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Abstract—In the acquisition of software-development skills, 

feedback that pinpoints errors and explains means of 

improvement is important in achieving a good student learning 

experience. However, it is not feasible to manually provide timely, 

consistent, and helpful feedback for large or complex coursework 

tasks, and/or to large cohorts of students. While tools exist to 

provide feedback to student submissions, their automation is 

typically limited to reporting either test pass or failure or 

generating feedback to very simple programming tasks. 

Anecdotal experience indicates that clusters of students tend to 

make similar mistakes and/or successes within their coursework. 

Do feedback comments applied to students’ work support this 

claim and, if so, to what extent is this the case? How might this be 

exploited to improve the assessment process and the quality of 

feedback given to students? To help answer these questions, we 

have examined feedback given to coursework submissions to a 

UK level 5, university-level, data structures and algorithms 

course to determine heuristics used to trigger particular feedback 

comments that are common between submissions and cohorts. 

This paper reports our results and discusses how the identified 

heuristics may be used to promote timeliness and consistency of 

feedback without jeopardising the quality. 

Keywords—computer aided feedback, coursework assessment, 

static analysis, technology-enhanced learning 

I. INTRODUCTION 

Computer Science is a technical subject whose teaching 
ethos relies heavily on learning by doing [1]. The constructivist 
nature of learning programming [2] means that learning to 
program is an experiential and cyclical process. Such a learning 
process involves, broadly, experimentation to gain a concrete 
experience followed by several steps including an 
evaluation/reflection of that experience, and then the forming of 
plans or changing of views which then influence later 
actions/experiences [3][4]. To avoid continuous 
misconceptions and facilitate learning, it is important that 
students receive helpful and timely feedback on their work. 

In the case of students completing programming 
coursework, feedback being returned from a tutor/assessor 
feeds into the reflection/evaluation stage of the learning cycle. 
As was noted by Hattie and Timperley [5, p.86], while the 
primary goal of feedback is "to reduce discrepancies between 

current understandings/performance and a desired goal", 
different strategies used may result in different levels of 
effectiveness. Wong and Beaumont [6] provided evidence that, 
for programming coursework, feedback must be timely, 
consistent, relevant, showing the locations of issues, and 
showing how to make improvements in order for it to be most 
helpful. However, due to the constraint of time, some tutors 
simply provide a mark and/or a brief overall comment as 
feedback. Therefore, it comes as no surprise that while student 
satisfaction levels on assessment and feedback in the UK has 
improved over the years, assessment and feedback remained a 
challenging area amongst UK Higher Education Institutions 
(HEIs) [7][8]. As shown by the latest National Student Survey 
(NSS) [7] with over 286,000 responses, 26% of respondents 
did not agree that marking had been fair; 27% of them did not 
agree that feedback on their work had been timely; and 25% of 
them did not agree that they had received helpful comments on 
their work. These figures are even higher when considering 
Computer Science student responses only. 

To provide helpful and effective feedback is a particularly 
labour-intensive task for submissions of any non-trivial size. 
Timeliness and consistency in assessment and feedback 
generally deteriorate as the class size increases. Massively 
Open Online Courses (MOOCs) are an extreme example of 
large class sizes where there can be even tens of thousands of 
submissions to assess/provide feedback to. To address this 
problem across the range of tasks and class sizes, numerous 
computer-aided and computer-based tools have been produced 
to reduce this workload, e.g. Scheme Robo [9], BOSS2 [10], 
MarkTool [11], RubricAce [12] and EDM [13] to name a few. 

As summarised by Keuning et al. [14], there are also a 
range of research into ways to provide feedback about a 
programming task to students. While computer-aided and 
computer-based marking tools and improved guidelines on 
providing feedback help, giving feedback to a large cohort of 
programming coursework that is helpful, timely, and consistent 
remains a challenging task. 

The anecdotal experience from our colleagues indicates that 
clusters of students tend to make similar mistakes and/or 
exhibit similar good practices within their programming 
coursework. A computer-based marking tool, therefore, should 
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not simply focus on supporting an assessor to evaluate each 
submission against a predefined set of marking criteria. It 
should provide more help for tutors to locate common issues 
amongst a cohort of submissions so that tutors can focus their 
effort on identifying misconceptions and constructing helpful 
feedback to each common issue so as to enable feedback given 
to students consistently and in a timely fashion. 

