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Dynamic Sorted Neighborhood Indexing for Real-Time Entity
Resolution

BANDA RAMADAN, PETER CHRISTEN, and HUIZHI LIANG, Australian National
University ROSS W. GAYLER, Veda

Abstract: Real-time Entity Resolution (ER) is the process of matching query records in
subsecond time with records in a database that represent the same real-world entity.
Indexing techniques are generally used to efficiently extract a set of candidate records
from the database that are similar to a query record, and that are to be compared with
the query record in more detail. The sorted neighborhood indexing method, which
sorts a database and compares records within a sliding window, has been successfully
used for ER of large static databases. However, because it is based on static sorted
arrays and is designed for batch ER that resolves all records in a database rather than
resolving those relating to a single query record, this technique is not suitable for real-
time ER on dynamic databases that are constantly updated. We propose a tree-based
technique that facilitates dynamic indexing based on the sorted neighborhood method,
which can be used for real-time ER, and investigate both static and adaptive window
approaches. We propose an approach to reduce query matching times by
precalculating the similarities between attribute values stored in neighboring tree
nodes. We also propose a multitree solution where different sorting keys are used to
reduce the effects of errors and variations in attribute values on matching quality by
building several distinct index trees. We experimentally evaluate our proposed
techniques on large real datasets, as well as on synthetic data with different data
quality characteristics. Our results show that as the index grows, no appreciable
increase occurs in both record insertion and query times, and that using multiple trees
gives noticeable improvements on matching quality with only a small increase in query
time. Compared to earlier indexing techniques for real-time ER, our approach achieves
significantly reduced indexing and query matching times while maintaining high
matching accuracy.

CCS Concepts: Information systems - Nearest-neighbor search; Data cleaning;

Additional Key Words and Phrases: Braided tree, data matching, dynamic indexing,
real-time query, record linkage

INTRODUCTION

Massive amounts of data are nowadays being collected by most business and
government organizations. Given that many of these organizations rely on information
in their day-to-day operations, the quality of the collected data has a direct impact on
the quality of the produced outcomes. Various data cleaning practices are employed



to improve the collected data. One important practice in data cleaning is the task of
identifying all records that refer to the same real-world entity [Naumann and Herschel
2010]. This process is commonly called Entity Resolution (ER) [Christen 2012a]. A real-
world entity can be a person, a product, a business, or any other object that exists in
the real world. Examples of multiple records in a database representing a single entity
include a patient who is represented several times in a hospital database, a product
that is inserted many times into an inventory list, or a voter who is registered more
than once in an electoral roll. These duplicates, if not removed or merged, can lead to
serious consequences for organizations or individuals. A patient’s information could,
for example, be dispersed between duplicated records leaving medical staff unaware of
the patient’s overall condition, which can potentially affect diagnosis and treatment,
while duplicate records in an electoral roll can lead to voting irregularities.

ER is challenging because databases usually do not contain unique entity identifiers.
In this case, partially identifying attribute values (such as names and addresses) need
to be used for the matching process. However, such attribute values are often of low
quality, as they can be incomplete, contain errors, or change over time [Christen 2012a].
Therefore, approximate matching techniques are generally required.

Since many services in both the private and public sectors are moving online, orga-
nizations increasingly require real-time ER (with subsecond response times) on query
records that need to be matched with existing databases [Dong and Srivastava 2013].
These databases are often not static, but rather dynamic as queries potentially result
in a record being modified, added, or even removed (depending upon the application).

Our work is based on a real-world application: the real-time matching of personal
information from consumer credit applications. In this application, personal details
of a customer are provided, for example, by a bank (where the customer applies for
credit) and sent to a credit bureau. The bureau’s ER system needs to return (in real
time) a ranked list of matched candidate records from a large credit history database
that stores the personal details and credit status of previous customers. In such an
application, the previous details (like earlier addresses and names) of credit holders
need to be kept, and records are not cleaned and merged because this could lead to
loss of information (e.g., if previous address details of a customer are removed in the
merging step). Rather, a query record is assigned the same entity identifier as an
existing, older database record if it is classified as a match with that database record,
and added to the database. If it is not matched to any existing database record it is
assigned a new entity identifier and is assumed to be a new customer. In the context
of identity fraud, which is an increasing problem in the consumer credit domain [Phua
et al. 2012], it is crucial that one can match a query record to a database record of a
customer with an older address, for example, as such characteristics might help identify
a potential fraudster who claims to have a certain name and live at that address. In this
application, the ranked list of matched database records (according to their similarities
with a query record) is returned together with information if some of these records have
previously been matched to a known customer (e.g., they are given the same entity
identifier).

While real-time ER is becoming more important, most current ER techniques are
based on batch algorithms that are only suitable for static databases. Such algorithms
compare and resolve all records in one or more database(s) rather than resolving
those relating to a single query record. Therefore, there is a need to develop new
techniques that support ER for large dynamic databases that can resolve (streams of)
query records in real time. A major aspect of achieving this goal is to develop novel
indexing techniques that allow dynamic updates and facilitate real-time matching by
generating a small number of high-quality candidate records that are to be compared
with a query record.



Contributions: In Ramadan et al. [2013] we proposed a tree-based dynamic sorted
neighborhood index that facilitates matching a stream of query records against a large
database in real time with fixed and adaptive window approaches.We presented a mul-
titree indexing technique in Ramadan and Christen [2014] that improves the matching
quality of Ramadan et al. [2013]. In this article, we extend our work to include a more
detailed and formalized description of the previously proposed techniques. We justify
and evaluate the choice of the selected tree data structure, and propose a new adap-
tive window approach for retrieving candidate records. We provide a comprehensive
theoretical analysis to estimate the required number of candidate records generated.
Furthermore, we conduct a more extensive experimental evaluation using one large
real-world and two synthetic datasets. We also provide a comparative evaluation of our
proposed indexing technique with an existing q-gram technique that has previously
been used for ER [Baxter et al. 2003; Christen 2012b; McCallum et al. 2000].

Outline: In the following section we provide an overview of relevant work related
to real-time and dynamic ER, and in Section 3 we provide the required background
including details about the sorted neighborhood method and the data structures that
we use. In Sections 4, 5, and 6 we detail the different variations of our approach. Next,
in Section 7 we provide an analysis of the proposed approach in relation to estimating
the number of generated candidate records. We experimentally evaluate our approach
on different datasets in Section 8, and conclude our article in Section 9 with a discussion
of future research directions.

2. RELATED WORK

ER is related to general similarity search approaches, which involve finding similar
entities from unstructured databases (such as e-mails, news articles, or scientific pub-
lications) based on a collection of relevant features that are represented as points in
high-dimensional attribute spaces [Gionis et al. 1999]. However, such approaches are
less suited for structured databases that contain well-defined attributes with short
values, such as personal names, addresses, or dates of birth. Records in structured
databases can be matched using Structured Query Language (SQL) join statements if
unique entity identifiers, such as passport or social security numbers, are available.
However, such identifiers are commonly not available, and therefore ER approaches
need to be employed [Elmagarmid et al. 2007; Naumann and Herschel 2010].

The ER process encompasses several steps [Christen 2012al: data preprocessing,
which cleans and standardizes the data to be used; indexing, which reduces the number
of candidate record pairs to be compared in detail; record comparison, which compares
candidate record pairs in detail using a set of similarity functions; classification, where
pairs or groups of compared records are classified into matches (records that are as-
sumed to correspond to the same entity) and nonmatches (records that are assumed to
correspond to different entities); and finally, evaluation, where the ER process is eval-
uated with regard to matching accuracy, efficiency, and completeness using various
measures.

Many ER models were proposed in previous years (see Christen [2012a], Elmagarmid
et al. [2007], and Winkler [2006] for existing ER models). However, recently, incremen-
tal ER techniques (that resolve entities based on previously resolved results) were
proposed [Gruenheid et al. 2014; Whang and Garcia-Molina 2014]. Whang and Garcia-
Molina [2014] consider the ER update problem where both the data and the rules used
to resolve the data evolve and change over time. They investigated when and how pre-
vious ER results can be used with evolving data and rules to save redundant work and
avoid performing the ER process from scratch. They proposed several incremental ER
approaches and investigated how to use materialized views to improve the efficiency of



these approaches. Gruenheid et al. [2014] proposed another incremental ER approach
that updates matching results when data updates (i.e., inserts, deletes, and modifica-
tions) occur. The technique uses an incremental graph clustering approach and allows
new evidence from the updated data to fix previous matching errors. These techniques
are aimed at dynamic data but not real-time ER.

To be able to conduct the ER process in real time we must consider completing each of
its steps within the minimum time possible. Indexing is one of the most important steps
in real-time ER as it reduces the search space, which leads to reducing the number of
comparisons required in the comparison step. Moreover, when comparing records, we
should aim to use efficient comparison functions and limit the required calculations to
perform this step (refer to Section 5 for a suggestion on how to reduce such calcula-
tions). In the classification step, most classification models can be used regardless of
which indexing techniques we use. However, for real-time ER, classification techniques
that depend on the summation of comparison vectors to reach a classification decision
can be more suitable as they are computationally efficient compared to more complex
supervised and unsupervised techniques. In this article, we mainly focus on the index-
ing step. The following provides a review of relevant work on indexing, as well as the
area of real time and ER.

