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Abstract  

Lipids, particularly phospholipids, are known to play a significant role in the 1 

characteristic aroma of the different meat species. Both neutral lipids and 2 

phospholipids were extracted from egg yolk and added to minced chicken (1% w/w) 3 

prior to cooking in water at 100 °C for 20 min. Sensory analysis of the broths showed 4 

that the addition of phospholipids significantly increased the chicken meat aroma 5 

whereas the addition of neutral lipids did not. GC-MS analysis showed a significant 6 

increase in most of the lipid-derived volatile components when the phospholipids 7 

were added, especially 2,4-decadienal which is a characteristic odour impact 8 

compound in chicken. There were very few significant changes in the volatile profile 9 

when the neutral lipids were added. These data provide direct evidence that the 10 

addition of phospholipids can enhance chicken meat aroma, and addition of egg yolk 11 

phospholipids could be applied to improve chicken meat aroma. 12 

 13 

Keywords: chicken meat; aroma; phospholipids; egg yolk; lipid-derived volatile; 14 

2,4-decadienal.15 
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1. Introduction 16 

Chicken broth in China is well known for its rich, rounded, sweet, aromatic notes, and 17 

consumers are keenly aware of the difference in flavour of slow growing natively 18 

reared chickens compared to the intensively reared chickens (broilers) which are 19 

grown much more rapidly and lack flavour. A recent report (Feng, Cai, Fu, Zheng, 20 

Xiao & Zhao, 2018) demonstrated using GC-olfactometry and aroma extract dilution 21 

analysis that the key difference between chicken broth prepared from either native or 22 

commercially reared chickens was in the concentration of lipid-derived compounds, 23 

rather than in the Maillard or sulfur-derived volatiles.  24 

Phospholipids are known to play a significant role in the formation of the 25 

characteristic aroma of different meat species (Mottram, 1998; Whitfield & Mottram, 26 

1992). In chicken, aldehydes with >5 carbon atoms, such as hexanal, (E)-2-nonenal, 27 

(E)-2-decenal, (Z)-2-decenal, (E,E)-2,4-decadienal, (E)-2-undecenal, (E,Z,Z)-2,4,7-28 

tridecatrienal, and also 1-octen-3-one, are generated by thermally induced oxidation 29 

and decomposition of the endogenous fatty acids. These lipid-derived compounds 30 

contribute to the characteristic chicken aroma whereas 2-methyl-3-furanthiol and 31 

other related cysteine- and ribose-derived compounds tend to provide the non-specific 32 

meaty character in meat (Jayasena, Ahn, Nam & Jo, 2013; Mottram, 1998; Shi & Ho, 33 

1994; Stephan & Steinhart, 1999). In addition, interactions between lipid oxidation 34 

products and Maillard reaction products (Farmer & Mottram 1990; Mottram & 35 

Whitfield, 1995; Whitfield et al., 1992) can generate thiophenes, thiazoles, furans, 36 



 4 

pyrazines and pyridines with alkyl substituents which are derived from lipid, leading 37 

to a modified and species specific overall aroma of cooked meat. 38 

Egg yolk is a good source of phospholipids, and the content of phospholipids is about 39 

10% of the wet weight of the egg yolk (Gladkowski, Chojnacka, Kielbowicz, Trziszka 40 

& Wawrzenczyk, 2012). The fatty acid profile of egg phospholipids is similar to that 41 

of chicken meat, although the polyunsaturated fatty acids (PUFAs) in chicken meat 42 

are higher than those in the egg yolk (Fredriksson, Elwinger & Pickova, 2006; Katz, 43 

Dugan & Dawson, 1966). Egg phospholipids are rich in PUFAs, especially linoleic 44 

acid (C18:2), arachidonic acid (C20:4) and docosahexaenoic acid (C22:6) (Katz et al., 45 

1966). Thus, egg yolk can be used as a source of these important precursors for the 46 

generation of key aroma compounds in chicken. For example, thermally treated egg 47 

phospholipids (145 °C, for 20 min) have been shown to produce an abundance of key 48 

aroma compounds, such as hexanal, (E,E)-2,4-decadienal, 1-octen-3-one, trans-4,5-49 

epoxy-(E)-2-decenal, (Z)-2-decenal, (E)-2-decenal and (E)-2-undecenal (Lin & Blank, 50 

2003), which are important for the aroma of chicken meat.  51 

Methods for the isolation and purification of egg yolk lipids are widely reported in the 52 

literature and the purity of phospholipids and neutral lipids fraction is quite 53 

satisfactory. Generally, egg yolk phospholipids are extracted with ethanol, and then 54 

purified by removing neutral lipids. Palacios & Wang (2005) used a multistep 55 

extraction with ethanol and hexane, followed by addition of chilled acetone to 56 

precipitate the phospholipids in the final purification step. They isolated 57 

phospholipids with 95.9% purity, and the neutral lipid only contained 1.8% of the 58 
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phospholipids. Gladkowski et al. (2012) used acetone at -20 °C to precipitate and 59 

wash phospholipids, and they obtained a pure phospholipid fraction in 9.5% yield, 60 

and the high purity phospholipids contained phosphatidylcholine (78%) and 61 

phosphatidylethanolamine (21%). 62 

The hypothesis of our work is that reactive precursors involved in the formation of 63 

characteristic lipid-derived compounds can be provided by addition of phospholipids, 64 

in particular egg yolk phospholipids, which have a similar composition to chicken 65 

phospholipids. Phospholipids extracted from egg yolk will be added to minced 66 

chicken breast prior to cooking in water at 100 °C, mimicking the preparation of 67 

traditional Chinese chicken broth. Although egg yolk has been used as part of a 68 

complex mixture of ingredients to prepare process flavours (Tian, 2014), to the best of 69 

our knowledge, no research has been published where egg yolk phospholipids have 70 

been used specifically to increase the key volatile components of chicken aroma in a 71 

real food.  72 

2. Materials and methods 73 

2.1. Reagents and Chemicals 74 

Aroma chemicals were obtained from the following suppliers: 2-furfural, 3-octen-2-75 

one, benzeneacetaldehyde, carbon disulfide and 1-decene from Fisher Scientific 76 