We have examined feedback given to coursework 
submissions to a UK level 5, university-level, data structures 
and algorithms course to determine heuristics used to trigger 
particular feedback comments that are common between 
submissions and cohorts. This paper reports our results and 
discusses how identified heuristics may be used to promote 
timeliness and consistency of feedback without jeopardising the 
quality.  

II. RELATED WORK 

This section explores techniques in which feedback grades 
and/or comments are applied to student coursework 
submissions. These techniques are split into four categories: 
comment reuse, automated tests, metrics, and source code 
similarity. A summary is included at the end of this section. 

A. Comment Reuse 

Feedback comment reuse is not a new idea. In its simplest 
form, comment reuse can involve the simple act of copying and 
pasting comments and phrases between files or perhaps the use 
of macros to insert pre-written comments. More sophisticated 
implementations of feedback comment banks include 
MarkTool [11] and eCAF [15], whose banks of comments can 
be dynamically added to and searched. In these cases, the 
feedback-giving is still predominantly manually-driven, relying 
upon human assessor(s) of a given set of submissions being 
aware of the comments within the comment bank and being 
able to locate them using matching terminology within search 
terms. 

B. Automated Tests 

The use of automated tests to provide immediate feedback 
is also not new, with Hollingsworth [16] making use of 
automated tests to validate student’s punch card submissions as 
early as 1960. These simple tests involve verifying that, given a 
pre-determined set of inputs to a function/program, the 
expected results are returned. More recent implementations of 
software testing use a similar black-box input/output test 
approach and allow a significant boost in productivity of 
assessors with respect to the number of submissions that can be 
handled within a reasonable time-frame. In some cases, it is 
reported that thousands and even millions of unique 
submissions can be assessed fully independently [10][9][17] 
with the feedback being given to students including details 
about which test cases have passed or failed for a given set of 
inputs. 

This dramatic improvement in the time required per-
submission does not come for free, however, as it introduces 
the new requirement to adequately design tests for the relevant 
input/output combinations. In a relatively simple and repeated 
task such as a tutorial task, where the student submission may 

be only perhaps a dozen lines of code or perhaps the 
completion of a single function/class, the benefits of being able 
to scale up class sizes can far outweigh the costs of this up-
front effort. The rise in MOOCs are an example of this for 
smaller specific tasks. 

White-box analysis of the submitted code have also been 
utilised, evaluating how a given submission has completed a 
given task as opposed to just whether the correct output is 
produced. Yu et al. [18] gives the example of a task requiring 
the use of loops, where a student might hard-code the expected 
output using a series of print statements. In this case, automated 
black-box testing, such as unit testing, cannot adequately 
provide feedback on the techniques used by a student for that 
task. 

Unfortunately, white-box testing techniques suffer similar 
concerns as black-box testing in that they require the assessor 
to adequately pre-empt the full range of possible (in)correct 
solutions beforehand in order to develop adequate test cases, 
and the feedback they return relates to the pass/fail of that 
particular test case. For example, Spacco et al. [17] notes that 
the pass/fail tests can be readily used to give feedback about 
low-level concepts such as syntactic correctness and the 
correctness of program output, though teaching assistants are 
still utilised to provide face-to-face feedback about higher level 
topics such as programming concepts and code style. 
Ultimately, full-automation of grading/feedback production 
using pre-defined test cases is only feasible for small and/or 
simple tasks whose solutions can be tightly and robustly 
defined. 

C. Metrics 

The Marker’s Apprentice (TMA) [19], building upon 
CourseMarker [20], explores the use of rule-based code-
correctness metrics to automatically determine the grade to be 
awarded to a submission. While some of these metrics are 
absolute (such as the presence of empty code blocks or 
incorrectly testing for equality), others require interpretation 
(such as determining the acceptable range of cyclomatic 
complexity or the total number of classes submitted). Pre-
written feedback and guidance is then given about the rule 
being tested/violated, perhaps in the form of a link to the 
relevant documentation. 

To enable automation, predefined ranges of acceptable 
values can be defined with the expectation that most correct 
solutions will utilise similar approaches therefore will have 
similar metrics, and incorrect solutions will be doing something 
unusual therefore will have atypical values. Determining the 
acceptable ranges for metrics can be somewhat problematic, 
particularly for large and/or complex tasks which may allow a 
broad range of acceptable submissions. While this use of 
metrics has been shown to be useful, it is not error-proof 
therefore using it in isolation is not advised. Instead, the use of 
metrics should be used as part of a suite of tools with a human 
assessor to provide some oversight and custom feedback 
comments, where possible [19]. 