Indexing techniques are employed in the area of database systems to improve the per-
formance of search operations. Major indexing techniques that are used include tech-
niques based on hash tables and tree data structures Hector Garcia-Molina and Ullman
[2009]. The main hashing-based indexing techniques are extensible hashing [Fagin
et al. 1979], linear hashing [Litwin 1980], and partial-match hashing [Rivest 1976].
The main tree-based indexing techniques include AVL trees [Adelson-Velskii and Lan-
dis 1962] (which are usually used with main memory indexing), B and B+ trees [Comer
1979; Cormen et al. 2009] (which are mostly used with disk-based indexing), and T
trees [Lehman and Carey 1986] (which evolved from AVL trees and B trees and are
commonly used with main memory indexing). More details about indexing techniques
that are used with database systems can be found in Hector Garcia-Molina and Ullman
[2009].

As for indexing techniques that are used in ER, standard blocking and the Sorted
Neighborhood Method (SNM) are commonly used. Standard blocking [Christen 2012b]
is based on inserting records into blocks according to blocking key criterion and only
comparing records that are in the same block. The SNM [Hernandez and Stolfo 1995]
arranges all records in the database(s) to be matched into a sorted array using a sorting
key criterion. Then a window is moved over the sorted records, comparing only those
records that are within the sliding window at any one time (explained in more detail in
Section 3.1). Both blocking and sorting keys are usually based on one or a concatenation
of attribute values.

Various other indexing techniques have been developed for ER, including q-gram
indexing [Baxter et al. 2003], suffix array indexing [Aizawa and Oyama 2005], canopy
clustering [McCallum et al. 2000], mapping-based indexing [Jin et al. 2003], and
hashing-based indexing [Kim and Lee 2010]. However, all these techniques are aimed
at offline batch processing of databases and are limited to indexing of static data. This
means that once an index is created it is difficult to modify if new records need to be
added, or when the values in existing records are changing.

Only limited research has so far concentrated on real-time ER, or on ER for dynamic
databases. A first approach for real-time ER is based on a collective classification
technique [Bhattacharya and Getoor 2007]. The idea behind this approach is to not use
all records in a database to resolve a query, but rather to extract only those records that
are related to a query, and to build a collective clustering structure using these records
only. Although this approach achieves high matching quality, the authors stated that



the average time needed to resolve one query record was 31.28sec for a database that
contained 831,991 records. Thus, this approach is not suitable for real-time ER, and it
also is not scalable to large databases since it is computationally expensive.

A real-time ER approach that works on static databases was proposed by Dey et al.
[2011]. This approach is based on using a matching tree to limit the amount of commu-
nication required for matching records between disparate databases, such that a match
decision can be made without needing to compare all attribute values between records.
This approach was shown to reduce the communication overhead, without affecting
the matching quality. Ioannou et al. [2010] proposed an approach for RDF type data
that provides ER in real time and also works on dynamic databases. Their method is
based on using links between the entities in a probabilistic database to resolve enti-
ties. The approach uses existing ER techniques to find possible matches of a query. The
approach stores the possible matches alongside the entities with a probability weight
in a dynamic index. This stored information is then used at query time to perform ER
in real time. The approach is reported to have an average time of 70msec for a query
record on a database of 51,222 records. This reported query time is nearly constant and
does not increase as the database gets larger.

To facilitate real-time ER, Christen et al. [2009] proposed a similarity-aware indexing
technique where similarities between attribute values are precalculated during the
building phase of the index. This approach is based on standard blocking and uses
phonetic encodings to overcome errors and variations in attribute values to ensure that
similar values are inserted into the same block. An average query time of 10msec per
record on a large database of 7 million records was reported by the authors. However,
this index was only applicable for static databases.

More recently, Ramadan et al. [2013] extended this similarity-aware index to work
with dynamic data. In their proposed approach, new records can be inserted dynam-
ically into the index allowing the index to grow. The authors stated that the average
record insertion time (around 0.1msec), and the average query time (less than 10msec)
were approximately constant as the index grew for a large database with 2.5 million
records. While this dynamic similarity-aware indexing technique is based on the idea of
standard blocking described before, in this article, we propose a novel dynamic real-time
indexing approach based on the sorted neighborhood method, as we will describe next.

3. PRELIMINARIES

In this section, we summarize key aspects that are required to describe our approach.
We use the following notation:

—Dataset: We assume that dataset R = {ri,rq,...,rg} contains records of known
entities. Each r; € R has a unique record identifier r;.id and an entity identifier
r;.eitd. All records in R are assumed to have the same attribute structure.

—Query Stream: We assume that a stream of query records @ = {g1.92, ..., qq} is to
be matched with R. Each g; € @ is given a unique identifier g;.id # r;.id, Vr; € R;
and has the same attribute structure as records in R. It is assumed that g; is to be
added to R after it has been resolved.

—Sorting Key: A Sorting Key (SK) is defined as the list of attributes that are used to
sort records in R alphabetically. Selecting SKs generally requires domain knowledge.
SKs are usually generated by concatenating the attributes in the SK list. A Sorting
Key Value (SKV) of a record in R is the value of the attributes used as a SK for that
record. For example, assume that a record r has the following attribute values: r =
{Firstname = ‘percy’, Surname = ‘smith’, City = ‘new york’, Zipcode = ‘10007’} and
assume that a concatenation of the ‘Firstname’ and ‘Surname’ attributes is used as
a SK, then the value ‘percysmith’ would be the SKV generated for r.



[ RecID | Firstname [ Surname | City | Zipcode
rl percy smith new york 10007 abbybopd B
r2 paul smith boston 02120 paulsmlth 20 b
r3 robin stevens | denver 80202 pedrosmith 4 indo¥ s ocond
rd pedro smith los angeles 90005 pedrosm.lth &) 0?‘,233;%8 Third
r5 abby bond new york 10001 percysmlllh 1l Omggrwa‘ Fourth —‘7
r6 sally taylor los angeles 90002 petersmith 17 ) uindow iy T
r7 peter smith los angeles 90012 petersmith 110 TR yindow Last
r8 sally taylor seattle 98168 robinstevens - 13 ofreords window
r9 pedro smith bosten 02121 sallytaylor 16 of records
10 peter smith los angelos 90002 sallytaylor g

Fig. 1. The static sorted neighborhood method applied on the example table on the left with a fixed window
size of w = 5 and sorting key values consisting of the concatenation of ‘Firstname’ and ‘Surname’ values.

The problem of real-time ER is defined as follows: for each query record g; in a query
stream @, find all the records in R that belong to the same entity as g;, denoted as the
set M,;, in subsecond time, My, ={ri|ri eid =qj.eid,r; € R}, M, CR,q; € Q.

3.1. Sorted Neighborhood Indexing

The SNM is an indexing technique that was developed with the aim of reducing the
number of comparisons between candidate records in the process of deduplicating large
databases [Hernandez and Stolfo 1995, 1998]. The basic SNM consists of the following
steps: First, if multiple databases are to be matched, they are merged and a unique
identifier is assigned to each record. Then, a SKV is generated for every record in
the merged database. Next, the records are sorted according to the generated SKVs.
Finally, a comparison step that consists of a fixed-size window w (with w > 1) moves
over the sorted records, and only the records within the sliding window at any time
are compared with each other. Assuming the sorted database contains n records, the
sorting step of the SNM has a complexity of O(n log(n)), while the comparison step is
O(w x n) [Hernandez and Stolfo 1995]. Figure 1 shows an example of the basic SNM.

One of the main drawbacks of the SNM is its sensitivity to data quality of the at-
tributes used as SKVs. Specifically, if a SKV has an error or variation at the beginning,
then its record will potentially not be placed close to similar records, and therefore will
likely be missed. For example, “christine” and “kristine” will not be close to each other
in the sorted array if a “Firstname” attribute was used as a SK. A commonly used
approach to overcome this drawback is to run the SNM several times using different
SKs, followed by the calculation of the transitive closure of the identified matching
records [Hernandez and Stolfo 1995, 1998].

Another major drawback of the basic SNM is the fixed setting of the window size
w. If w is set too small, true matches are likely missed; on the other hand, if it is
too large, unnecessary comparisons between records will be conducted. This problem
has recently been addressed by two approaches that adaptively adjust the window
size according to the characteristics of the SKVs or database records. One approach
expands the window size if SKVs are similar with each others’ according to a minimum
similarity threshold [Yan et al. 2007], while an alternative approach expands a window
if a certain minimum number of records are classified as matches within the current
window [Draisbach et al. 2012].

The SNM in its current form (when using a fixed or an adaptive window size, or
when using several runs of different sorting keys) is only suitable for indexing static
databases and for batch-oriented ER. Due to the static nature of the sorted array it does
not work for real-time ER applications where a stream of query records needs to be
matched against a database consisting of entity records, and where these query records
are commonly inserted into the database after matching. Our proposed technique,
described in Section 4, provides an indexing technique that facilitates real-time ER,



and can handle dynamic databases. Next, we present the basic data structures we use
in our indexing approach.

3.2. Index Data Structures

The original SNM uses a static array data structure to store the SKV of all records
in the databases that are to be deduplicated or matched [Hernandez and Stolfo 1995].
However, a static array is not suitable for dynamic data because each time a new record
is added to the index the existing elements in the array would need to be shifted to
maintain the order, leading to a worst-case complexity of O(n), where n is the number
of records in a database. Real-time ER on dynamic databases requires an index data
structure with efficient searching, inserting, and retrieving capabilities. Search trees
are more efficient than sorted arrays [Cormen et al. 2009] and are commonly used for
indexing in different application domains. In the following, we describe different search
tree data structures.