(Loughborough, U.K.); 1-octen-3-one from Danisco (Kettering, U.K.); benzaldehyde 77 

and 1-decanol from Givaudan (Milton Keynes, U.K.); (E,E)-2,4-decadienal from 78 

Lancaster Synthesis (Heysham, U.K.); 2-ethylfuran, 1-penten-3-one, 2,3-79 

pentanedione, (E)-2-butenal, hexenal, butanal and (E)-2-heptenal from Oxford 80 
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Chemicals (Hartlepool, U.K.); (E,E)-2,4-nonadienal, 2,3,5-trimethylpyrazine, 2,3-81 

butanedione, decanal, dimethyl trisulfide, heptanal, hexanal, undecanal, (Z)-4-82 

heptenal, nonanal, (E)-2-nonenal, (E)-2-octenal, (E)-2-undecenal, (E,E)-2,4-83 

octadienal, 2-nonanone, tetramethylpyrazine, (E)-2-(2-pentenyl)furan, 1-pentanol, 84 

(Z)-2-penten-1-ol, (E,E)-2,4-heptadienal, 3,5-octadien-2-one, 1-octanol, 1-nonanol, 6-85 

methyl-2-heptanone, 3octanone, 2-octanone, 2,3-octanedione, methional, hydrogen 86 

sulfide, methanethiol, nonane, 1-butanol, 1-tetradecene, 3-nonen-2-one, (E)-2-octen-87 

1-ol, and 6-methyl-3,5-heptadiene-2-one from Sigma-Aldrich Ltd. (Gillingham, 88 

U.K.); 1-octen-3-ol, pentanoic acid, and propanoic acid from Synergy (High 89 

Wycombe, U.K.); Pentanal, octanal, nonanal, decanal and dodecanal from 90 

Polyscience (Cambridgeshire, U.K.); 2-pentylfuran and 3-ethylcyclopentanone from 91 

Avocado (London, U.K.); 2-methylbutanal and 3-methylbutanal from Alfa Aesar 92 

(Lancashire, U.K.); 2-pentanone, 3-hexanone, 2-heptanone, 2-nonanone, 2-decanone, 93 

3,5-heptadien-2-one and 2-undecanone from Koch-Light (Haverhill, U.K.); dimethyl 94 

sulfide, dimethyl trisulfide and 1-hexanol from IFF(New York, USA). 1,2-95 

Dichlorobenzene in methanol (130.6 ng/µL) and alkane standard C5−C25 (100 ng/µL 96 

in diethyl ether), used as GC-MS standards, HPLC-grade hexane, ethanol and acetone 97 

were obtained from Sigma-Aldrich Ltd. (Gillingham, U.K.); HPLC-grade water was 98 

obtained from Fisher Scientific (Loughborough, U.K.).  99 

2.2. Lipid extraction 100 

Phospholipids extraction. The method employed was that reported by Gladkowski et 101 

al. (2012) with minor modifications. Briefly, fresh egg yolk (20 g) and 60 ml of 102 
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ethanol were mixed and stirred for 30 min. The supernatant was removed, the 103 

extraction of egg yolk with ethanol was repeated twice and the supernatants 104 

combined. The precipitate was retained  for extraction of neutral lipids. The ethanol 105 

was evaporated from the combined supernatants under reduced pressure, then the 106 

residue was dissolved in hexane (30 ml) and placed in an ice bath (0 °C). Next, 60 ml 107 

of cold acetone (-20 °C) was added into the stirred mixture to precipitate 108 

phospholipids, and then the precipitate was washed 5 times with 20 ml portions of 109 

cold acetone (-20 °C).  110 

Neutral lipids extraction. The method employed was that reported by Palacios et al. 111 

(2005) with minor modifications. After extraction of the egg yolk with ethanol, the 112 

neutral lipids in the precipitate were extracted twice with 50 ml of hexane, and the 113 

combined hexane layers washed four times, each with 50 ml of 90% ethanol. Finally, 114 

the hexane was evaporated under reduced pressure, and the neutral lipids from egg 115 

yolk were obtained. 116 

The minor residual solvents in the phospholipids and neutral lipids were removed by 117 

high vacuum at room temperature for 10 h. 118 

2.3. Sample preparation 119 

Fresh chicken breast fillets without skin or bone were bought from a local 120 

supermarket. The chickens had been reared commercially and were of basic quality 121 

i.e. they were not specified as organic, free range or corn-fed chickens. The chicken 122 

meat (~500 g) was ground in a domestic meat mincer (Kenwood, Havant, UK) and 123 

thoroughly mixed. The samples were prepared as follows:  124 
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1) Phospholipids sample: 0.10 g phospholipids, 20 mL water. 125 

2) Neutral lipids sample: 0.10 g neutral lipids, 20 mL water.  126 

3) Chicken meat sample: 10.0 g chicken meat, 20 mL water. 127 

4) Chicken meat & neutral lipids sample: 10.0 g chicken meat, 0.10 g neutral lipids, 128 

