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Estimation of stochastic behaviour in
cardiac myocytes: I. Ca2þ movements
inside the cytosol and sarcoplasmic
reticulum on curvilinear domains
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Abstract

Background: Since the discovery of Ca2þ sparks and their stochastic behaviour in cardiac myocytes, models have

focused on the inclusion of stochasticity in their studies. While most models pay much attention to the stochastic

modelling of cytosolic Ca2þ concentration the coupling of Ca2þ sparks and blinks in a stochastic model has not been

explored fully. The cell morphology in in silico studies in the past is assumed to be Cartesian, spherical or cylindrical. The

application on curvilinear grids can easily address certain restrictions posed by such grid set up and provide more

realistic cell morphology. In this paper, we present a stochastic reaction–diffusion model that couples Ca2þ sparks and

blinks in realistic shapes of cells in curvilinear domains.

Methodology: Transformation of the model was performed to the curvilinear coordinate system. The set of equations

is used to produce Ca2þ waves initiated from sparks and blinks. A non-buffered and non-dyed version as well as a

buffered and dyed version of these equations were studied in light of observing the dynamics on the two different

systems. For comparison, results for both the Cartesian and curvilinear grids are provided.

Results and conclusions: A successful demonstration of the application of curvilinear grids serving as basis for future

developments.
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Introduction

Ca2þ-induced Ca2þ release (CICR) is the repeated pro-
cess in which influx of extracellular Ca2þ into the cyto-
sol from L-type channels triggers a release of Ca2þ

from the sarcoplasmic reticulum (SR) through ryano-
dine receptors (RyRs) on the z-lines.1 The CICR pro-
cess is schematically illustrated in Figure 1. A more
detailed review of the processes leading to contraction
can be found in Arif et al.2 The Ca2þ release event
appears as Ca2þ sparks3–8 in the cytosol and Ca2þ

blinks9 in the SR. The successive activation of RyRs
increases the local Ca2þ concentration in the cytosol.
This process is called Ca2þ transient.10–12 Ca2þ sparks
observed in the heart muscle were found to behave sto-
chastically4 and that release occurs at discrete sites
closely associated with transverse (t)-tubules at
Z-lines13 with regular spacing of 1.8–1.9 lm

longitudinally and more irregularly with a mean value
of 0.79 lm transversely.8

In cardiac ventricle cells, spontaneous propagating
waves of Ca2þ may occur due to Ca2þ overload which
is believed to occur under pathological conditions. This
can affect the heart’s normal function and may lead to
ventricular arrhythmias and heart failure.14,15

Therefore, it has become increasingly important to
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understand the underlying mechanism of the CICR

process and any experimental or mathematical studies
would contribute towards this.

Several models have been used to simulate the Ca2þ

sparks and waves. A number of them are partially based

on the CICR process and the release from RyRs is
described as either deterministic16–26 or stochastic.15,27–

30 The models mainly consist of fractional differential
equations (FDEs), partial differential equations (PDEs),

and ordinary differential equations (ODEs). Although
some of these models include buffers and dye and

others do not, they all shape our understanding of the

underlying mechanism of CICR in cardiac myocytes.
Throughout the years models have been refined to

account for more buffers and a more realistic represen-
tation of the calcium release units (CRUs).

Backx et al. described the CICR process with mag-
nesium buffer reactions using a one-dimensional model

that only takes into account longitudinal diffusion.16

The Ca2þ release from the SR occurs at CRUs and is

assumed to be a time dependent process with an expo-
nential rise and fall of the Ca2þ flux from the SR. The

occurrence was dependent on a threshold for Ca2þ con-
centration which leads to a deterministic description of

this term in the model. A similar deterministic formu-
lation was incorporated in the release flux by Soeller

and Cannell which was then included in the total cal-
cium current by volume integration.17 The aim was to

experimentally test the extraction of the release flux
underlying calcium sparks including a more detailed

dye and buffer binding structure.

Another deterministic construction of the SR calci-
um release was represented in two-dimensional
models21–23 so the spatial and anisotropic properties
of the cytosolic Ca2þ diffusion can be successfully
reproduced. In these models, the diffusion of Ca2þ

sparks obeys Fick’s Law. Later on, an anomalous sub-
diffusion model was proposed based on an FDE that
represents the cytosolic Ca2þ concentration24,26 and it
was shown to reproduce the spatial characteristic of
sparks more realistically.