—A basic binary search tree is a nonbalanced tree data structure that consists of nodes
and edges to organize data in a hierarchical manner, where each node can have
0, 1, or 2 child nodes. Every node in the tree has a unique key value that is used
for sorting the tree based on the following properties [Cormen et al. 2009]. Let x
and y be nodes in the tree with different key values, that is, x.key # y.key and y
being a child node of x, x7, is the left subtree of x, and xp is the right subtree of x:
(D) if y.key < x.key theny € x1; (2)if y.key > x.key then y € xg. The shape and the
height of a basic binary search tree depend on the sequence of the key values that are
inserted into the tree. Because it is not a balanced tree, the worst-case time needed
for operations such as insertion of new nodes, searching for certain key values, and
retrieving the previous or next nodes, all have a complexity of O(k), where & is the
number of nodes in the tree.

—An AVL tree is a self height-balanced binary search tree where for each node in the
tree the difference between the heights of its left and right subtrees never exceeds
1 [Rice 2007]. For a tree of size k nodes, the height of an AVL tree never exceeds
1.44log(k). This height is sufficient for providing O(log(k)) time for the operations
described previously in the worst-case scenario [Sedgewick and Flajolet 2013].

—A braided AVL tree is a data structure that combines the properties of both AVL
trees and double-linked lists [Rice 2007]. Each node in a braided AVL tree has a link
to its predecessor and successor nodes according to an alphabetical sorting of the key
values in the nodes. Because this data structure has the property of a double-linked
list, accessing the next and previous nodes for a given node only requires O(1) steps.

—A B tree is a balanced search tree data structure that is designed to work with
secondary storage devices [Comer 1979; Cormen et al. 2009]. The difference between
a B -tree and a binary tree is that nodes in the former can have more than two
children. A B tree of order m reduces the depth of a binary tree of £ nodes to O(log,,k),
where mis the number of allowed children for each node. This means that every node
would have m children and m — 1 keys. For example, a B tree of order m = 10 allows
having 10% keys in six levels, while a binary tree needs 20 levels to accommodate
the same number of keys. However, when searching for keys in a B tree, we have to
search through the m keys in each node, which reduces the gain from having fewer
levels of nodes in the tree. Also, retrieving the successor/predecessor keys in a B tree
requires a complexity of O(log(k)) if the successor/predecessor keys were in the next
or previous nodes and not in the same node of the query record. Similar to a braided
AVL tree, a B tree can be extended with a double-linked list to improve retrieving
the next and previous nodes, leading to a B+ tree [Comer 1979] which is a B tree
that has a link between its leaf nodes. A B+ tree is to be investigated in future work.



Table I. Worst-Case Time Complexities for the Different Operations Achieved Using
the Discussed Search Trees. k Is the Number of Nodes In a Tree

‘ Operation ‘ Binary ‘ AVL ‘ Braided AVL ‘ B Tree ‘
Search O(k) O(log(k)) O(log(k)) O(log(k))
Insert O(k) O(log(k)) O(log(k)) O(log(k))
Get successor node O(k) O(log(k)) 0() O(log(k))
Get predecessor node O(k) O(log(k)) o) O(log(k))

Fig. 2. DySNI for the 10 records from Figure 1 using a braided AVL tree data structure. The sorting key
values are the concatenation of “Firstname” and “Surname” values.

Table I summarizes the complexities of the different operations achieved by the
previously described search trees. As can be seen, the characteristics of the braided
AVL tree make it highly suitable to be used with our proposed index (described in
Section 4), since this data structure provides efficient retrieval times of neighboring
nodes that are needed to generate the list of candidate records required to do the
matching. In this article, we therefore use a braided AVL tree defined as follows:

Definition 1. BraidedTree (BRT) is a balanced binary AVL tree where each node
in the tree has a link to its predecessor and successor nodes according to an al-
phabetical sorting of the key values in the nodes. We denote a node in the BRT as
N; = (skv, I, prev, next) (with 1 < i < k), where skv is a unique key value, I is the list
that contains the record identifiers attached to that node, and prev and next are links
to the predecessor and successor nodes, respectively. A node is denoted as N, if a query
record is inserted into the list I of that node. Figure 2 illustrates the BRT generated
based on the small example dataset from Figure 1.

Because the key values in the trees are the SKVs of records, all records that have the
same SKV will be appended to I in the same tree node (as shown in Figure 2). Assuming
there are & different SKVs (nodes) in a tree (with 2 < n, and often 2 « n, where n is the
number of records in the database to be indexed), this will reduce the number of steps
when searching for SKVs from O(log(n)) to O(log(k)). In the next section, we discuss
the four variations of our dynamic sorted neighborhood indexing approach in detail.

4. DYNAMIC SORTED NEIGHBORHOOD INDEXING

Our proposed Dynamic Sorted Neighborhood Index (DySNI) is based on a BRT as
described previously. The aim of the DySNI is to dynamically index and resolve a
stream of query records in real time. We assume we keep all records in the dataset R
unmodified after they are created, since they can provide evidence about earlier queries
on individual entities. An example application is applying for consumer credit where
an individual’s credit history needs to be retrieved and evaluated before a new loan
can be approved. Replacing records with their cleaned and merged versions will likely
result in a loss of accuracy, because details such as previous names or addresses of a
customer are lost.



Algorithm 1: DySNI — Query Algorithm 2: DySNI

Input: Generate Win - Sim-based Adaptive approach
- Query record: ¢ Input:

- Similarity functions: S - Query node: N

- Similarity threshold: 0 - Similarity threshold: 6

- Sorting key: SK - Similarity function: S

- Database table with complete records: D

Output: Output:

- Ranked list of matches: M - Candidate record set: C

1: skv = GenerateKey(SK, q) 1: C=Ng,.I

2: Ny = FindTreeNode(skv) 2:  nextnd = Ng.next

3: Dq.id] = q 3:  while sim(Ng.skv, next_nd.skv) > 6 do
4: if N, == NULL then 4: C = CUnext-nd.]

5: Ny = CreateNode(skv, q.id) 5: next_-nd = next_nd.next

6: else 6: prev.nd = N,.prev

7: Append q.id to Ng.I 7: while sim(Ng.skv, prev.nd.skv) > 6 do
8: C = GenerateWin(Ng,S,0) 8: C = CUprev.nd.]

9: M = CompareRecords(C, S, D, q) 9: prev_nd = prev_nd.prev

10: Sort M according to similarities

Fig. 8. Algorithm 1 describes the query phase in DySNI using the similarity-based adaptive window ap-
proach. Algorithm 2 describes the method GenerateWin() using a similarity-based adaptive window.

The DySNI has an initial build phase where a certain number (possibly none) of
entity records from an existing database are inserted into the BRT. The built index
is then used to generate candidate records to resolve query records during the query
phase. The DySNI is dynamic since query records can be added into the BRT as they
arrive.

Build Phase: In this phase, records are loaded from dataset R, their SKVs are
generated, and they are inserted into the BRT. The SKVs become the key values skv
used as tree nodes. If the SKV of an inserted record is new (i.e., has not been indexed
earlier), a new node is created in the tree for this SKV, whereas if a SKV already
exists in the tree as a node key, then the identifier of its record is added to the list
of this node. For example, node N1 in Figure 2 was generated when record r1 with
SKV “percysmith” was inserted into the empty index, while for record r8 with SVK
“sallytaylor” node N7 already exists in the BRT (the node was generated when record
r6 was inserted), and so the identifier 8 can be directly added to the list I of N7.

After having indexed all records in R, the index is ready for resolving query records.
The complete records in R with all attribute values are also indexed into an inverted
index or disk-based database table D, where the actual attribute values of records can
be retrieved efficiently during the record comparison step, which is part of the query
matching process.

Query Phase: In this phase (shown in Algorithm 1, Figure 3), a query record q is
matched against the built index in real time. We assume that all query records are
added to the DySNI. When a query record arrives, the first step is to generate the SKV
for the record (line 1) and a new unique record identifier g.id is assigned to it (in the
GenerateKey function). This SKV and q.id are then inserted into the BRT in the same
way as records were inserted during the build phase (lines 3-7). The query record is
also added into D.

The window of neighboring nodes can now be generated (line 8). All record identifiers
that are stored in the nodes within the window are added to the candidate record set
C. Whole records (for each record identifier within C) are then retrieved from the
inverted index or database table D, and the attributes of ¢ are compared with the
retrieved records using similarity comparison functions [Christen 2012a] appropriate
to the content of each attribute (line 9). The compared candidate records are returned in
the list M sorted according to their overall similarities with the query record (line 10).



4.1. Generating the Window of Neighboring Nodes

To generate the window of neighboring nodes, we propose fixed and adaptive window
size approaches. The aim of using an adaptive window size is to limit the number
of comparisons between the query and candidate records to only those records that
likely correspond to true matches. This issue was addressed for static SNM by Yan
et al. [2007] where expanding the window is based on the similarities between SKVs,
and by Draisbach et al. [2012] where expanding the window is based on the number
of classified matches within the window. In the following, we describe one static and
three adaptive window approaches.