20 mL water.  129 

5) Chicken meat & phospholipids sample: 10.0 g chicken meat, 0.10 g phospholipids, 130 

20 mL water.  131 

Finally the samples were sealed in 100 mL glass Duran bottles and cooked in boiling 132 

water (100 °C) for 20 min and then cooled in an ice-bath. Each treatment was carried 133 

out in quadruplicate and all samples were prepared from the same batch of chicken 134 

mince. 135 

2.4. Dynamic Headspace Extraction (DHE) 136 

DHE was used for the extraction of the volatiles, following the method described by 137 

Methven, Tsoukka, Oruna-Concha, Parker & Mottram (2007) with minor 138 

modifications. After cooking, the entire contents of each Duran bottle was mixed with 139 

sodium chloride (15 g) and HPLC grade water (5 mL) and placed in a 250 mL conical 140 

flask fitted with a Dreschel head. The flask was incubated in a water bath at 50 °C, 141 

and the volatiles in the headspace were swept onto Tenax absorbent using a flow of 142 

nitrogen (40 mL/min) for 60 min. After sweeping, 1.0 µL of 1,2-dichlorobenzene in 143 

methanol (130.6 ng/µL) was added as an internal standard to the trap, followed by a 144 

purge of 100 mL/min for 10 min to remove excess solvent and moisture.  145 

2.5. GC-MS Analysis of Volatile Compounds 146 
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The DHE samples were analysed using Agilent 7890A-5975 GC-MS system (Agilent 147 

Technologies Co. Ltd., Palo Alto, CA, USA) equipped with an automated thermal 148 

desorber (Turbomatrix ATD), using a Supelcowax 10 column (60 m × 0.25 mm i.d., 149 

0.5 µm film thickness, from Sigma, Poole, UK) and a DB 5 column (60 m × 0.25 mm 150 

i.d., 1 µm film thickness from J&W Scientific, Agilent, Palo Alto, CA, USA) under 151 

instrumental conditions described by Methven et al. (2007). The identification of the 152 

compounds was based on the comparison of their mass spectra with spectra from the 153 

NIST 11 Mass Spectral Database (NIST/EPA/MSDC, 1992). The linear retention 154 

index (LRI) was calculated for each volatile using the retention times of a series of 155 

C5−C25 n-alkanes. The identities of most of the volatiles were confirmed if their mass 156 

spectra and LRI matched those of authentic compounds run under the same analytical 157 

conditions in our laboratory. Volatiles were considered as tentatively identified by 158 

matching their mass spectra with the references mass spectra in the NIST mass 159 

spectral library, and by comparison of their LRI to the NIST database (NIST 160 

Chemistry WebBook, 2017). Volatiles were semi-quantitatively determined by 161 

comparison of the peak areas against those of the internal standard using a response 162 

factor of 1 for each compound. 163 

2.6. Quantitative descriptive analysis (QDA) 164 

The aroma of the three chicken samples was assessed by QDA. The solids were 165 

removed from the three chicken samples and the clear liquids (10 g) were put in 166 

brown glass containers with caps. The containers were kept in a water bath at 50 °C 167 

for 20 min to ensure the accumulation of volatiles in the headspace. Prior to the 168 
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analysis, 9 panellists (male = 4, female = 5), all of whom had previous experience in 169 

QDA, attended a number of round table discussions for the descriptive analysis where 170 

samples and references were presented. The panel reached a consensus on the 171 

following odor attributes (‘chicken broth’, ‘chicken meat’, ‘cooked vegetable’, ‘oily’, 172 

‘roasted’ and ‘sulfur’) which they used to describe the sensory characteristics of the 173 

three chicken samples. The panellists did not perceive a rancid or fatty off-flavour in 174 

any of the samples, but used the term oily to describe a fresh oily note. For the scoring 175 

sessions, the samples labelled with random three-digit codes were presented in 176 

ventilated tasting booths illuminated with white light. The panel members 177 

individually evaluated the odor qualities by sniffing samples, and quantified the 178 

attributes using an unstructured line scale (scaled 0–100). All samples were assessed 179 

in duplicate by each assessor. The data were collected using Compusense 5 software 180 

(Compusense Inc., Guelph, Ontario, Canada). 181 

2.7. Statistical Analysis 182 

The GC–MS data were analysed using one-way analysis of variance (ANOVA) and 183 

means were compared using the Fisher's least significant difference (LSD) test at P = 184 

0.05. SENPAQ version 3.2 (Qi Statistics, Reading, U.K.) was used to carry out two-185 

way ANOVA and Tukey's HSD at alpha=0.05 on the sensory data. Principal 186 

component analysis (PCA) using XLSTAT was carried out on the sensory data with 187 

the volatile compounds added as supplementary variables. 188 

3. Results and Discussion 189 

3.1. Sensory evaluation 190 
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The sensory profiles of the three chicken samples are shown in Figure 1. All the 191 

samples were scored highly for the ‘chicken meat’ and ‘chicken broth’ attributes, 192 

whereas the attributes of ‘oily’, ‘roasted’ and ‘sulfury’ received much lower mean 193 

scores. The score for the ‘chicken broth’ attribute in the chicken heated with neutral 194 

lipids was significantly higher than for the samples of chicken cooked with the 195 

phospholipids (p=0.004), whereas the scores for both the ‘chicken meat’ attribute and 196 

the ‘roasted’ attribute were significantly higher for the chicken cooked with 197 

phospholipids compared to the other two samples (p=0.018 and 0.020 respectively). It 198 

is interesting that having added phospholipids to the sample, the term chosen by the 199 

panel to describe the aroma was ‘chicken meat’ rather than a fatty term. 200 

3.2. The origin and aroma characteristic of lipid-derived volatiles. 201 

The volatiles in Table 1 were classified according to their possible origin. The 202 

formation of the characteristic aroma compounds of chicken meat (E,E)-2,4-203 

decadienal (fatty, fried), and others such as 2-nonenal (fatty, fried, fatty, green), 1-204 

octen-3-ol (mouldy, mushroom-like), 1-octen-3-one (mouldy, mushroom-like) and 205 