D. Source Code Similarity 

More recently, techniques relating to using source code 
similarity to enable the propagation of grades and feedback 
comments have emerged. AssignSim [21], for example, allows 
the human grader to mark a sample of submitted solutions and 
then have the system interpolate the grades of the un-marked 
submissions based on how similar they are to the manually-
graded submissions. Similarity between submissions is 
determined within AssignSim by analysing the abstract syntax 
tree (AST) of submitted works and then comparing the AST 
against the ASTs of submitted works that have a known grade. 
While this is broadly effective and correlates well with grades 
awarded by human assessors, experimentation shows that the 
sample of manually-marked can skew the results for the full 
cohort and a priori selection (or pre-emptive creation) of a 
suitably representative sample is problematic. This technique 
does not appear to have been used to provide feedback 
comments. 

OverCode [22] takes a slightly different approach in that it 
dynamically analyses program state during the execution of a 
set of pre-defined test cases. OverCode then aggregates and 
normalises submissions which have near-identical state, 
allowing the assessor to gain a broad overview of the 
techniques used and allows feedback comments to be written 
once and applied to all submissions within that aggregated 
cluster. While effective with small programming tasks (i.e. 
single functions perhaps a dozen lines in length) by a large 
cohort (>1000 submissions), it is unclear whether such an 
approach will be usable for larger programming tasks as the 
required program state analyses will be more complex and the 
range of potential solutions will be more diverse, making 
aggregation and normalisation of submissions with near-
identical states a very challenging task. 

Piech et al. [23] also considers the subject of feedback 
propagation, utilising neural networks to predict suitable 
feedback comments based on the AST sub-trees that are shared 
between submissions. This technique is then evaluated against 
a large set of over 200,000 submissions to a series of tasks 
which require only the completion of a simple function, with 
the use of an if/else function within a loop being described as 
the most difficult concept being evaluated. Again, while this is 
a technique that is promising for small and simple 
programming tasks, it is not yet suitable for medium-sized or 
coursework level tasks. Furthermore, as acknowledged by the 
authors, additional work is required to establish whether this 
approach will work effectively when there are limited 
submissions to guide the training of the neural networks. It is 
also unclear whether this approach will perform well on 
coursework submissions for more complex programming tasks 
with diverse solutions.  

E. Summary 

As shown within evaluations of the above tools, automated 
techniques such as software testing, static/dynamic source code 
analysis, and evaluating the similarity between submissions can 
be effectively used to scale the grading process. Where the 
range of acceptable/expected solutions can be effectively 
determined and this can be pre-emptively codified into a range  

TABLE I.  THE COHORTS OF COURSEWORK SUBMISSIONS 

CONSIDERED IN THIS STUDY. COHORTS THREE AND FOUR WERE 

MARKED USING A NEW SYSTEM CURRENTLY UNDER DEVELOPMENT. 

Cohort Cohort 1 Cohort 2 Cohort 3 Cohort 4 

Academic Year 2016/17 2015/16 2017/18 2016/17 

Mode of Study 

Full time, 

campus-

based 

Part time, 

distance 

learning 

Full time, 

campus-

based 

Part time, 

distance 

learning 

Class Size 118 30 127 37 

Group Size 2-3 1 2-3 1 

Number of 

Submissions 

Received 

38 21 44 32 

Marking 

System Used 
eCAF eCAF New System New System 

 

of tests and/or metrics with an acceptable level of effort, 
these tools/techniques are particularly effective at grading. 

Unfortunately, few tools can provide automated feedback to 
programming coursework tasks. For example, while eCAF [15] 
and other comment-banks can enable providing feedback to a 
task of any size, it is primarily human driven to write the 
comment and attach it to a submission. Tools such as TMA 
[19], the unnamed tool by Piech [23], and OverCode [22] can 
enable the application of comments to multiple submissions, 
their limitations include a significant up-front cost to pre-empt 
the range of possible solutions and to create tests/define metrics 
ranges specific to that task. Other tools focus upon the 
automated grading of programming task submissions. 