4.1.1. Fixed Window Size (DySNI-f).. The original SNM is based on using a fixed-size
window w that corresponds to the number of candidate records that fall inside the
window at any one time. As our DySNI approach is a tree-based index, and because
all records that have the same SKV are inserted into one node, we set the window as
the number of neighboring tree nodes in one direction (previous and next). With w > 1
the number of neighboring tree nodes in one direction of the query node N,, the total
number of neighboring nodes to be visited when generating the candidate records will
be 2w. A window of size w = 0 refers to the query node IV, only (the node where the
query record was inserted).

For the index tree shown in Figure 2, assuming query record r10 has just been
inserted into the tree in node N6 with key value ‘petersmith,” and assuming a fixed
window size w = 1 in each direction, the previous node N1 with key value ‘percysmith’
and the following (next) node N3 with key value ‘robinstevens,” are included into the
window. The final set of candidate records for query record 10 using this fixed window
size approach is the set C = {r1, r3, r7}. Note that 7 is also included as it is located in
the same tree node as the query record (IN6), and so it also needs to be compared with
the query record.

As this example illustrates, a fixed-size window can lead to both unnecessary com-
parisons with records in nodes that are unlikely to have a high enough similarity to be
matching with a given query record (like 3 from node N3), as well as missed potential
true matches that are outside the window (such as the records attached to node N5
with key value ‘pedrosmith’).

4.1.2. Candidates-Based Adaptive Window (DySNi-c). This approach aims at matching a
certain minimum number of candidate records that can be processed within a certain
period of time. In a real-time environment this allows for a controlled number of candi-
date records to be returned for detailed comparisons. In practice, users can investigate
different numbers of candidate records to achieve the required maximum query time.
The minimum total number of candidate records to be returned, &, is used to stop
window expansion regardless of the similarities between SKVs.

The initial candidate record set C contains the records located in the query record’s
node. Then a decision on whether to expand the window on both sides or not is made
based on the following criterion. If the count of records at the query record’s node IV, is
greater than or equal to the minimum candidate threshold |C| >= §, then no expansion
is needed, and only records located at the query node are included in C. On the other
hand, if |C| < §, then the window expands on both sides of the initial node individually
until |C| >= §. The remaining number of records needed for the total candidate records
to reach § is calculated as r = § — |C|. A new expansion threshold is set to [r/2] for each
side of the query node, and the window on each side will continue expanding as long as
the total number of candidate records from that side is smaller than or equal to [r/2].

The following example explains the approach. From Figure 2, assume we set the
minimum candidate threshold § = 6. After inserting query record 10 into the index,



generating the window of candidate records begins from the query node N6. The
number of records in N6 is |C| = 1 (C = {r7}). Because |C| <= §, we calculate
r=6-1=5,and [5/2] = 3. We therefore need to add a minimum of three records
from each side to the candidate list to exceed & before stopping the expansion process.
We add nodes N1 and N5 from the left side and N3 and N7 from the right side,
resulting in C = {r1,73,r4,r6,r7,r8,r9}.

4.1.3. Similarity-Based Adaptive Window (DySNI-s). This approach is based on Yan et al.
[2007], which uses the similarities between the SKVs in the index to adjust the bound-
aries of the window. In the original static approach, the window size w changes based
on the similarities between SKVs, and the window slides over the static array starting
from the first to the last record in the index. In our approach (shown in Algorithm 2,
Figure 3), we adaptively expand a window on each side of the tree node of a query
record separately in each direction based on the following steps. We initialize the win-
dow size in a direction as w = 0 (i.e., only include the query node N, in the initial
window). We expand the window in one direction based on the similarity between the
query node’s SKV and the SKV of the previous (or next) nodes using an approximate
string comparison function. If this similarity is above a certain threshold 6, then we
expand the window by adding the record identifiers in this node’s list I and increase
the window size w by 1. We repeat this process until the calculated similarity between
SKVs falls below 0. This approach will only include tree nodes that are sufficiently
similar to the records in the query record’s tree node.

Based on Figure 2 and setting 6 = 0.6, after inserting query record 10 into the index,
generating the window starts from the query node N6. To expand the window forwards
(next), we compare the SKV of node N6 with the SKV “robinstevens” of its next neighbor
N3 using the edit distance approximate string comparison function [Christen 2012a].
This gives us a low value of sim(‘petersmith’,robinstevens’) = 0.25. Because 0.25 < 6
the window does not expand forward and the node N3 and its record identifier list will
not be included into the set of candidate records C. The same process will take place in
the node’s backwards (previous) direction. We get the SKV of the previous node N1 and
compare it to the SKV of the query node, which leads to sim(‘petersmith’, ‘percysmith’) =
0.7. Therefore, N1 and its record identifier r1 is added to C. The comparison process
continues in this direction until we reach a similarity that is less than 6. This occurs
at node (N4) where sim(‘abbybond’,‘petersmith’) < 6. This means all records in the
nodes N5 and N2 are included into C. The final set of candidate records is C =
{r1,r2,r4,r7,r9}.

4.1.4. Duplicate-Based Adaptive Window (DySNI-d). This third adaptive approach is based
on Draisbach et al. [2012]. The authors used an adaptive window size that grows or
shrinks based on the number of classified matches that are found within the window.
The window slides over the static array starting from the first to the last record in the
index to match records in the whole database. In our approach (shown in Algorithm 3,
Figure 5), we adaptively expand a window on each side of the query tree node based on
the following steps.

When a query record arrives, and after it is inserted into the index data structure,
a window of initial fixed size w > 1 is generated. Note this is different from the initial
window size w = 0 for the similarity-based adaptive approach described before. A
window size w > 1 is required because the duplicate-based approach needs to be able
to compare candidate records to get a set of matching and nonmatching record pairs.
The query record is compared (using a set of attribute-specific similarity functions) to
all candidate records that are in the initial window. Those records that have a similarity
above a certain threshold with the query record are classified as matches, and all others
as nonmatches. Assume that the number of classified matches is m out of a total of ¢
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Fig. 4. SimDySNI for the 10 records from the table in Figure 1 using a braided AVL tree data structure.

The sorting key values are the concatenation of ‘Firstname’ and ‘Surname’ values, and the window size for
precalculation of similarities is set as w = 2.

N.

candidate records compared with the query record, and assume that the expansion
threshold (expansion ratio) is o [Draisbach et al. 2012]. A window is expanded to the
next tree node if the following holds:

o3

> 0. (1)

In the same way as the similarity-based adaptive approach expands the window
in each direction independently, the duplicate-based approach also calculates Equa-
tion (1) independently in the forward (next) and backward (prev) direction (as shown in
Algorithm 3).

Let us use the example in Figure 2, and assume that the initial window size is w = 2,
the expansion threshold o = 0.5, and 10 is again the query record. With w = 2, the
previous window will initially include two tree nodes (‘percysmith’ and ‘pedrosmith’)
and the next window will also include two nodes (‘robinstevens’ and ‘sallytaylor’).
The query node has one candidate record r7 (which is not included in the expansion
ratio calculation), the window into the previous direction has three candidate records
{r1,r4,r9}, and the window into the next direction also has three candidate records
{r3,r6,r8}. Therefore, c = 3 in both directions.

The decision on whether the previous window needs to be expanded or not depends
on the number of matches found in the window based on Equation (1). Based on the
full example records in Figure 1, assume that both 74 and 7 are matching records (and
so m = 2). Because 2/3 > o, this means that the window will expand in the previous
direction to include N2. The expansion process will continue until m/c < o.

5. SIMILARITY-BASED DYNAMIC SORTED NEIGHBORHOOD INDEXING

The idea behind the Similarity-based Dynamic Sorted Neighborhood Index
(SimDySNI) is to precalculate the similarities between the attribute values used to
generate the SKVs, and to store these similarities in the tree. These precalculated sim-
ilarities are used in the query phase to reduce the time required for the calculation of
similarities between records. A similarity-based BRT is used to build the index where
precalculated similarities are stored within nodes of the tree index.

Definition 2. Similarity-Based BRT (S-BRT) is a BRT tree with two extra lists
attached to its nodes as illustrated in Figure 4. These lists contain the precalcu-
lated similarities for the neighboring nodes that are within the window (whether
it is a fixed or an adaptive window). A node in the SimDySNI index is denoted as
N; = (skv, I, prev, next, Sp, S,), where S, and S, are the lists of the precalculated sim-
ilarities between this node’s SKV and the SKVs of all neighboring nodes within the



Algorithm 3: DySNI
Dup-based Adaptive window - Generate Win

Algorithm 4: SimDySNI — Query (fized window)

Input:

- Query record: q

- Query node: Ny

- Expansion threshold: o

Output:

- Candidate record set: C
C=Ng.I
next-nd = N,.next

Input:

- Query record: g

- Similarity functions: S

- Sorting key attributes: SK

- Window size: w

- Database table with complete records: D
Output:

- Ranked list of matches: M

1
2
3 m_next = Get NumMatches(next-nd, q) ; ?\lfcvizFC’?e;L;rate]\If(edy(SE, a)
4: c_next = GeiNumCandidates(next_nd) 3 D’fq;d] Zlq reeNode(skv)
. il monex id] =
b while S oo 4 if N, == NULL then \\ Case 1 (new SKV)
7 next.nd — next_nd.newt 5: N4 = CreateNode(skv, q.id)
8 m_next = GetNumMatches(next_nd, q) 6: C = GenerateWin(Ng, w)
- . ; Yy g 7 M = CompareRecords(C, S, D, q)

€1)O prz_vn_‘::;t _ ﬁezfiz:LCandzdates(next_nd) 8 PreCalcNodeSimilarities(Ng, w, S)
11: m _ G}gN mMatches a 9: UpdateSimNextNodes(Ng,w,S)

: _prev etNumMatches(prev_nd, q) 10: UnpdateSimP jousNodes(N S)
12:  c_prev = GetNumCandidates(prev_nd) : pdatestm T eviousy odes\Nq , w,
13:  while 2=BISY > ;5 do 11:  else \\ Case‘ 2 (indexed SKV)

Jprev 12: Append q.id to Ng.I

14 C =CUprev.nd.I 13: C = Ny.I1U Ny.Get_I_fromnztwind()
15: prev.nd = prev.nd.prev U Ng.Get_I_from_prv_wind()
16: m_prev = GetNumMatches(prev_nd, q) 14: M = ComparePreCalcRec(C, S, D, q)
17: c_prev = GetNumCandidates(prev_nd) . B

15: Sort M according to similarities

Fig. 5. Algorithm 3 describes the function GenerateWin() using a duplicate-based adaptive window. Algo-
rithm 4 describes the query phase for the SimDySNI.

window in the previous and following (next) directions, respectively, while the other
node elements are the same as in Definition 1.

