs could be analysed satisfactorily using only one individual. 

 

DISCUSSION 

  The present study demonstrates OTs transfer from parental females to the young in the 

viviparous surfperch D. temmincki, although there are differences in the accumulation pro-

file and transgenerational transfer ratio between TBT and TPT. Notably, the concentrations 

and proportions of TBT in the offspring were significantly higher than those in the parental 

females. This result suggests that TBT is most readily transferred from the parent to the 

offspring. TPT concentrations were significantly lower than TBT and no difference was ob-

served between the concentration of TPT (the dominant phenyltin species) in parental fe-

males and offspring. It would seem that there are large differences in the rate of transfer of 

TBT and TPT to the offspring. For example, if the rate of transfer of TBT from parent to 

offspring was much faster than its degradation rate in the offspring, the net result would be 

an apparent bioconcentration in the offspring. If the rate of transfer of TPT was much 

slower than its biodegradation, then the concentration would lower in the offspring.  

  It was reported that the TBT-binding proteins (TBT-bps: TBT-bp1 and TBT-bp2) isolated 

from the blood of Japanese flounder Paralichthys olivaceus are members of the fish 

lipocalins (Shimasaki et al., 2002; Oba et al., 2007; Satone et al., 2013) and that the 

TBT-binding ability of TBT-bp1 may have a detoxification function (Satone et al., 2013). 

Exposure of P. olivaceus to TBT-d27 also results in an increase the protein concentration of 

TBT-bp2 in the serum (Nassef et al., 2011). It is feasible that TBT-bps increase in similar 

fashion in response to exposure to TBT in parental females of D. temmincki.  

  The differences of accumulation pattern between TBT and TPT in the present study may 

be due to a faster rate of transfer of TBT from parent to offspring, compared with TPT. It is 

therefore considered that the offspring might be at higher risk from TBT (but not from TPT) 

than the parental females during their early growth stage in ovary in D. temmincki. The 
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fertilization of eggs occurs in winter in this viviparous surfperch, and 6 months elapse from 

copulation to the birth of the young (Abe, 1969). During the long period of gestation in this 

type of fish, the maternal nutrients for growth and respiration are transferred to embryonic 

epithelial absorptive sites, which are not in intimate association with the maternal tissue. 

The hindgut, fin, and branchial placenta are suspected to be placenta-analog organs that 

absorb maternal nutrients from the ovarian fluid in the offspring of the surfperch (Wourms 

et al., 1988; Nakamura et al., 2004). Since the young stays in the parental female for 6 

months, OTs (and potentially other contaminants) may transfer to, and accumulate in the 

offspring along with essential nutrients.  

  The present study found differences between the BT and PT compositions in the parental 

female. Of the BTs, TBT and its metabolites, the sum of DBT and MBT, were found in ap-

proximately equal percentages in parental females. In contrast, TPT in parental females 

was largely predominant. A similar condition was found in our previous study on oviparous 

species such as the sea-run masu salmon O. masou (Ohji et al., 2006a, 2007b), Japanese eel 

Anguilla japonica (Ohji et al., 2006b, 2009) and brown trout (Ohji et al., 2010). Among BTs 

it was reported that high DBT and MBT levels were detected in the liver tissue of the pike 

while, of the PTs, high TPT concentrations were predominant (Stäb et al., 1996). Different 

capacity to degrade TBT and TPT was demonstrated in vitro in the European eel Anguilla 

anguilla and the rainbow trout Oncorhynchus mykiss (Fent & Bucheli, 1994): liver micro-

somes were affected by both TBT and TPT, but the latter inhibited ethoxyresorufin 

O-deethylase (EROD) activity more strongly than TBT and led to the inactivation of P-450 

enzymes. The results obtained in the present study might be related to the preferential 

dealkylation of TBT in the liver and rapid excretion via the bile relative to TPT. Although 

the TPT concentration was significantly lower than TBT, persistence of TPT in D. tem-

mincki could still pose a risk for the viviparous surfperch alongside TBT. 