(E,E)-2,4-nonadienal (fatty, fried, green) are formed from the autoxidation of ω-6 206 

fatty acids such as linoleate and arachidonate, while (E)-2-undecenal (fatty, green), 207 

(E)-2-decenal (fatty, fried), decanal (aldehydic, waxy), octanal (aldehydic, waxy) and 208 

nonanal (aldehydic, waxy) originate from the autoxidation of ω-9 fatty acids such as 209 

oleate. 2,4-Heptadienal (fatty, green) and 3,5-octadien-2-one (fruity, fatty) originate 210 

from ω-3 fatty acids such as linolenate (Hsieh & Kinsella, 1989; Kawai, 1996; Shi et 211 

al., 1994; Wurzenberger & Grosch, 1984; Zamora, Navarro, Aguilar & Hidalgo, 2015; 212 

https://pubs.acs.org/doi/10.1021/acs.jafc.7b04073#fig1
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Zhou, Zhao, Bindler & Marchioni, 2014). 2-(2-Pentenyl)furan (beany, green, buttery, 213 

painty, metallic) and 2-pentylfuran (green, beany, earthy, metallic) are known to be 214 

mainly responsible for the undesirable reversion flavour of soybean oil, and are 215 

formed from the C10 hydroperoxide of linolenate and linoleate respectively by the 216 

singlet oxygen oxidation (Smagula, Ho & Chang, 1979). 217 

3.3. Comparison of lipid samples.  218 

Since the release of aroma compounds is very different from an aqueous meat mix 219 

than it is from the extracted lipid fractions, the two sets of samples will be discussed 220 

separately. Overall, the headspace of the heated phospholipid sample was significantly 221 

richer in number and abundance of lipid-derived volatiles compared to that of the 222 

neutral lipid sample as shown in Table 1. The compounds derived from the more 223 

reactive ω-3 and ω-6 fatty acids were all significantly higher in the phospholipid 224 

sample. Interestingly, some of the compounds derived from the less reactive ω-9 fatty 225 

acids also increased, in particular 2-undecenal, as did 6-methyl-3,5-heptadiene-2-one, 226 

an oxidative breakdown product of carotenoids. It has been reported previously 227 

(Elmore, Mottram, Enser & Wood, 1999) that once the lipid oxidation process has 228 

been initiated by the more reactive, more unsaturated fatty acids, this promotes the 229 

oxidation of the less reactive fatty acids. This is also evident from the increase in 230 

methylketones which are breakdown products of saturated fatty acids. 1-Tetradecene 231 

was the exception as it was found to be significantly higher in the neutral lipids 232 

compared to the phospholipids. 233 

The presence of Maillard reaction products in the heated lipid samples is surprising, 234 
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but we can only assume that these were formed from low levels of precursors which 235 

were co-extracted along with the lipids. The more polar solvent used to extract the 236 

phospholipids is consistent with there being more Maillard reaction precursors 237 

present, and therefore more Maillard reaction products in the phospholipids. It is also 238 

consistent with the work of Hidalgo & Zamora (2004 and 2016) who have shown that 239 

products of lipid oxidation can facilitate the degradation of amino acids to their 240 

corresponding Strecker aldehydes. This can explain the increase in 2- and 3-241 

methylbutanal in the heated phospholipid sample. Products of the Maillard reaction 242 

have been reported before in heated phospholipids (Stephan et al., 1999).  243 

Both hexanal and 2,4-decadienal are often used as primary marker compounds of the 244 

oxidation of ω-6 fatty acids (Choe & Min, 2006). They were 12 times and 100 times 245 

higher in the phospholipid compared to the neutral lipids, respectively, confirming 246 

that egg yolk phospholipids are more oxidatively sensitive than egg yolk neutral lipids 247 

under the present experimental conditions. Phosphatidylcholines, particularly those 248 

still bound up in the cell membrane, are initially more resistant to thermal oxidation 249 

compared to their corresponding triglycerides, however, Zhou et al. (2014) showed 250 

that phosphatidylcholine produces over 5 times more unsaturated carbonyls than 251 

triglycerides do. Phospholipids have both hydrophilic and hydrophobic groups in the 252 

same molecule, so they are good emulsifiers, they decrease the surface tension of the 253 

matrix and increase the diffusion rate of oxygen from the surface to the interior 254 

thereby accelerating lipid oxidation in an oil matrix. In the present study, the added 255 

phospholipids were homo-dispersed in the meat matrix, so they had a much more 256 
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larger surface area than the hydrophobic neutral lipids. Furthermore, phospholipids 257 

have a negative charge that attracts prooxidant metals to accelerate oxidation. They 258 

also contain a higher proportion of PUFAs (Choe et al., 2006; Cui & Decker, 2016; 259 

Min & Ahn, 2005; Reis & Spickett, 2012). As shown in Table 2, the PUFAs in the 260 

phospholipids are higher than those in the triglycerides. As PUFAs are more prone to 261 

oxidation (Choe et al., 2006; Min et al., 2005), more volatiles were generated when 262 

the phospholipid samples were cooked. It has been reported that egg yolk 263 

phospholipids can have good antioxidative activity (Cui et al., 2016), and that the 264 

antioxidative activity of egg yolk phospholipids decreased with an increase in the 265 

degree of saturation of fatty acid chains within the phospholipids (Sugino et al., 266 