Build and Similarity Calculation Phases: The build phase is the same as the build
phase of the DySNI described in Section 4. However, after the build phase a similarity
calculation phase is conducted where the precalculated similarity lists S, and S, are
added into the built DySNI tree index. Both lists are ordered according to the distance
of the neighboring node from the query record’s node (i.e., the first element in these
lists is the closest neighboring node, and so on). The process of calculating similarities
is conducted for all nodes in the tree. In this phase each node N; in the tree is visited
and the similarities between the attributes that are used to generate this node’s SKV
and the attribute values that are used to generate the SKV of the neighboring nodes
within the window (in both the previous and next direction) are calculated using an
approximate string similarity function.

The calculated similarities are stored into the lists S, and S, for each tree node.
Figure 4 gives an example for SimDySNI when using a fixed window of size w = 2.
The SimDySNI can be used with both fixed and similarity-based adaptive window
approaches. For the adaptive window we continue calculating similarities with SKVs
of neighboring nodes until the similarity threshold is reached (as described in Sec-
tion 4.1.3), which means that in this case the precalculated lists can have different
sizes for different nodes, while for a fixed size window approach we always have the
same size lists for all nodes that is equal to w.

Query Phase: In the query phase of the SimDySNI approach we benefit from the
precalculated similarities that are stored in each node to reduce the time needed to
resolve a query. Querying the built index (from the build phase) is based on two cases
(as shown in Algorithm 4, Figure 5): The first case occurs when the SKV of a query
record g is new and it has not been indexed earlier. The second case occurs when the
SKYV of a query record q has been indexed previously and it already exists in the tree.

(1) New SKV: In this case (lines 4-10), because g is new, we create a new node Nj
for this query and we resolve it using the original DySNI approach as described in



Section 4 (i.e., without benefiting from any precalculated similarities). After resolv-
ing the query, we generate the two precalculated similarity lists (i.e., S, and S,)
for both directions for N, by calculating the similarities for its w next and previous
neighboring tree nodes (if we are using a fixed-size window) or until a similarity
threshold is reached (if we are using a similarity-based adaptive window). Next,
we update the similarity lists for all w previous and next tree nodes of the newly
inserted tree node (lines 9 and 10). This step ensures that the precalculated simi-
larities are up to date at any time.

(2) Indexed SKV: In this case (lines 11-15), because the SKV of the query record
already exists in the S-BRT, there is no need to create a new node, and all required
precalculated similarities are ready for use. In this case, a query can benefit from
using these similarities as described in the next paragraph.

To generate candidate records, we retrieve (from the inverted index or database ta-
ble D) all records that are stored in the tree nodes in the window. While the record
comparison process in the DySNI compares all attribute values between the query and
the candidate records to calculate an overall record similarity, in the SimDySNI we
only need to compare attributes that are not used in the SK. To calculate the overall
similarities between the query record and candidate records, we retrieve the precalcu-
lated similarities from the S, and S, lists, retrieve the corresponding records from D
using the record identifier lists of these tree nodes, and then calculate the similarities
of those attributes that are not used in the SK. Therefore, the more attributes are
used in a SK the more similarities can be precalculated, but at the cost of a larger tree
(as likely a larger number of distinct SKVs will be generated). In our experimental
evaluation we investigate how different SK influence the amount of memory required
to build the index, the percentage of query records that benefit from the precalculated
similarities (i.e., queries with indexed SKVs), as well as the reduction in comparison
time that can be achieved.

The following example describes the query phase on the small example set of records
from Figure 1 and the index tree shown in Figure 4, and assuming that query record r10
has just been inserted into the tree in node N6. We assume w = 2. The candidate records
for query record r10 are the records from the nodes stored in the next and previous
list of the query node N6. These are the records from nodes N1 and N5 (previous),
and N3 and N7 (next). The total set of candidate records for query r10 will therefore
be {r1,r3,r4,r6,r7,r8,r9}. To compare query r10 with these candidate records, we
first retrieve the actual records from the inverted index or database table D of record
details, and for each candidate record we retrieve the precalculated similarity from
the SimDySNI index. For example, the precalculated similarity between query record
r10 and candidate record r1 is 1.4 as retrieved from the previous list of node N6. This
similarity corresponds to the precalculated edit-distance similarities of the ‘Firstname’
and ‘Surname’ attributes (each is between 0 and 1). To get the total similarity between
r10 and r1 we then calculate the similarities for the ‘City’ and “Zipcode’ on the actual
attribute values of these two records. This overall similarity is then used to decide if a
candidate record is a match or nonmatch.

6. MULTITREE DYNAMIC SORTED NEIGHBORHOOD INDEXING

Indexing techniques that are based on sorting records in the database using a SK
have the drawback of being sensitive to errors that occur at the beginning of a SKV
[Hernandez and Stolfo 1995]. To overcome this issue, we propose a multitree index
based on the DySNI (M-DySNI). The index consists of multiple tree data structures
where each tree is built using a different SK. In real-world data, attribute values
are likely not completely independent of each other. However, we assume that SKs



are selected by domain experts to be as complementary to each other as possible (a
technique for learning optimal sorting keys has recently been developed [Ramadan and
Christen 2015]). Using several trees with different SKs can help improve the quality of
results in cases where errors and variations occur at the beginning of attribute values.
For example, ‘christine’ and ‘kristine’ will not be inserted into the same tree node if a
‘Firstname’ attribute was used as a SK, but they might be inserted into the same node
in another tree where a different SK is used. The M-DySNI has two phases.

Build Phase: During the build phase, multiple trees are built using different SKs
where a record is inserted into every tree in the index. Building one tree is similar
to the build phase described in Section 4 where records are loaded from a database,
and their SKVs are generated and inserted into the tree data structure. The steps for
building one tree are repeated to build all trees using different SKs. For example, we
can use a ‘Firstname’ attribute as a SK to build the first tree in the index, a ‘Surname’
attribute to build a second tree, a ‘Postcode’ attribute to build a third tree, and so on.

Query Phase: In this phase, a query record q is first inserted into the M-DySNI and
then it is matched in real time against all trees that were constructed in the build phase.
A new unique identifier is created for ¢ and the different SKVs that are associated with
the different trees in the index are created. g is then inserted into all trees using these
SKVs and its record identifier is added in the same way records were inserted during
the build phase (Section 4). The full attribute values of ¢ are also added to D.

The process of retrieving candidate records from a single tree is similar to what is de-
scribed in Section 4 using any of the different window approaches. However, candidate
records are retrieved from every tree in the M-DySNI each adding candidate records
into the overall candidate record set C, which becomes the union of candidates returned
from the different trees. Then the query record ¢ is compared with all unique records in
Cin detail using similarity comparison functions [Christen 2012a] in the same way as is
done in the DySNI. The process of merging the returned sorted candidate records from
each tree in the index has an overhead that is not present when only one tree is used.

7. ANALYSIS OF THE DYNAMIC SORTED NEIGHBORHOOD INDEX

In the ER process, the comparison step is usually the most time-consuming step be-
cause of the calculations performed when candidate records are compared. Estimating
the number of comparisons beforehand gives users an insight about the expected
runtime required to match a query record with a dataset of a certain size. In this
section, we provide a way of estimating the number of generated candidate records
using DySNI and M-DySNI.

The proposed DySNI approach groups records in the dataset with the same SKVs
into one node (i.e., block). To obtain a better understanding of the number of candidate
record pairs that will be generated for a certain query record, we assume two types
of distributions that are common in attributes used for ER, namely, the uniform and
Zipfian distributions.

As can be seen in Figure 6, the possible SKs that can be used to build the index (using
the different attributes in the datasets that we are using in Section 8) either have a
Zipfian-like distribution (like ‘Firstname’ and ‘Surname’), or a distribution that is more
similar to a uniform distribution (like the concatenation of ‘Surname, ‘Firstname,
and “Zipcode’). Other SKs have a distribution that falls somewhere in-between these
two distributions (like “Zipcode,” and the concatenation of ‘Surname’ and ‘Firstname’).
For this reason, we will estimate the number of comparisons based on uniform and
Zipfian distributions. Previous work that estimated the number of candidate record
pairs for static indexing techniques also assumed these two distributions [Christen
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Fig. 6. Number of records in tree nodes generated using different SKVs for the NC datasets described in
Section 8 (FN = Firstname, SN = Surname, Zip = Zipcode).