There have also been deterministic models with no
buffer reactions.18–20 These models focused on repre-
senting the CICR process in a compartmental model
with no dye and buffer reactions. No virtual point
sources of CRUs are described. Instead the SR Ca2þ

release is associated with a nonlinear term based on the
cytosolic and sarcoplasmic concentrations applied to
all spatial points of the computational domain. In
2009, this two-pool CICR model was integrated into
a force-calcium relation by Tracqui and Ohayon to
successfully reproduce Ca2þ waves and the resulting
phases of contraction using cylindrical coordinates.25

More recently, stochasticity is introduced into
models27 in which the Ca2þ channel opening depends
on a probability function. Lu et al. integrated rogue
RyRs into this model to simulate the effect of these
receptors on the Ca2þ wave in ventricular myocytes
with heart failure.15 These models were extended
from Fick’s Law-based Ca2þ diffusion to anomalous
subdiffusion.28,29 This has greatly improved our under-
standing of the calcium dynamics under pathological
conditions. The majority of stochastic models focus on
the coupling of cytosolic and sarcoplasmic Ca2þ con-
centrations using only one equation to represent this
coupled state. This equation is usually used to track the
change of cytosolic Ca2þ concentration in space and
time. In order to measure or observe the change in
sarcoplasmic Ca2þ concentration a separate equation
is required for this which is yet to be fully explored
under stochastic conditions. One recent work by Li
et al.30 is based on two governing equations. One is
based on anomalous subdiffusion that models the
Ca2þ sparks and waves in the cytosol and the other
models the Ca2þ blinks in the SR. One limitation to
this work is the use of a Cartesian domain in represent-
ing the cell structure which can cause difficulty in
modelling Ca2þ waves in more complicated cell shapes.

The main motivation of this work concerns the cell
domain considered in the computational studies. The
majority of models to date, focus on representing the
cell morphology using simplified domains applied to
Cartesian, spherical17 or cylindrical coordinates.31

However, these can become impractical for more com-
plicated shaped cells. Using a simplified domain to rep-
resent such complicated shapes can be useful, however,
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Figure 1. Schematic view of the influx and efflux of Ca2þ in a
cardiac myocyte. Ca2þ entry through L-type channels on the
sarcolemma triggers Ca2þ release from the SR. This is a repeated
process of the CICR mechanism. The Ca2þ released from the SR
increases the concentration in the cytosol. Ca2þ here travels to
the sarcomeres and interacts with filaments and activates the
contractile machinery. Upon relaxation, Ca2þ disassociates from
the filaments and is pumped back into the SR by the SERCA
pumps. Modified from Arif et al.2
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insufficient for the accurate estimation especially at the

boundaries. An alternative method that can address

this problem is the use of finite element method

(FEM) which has been implemented before for the

modelling of contraction in isolated cardiac myo-

cytes.25,32 In this work, an alternating direction implicit

(ADI) method with curvilinear coordinate transforma-

tion technique is used. ADI is a finite difference-based

method and is more computationally efficient than

FEM and the method itself is also easier to implement.

Finite difference-based methods are a good alternative

to FEM, however, it has not been used in this area in

combination with a curvilinear transformation tech-

nique. This is the first work to have ever used a finite

difference-based method with a curvilinear coordinate

transformation technique for estimating stochastic

Ca2þ movement in a cardiac myocyte with and without

buffers and dye.
The aims of the present paper are (1) extension of

the stochastic formulation by Izu et al.27 to include the

Ca2þ sparks coupled with Ca2þ blinks and its applica-

tion on curvilinear domains (this allows one to work on

real cell morphology); (2) representation of two differ-

ent systems: (a) buffered and dyed system to account

for Ca2þ movement observed in in vitro studies and (b)

non-buffered and non-dyed system to observe the dif-

ference between the two systems; (3) comparison of the

Cartesian and curvilinear domains. The model and its

extension to curvilinear grids are described in the next

section. The application to curvilinear grids and com-

parison results between models are presented in the

results section with conclusions and potential future

improvements discussed in the final section of

this paper.