1997), but we see no evidence of antioxidant activity in our system. 267 

3.4. Comparison of chicken samples with added lipids. 268 

The trends in volatile compounds in the three chicken samples were consistent with 269 

those already discussed for the lipid samples. All but two ω-3 and ω-6 derived 270 

compounds were significantly higher in the chicken sample containing phospholipids 271 

compared to the chicken alone, and in most cases there was no significant difference 272 

between the chicken alone and the chicken cooked with neutral lipids. There was a 273 

similar trend for some of the ω-9 derived compounds, but nonanal, 1-decene, and 274 

decanol were all significantly higher in the chicken cooked with neutral lipids. The 275 

Maillard reaction products tended to show no significant difference between samples, 276 

although the two Strecker aldehydes, 2- and 3-methylbutanal, both significantly 277 

increased when the lipids were included, particularly the phospholipids. Lipid 278 
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degradation products have been shown to undergo a Strecker-type degradation 279 

(Hidalgo et al., 2004 and 2016). The sulfur containing compounds had a high standard 280 

deviation associated with them, as is often the case, and did not show any significant 281 

differences between samples. 282 

Linoleic acid is the predominant PUFA in both the phospholipids and neutral lipids of 283 

chicken meat and egg yolk. In phospholipids, the most favoured position for 284 

formation of hydroperoxides during the radical initiation step of autoxidation is at the 285 

C9 position (Reis et al., 2012). In triglycerides, or the corresponding methyl esters, 286 

the hydroperoxides are formed at both C9 and C13 position (Choe et al., 2006; Ho & 287 

Chen, 1994). The C9 hydroperoxide is the precursor for 2,4-decadienal whereas the 288 

C13 hydroperoxide is the precursor for hexanal. So linoleate residues present in 289 

triglycerides can produce both (E,E)-2,4-decadienal and hexanal whereas when the 290 

same residue is assembled in a polar phospholipid, 2,4-decadienal is the major 291 

product, explaining why phospholipids produce (E,E)-2,4-decadienal more effectively 292 

than neutral lipids. 293 

The ratios of (E,E)-2,4-decadienal to hexanal in the neutral lipid sample and 294 

phospholipid sample are 0.087 and 0.73, respectively, showing clearly that 295 

phospholipids generate 2,4-decadienal far more effectively than neutral lipids. The 296 

ratios in the chicken sample, chicken & neutral lipid sample and chicken & 297 

phospholipid sample show a much diminished effect (0.008, 0.008 and 0.011). Neutral 298 

lipids had no positive effect on this ratio and the content of 2,4-decadienal, whereas 299 

the ratio for the chicken and phospholipid sample increased slightly. This apparent 300 
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“loss” of 2,4-decadienal in the presence of meat can be attributed to the interaction of 301 

this highly reactive alkadienal with other components of the meat, either the reactive 302 

intermediates generated in the meat by the Maillard reaction (such as H2S, NH3 and 303 

reactive dicarbonyls), or to the reaction with free amino groups. Perez-Juan, Flores & 304 

Toldra (2008) have also suggested that these compounds may get trapped within the 305 

meat. Examination of Table 1 shows that those compounds which had the greatest 306 

apparent “loss” are highly reactive 2,4-alkadienals, followed by the 2-alkenals, 307 

whereas the alkanals and alcohols were less affected. 308 

3.5. Correlation with sensory 309 

Figure 2 shows the principal component analysis carried out on the sensory data for 310 

the three chicken samples. The volatile compounds were included as supplementary 311 

variables and used to explain the differences in the sensory profile. It summarises 312 

much of the discussion above. The chicken sample containing the phospholipids is 313 

correlated with two sensory attributes which showed significant differences between 314 

the samples: ‘chicken meat’ and ‘roasted’ and also ‘sulfur’ (not significant). This 315 

sample, and the associated attributes, are correlated with all the ω-3 and ω-6 lipid-316 

derived compounds, confirming the key role of phospholipids (rather than the neutral 317 

lipids) in generating these compounds and the characteristic aroma of chicken meat. 318 

This sample is also correlated with octanol and octanal (derived from ω-9 fatty acids), 319 

methylketones (derived from saturated fatty acids) and 6-methyl-3-5-hexadien-2-one 320 

(derived from carotenoids) showing that the increase in lipid degradation was across 321 

the whole range of fatty acids and even affected the carotenoids. The carotenoids are 322 
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naturally occuring in chicken fat, and being non-polar are co-extracted with the lipid 323 

fractions turning them a pale orange. 324 

Although hexanal increased in the phospholipid containing samples, it has less effect 325 

on chicken meat aroma because of its relatively high odour detection threshold (4.5 326 

µg/kg) (Shi et al., 1994) compared to that of 2,4-decadienal (0.07 µg/kg) (Shi et al., 327 

1994) which imparts a characteristic fatty fried chicken note. However, large 328 

quantities of hexanal can induce off-flavour (Byrne, Bredie, Mottram & Martens, 329 

2002). It is therefore important to note that no fatty off-flavour was found by the 330 

panellists.  331 

Although chicken and roasted notes could arise from an increase in 2,4-decadienal 332 

(and other related compounds) the terms meat and sulfur are not generally associated 333 

with lipid degradation. These may be indicators of low levels of potent sulfur and/or 334 