2012b]. These two distributions will allow us to provide lower and upper estimates
of the number of candidate records that can be expected when matching real-world
databases.

Assuming a uniform distribution for the frequency of attribute values will lead to
a uniform distribution of the frequencies of the SKVs, which means all nodes in the
index tree are of the same size. On the other hand, having a Zipfian distribution for the
SKVs means that a few SKVs have a high probability of occurrence, while the majority
of SKVs occur only rarely. According to the Zipfian law [Zipf 1949], for a list of values
ranked according their frequencies, the frequency of any value is proportional to its
rank in the ranked list of values and can be estimated as 1/r, where r is the rank of a
value.

For a uniform distribution all nodes in the tree data structure are assumed to have
a uniform size of n/k where n is the number of records in the database and % is the
number of SKVs in the tree. Assuming the fixed-size window approach, the number of
candidate records generated in this case will be affected only by the number of nodes
that are included in the generated window 2w + 1 (for a fixed-window approach) and
the number of records n in the database. Therefore, the estimated number of generated
candidate records in C is

n2w + 1)
—

On the other hand, assuming a Zipfian frequency distribution of the SKVs will lead
to a Zipfian distribution of the sizes of tree nodes in the index. In this case, the number
of generated candidate records will not only be affected by the number of nodes that
are included in the window and the number of records n in the database, but also by
the size of the window’s tree nodes (i.e., the number of records in each node). Assuming
we rank the tree nodes N;, 1 < i < k&, according to their sizes (number of records in a
node’s list I), the size of a node S; is calculated as

S, = :;ll *n, 3)
Zi:l(z_‘)

where the denominator is the Harmonic number of the partial harmonic sum [Christen
2012b]. The number of candidate record pairs S,, in a window that includes 2w+ 1 nodes
is then calculated as

ICl = (2)

i+w

Sy=) 8. 4)
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Fig. 8. The minimum, average, and maximum of number of candidate records estimated based on Equa-
tions (3) and (4), with n the number of records in a dataset and % the number of nodes in the tree index.

To estimate the minimum and maximum numbers of candidate records for a query ¢
generated using a fixed-size window approach (assuming window size w) we calculate
S, according to the illustration given in Figure 7. The largest number occurs when
the 2w tree nodes that are neighbors of the query tree node are the 2w largest tree
nodes. On the other hand, the smallest number of candidate records are generated if
the query node N, is at either end of the tree, and the w neighboring tree nodes are the
smallest in size.

Figure 8 illustrates estimates of the minimum, average, and maximum number
of candidate records for increasing sizes of datasets based on Equations (3) and (4).
From the figure, we can see that the maximum estimated number of candidate records
increases linearly with the growing size of the dataset, while the minimum estimated
number decreases with larger datasets, because the number of nodes % increases, which
leads to smaller numbers of records in each node.

Importantly, the average number of generated candidate records for the different
window sizes and number of tree nodes is constant with increasing dataset sizes. This
indicates that on average the number of generated candidate records is not affected by
the increasing size of the index, which confirms the experimental results in Figure 11
(discussed in Section 8.2.2) where the average query time is nearly constant with the
growing size of the index.

The estimates in Equations (2), (3) and (4) also apply for M-DySNI since the difference
between DySNI and M-DySNI is that the latter index has several distinct trees that
are built using different SKs. This implies that the estimated maximum number of
candidate records will be influenced by the number of trees in the index. The maximum



Table 1. Datasets Summary

Average number of
Database Provenance Records Duplicates | duplicates per entity
NC Real 7,997,234 146,331 4
OZ Real (modified) 345,876 34,308 1
0Z-x Real (modified) 345,876 172,938 5
Febrl-5 Synthetic 100,000 80,000 5
Febrl-10 Synthetic 100,000 90,000 10
Febrl-20 Synthetic 100,000 95,000 20

number of candidate records using multiple trees, assuming a uniform distribution, is
calculated as

i=t

2 1
IC| = 2 % (5)
i=1 i

where ¢ is the number of trees in the M-DySNI data structure, and % is the number
of nodes in a tree. As for the Zipfian distribution, the maximum number of candidate
records using multiple trees can be calculated as

i=t
ICl=)_ Su, (6)
i=1

where ¢ is the number of trees and S,, is the number of candidate records returned
from a single tree (as calculated in Equation (4)). In practice, for a certain query record,
duplicate candidate records will likely be returned from the different trees in the index,
but only unique ones are compared in detail with the query record. Thus, the number
of unique candidate records returned by all trees ranges between S,, (which occurs

when all the trees in the index return the same candidate records) and Y =/ S, (which
occurs when each tree in the index returns unique candidate records). When estimating
|C|, we assume getting unique candidate records from each tree. The process of merging
the lists of returned sorted candidate records (using a heap) from each tree in the index
has an overhead of O(t x S,,, *log(?)), where S, is the length of the longest list of the
returned candidate record [Cormen et al. 2009].

8. EXPERIMENTAL EVALUATION

In this section, we describe the experiments conducted to evaluate our proposed ap-
proaches. We start by describing the various datasets we used and the experimental
framework, followed by a discussion of the obtained results.

8.1. Experimental Setup

We implemented our DySNI, SimDySNI, and M-DySNI approaches using Python (ver-
sion 2.7.3) and ran all experiments on a server with 128GBytes of main memory and
two 6-core Intel Xeon CPUs running at 2.4GHz. To facilitate repeatability of our exper-
iments, the prototype codes and the synthetic datasets are available from the authors.

8.1.1. Datasets. To evaluate different aspects of our proposed approaches we used both
real as well as synthetic datasets. Table II summarizes these datasets.



—NC Dataset! is a large real voter registration dataset from the U.S. state of North
Carolina. We have downloaded the NC dataset every 2 months since October 2011
to build a compound temporal dataset. This dataset contains the names, addresses,
and ages of around 8 million voters, as well as their voter registration numbers (the
used attributes are ‘Firstname, ‘Surname,” ‘City, ‘Zipcode’). Each record has a time
stamp attached that corresponds to the date a voter originally registered, or when
any of their details have changed. This dataset therefore contains realistic temporal
information about a large number of people. We identified 142,673 individuals with
two records, 3,566 with three, and 92 with four records in this dataset. This dataset
is used for scalability evaluation since it has a large number of records.

—OZ-x Datasets: We generated four datasets with various corruption ratios using the
GeCo data generator and corrupter [Tran et al. 2013] for the purpose of investi-
gating the effect of having different levels of data quality in attribute values on
matching quality. The four datasets each contain 345,876 records of personal details
(‘Firstname, ‘Surname, ‘Suburb,” ‘Postcode’) selected randomly from a clean Aus-
tralian telephone directory, modified by adding duplicate records that had randomly
corrupted attribute values based on typing, scanning, and OCR errors, or phonetic
variations. “x” refers to the number of corrupted attributes in the dataset that we
used (from OZ-1 to OZ-4). Each entity is represented on average by five duplicates.
These datasets are used to evaluate the effect of using different thresholds for the
different proposed window approaches, and to evaluate how different levels of noise
(i.e., different data quality) in a dataset affect the performance of the proposed ap-
proach.

—Febrl Datasets: We generated three fully synthetic datasets where we specified
the average number of records per entity (person) using the Febrl data generator
[Christen and Pudjijono 2009]. This allowed us to evaluate our proposed approaches
with regard to how datasets with different numbers of duplicates affect the DySNI
adaptive window approaches. The three datasets each contain 100,000 records
consisting of name and address attributes. In the first dataset (named Febrl-5)
each entity is on average represented by five records (with a maximum of eight
records per entity), in the second dataset (named Febrl-10) each entity is on average
represented by 10 records (with a maximum of 15 records per entity), and in the
third dataset (named Febrl-20) each entity is on average represented by 20 records,
with a maximum of 30 records. Records were generated by first creating an “original”
record for an entity, followed by the application of various modifications to generate
“duplicate” records (by applying keyboard edits, phonetic and OCR modification,
and setting values to missing). These sets are used to evaluate the effect on the
proposed approach of having a different number of duplicates in a dataset.

8.1.2. Experimental Baseline. Two baseline approaches are compared with DySNI. The
first is the dynamic similarity-aware index (DySimlII) [Ramadan et al. 2013]. This
approach is a dynamic indexing technique that is based on standard blocking. The
DySimlII has a build and a query phase. In the build phase, the similarities between
attribute values are precalculated and stored in the index to reduce the required cal-
culation in the query phase when a query record is matched. This method can be used
for real-time ER with dynamic, large databases. The second baseline approach is a g-
gram-based inverted index (QGI) [Baxter et al. 2003; Christen 2012b; McCallum et al.
2000] that converts the attribute values of each record in the database into a list of g
grams. Each unique q gram becomes a key in the inverted index where its value is the
list of all records in the database that have this q gram in their attribute values. To

Available from ftp://alt.ncsbe.gov/data/.
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Fig. 9. The average time needed to generate candidate records for different types of trees. The plot is
generated using the OZ-1 dataset.

match a query record with the g-gram inverted index, its attribute values are converted
into a q-gram list, then it is compared only with records that have a certain number of
common ¢ grams that achieve a minimum similarity threshold. The approach returns
a list of all records that have a Jaccard-based similarity with the query record that is
greater than the minimum similarity threshold.