III. METHODOLOGY 

A. Data Source 

To assess the potential for feedback comment reuse, we 
conducted a retrospective analysis of naturally-occurred 
feedback data. This feedback data was provided to four cohorts 
of students who submitted coursework to a Java-based data 
structures and algorithms module within a UK university. All 
students within this module have completed a substantial 
foundational object-oriented Java programming module as a 
prerequisite for studying this module. Table I gives an 
overview of the profile of each of the four cohorts whose 
coursework submissions were analysed within this study. 

The coursework tasks set for each cohort were of a similar 
nature in that they require the student to create a standalone 
piece of object-oriented Java software that is able to parse and 
then model one or more, non-trivial, public-domain textual 
data. Their submitted solution was expected to model this data 
in a manner that enables efficient querying of this data. Note 
that each cohort were supplied with a different set of data files 
and functional requirements to minimise the risk of students 
sharing solutions. 

The marking scheme for each cohort was also broadly 
similar in structure in that the marking criteria were grouped 
under five headings: (1) Overall Class Design, (2) Ability to 
Meet the Functional Requirements, (3) Ability to Meet the 
Non-Functional Requirements, (4) Program Design and 



Algorithms Used, and (5) Program Presentation. Additional, 
more specific criteria were specified under these headings, 
forming a tree-structure to the marking scheme where the 
overall grade for each branch are, generally, the sum of the 
grades awarded to its children. While the marking criteria in 
sections 1, 4 & 5 were identical for each cohort, the marking 
criteria in section 2–3 differ amongst the cohorts as they were 
designed to suit the specific coursework task concerned. 

Submissions comprised of typically 5-12 un-compiled Java 
source code files varying by the detail of the model and the use 
of any custom exception classes, each with typically 50-250 
lines of code. In addition to this, submissions also included a 
UML class diagram describing their detailed class design in 
PDF or image form. These files were then submitted as a ZIP 
archive to the institution’s Virtual Learning Environment 
(VLE), Blackboard [24], which forms the record of (i) the 
contents of the submission and (ii) the date/time it was 
submitted. 

To grade and provide feedback to the students’ work, 
submissions from cohorts 1&2 were marked using eCAF [15] 
while submissions from cohorts 3&4 were marked using a new 
electronic coursework assessment and feedback system 
developed internally. Both marking systems have similar 
functionality in that they both support the use of a hierarchical 
detailed marking scheme and feedback bank for assisting the 
marking process, and that both systems provide exportable 
feedback to students in the form of a downloadable HTML file. 
The feedback file details the grades awarded against each point 
of the marking rubric. It also contains a table containing: (i) the 
full text of the feedback comments, (ii) the precise 
location/range of the file(s) to which that comment was 
applied, and (iii) which element of the marking rubric the 
feedback comment relates to.  

While the databases for each cohort were not retained 
between cohorts (except between cohorts 3&4), the exported 
HTML feedback files were stored/archived. The data used 
within this study was extracted from these HTML feedback 
files and imported into a Neo4j graph database [25], supported 
by an in-house tool developed for data analysis. This allowed 
queries to be used to extract/summarise the data, and then be 
imported into spreadsheet software for basic statistical and 
frequency analysis as described below. 

B. Analysis of Comment Reuse 

We first considered the reuse of feedback comments within 
a single cohort. This was calculated as the number of 
submissions which have received a uniquely phrased (distinct), 
comment at least once. Given that comments can be applied 
more than once to any given submission, only the first use of 
each comment was considered so as not to skew the data where 
an individual submission has repeatedly made the same 
mistake. 

We then consider feedback comment reuse across cohorts. 
To enable this comparison, we first ranked the distinct 
comments by the number of submissions to have received that 
comment at least once and then normalised the number of 
comments by referring to "the top 10%" of comments and 
similar. The prevalence of a comment was similarly rated as a 

percentage of all comment uses, again only counting the first 
time it was used for a given submission. In this paper, we 
present the results as the proportion of distinct comments 
against the proportion of all comment uses. 

To help identify feedback comments with essentially the 
same meaning, but differ by, say the variable name used in the 
submission, we then clustered/normalised the feedback 
comments given. As feedback comments can include several 
distinct sentences, the comments were first crudely split into 
comment fragments, roughly approximating sentences. 
Similarly-phrased fragments were then normalised into a 
consistent phrasing, and duplicate/ redundant fragments were 
deleted. Full comments were then clustered, being considered 
equal if they contained the same fragments in the same order. 
Where comments differed by only one fragment and the 
additional fragment was inconsequential to the meaning of the 
comment, full feedback comments were normalised to the 
shorter sequence of fragments. 