Maillard-derived compounds present in the meat at levels below the detection limit of 335 

the analytical method. These compounds generally require high temperatures for their 336 

formation, so the mild cooking process would not have favoured their formation. 337 

Furthermore, the meaty character could be generated by the interaction between the 338 

lipid degradation products and H2S derived from the breakdown of cysteine to 339 

produce subthreshold levels of potent sulfur compounds. This is currently under 340 

further investigation. 341 

The ‘chicken broth’ note associated with the neutral lipids sample is likely to 342 

represent the underlying aroma before the introduction of the phospholipids. Table 1 343 

shows that potent compounds such as butanedione, methional, methanethiol, dimethyl 344 
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sulfide, dimethyl disulfide and dimethyl trisulfide were all present in the chicken and 345 

chicken with neutral lipid samples. Because of the potato and vegetable aroma of all 346 

but butanedione, it is very likely that these compounds contributed to a more brothy 347 

note. These compounds did not increase significantly when the phospholipids were 348 

added, and it is likely that the roasty, chicken meat and sulfur aroma generated from 349 

the phospholipids masked the chicken broth notes. Under these processing conditions, 350 

we were unable to detect the characteristic 2-methyl-3-furanthiol and related 351 

compounds which impart a typical meaty brothy note. In practical applications, the 352 

additional use of ribose (or xylose) as well as egg yolk, egg yolk phospholipids or 353 

egg-lecithin might further increase the ‘chicken meat’ aroma (Aliani & Farmer, 2005; 354 

Mottram et al., 1995).  355 

4. Conclusion 356 

Clearly, it has been demonstrated, both instrumentally and sensorially, that egg yolk 357 

phospholipids, rather than egg yolk neutral lipids, increase the formation of 358 

characteristic aroma compounds in chicken meat samples. Addition of egg yolk 359 

phospholipids can be applied to improve chicken meat aroma in the food industry. 360 
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Table 1. Mean Values  (approx ng/sample extraction) (n=4) of the Volatile Compounds Identified in Headspace of the Heated Samples. 454 

     Heated extracted lipids Minced chicken heated with extracted lipids 

Compound Name 

 

Code 

 

LRI1 

DB5 

LRI2 

WAX 

ID3 

 

Neutral lipids 

mean±SD4 

Phospholipids 

mean±SD4 

Lipid 

Sig5 

Meat alone 

mean±SD4 

With neutral lipids 

mean±SD4 

With phospholipids 

mean±SD4 

Meat 

Sig6 

ω-3 derivatives            

2-Propenal 30 <500 862  B 0.48±0.26 6.42±2.20 ** 1.34±0.51 2.28±0.95 2.19±0.10 ns 

Butanal 31 600 891  A 1.19±0.38 5.00±0.46 *** 4.67±0.50a 5.96±0.53a 11.10±1.70b *** 

2-Ethylfuran 32 702 970  A nd 2.83±1.40 ** 0.59±0.11a 0.92±0.15a 5.31±1.40b *** 

1-Penten-3-one 33 687 1045  A 0.34±0.13 33.90±8.70 *** 1.34±0.14a 1.24±0.09a 5.45±0.90b *** 

2-Butenal (E) 34 650 1071  A 0.40±0.19 9.10±1.70 *** 1.36±0.16a 0.52±0.09b 2.13±0.36c *** 

1-Penten-3-ol 35 686 1215  A 1.67±0.90 18.90±6.10 ** 22.30±2.00a 13.50±8.00a 59.40±6.60b *** 

2-Hexenal (E) 36 856 1281  A nd 11.50±3.30 *** 4.16±0.59 3.99±0.44 4.18±0.74 ns 

2-(2-Pentenyl)furan (E) 37 1002 1330  A nd 3.12±1.80 ** nda 0.03±0.05a 0.48±0.09b *** 

2-Penten-1-ol (Z) 38 768 1358  A 0.32±0.14 0.95±0.36 * 0.74±0.09a 0.94±0.23a 4.61±0.50b *** 

2,4-Heptadienal (E,Z) 39 1004 1517  B 0.49±0.27 12.30±3.10 *** 2.14±0.13a 2.11±0.30a 3.56±0.43b *** 

2,4-Heptadienal (E,E) 310 1017 1551  A 0.79±0.44 29.70±7.60 *** 3.75±0.46a 2.94±0.63a 4.72±0.55b ** 

3,5-Octadien-2-one (E,E) 311 1074 1623  A 0.33±0.36 6.65±1.90 *** 0.70±0.10a 0.47±0.19a 2.81±0.55b *** 

1-Pentanol 312 769 1294  A 2.95±1.30 35.80±11.00 *** 46.00±4.00a 48.50±8.90a 147.0±21.0b *** 

ω-6 derivatives            

Pentanal 60 702 997  A 5.52±3.73 72.83±23.53 ** 68.40±8.18a 77.36±7.78a 185.0±39.0b *** 

Hexanal 61 804 1111  A 25.94±27.67 316.0±92.4 *** 372.5±47.7a 337.3±80.3a 899.1±200.6b *** 

Heptanal 62 904 1240  A 7.47±4.20 26.27±11.87 * 14.30±2.10a 21.60±4.30a 36.50±8.00b *** 

2-Pentylfuran 63 992 1274  A 0.84±0.52 28.43±16.10 * 1.12±0.23a 4.03±1.40a 12.64±1.90b *** 
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2-Heptenal (E) 64 962 1380  A 14.40±12.00 136.1±43.6 ** 19.18±1.50a 17.52±1.40a 26.54±4.41b ** 