Methods

Mathematical model for Ca2þ sparks and Ca2þ

blinks with buffer and dye

The set of differential equations (DEs) by Izu

et al.22,23,27 describing the cytosolic Ca2þ concentration

with buffer and dye binding properties is modified to

include an additional term for the cytosolic leak19,20,25

and a slightly different representation of the SR leak

term.19,20,25 An extension to this model here includes a

coupling of the cytosolic Ca2þ diffusion with the sarco-

plasmic Ca2þ concentration. For simplicity, diffusion is

restricted to follow Fick’s Law and the Ca2þ concentra-

tion in the SR is restricted to time diffusion and so is not

diffusive in space giving rise to a simple ODE. This is

adopted from several other authors18–20,25,32,33 and was

shown to produce promising results. Therefore, for the

current study it will suffice to use these assumptions for

computational simplicity. Considering the above, the

reaction–diffusion equations are expressed as

@Ccyt

@t
¼ DCx

@2Ccyt

@x2
þDCy

@2Ccyt

@y2
þ Jdye þ Jbuffer � Jpump

� JCa2þ leak þ JCRU � JSR leak

(1)

@CSR

@t
¼ JSR leak þ Jpump � JCRU þ Jdye þ Jbuffer (2)

@ CaF½ �
@t

¼ DDx
@2 CaF½ �
@x2

þDDy
@2 CaF½ �
@y2

� Jdye (3)

@ CaB½ �
@t

¼ �Jbuffer (4)

where Ccyt ¼ Ca2þ½ �cyt is the free Ca2þ concentration in

the cytosol; CSR ¼ Ca2þ½ �SR is the free Ca2þ concentra-

tion in the SR; CaF½ � and CaB½ � are the concentrations
of Ca2þ bound dye and buffer; DCx and DCy are cyto-

solic Ca2þ diffusion coefficients in the longitudinal and

transverse directions; DDx and DDy are diffusion coef-

ficients of the Ca2þ bound dye in the longitudinal and

transverse directions, respectively. Ca2þ diffusion is

reported to be anisotropic34 with diffusion twice as

fast along the sarcomere orientation than that in the

transverse direction.31 Standard values used satisfy

experimental data that
DCy

DCx
¼ 0:5 and are given in

Table 1 along with a short description. Fluxes due to

Ca2þ fluorescent indicator dye, Jdye, and endogenous

stationary buffers, Jbuffer, are

Jdye ¼ �kþFCcyt F½ �T � CaF½ �� �
þ k�F CaF½ �

Jbuffer ¼ �kþBCcyt B½ �T � CaB½ �� �
þ k�B CaB½ �

kþj and k�j are forward and reverse rate constants for

dye (j ¼ F) and buffer (j ¼ B); F½ �T and B½ �T are total

concentration of the indicator dye and buffers, values

of which are given in Table 1. Jpump, JCa2þ leak, JSR leak

represent the pumping rate of SR Ca2þ-ATPase, Ca2þ

leak from the cytosol and SR, respectively. The formu-

lation of these terms are adopted from work by several

others in the field18–20,25,32,33 and shown to produce

promising results. These terms are given as

Jpump ¼ Vpump

C
npump
cyt

K
npump
pump þ C

npump

cyt

JCa2þ leak ¼ kCcyt
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JSR leak ¼ kfCSR

in which Vpump, Kpump and npump represent the maximal

rate, affinity constant and the Hill exponent for Ca2þ

uptake into SR, while k and kf are constants for Ca2þ

efflux from cytosol to extracellular medium and from

SR into cytosol, respectively.
The SR Ca2þ release term, JCRU, is used by several

others including Lu et al.15, Izu et al.27 and Chen

et al.28,29 where the cytosolic Ca2þ wave propagation

initiated from either the boundary of center was suc-

cessfully reproduced and the statistics and properties

were studied and compared against experimental prop-

erties or snapshots. This term is expressed as

JCRU ¼ r
X
i;j

d x� xið Þd y� yjð ÞS xi; yj; t;Topenð Þ; r ¼ Ksr3

Molar flux through the RyRs, r, is associated with

the source strength, KS, and the three-dimensional

source strength, r3 ¼ ICRU=2F. Ks needs to be derived

for a two-dimensional model (see equation (7) in

Appendix 1).
The CRUs are placed at regular intervals of lx along

the x-axis and ly along the y-axis. It is assumed that

once a CRU opens it will remain open for 10 ms (i.e.