8.1.3. Evaluation Metrics. With real-time ER, the aim is to match a query record with all
records in the dataset that represent the same entity as the query record in the least
possible time (subsecond time). Thus, we focus on measuring the quality of obtained
results, and the efficiency of the compared approaches. We use recall (the fraction of
retrieved true matches over the total number of true matches) to measure the quality
of the compared approaches, and both insertion time (time required to insert a single
record into the index) and query time (time required to resolve a single query record)
to measure efficiency.

Precision, which for a query record is the fraction of retrieved true matches over the
number of retrieved candidate records, was not used in the experimental evaluation.
This is because our approach returns the y top-matched candidate records when re-
solving a query record, which means that the number of retrieved candidates is always
the same (y) for all resolved query records.

8.2. Experimental Results

To evaluate our approaches we conducted several sets of experiments as described
next. Note that the SK used for conducting all of the following experiments is the
concatenation of ‘Surname+Firstname’ attribute values.

8.2.1. Evaluating the Efficiency of Generating Candidate Records Using Different Tree Data
Structures. We evaluated the efficiency of the three data structures described in Sec-
tion 3.2 with respect to generating the candidate records by comparing the average
time needed to generate a list of candidate records in the query phase using the fixed-
size window approach for different window sizes ranging from w = 1 to w = 10. The
results in Figure 9 show that the braided AVL tree is more than three times faster than
the other two tree data structures for all evaluated window sizes. This highlights that
the double-linked list in the braided AVL tree significantly reduces the time required
to retrieve the candidate records for a given query record. All remaining presented
results are based on using the braided AVL tree in the DySNI.

8.2.2. Evaluating the Estimation of the Number of Candidate Records. We conducted this set
of experiments to evaluate the estimation function in Equation (4) from Section 7.
We collected the minimum, maximum, and average number of candidate records used
when running the DySNI-f approach on 30% of the NC dataset (with n = 2,567, 638
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Fig. 10. The estimated number of candidate records for the OZ-1 and 30% of the NC datasets using Equa-
tion (4) from Section 7, compared with the measured number of candidate records required for running
DySNI-f on both the NC and OZ-1 datasets using a concatenation of ‘Surname’ and ‘Firstname’ as SK for
different window sizes.

Table lll. Required Memory For Different Tree Types Using Various SKs for 30% of the NC Dataset

SK Num nodes | New SKV (%) [ Indexed SKV (%) | BRT (MB) [ S-BRT (MB) |
FN 120,632 5 95 74 98

SN 194,090 8 92 106 144

Zip 508 1 99 21 21

SN +FN 1,634,650 64 36 754 1,079

SN + Zip 897,215 35 65 420 598

SN +FN +Zip | 2,237,069 87 13 1,130 1,614

and k = 1, 634, 650) and on the OZ-1 dataset (with n = 345, 876 and & = 160, 058) using
different window sizes (2 < w < 10). Then we used the proposed estimation function to
estimate the minimum, maximum, and average number of candidate records required
using the same values of n and % of both the OZ-1 and NC datasets for window sizes
(2 < w < 10) and plotted the results in Figure 10.

The results show that the measured and the estimated average number of candidate
records are highly similar in both OZ-1 and NC datasets. The results also show that
the measured minimum and maximum number of candidate records fall within the
estimated minimum and maximum number of candidates. This indicates that Equation
(4) can successfully estimate the number of candidate records for both OZ-1 and NC
datasets.

8.2.3. The Effect of Using Different SKs on Index Size. We conducted an experiment on how
using different SKs in building the index will affect the tree size (number of nodes %
in the tree), and the number of records inserted into tree nodes for the NC dataset.
Figure 6 and Table IIT show that using single attribute values as SKs results in trees
with fewer nodes (with more records inserted into the nodes), while using several
attributes to generate concatenated SKs results in larger trees with a smaller number
of records being inserted into each node. This experiment confirmed that using various
SKs leads to £ < n and often & « n, especially for large datasets.

8.2.4. Scalability Experiments. In this set of experiments we evaluated whether the
proposed DySNI scales to large databases while facilitating real-time ER. We mea-
sured the average time required to insert a single record, and the average query
time required to resolve a single query record across the growing size of the index
structure. These experiments were conducted on 2.5 million records from the NC
datasets. The proposed approach with a fixed-size window (DySNI-f), a candidate-based
adaptive window (DySNI-c), a similarity-based adaptive window (DySNI-s), and a
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Fig. 11. Plot (a) shows the average time needed for inserting a single record into the index. Plot (b) illustrates
the average time required for querying the growing index. A subset of 30% of the NC dataset is used (M =
Million). All compared approaches give similar recall values.

duplicate-based adaptive window (DySNI-d) was compared with the DySimII base-
line technique. Threshold selection for the various proposed approaches was based on
achieving the same recall value for all compared approaches.

As can be seen from Figure 11, the DySNI approaches significantly outperform the
earlier DySimII by up to one order of magnitude faster insertion time. As for the query
time, the results show that the various proposed approaches have between one to two
orders of magnitude faster query time than the DySimII approach while achieving
similar recall values. Moreover, the results show that the average insertion times are
not affected by the growing size of the index data structure, while the query time only
increases slightly as the index becomes larger. As expected, larger window sizes lead to
slower query times, and the DySNI-s approach is slower than the DySNI-d and DySNI-c
adaptive approaches. This is due to the fact that the calculation of similarities between
SKVs is an overhead of the DySNI-s approach that does not occur with the other
two adaptive approaches. Additionally, the different proposed approaches generate
different sets of candidate records that lead to different query times. However, the
results show that the different variations of the proposed DySNI approach achieve
very fast average query times that range between 0.02 and 3.0msec per query record.

8.2.5. The Effect of Using Different Thresholds on Quality and Efficiency. In this set of exper-
iments, we investigated the effect of using different window sizes and thresholds on
the quality of the obtained results and the efficiency of the approaches. We compare
the various proposed approaches and the DySimII and QGI baselines. The OZ dataset
(with only one duplicate per record) was used for this set of experiments.

—Fixed size window (DySNI-f): We investigated using different window sizes for this
approach by measuring recall and average query times needed to resolve query
records. As shown in Figure 12(a), recall values are improving with an increase
in window size since more records are compared with a query record. Because the
number of comparisons increases for larger window sizes, the time needed to resolve
queries will also increase. This means, as one would expect, that larger window sizes
can achieve better recall values but at the cost of increasing query time. Comparing
DySNI-f to DySimII, when w = 10, to achieve similar recall value, DySNI-f is one
order of magnitude faster.

—Candidate-based adaptive window (DySNI-c): We investigated using a different min-
imum number of candidate records for the candidate-based adaptive window ap-
proach; the results in Figure 12(b) show that the more candidate records we have in
the window the better recall values we get but with an increase in the time needed
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Fig. 12. Recall and time measures for the different DySNI approaches compared to the baselines DySimII
and QGI. All plots are generated using the OZ dataset. Each entity can have one duplicate.

to resolve queries. DySNI-c achieves almost one magnitude faster query times than
DySimlI for parameter settings where they both achieve similar recall values.

—Similarity-based adaptive window (DySNI-s): We investigated using different sim-
ilarity thresholds to expand the window on both sides for this adaptive window
approach. Figure 12(c) shows that smaller threshold values achieve better recall val-
ues but more time is needed to resolve queries. This is because smaller similarity
thresholds mean that more records are included in the window, which leads to better
recall but larger query times. Compared with DySimII and GQI, when all techniques
achieve the same recall values of 100%, DySNI-s achieves similar query time to QGI,
but slower than DySimlIl. However, query time for QGI is almost constant for all
thresholds where for DySNI-s query time decreases when the similarity threshold
increases.

—Duplicate-based adaptive window (DySNI-d): We investigated using different ex-
pansion thresholds for the duplicate-based adaptive window approach. Figure 12(d)
shows that both recall and average query times were almost constant with differ-
ent expansion thresholds. This means that the expansion of the window was very
limited. The reason for that is the way that DySNI-d is structured. Because each
tree node contains all records with the same SKV, we can see that most of the
duplicates are already found in the query record’s node or its nearest neighboring
nodes, which limits the expansion process for the duplicate-based approach to a very
small number of neighboring tree nodes. Therefore, the duplicate-based approach
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Fig. 13. Recall and time measures for similarity and duplicate adaptive approaches using Febrl datasets.
Note that the threshold is different between all approaches; for DySNI-s it represents the similarity threshold
between the SKV of the query’s node and neighboring nodes, while for DySNI-d it represents the ratio between
the found true matches and the number of candidate records within the window. For QGI it is the minimum
Jaccard similarity between a query record and a candidate record to be considered as a match.

is not suitable for DySNI. Both baselines performed better than DySNI-d in regard
to matching quality, but DySNI-d achieved lower query time. Note that the recall
values for QGI increases when the Jaccard similarity threshold decreases. However,
it achieves almost constant query time for all different thresholds.