  In the present study, higher levels and proportion of TBT in offspring than those in pa-

rental female were found in D. temminki. Fish is known to have higher metabolic capacity 
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to degrade TBT than lower trophic organisms, such as small crustaceans, in the marine 

ecosystem (Hall & Bushong 1996; Ohji et al., 2002a, 2007a). It is also known that the met-

abolic capacity to degrade toxic chemicals in young organisms is lower than those in adults 

(Padrós et al., 2011). Organisms have some detoxification pathway in which some enzymes 

are mediated, such as cytochrome P450 monooxygenase, epoxide hydrolase and other con-

jugating enzymes in relation to the organs such as liver (e.g., Shailaja & D’Silva, 2003). 

These pathways are known to develop well in most adult organisms (Shailaja & D’Silva, 

2003). The organisms begin to eliminate or detoxify toxicants as these organs become func-

tional, followed by decreasing the sensitivity of adult individuals compared to the individu-

als in early life stages (Hall & Bushong 1996; Padrós et al., 2011). Therefore, low metabolic 

capacity to degrade TBT may cause to elevate TBT levels in the offspring of D. temminki in 

the present study. It is also considered that since the offspring have higher sensitivity for 

TBT than parental females, high levels of TBT in offspring might induce adverse effect in 

this species. 

  It was found that OTs was detected in both parental female and offspring in D. temminki, 

although those levels in the surrounding seawater were under the detection limit, and that 

the concentrations of TBT in the offspring were significantly higher than those in the pa-

rental females in the present study. These results suggest that the bioavailability of TBT 

via maternal nutrients transfer is considered to be of major importance when compared to 

uptake via the water. Several studies regarding the transfer from mother to offspring of 

other chemicals have been conducted, i.e. trace metals and methyl mercury in the harp seal 

Phoca groenlandica (Wagemann et al., 1988), and organochlorines in the bottlenose dolphin 

Tursiops truncatus (Law et al., 1995). McManus et al. (1983) found that amongst inverte-

brates polychlorinated biphenyls (PCBs) in the parental female copepod Acartia tonsa were 

released with the eggs, which are rich in lipids and provide a sink for hydrophobic com-

pounds such as PCBs and polycyclic aromatic hydrocarbons (PAHs). Di Pinto et al. (1993) 

also suggested that depuration of PCB via egg production ultimately leads to significantly 



 

 12 

higher mortality among naupli.  

  Although the mechanism of the transfer of OTs from mother to offspring is thought to be 

different from the above chemicals and organisms, TBT and TPT are clearly capable of 

transfer to eggs, with potential for deleterious effects in the eggs and/or the young in vivip-

arous fishes such as D. temmincki. TBT and TPT have adverse effects, such as physiological 

abnormality (10 ng l-1) in fish, even at ambient water levels (e.g., Hall & Bushong, 1996), 

and thus these substances may have an influence on D. temmincki. Furthermore, it has 

been reported that TBT and TPT exposure detrimentally affects reproduction in the African 

catfish, herring and European minnow (Grzyb et al., 2003; Rurangwa et al., 2002; Fent & 

Meier, 1992, 1994). Thus, TBT and TPT exposure might also affect survival, growth and 

reproduction during the early growth stages of the offspring while they are in the parental 

female of the D. temmincki.  

  Differences in transfer ratio of TBT and TPT between parental female to offspring were 

observed in the viviparous surfperch D. temmincki in the present study. The results sug-

gested that the offspring might be exposed to a higher risk from TBT exposure (but not 

from TPT) than the parental females during their early growth stage in the ovary of the 

viviparous surfperch. The present study highlights the potential for inherited effects of or-

ganotins in viviparous fish, due to their ability to transfer and bioaccumulate in the off-

spring. Species such as D. temmincki. thus represent a valid model to study the transfer, 

bioaccumulation, breakdown and elimination – and hence transgenerational risks – of both 

historic and emerging pollutants. 
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FIGURE LEGENDS  

Fig. 1 Ditrema temmincki. Butyltin (A) and phenyltin (B) concentration in parental females 

and offspring. P1-5; parental female, O1-5; offspring (three replicate samples of five indi-

vidual offspring from each parent), O2 (1 ind.); three individual offspring taken from one 

parental female (P2) 

 

Fig. 2 Ditrema temmincki. Butyltin (A) and phenyltin (B) composition in parental females 

and offspring. P1-5; parental female, O1-5; offspring (three replicate samples of five indi-

vidual offspring from each parent), O2 (1 ind.); three individual offspring taken from one 

parental female (P2) 