Topen ¼ 10) after which it will switch to a closed state

and will not reopen (a long refractory period). An

adjustment to the source strength was previously

done to approximate the molar flux of a point

source.23 This approach is adopted here for a general

two-dimensional case35 (see Appendix 1 for the

obtained r values for the two-dimensional case). The

locations of the CRUs are identified through the Dirac

delta function, d where there is a channel (i.e. x� xi ¼
0 implies that d ¼ 1 which denotes there is a channel

otherwise x� xi 6¼ 0 indicates no channel d ¼ 0). The

stochastic term, S, controls the firing of the CRU when

a probability condition is satisfied

S xi; yj; t;Topenð Þ ¼
1;

P

Pmax
> u

0;
P

Pmax
� u

8>><
>>:

where P C x; y; tð Þ;Kprob; nprobð Þ ¼ PmaxC
nprob
cyt =ðKnprob

prob þ C
nprob
cyt Þ,

Pmax is the maximum probability of Ca2þ spark occur-

rence, Kprob represents the Ca2þ sensitivity factor

and nprob is the Hill coefficient. At each time step,

Dt, a uniformly distributed random number, u, is

generated and compared to the probability function

P calculated from the Ca2þ concentration. A CRU

fires if P=Pmax > u and thus S ¼ 1 otherwise (i.e. in

the case where P
Pmax

< u) a CRU will remain closed,

i.e. S ¼ 0.

Cartesian and curvilinear domains

The computational domain for the cell is represented

by two different coordinate systems, namely Cartesian

and curvilinear. It is assumed that the SR spans the size

of the respective computational domains used. Two

different systems are solved on the Cartesian and cur-

vilinear domains: (1) non-buffered and non-dyed

(NBND) system (i.e. Jdye ¼ Jbuffer ¼ 0) and (2) buffered

and dyed (BD) system. Certain parameter values such

as the initial SR Ca2þ concentration (i.e. Ca2þ½ �SR 1ð Þ),
k, kf, and ICRU required modification when moving

from an NBND system to a BD system in order to

Table 1. Standard parameter values.22,23,27–29

Parameter Value Units Notes

DCx; DCy 0.3, 0.15 lm2=ms Ca2þ diffusion coefficients

DDx; DDy 0.02, 0.01 lm2=ms Diffusion coefficients of dye

lx; ly 2, 0.8 lm Spacing of CRUs in x and y

Ca2þ½ �cyt 1ð Þ 0.1 lM Initial Ca2þ concentration

F 96500 C mol�1 Faraday’s constant

Vpump 0.208 lM=ms Maximum SR pump rate

Kpump 0.184 lM SR pump Michaelis constant

Kprob 15 lM Ca2þ sensitivity parameter

npump; nprob 3.9, 1.6 – Hill coefficients

Topen 10 ms Duration of current flow through CRU

Pmax 0.3 per CRU ms�1 Maximum probability of Ca2þ spark occurrence

r3 ICRU=2F mole=ms Three-dimensional Ca2þ source strength

kþf ; kþB 80, 100 lMsð Þ�1 Forward rate constants for dye and buffer reactions

k�f ; k�B 90, 100 s�1 Reverse rate constants for dye and buffer reactions

F½ �T ; B½ �T 50, 123 lM Total concentration (boundþ unbound) of fluorescent dye and buffer

CRUs: calcium release units; SR: sarcoplasmic reticulum.
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achieve a strong propagation of Ca2þ wave. These

parameter values are given in Table 2.
A two-dimensional domain is considered with the

Cartesian and curvilinear grids shown in Figure 2.

The Cartesian problem (Figure 2, top) is solved with

equations (1) to (4). Finite discretisation of the PDEs is

used and an ADI method36 is used as the numerical

scheme. The ODE for the sarcoplasmic Ca2þ concen-

tration is solved by using a fourth order Adams-

Bashforth (AB) method and the other ODEs are

solved by using the traditional forward Euler method.