1-Octen-3-ol 65 982 1472  A 6.42±3.60 75.47±28.49 ** 23.26±3.50a 30.57±8.32a 106.1±21.0b *** 

1-Octen-3-one 66 980 1350  A 2.83±1.30 49.00±19.00 ** 1.41±0.20a 2.46±1.00a 8.18±1.90b *** 

2-Octenal (E) 67 1061 1481  A 8.96±7.00 123.0±36.0 *** 8.14±1.30a 7.54±2.50a 40.90±4.90b *** 

3-Octen-2-one 68 1041 1458  A nd 5.61±2.00 ** 0.33±0.12a 0.16±0.06a 3.05±0.75b *** 

3-Nonen-2-one 69 1140 1554  A nd 12.40±3.00 *** nda nda 0.59±0.03b *** 

2-Nonenal (E) 610 1163 1585  A 4.90±2.80 27.00±8.00 ** 4.70±0.54a 6.05±0.71b 6.46±1.10b * 

2-Octen-1-ol (E) 611 1069 1634  A 0.56±0.13 3.17±0.70 *** 0.70±0.18a 0.70±0.24a 1.36±0.22b ** 

2-Decenal (E) 612 1265 1689  A 8.27±5.70 67.70±18.00 *** 12.40±1.60 10.07±1.60 10.50±2.30 ns 

2,4-Nonadienal (E,E) 613 1222 1755  A nd 3.59±1.06 *** 1.74±0.17a,b 1.18±0.32a 2.01±0.48b * 

2,4-Decadienal (E,Z) 614 1302 1811  B 0.10±0.21 44.24±10.35 *** 0.87±0.08a 0.83±0.18a 2.87±0.49b *** 

2,4-Decadienal (E,E) 615 1324 1866  A 2.26±1.56 229.5±48.0 *** 3.14±0.42a 2.60±0.68a 9.61±1.50b *** 

ω-9 derivatives            

1-Decene 90 nd 1045  C 8.34±7.10 3.93±0.93 ns 4.00±4.30a 17.50±5.30b 2.03±0.30a *** 

Octanal 91 1006 1338  A 14.18±6.60 40.40±16.00 * 18.50±2.94a 27.80±6.50a 38.70±7.70b ** 

Nonanal 92 1107 1437  A 91.35±35.00 116.0±41.0 ns 57.60±10.37a 110.6±29.0b 83.90±15.29a,b * 

Decanal 93 1207 1539  A 15.76±5.14 30.40±11.08 ns 14.73±3.72 14.90±9.08 24.00±6.77 ns 

1-Octanol 94 1072 1578  A 7.58±2.60 22.30±6.40 ** 9.90±0.54a 13.6±2.80a 23.30±3.60b *** 

1-Nonanol 95 1172 1674  A 3.73±2.30 4.76±1.10 ns 2.32±1.30 4.49±1.80 2.77±0.60 ns 

1-Decanol 96 nd 1773  C 5.32±3.40 4.22±2.40 ns 3.77±2.80a,b 7.78±3.60a 2.10±0.80b * 

2-Undecenal 97 1367 1796  A 4.93±2.60 33.90±7.60 *** 9.29±1.10a 5.83±1.20b 6.96±1.40b * 

Ketones            

2-Pentanone k1 687 996  A 0.76±0.15 1.69±0.19 *** 10.11±2.30 18.20±7.04 15.70±3.40 ns 

3-Hexanone k2 783 1082  A 0.57±0.20 1.85±0.69 * 3.88±0.73a 3.68±1.30a 0.87±0.50b ** 
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2-Heptanone k3 890 1239  A 0.76±0.61 3.91±1.80 * 1.85±0.17a 2.71±0.56a 7.20±1.03b *** 

6-Methyl-2-heptanone k4 955 1289  A nd 0.93±0.23 *** 0.76±0.13a 0.73±0.18a 1.84±0.28b *** 

3-Octanone k5 989 1303  A 0.60±0.38 2.69±0.81 ** 0.52±0.36a 1.32±0.21b 4.47±0.69c *** 

2-Octanone k6 992 1334  A 0.81±0.71 2.04±1.02 ns 0.35±0.04 0.77±0.22 3.02±3.30 ns 

2,3-Octanedione k7 985 1362  A 0.44±0.23 11.20±3.60 *** 2.45±0.48a 3.75±1.60a 30.84±3.30b *** 

3-Ethylcyclopentanone k8 967 1398  A nd 5.05±1.60 *** 1.52±0.15a 1.71±0.20a 6.13±1.20b *** 

2-Nonanone k9 1091 1431  A 0.82±0.36 1.03±0.60 ns 0.33±0.06a 0.65±0.30a,b 0.98±0.22b ** 

2-Decanone k10 1192 1532  A 0.56±0.30 0.78±0.42 ns 0.26±0.06a 0.48±0.19b 0.63±0.10b ** 

3,5-Heptadien-2-one k11 nd 1539  C 1.11±0.35 0.19±0.03 ** nda nda 1.73±0.45b *** 

2-Undecanone k12 1294 1634  B 0.03±0.01 0.14±0.03 *** nda nda 0.08±0.01b *** 

Maillard reaction products           

2-Methylbutanal m1 664 929  A 0.76±0.66 4.00±1.73 * 1.95±0.33a 3.02±1.30a,b 4.33±0.85b * 

3-Methylbutanal m2 657 934  A 2.02±1.83 14.43±6.10 ** 3.77±0.61a 7.42±1.82b 9.80±2.10b ** 