8.2.6. The Effect of Having Different Number of Duplicates. The aim of this set of experiments
was to investigate the effect of the number of duplicate records on recall, query times,
and on the expansion of the adaptive window in both DySNI-s and DySNI-d approaches.
These experiments are conducted using the Febrl datasets. From the results shown in
Figure 13, we can see DySNI-s outperformed QGI with regards to both recall and
query times. QGI did not perform well for Febrl datasets. We can also see that DySimII
gives better recall values than both DySNI-s and DySNI-d and that, in general, the
recall values achieved by the two adaptive approaches are less than the recall values
achieved with the OZ dataset in the previous set of experiments. This is due to the fact
that in the OZ dataset the maximum number of duplicates that a record can have is
one, while in the Febrl datasets the average number of duplicates ranges between 5 and
20. Having a larger number of modified duplicates in the datasets increases the chance
of having an error in the first character of the attribute value that is used as a SKV.
Additionally, because the proposed approach is based on sorting records alphabetically
according to SKVs, this increases the chance of having records located far away from
other records that represent the same entity in the index data structure. This issue
can be resolved by building multiple trees using different SKVs (Section 6) to increase
the chance of having records that represent the same entities close to each other. The
results of using multiple trees are shown in Figure 15.

In addition, the results show that having a different number of duplicates in the Febrl
datasets does not affect window expansion for DySNI-d, and similar to the results
from the OZ dataset from the previous set of experiments, DySNI-d still has very
limited expansion in the adaptive window. Recall and query time values are also almost
constant, which confirms the findings from the previous set of experiments where most
of the found duplicates are located in the query record’s node or its nearest neighboring
nodes, which limits the expansion process for the DySNI-d approach to a very small
number of neighboring tree nodes.

8.2.7. The Effect of Precalculating Similarities on Comparison Time. Here we investigate how
the SimDySNI is able to improve query time. First, we measure the average time
needed to compare a query record with a single candidate record for queries where a
SKYV has been indexed previously and already exists in the index, using the SimDySNI
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Fig. 14. The plot on the left presents average times required to compare a query record with a single
candidate record for the SimDySNI approach using different numbers of attributes as sorting keys. The
table on the right shows the average total query time (in ms) for queries with indexed SKVs (Section 5)
using various SKs. The OZ-1 dataset was used for both the table and the plot. Note that the case of having
no pre-calculated attributes is the same as the original DySNI.

approach (as shown in Algorithm 4) with a different number of attributes being used as
the SK. We ran the experiments using the OZ dataset with 1, 2, and 3 attributes used as
SKs for different possible combinations of the four attributes: ‘Firstname, ‘Surname,
‘Suburb,” and ‘Postcode.” The average comparison times over these combinations are
shown in the left plot in Figure 14. The results show that for queries where the node is
preexisting, SimDySNI can significantly reduce the time required to compare a query
record with a single candidate record. This improvement in time is almost linear with
the number of attributes used in a sorting key. The results show that for a one-attribute
sorting key the comparison time reduction is around 20%, for a two-attribute sorting
key it is around 40%, and for a three-attributes sorting key it can be up to 70%.

Second, we measure the average total query time for queries with indexed SKVs
(where the SKV of the query record already exists in the index) for both DySNI and
SimDySNI approaches. The table in Figure 14 presents the average overall query time
required for queries with indexed SKVs using various SKVs for of the OZ dataset. The
results show that using SimDySNI for queries with indexed SKVs the overall average
query time has improved by 44% to 93% for the various SKVs. Table III provides
the percentages of both queries with new SKV and queries with indexed SKV when
using various SKs for the NC dataset. Results show that between 13% and 99% of
arriving queries can benefit from query time improvement by SimDySNI for queries
with indexed SKV for the different SKs.

8.2.8. Required Memory Size. Table III shows the memory requirements of the different
tree index data structures using different sorting keys. As can be seen, with concate-
nated SKs the number of unique SKVs increases significantly and therefore the size
of the tree index structure also grows. The additional overhead of the SimDySNI com-
pared to the total amount of memory required by the tree structure is negligible for
small trees, but can be quite significant for large trees.

8.2.9. The Effect of Using Multiple Trees and Different SK Combinations on Recall and Query
Time. In this set of experiments, we evaluate the effect of using multiple trees and
different SK combinations (using all possible single attributes and concatenated pairs
of attributes) on recall and average query time. DySNI-s with a similarity threshold
between 0.5 and 1.0 was used on the OZ-1 dataset for this set of experiments. A single
record in this dataset has an average of five corrupted duplicates. From Figure 15
we can see that using more trees increases recall at the cost of a slight increase in
the average query time. We can also see that although SKVs generated from single-
attribute values give better recall values, they require a longer time to resolve queries,
which means that they are not suitable for real-time ER. On the other hand, SKVs
that are generated from a concatenation of two attribute values reduce the average
query time significantly but still achieve high recall values. The figure also shows
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Fig. 16. Plot (a) shows the average recall values for the OZ-x datasets with different corruption rates using
all possible SKs generated from the concatenation of two attributes. Plots (b) and (c) show the average
insertion and query times for the full NC dataset compared with the baseline. The M-DySNI is used to
generate the plots.

that when using three trees recall can be increased significantly compared to when
using a single tree. Also, using multiple trees allows using more strict SKs (like the
concatenation of more than one attribute) to build multiple trees with smaller node
sizes while maintaining matching quality. We obtained similar results with the other
OZ-x datasets where two, three, or four attribute values have been corrupted (see
Figure 16(a)).

M-DySNI achieved better recall and query time results compared to both baseline
approaches. Recall values for DySimII and QGI have dropped compared to results in
Figure 12 because the dataset used in this set of experiments has a larger number
of corrupted duplicates. We also noted from running this set of experiments that for
M-DySNI using attributes that have less dependency between them (e.g., ‘Firstname,’
‘Postcode’) as SKs gave better recall results than attributes with higher dependency
(e.g., ‘Suburb’ and ‘Postcode’).

8.2.10. Scalability of the Multiple-Tree Index. In this set of experiments we evaluate the
scalability of the M-DySNI on the full NC dataset using different numbers of trees.
The results illustrated in Figure 16(b) show that the average insertion times using the
various numbers of trees is not affected by the growing size of the index data structure,
while plot (c) shows that the average query time only increases slightly as the index
becomes larger. As expected, the results show that using more trees increases the
average insertion and query times, but the achieved times are still very fast (around
1 ms and 15 ms insertion and query time, respectively) for three trees. The memory
required for the index of one, two, and three trees for the full NC dataset was 1.8, 3.6,
and 4.3 Gigabytes, respectively.



8.3. General Discussion

The experimental results described previously illustrate the effectiveness of DySNI.
The fast insertion and query times achieved by the approach, and the ability to facilitate
querying of large and dynamic datasets, make it effective for real-time ER. Moreover,
SimDySNI improves query time by storing pre-calculated similarities between SKVs
of neighboring nodes in the index, but at the cost of extra memory requirement.

The similarity-based (DySNI-s) approach showed better recall results since the
expansion decision in this approach depends on the similarities between SKVs. Be-
cause these SKVs are sorted, neighboring nodes are likely to have similar SKVs. The
duplicate-based (DySNI-d) approach does not work effectively because in DySNI all
records with the same SKV are inserted into the same tree node, which limits window
expansion and reduces the quality of the achieved results. Candidate-based adaptive
windows (DySNI-c), on the other hand, can be used to control and limit the number
of comparisons to achieve lower query times by choosing a low minimum number of
candidates threshold.

Among the various proposed window types, DySNI-s has shown better recall values
at the cost of increased query time, which makes it suitable for applications that need
high-quality query matching results. As for DySNI-f and DySNI-c, they both can be
used with applications that require a controlled time for resolving queries.

Moreover, our results illustrated that using the similarity-based SimDySNI reduces
the average comparison time between 20% and 70% (based on the number of attributes
used to generate SKV) while it increases the memory footprint between 13% and 40%
for various SKs. Finally, the drawback of sensitivity to errors and variations at the
beginning of SKVs was addressed by proposing a multitree indexing approach that
improved the matching quality while maintaining efficiency. Our results also show
that SKs that are based on a concatenation of more than one attribute value are more
suitable for real-time ER since they reduce query time significantly while still achieving
high matching accuracy.

All results confirm that the DySNI is well suited for use with real-time ER where a
stream of query records needs to be resolved against a large and dynamic database.

9. CONCLUSIONS AND FUTURE WORK

We have presented a dynamic tree-based sorted neighborhood indexing technique that
can be used for real-time ER on large databases. The technique was shown to be scal-
able with large databases as it has fast insertion and query times. We improved query
times using a variation where we precalculate the similarities between the attribute
values that are used to generate the sorting key values. We investigated several query
matching approaches using both a fixed-size window and various adaptive window
techniques. We showed that both the fixed-size window and the candidate-based adap-
tive window approaches provide more control over the time used to resolve queries.
We also showed that the similarity-based adaptive window approach achieves better
matching quality at the cost of requiring more time to resolve queries. Any sorted in-
dexing technique has the drawback of being sensitive to errors at the beginning of the
sorting keys. We addressed this issue by proposing an index with multiple dynamic
trees where each tree uses a different sorting key. We evaluated the proposed tech-
niques using a large real-world and two synthetic datasets. This evaluation showed
that the proposed DySNI is suitable for real-time ER.

For future work we plan to extend the proposed index using a combination of a B+
tree and BRT to work with disk-based memory to allow indexing of very large datasets
that do not fit into main memory. We also plan to parallelize the multiple-tree index
to improve performance. Moreover, we plan to explore how DySNI can be integrated



with classification and clustering techniques [Hassanzadeh et al. 2009] to make the
complete ER pipeline applicable for real-time matching.
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