In the curvilinear case, the diffusion equations (1)
and (3) need to be transformed from the Cartesian-
based system with the gridlines specified by x and y
to the curvilinear coordinate system with gridlines
specified by n and g prior to discretisation.
Transforming equations (1) and (3) leads to

@Ccyt

@t
¼ DCx

@n
@x

� �2

þDCy
@n
@y

� �2
� �

@2Ccyt

@n2

þ 2 DCx
@n
@x

@g
@x

þDCy
@n
@y

@g
@y

� �
@2Ccyt

@n@g

þ DCx
@g
@x

� �2

þDCy
@g
@y

� �2
� �

@2Ccyt

@g2
þ Jdye

þ Jbuffer � Jpump � JCa2þ leak þ JCRU � JSR leak

(5)

@ CaF½ �
@t

¼ DDx
@n
@x

� �2

þDDy
@n
@y

� �2
� �

@2 CaF½ �
@n2

þ 2 DDx
@n
@x

@g
@x

þDDy
@n
@y

@g
@y

� �
@2 CaF½ �
@n@g

þ DDx
@g
@x

� �2

þDDy
@g
@y

� �2
� �

@2 CaF½ �
@g2

� Jdye

(6)

Table 2. Parameter values for NBND and BD cases applied to
the Cartesian and curvilinear grids.

NBND BD

Parameter

Cartesian/

curvilinear Source

Cartesian/

curvilinear Source Units

Ca2þ½ �SR 1ð Þ 750 1000 30 lM
k 2 25 2.5 19,25 s�1

kf 0.2 25 0.25 19,25 s�1

ICRU 6 30 pA

Note: Some values used in the case of the BD system are within the range

of the cited values.

NBND: non-buffered and non-dyed; BD: buffered and dyed.

Figure 2. Grids generated on the Cartesian (top) and curvilinear (bottom) coordinate system. In both cases, the system is
discretised into 276� 71 grid points. A cell size of 110 lm length and 28 lm width is considered. Data for the generation of
curvilinear coordinates are extracted from successive snapshots of a real cell morphology provided by Tracqui and Ohayon at time
t4.

25 The CRDT algorithm used in the generation of the curvilinear coordinates ensures the smooth distribution of the grid points
throughout the curvilinear domain.

Arif et al. 5



These equations are then solved by using the ADI

method.36 The source strength becomes spatially
dependent since the distance between grid points is
not uniform. Equations (2) and (4) to (6) are then
solved on the curvilinear grid (Figure 2, bottom).

Orthogonal curvilinear coordinates are generated
using the software gridgen-c developed by Sakov and
CSIRO Marine Research (2006–2017) (see acknowl-

edgement). The code incorporates a CRDT algorithm
by Driscoll and Vavasis for conformal mapping37

which smoothly distributes the grid points throughout
the domain. This algorithm provides the x and y posi-

tions of the curvilinear grid which is then used along
with a 10th order compact finite difference scheme38 to
evaluate the derivatives associated with the curvilinear
coordinates on=ox, on=oy, og=ox and og=oy in equa-
tions (5) and (6).

The CRUs are distributed with lx ¼ 2 lm spacing in
the longitudinal and ly ¼ 0:8 lm spacing in the trans-

verse directions. In the curvilinear case, the number of
spacing between CRUs is determined by setting equal
number of grid points between channels leading to a
pointwise evenly spread channels in both directions.

The distribution of these channels is given on both
Cartesian and curvilinear grids in Figure 3.

As boundary conditions zero-flux is assumed at the

cell boundaries by imposing oCcyt=ox ¼ oCcyt=oy ¼ 0.
Similar assumption is imposed on the equation for the
Ca2þ bound dye, i.e. o½CaF�=ox ¼ o½CaF�=oy ¼ 0.
These conditions are widely used in previous

works16,21–23,27–29 and shown to provide good results.
In the next section of this paper, temporal concen-

tration profiles are provided for the cytosolic and

sarcoplasmic Ca2þ concentrations. Sensors are placed

in both domains to record these concentration values.

The exact location of these sensors is given in Figure 3.