C. Analysis of Feedback Triggers 

For each feedback comment that appeared within multiple 
(five or more) different coursework submissions, we also 
examined the sections of Java code to which the comment had 
been applied to establish whether the underlying Java code 
fragments for each comment were also similar in nature. Where 
the linked fragments of code were similar, this provides 
evidence that the feedback comments were being given as a 
reaction to seeing something specific within the students’ 
submitted work that the assessor wished to communicate to the 
learner. This enables us to identify the "trigger" for each 
feedback comment. 

To examine the hypothesis that feedback comments are 
being reused due to elements of the submitted work being 
similar (e.g. either having the same praise-worthy element or 
showing the same error – described in this paper as a “trigger” 
for feedback), we cross-referenced the locations and ranges to 
which each comment was applied and analysed these code 
fragments for similarity. Specifically, we worked backwards 
from the most frequently reused comments to the least 
frequently reused. The code fragments to which these 
comments applied were then analysed and a set of key 
themes/topics that the comments relate to are then identified. 
The result of this thematic analysis is shown within Table III. 

D. Algorithmic/Programmatic Detection of Feedback 

Triggers 

Having identified a set of code samples which were 
identified as triggers for feedback comments, we then explored 
the ability to describe an algorithm to detect some of the 
identified trigger. The first stage involved describing the 
algorithm in terms that a human may be able to interpret and 
detect triggers, with a second stage beginning to explore 
automated detection.  



IV. RESULTS AND ANALYSES 

A. Comment Reuse 

The data showed a relatively small proportion of distinct 
feedback comments accounting for a high proportion of the 
comments received by students. For instance, Table II shows 
that across the four cohorts of students, 475 uniquely-phrased 
(distinct) comments were used a total of 1189 times. This is a 
mean of 2.5 uses of each distinct comment. Limiting this to 
only comments which have been frequently re-used, in this 
case being used five or more times, Table II shows that 68 
comments were used a total of 614 times. This is a mean of 9 
uses per distinct comment.  

Fig. 1 shows that the distributions of the proportion of 
distinct feedback comments were similar across all cohorts, 
with the top 20% of the most-frequently-reused distinct 
feedback comments accounting for between 40-60% of all 
comments used. During our analysis, it was noted that there 
appeared to be numerous comments which are phrased very 
similarly but are semantically identical. 

One example of this included "No initial capacity defined 
for this collection. This leads to repeated resizing." versus  

TABLE II.  A BREAKDOWN OF THE UNIQUELY-PHRASED (DISTINCT) 

COMMENTS GIVEN TO STUDENTS WITHIN EACH COHORT, WITH 

COMMENTS COUNTED ONLY ONCE PER SUBMISSION THAT IT HAS 

BEEN APPLIED TO. TOTAL DISTINCT COUNT OF COMMENTS IS 452, 
AS SOME COMMENTS ARE REUSED ACROSS COHORTS. 

 
Appeared Within 

>= 1 Submission 

Appeared Within 

>= 5 Submissions 

Cohort Distinct All Distinct All 

Cohort 1 99 271 15 (15.2%) 135 (49.8%) 

Cohort 2 51 92 10 (19.6%)A 44 (47.8%) 

Cohort 3 172 412 17 (9.9%) 201 (48.8%) 

Cohort 4 153 414 26 (17.0%) 234 (56.5%) 

Total 475 1189 68 (14.3%) 614 (51.6%) 

a. A – The top-10 frequently-used comments, as very few comments were used >= 5 times in Cohort 2. 

TABLE III.  COMMENT REUSE ACROSS COHORTS, BEFORE AND 

AFTER CLUSTERING OF COMMENTS. PERCENTAGES ARE OUT OF 454 

DISTINCT COMMENTS BEFORE CLUSTERING, AND 331 DISTINCT 

COMMENTS AFTER CLUSTERING. 