2,3-Butanedione m3 598 996  A 2.21±0.51 8.78±1.98 *** 31.75±8.20 50.92±18.58 41.90±14.74 ns 

2,3-Pentanedione m4 696 1083  A nd 0.43±0.20 ** 0.10±0.06a 0.17±0.09a 0.31±0.09b * 

2-Furfural m5 836 1517  A 1.01±0.47 1.95±0.61 ns 1.30±0.41 1.10±0.31 1.30±0.17 ns 

Tetramethylpyrazine m6 1090  1526  A nd nd na 1.31±1.50 1.06±0.93 0.53±0.09 ns 

Benzeneacetaldehyde m7 1053 1707  A 2.71±0.29 5.13±1.92 * 2.29±0.94 3.80±1.56 4.11±0.75 ns 

Sulfur compounds            

Hydrogen sulfide s1 <500 568  B nd nd na 0.09±0.03a 0.46±0.16b 0.19±0.07a ** 

Methanethiol s2 <500 715  A 0.09±0.11 0.27±0.16 ns 6.04±2.30 7.93±1.50 7.37±0.64 ns 

Carbon disulfide s3 540 746  A 0.15±0.05 0.34±0.46 ns 2.28±0.34 2.07±0.10 2.38±0.69 ns 

Dimethyl sulfide s4 523 757  A nd 0.03±0.05 ns 0.17±0.07 0.28±0.17 0.16±0.08 ns 

Dimethyl disulfide s5 746 1103  A 0.59±0.31 1.73±1.10 ns 62.80±32.45 36.60±18.76 63.83±19.47 ns 
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Dimethyl trisulfide s6 977 1450  A 0.28±0.32 0.27±0.12 ns 55.93±33.35 44.90±24.96 52.95±23.27 ns 

Methional s7 912 1517  A nd nd na 3.07±1.64 4.98±1.40 4.14±0.77 ns 

Miscellaneous             

Nonane z1 900 900  A 2.23±1.1 2.03±0.55 ns 0.69±0.25a 4.45±1.80b 3.32±0.38b ** 

1-Hexanol z2 869 1384  A 2.35±0.43 4.79±1.90 * 7.84±0.55a 10.40±1.50a 16.90±2.30b *** 

1-Tetradecene z3 nd 1459  C 31.7±7.5 0.45±0.52 *** 0.59±0.49a 43.30±6.40b 4.62±1.80a *** 

Undecanal z4 1309 1641  A 2.12±0.63 3.58±1.00 * 1.83±0.54 1.80±1.15 2.92±0.55 ns 

6-Methyl-3,5-heptadiene-2-

one 
z5 nd 1646  C 0.15±0.02 16.50±2.80 *** nda 0.09±0.06a 2.66±0.23b *** 

Dodecanal z6 1410 1743  A 2.84±0.57 3.82±0.58 ns 4.99±5.70 4.08±1.70 3.87±1.10 ns 

1Linear retention indices determined on a DB 5 column,  nd = not detected.  455 

2Linear retention indices determined on a Supelcowax 10 column.  456 

3Confirmation of identity where A = mass spectrum and LRI agree with those of an authentic compound; B = mass spectrum agrees with 457 

reference spectrum in the NIST mass spectral database and the LRI value of DB5 agrees with that in the database (NIST Chemistry WebBook, 458 

2017); C = mass spectrum agrees with reference spectrum in the NIST mass spectral database (NIST/EPA/MSDC, 1992). 459 

4Approximate amount (mean, n=4) collected from the headspace, calculated by comparison of peak area with that of 1,2-dichlorobenzene (130.6 460 

ng) with a response factor of 1. Multiple pairwise comparisons of the three chicken samples using the Fisher’s least significant difference are 461 

shown by superscripts where the same superscript letters in the same row indicate no significant differences at p  =  0.05; nd = not detected. 462 
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 5Probability, obtained from a T-Ttest that there is a difference between means; ns = no significant difference between means, na = not 463 

applicable. 464 

6Probability, obtained from ANOVA that there is a difference between means; ns = no significant difference between means, na = not applicable. 465 

 466 
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Table 2. The content (%) of unsaturated fatty acids in neutral lipids and phospholipids 467 

from chicken meat and hen egg. 468 

Fatty acid* 
Chicken meat 

neutral lipidsa 

Chicken meat 

phospholipidsa 

Hen egg 

neutral lipidsb 

Hen egg 

phospholipidsb 

C18:1 35 16 53 26 

C18:2 25 17 14.5 14 

C18:3 1.3 0.5 2.1 0.5 

C20:4 0.5 15 0.3 7.5 

C22:5 0 1.7 0.1 0.8 

C22:6 0 3.9 0.3 6.5 

*C18:1, oleic acid; C18:2, linoleic acid; C18:3, linolenic acid; C20:4, arachidonic 469 

acid; C20:5, eicosapentaenoic acid; C22:6, docosahexaenoic acid. 470 

aKatz et al., 1966;  bFredriksson et al., 2006. 471 
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 474 

Figure 1. Spider diagram of sensory evaluation of the aroma of three chicken meat 475 

samples. Mean scores of duplicate analysis (n=9), * indicates significant difference 476 

between samples at p<0.05 477 

 478 

479 
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 480 

Figure 2. Principal component analysis (PC1 vs. PC2) showing sensory data (red) 481 

obtained from the chicken samples (green) with the volatile compounds included as 482 

supplementary data. Red, blue and green codes are volatiles derived from ω-3, ω-6 483 

and ω-9 fatty acids respectively, yellow codes are Maillard-derived compounds and 484 

the remaining volatiles are black. All codes are defined in Table 1. 485 