Comments 

reused across: 

Before 

Clustering 
After Clustering 

4 cohorts 0% (0) 1.81% (6) 

3 cohorts 0.22% (1) 1.51% (5) 

2 cohorts 4.63% (21) 6.34% (21) 

1 cohort 95.13% (430) 90.33% (299) 

Total 100% (454) 100% (331) 

Comments reused 

across at least two 

cohorts 

4.85% (22) 9.66% (32) 

 

"Collections expected to contain many thousands of items have 
not been initialised with a specified initial capacity. This leads 
to unnecessary inefficiencies arising from collection resizing.". 
Many more examples differed only by their punctuation, 
spelling, and the inclusion of detail specific to that particular 
task/submission such as referring to a particular variable or 
class name. In addition to variations based on the phrasing and 
punctuation of the comment, some comments also include non-
specific phrases which are informational in nature rather than 
directly corrective or praising. One example of this was "Please 
see the sample solution for an implemented example." (and 
variations thereof). 

 

 

 

Fig. 1. Proportion of the total number of unique comments versus the 

proportion of the total uses of all comments (before clustering) 

 

Fig. 2. Proportion of the total number of unique comments versus the 

proportion of the total uses of all comments (after clustering) 



 In several cases, feedback comments differed only by the 
inclusion of this additional general fragment. Fig. 2 shows the 
result of normalising the set of comments applied to these 
cohorts. This figure shows that the first half of the curves are 
shifting up and to the left for most cohorts, with fewer 
comments being used only once or twice. The most frequently 
used distinct comments, therefore, now accounted for an 
increased proportion of all comment (re)use. Note that where 
the lines within Fig. 1 and Fig. 2 become linear, this represents 
the point where the comments used only once are being 
counted. 

As shown within Table III, the reuse of feedback comments 
across cohorts was somewhat limited, with only 22 (of 454) 
distinct comments being used in multiple cohorts. This rose to 
32 (of 331) distinct comments being used in multiple cohorts 

after normalisation/clustering of the comments. This is shown 
within Table III. 

B. Analysis of Feedback Triggers 

Our thematic analysis on the feedback comment data shows 
that, out of the 63 comments reused five times or more across 
any cohort’s submissions, eleven themes emerged. Each theme 
is also composed of their own set of sub-themes/comment 
topics as shown within the aggregated result of this analysis in 
Table III. These comment topics relate to techniques and/or 
outputs that submissions either should or did utilise/contain.  

Where a trigger is identified by a tutor within a submission 
and the exact location of trigger within the submission is 
highlighted, we now begin to examine if it is possible for a 
computer program to use these heuristics to search for other 

TABLE III.  SUMMARY OF THE THEMES FOUND WITHIN EACH COHORT, GROUPED BY MARK SCHEME SECTIONS 

Mark 

Scheme 
Theme Topic of comment 

Cohort 

1 

Cohort 

2 

Cohort 

3 

Cohort 

4 

S
y

st
em

 

D
es

ig
n

, 

in
cl

u
d
in

g
 

U
M

L
 c

la
ss

 

d
ia

g
ra

m
 Diagram 

nomenclature 

UML diagram mistakes  Y  Y Y 

Incorrect realisation / implements arrow Y  Y Y 

Diagram 

content 

UML diagram specificity (e.g. the inclusion of classes within the java.util / 

java.lang packages) 
  Y  

A
b

il
it

y
 t

o
 m

ee
t 

fu
n

ct
io

n
al

 

re
q
u

ir
em

en
ts

 

Specific 
functional 

requirement 

Functioning with only a single file, rather than the required multiple input 

files 
Y    

Implementation (or not) of case-insensitive searches  Y   Y 

Not sorting output by popularity correctly  Y   

Not implementing paths between stations   Y  

Extensibility 
Hard-coding of file references (outside of a main method)  Y    

Inappropriate modification of the supplied skeleton code Y    

Robustness 
(In)Correctly handling edge cases (e.g. null checks, file existence, invalid 
input data) 

 Y Y  

P
ro

g
ra

m
 d

es
ig

n
 a

n
d

 a
lg

o
ri

th
m

(s
) 

u
se

d
, 

In
cl

u
d

in
g
 e

ff
ec

ti
v
e 

/ 
ef

fi
ci

en
t 

u
se

 o
f 

Ja
v

a 
an

d
 O

O
P

 d
es

ig
n

  

(e
.g

. 
ro

b
u

st
/e

x
te

n
si

b
le

) 

(In)Efficient 
use of Java 

classes / 

constructs 

Good/Poor Initialisation of collections with an (in)appropriate initial 

capacity  
Y Y Y Y 

Use (or not) of a StringBuilder within a loop (as opposed to string 

concatenation) 
Y  Y  

Good/Poor Algorithm design (e.g. inappropriately reading files from disk on 

every interaction/query) 
Y Y   

OOP / Program 

design 

Good/Poor use of OOP design principles Y    

(In)Correctly overriding methods (e.g. compareTo/toString)  Y Y Y 

(In)Correct use of classes to model the input data (e.g. model does/doesn’t 

correctly allow for multiple hypernyms) 
 Y Y Y 

(In)Efficient OOP design / indexing Y Y Y Y 

Program 
Output / 

Usability 

(Un)Helpful error messages (e.g. just printing a stack trace to the console) Y    

(In)Complete program output  Y   

Good/Poor use of error messages where no result found    Y Y 

Good/Poor output formatting and clarity   Y Y 

File handling 

Good/Poor file processing technique (e.g. use of a BufferedReader for large 

input files) 
Y  Y  

Good/Poor text tokenisation (e.g. use of anchors within regular expressions)    Y 

Non-optimal and/or error-prone tokenisation (e.g. using multiple splits)    Y 

P
ro

g
ra

m
 

p
re

se
n

ta
ti

o
n

  

(o
f 

Ja
v

a 
co

d
e)

 

Documentation 
comments 

Good/Poor documentation comments  Y Y Y 

(In)Appropriate volume of comments (e.g. comments on virtually every 

line) 
  Y  

Meaningful 

identifiers 

Programming convention – (in)appropriate variable/class names (e.g. too 

short, misleading) 
   Y 

 



code fragments bearing the same characteristics within other 
submission files. 

C. Algorithmic/Programmatic Detection of Feedback 

Triggers 

Theoretically, all features of a submission referred to as 
comment topics can be described algorithmically. For example, 
comments under the topic "Not meeting a specific functional 
requirement", the triggers of those comments typically 
correspond to lacking certain expected programming routines, 
such as lacking an iteration routine to handle input from 
multiple files. The presence/absence of such programming 
routines may be programmatically detected via techniques 
including static code analysis such as searching for string 
patterns and dynamic runtime analyses such unit tests.  

Practically, detecting the presence and/or absence of 
specific features in a submission can be very challenging. For 
example, with respect to UML class diagram themes/topics, 
such an algorithm may include the absence/presence of a 
specific style of arrow and/or a class. Programmatic detection 
of such features in the submissions is not straight-forward, due 
to the range of submission formats (image/pdf) and the 
complexity involved in programmatically analysing such files. 

To investigate the effectiveness of programmatically 
detecting specific coding features in text files and the 
challenges behind this task, we have carried out a preliminary 
study into using regular expressions to help identify code 
features around the theme of "(In)Efficient use of Java classes / 
constructs" on Cohorts 3 and 4. One typical issue noted in the 
feedback comments analysed in this study was that the 
submissions did not include appropriate initialisation of array-
based collections. To identify submissions with this issue 
programmatically, we used a regular-expression-based pattern 
matching approach to identify the locations in each submission 
where such issue occurred. Note that the absence of an initial 
capacity specification may be appropriate in some situations. 
The results were then manually verified to establish their 
correctness in the given context. Manual analysis of the 
matches to this regular expression are included below, where 
we show a breakdown. 

Our regular expression experiment identified a total of 599 
locations in the two cohorts of submissions where an initial 
capacity specification may appear in the submitted Java code, 
as described in Table IV. Only two instances (0.3%) are where 
the defined regular expression matches were. Of the remaining 
597, 155 matches had a human-applied comment attached to 
that fragment relating to the initialisation of collections with an 
appropriate initial capacity (a mixture of praise and guidance). 
Of the 444 matches which did not have a human-applied 
comment applied, approximately a quarter (103) relate to a case 
where a positive or critical comment may have been warranted 
due to it clearly being an appropriate or inappropriate initial 
capacity, with the remaining 339 being debateable with no 
feedback comment being applicable (e.g. benefit of the doubt 
may be given that the default capacity of 16 items is the desired 
initial capacity). Our results show that 17.3% of the identified 
locations in the submissions could have been given a feedback 
comment, but were missed from the manual marking process. 

TABLE IV.  A BREAKDOWN OF THE AUTOMATED PATTERN MATCHES 

IN COHORT 3 AND COHORT 4, COMPARING WHETHER A RELEVANT 

COMMENT HAS BEEN APPLIED TO THE FRAGMENT OF CODE 

IDENTIFIED BY THE AUTOMATED REGULAR EXPRESSION MATCH. 
NOTE: ONE “NOT APPLICABLE” MATCH RELATES TO A SPURIOUS 

NAMING MATCH, AND THE SECOND “NOT APPLICABLE” MATCH 

RELATES TO A FRAGMENT OF CODE THAT HAD BEEN COMMENTED 

OUT BY THE SUBMITTER PRIOR TO SUBMISSION. 

(Cohorts 3 and 4) 

Collection 

Initialisation Code 

Fragment with: 

Initial Capacity Comment Manually 

Applied by the Assessor? 

No Human 

Comment 

Human 

Comment 
Total 

Inappropriate 

Initial Capacity 
74 (56%) 57 (44%) 131 (100%) 

Debateable 

Initial Capacity 
339 (86%) 55 (14%) 394 (100%) 

Appropriate 

Initial Capacity 
29 (40%) 43 (60%) 72 (100%) 

Not Applicable 2 (100%) 0 (0%) 2 (100%) 

Total 444 (74%) 155 (26%) 599 (100%) 

V. DISCUSSION 

While feedback banks can help promote consistency and 
reduce the time required in drafting feedback comments, the 
onus remains with assessors to identify where within a 
coursework submission a feedback comment should be given. 
With a non-trivial coursework task and a large cohort of 
submissions, this is a difficult task for tutors to achieve in a 
thorough and complete manner.  

Our feedback data analysis shows extensive feedback 
comment reuse, therefore repeated work. As a specific 
example, over 50% of all feedback comments given to each 
cohort of submissions come from only approximately 20% of 
the unique comments given to the submissions (cf. Fig. 1 & 
Fig. 2). If a means to (semi-)automatically identify different 
instances of the same trigger within the remaining submissions 
of a cohort were to exist, once a tutor had identified the cause 
of needing to give that particular comment then the consistency 
and timeliness of feedback can be further promoted. If we were 
to measure the work required to assess a programming 
coursework as the number of feedback comments assigned to 
each coursework submission, then we believe that such 
automation would result in significantly less work for similar 
output. 

Using feedback data given across four cohorts of students 
using the Java programming language to complete a Data 
Structures and Algorithms coursework task, we have identified 
11 themes of feedback triggers. Many of these feedback 
triggers would allow a tutor to give more consistent feedback to 
students without the need to spend a long time in manually 
identifying all praise-worthy features and/or concerning issues 
within each coursework submission. In this respect, the focus 
here would be in empowering the assessor rather than replacing 
the assessor via fully automatic assessment techniques. By 
freeing the time that a tutor would normally spend 
authoring/searching for feedback comments, the tutor can then 
spend more time on crafting helpful feedback to their students. 



VI. CONCLUSION 

As this is a retrospective analysis of naturally-occurring 
data and that no specific feedback bank had been set up to aid 
assessment of submissions across all 4 cohorts, overlaps in 
comment reuse between cohorts naturally relatively low. It is 
noted that if the same feedback bank were to have been shared, 
the frequency of feedback reuse would have been even higher.  

Our preliminary results using simple regular expressions 
show that this approach has potential, though additional work is 
needed to refine the algorithmic definitions of feedback triggers 
and to establish the effectiveness of this approach across a 
wider range of comment triggers.  

In this paper, we have presented our work in analysing the 
extents of feedback reuse in a typical data structure and 
algorithms programming coursework. Our results show that 
similar issues and praise-worthy elements can be found 
amongst a cohort of coursework submissions which leads to a 
fair amount of reuse in feedback comments.  

Our thematic analysis on the assessment feedback given to 
four cohorts of coursework submissions indicates that it is 
possible to look for a known trigger of feedback comment 
amongst all submissions once the first instance of that trigger 
has been identified in a submission.  

Preliminary experimental results show that defining triggers 
of feedback comments using regular expressions are promising 
as a means of programmatically detecting some triggers for 
feedback. However, further work is required to evaluate its 
effectiveness on a wider range of code features and to make it 
an accessible approach to those who are not au-fait with regular 
expressions. Additionally, as a non-Turing-complete language, 
regular expressions are limited in what they can detect – 
particularly with nested bracket patterns – where alternative 
approaches such as using syntax tree queries and patterns may 
be more appropriate. 
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