In addition to these results, the mean wave velocity of

Ca2þ propagation is provided in each case. For the

estimation of the velocity, the peak of the Ca2þ wave

is tracked from a point close to the centre to the end of

either side of the domain. The distance travelled

(in lm) is then divided by the time (in seconds) taken

to reach the end. An average is taken from five simu-

lations to provide a mean velocity value.

Results

In cardiac myocytes, Ca2þ waves propagate as sharp

bands39 with velocities and frequencies that are high

enough to allow for the simultaneous propagation of

distinct fronts in a given individual cell. The latter type

of wave has been called type 1 for convenience.33

In the following results, Ca2þ waves of type 1 is

observed. Once sparks are initiated they develop in

10 ms and increase the concentration around the

region. The probability of firing is proportionally

dependent on the local concentration. Therefore, a

rise in concentration increases the probability of SR

release and eventually leading to the activation of

neighbouring CRUs. If the concentration is sufficiently

high more CRUs fire consecutively which creates a

propagating Ca2þ wave.
In all cases that are presented in this section, the

initial cytosolic Ca2þ concentration at rest is set to

Ca2þ½ �cyt 1ð Þ ¼ 0:1 lM. The concentration in the SR

compartment is 500–1000 lM and is 2–3 orders of

Figure 3. Distribution of the CRU channels on the Cartesian (left) and curvilinear (right) domains. The CRUs are uniformly
distributed in the Cartesian case while in the curvilinear case, they are spaced out evenly with an equal number of grid points between
them leading to the distribution to appear denser at the concave (top bending) and coarser at the convex (bottom bending) regions.
Sensors are also included in the domains with their x and y coordinates in lm and their sensor number below. The locations of the
sensors are marked as black squares.
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magnitude greater than that in the cytosol. Therefore,

in the simulations presented here the initial concentra-

tion in the SR is set to 750 lM in the NBND system

and 1000 lM in the BD systems. Simulations begin

with 5� 4 CRUs force activated in the middle of the

domain in order to set off initial sparks. The temporal

grids are set up with time step size of Dt ¼ 0:1. The

spatial step sizes in the Cartesian case are set to Dx ¼
Dy ¼ 0:4 and that in the curvilinear case is spatially

dependent so will vary throughout the domain.

NBND system on the Cartesian and

curvilinear domains

In this section, results are presented for the NBND

system. The set of equations (1) to (4) are solved on

the Cartesian domain and equations (2) and (4) to (6)

on the curvilinear domain. Buffer and dye reactions are

neglected in the model, i.e. Jdye ¼ Jbuffer ¼ 0, in order to

distinguish the effects of such reactions on the wave

propagation velocity and amplitude. Solving the

NBND system on both the Cartesian and curvilinear

domains with the CRU distribution given in Figure 3,

we obtain the results in Figures 4 (Cartesian) and 5

(curvilinear). Images show the development of the ini-

tial sparks in 10 ms and its propagation towards and

along the boundaries at the top and bottom until it

reaches and propagates outwards from the boundaries

at the ends (left and right).
Looking at the simulation time when the Ca2þ

reaches the end boundaries it was observed that the

wave propagates in less time compared to that in the

curvilinear case. As can be seen in Figure 6, the peak of

the wave exits the domain in 200 ms in the Cartesian

(Figure 6(a)) and 400 ms in the curvilinear (Figure 6(b))

cases. The longitudinal mean velocity of the wave is

calculated to be approximately 312.41 lm=s with

amplitudes approximately ranging 17–20.04 lM in

the Cartesian (Figure 7(a)) and 180.98 lm=s with

amplitudes approximately ranging 19.23–23.79 lM in

the curvilinear cases (Figure 7(c)).
There is a periodic exchange of Ca2þ between the SR

and the cytosol. These result in the mentioned Ca2þ

sparks and blinks, the simulation results of which are

presented in Figure 7. There is a slight difference in the

amplitude of the cytosolic concentration profiles when

comparing the Cartesian and curvilinear problems.

Similarly, there is not much variation in the sarcoplas-

mic concentration profiles when comparing the solu-

tion on the two different domains. In the Cartesian

case, concentration in the SR drops to approximately

580.7–582.5 lM while this drop in the curvilinear case

is approximately between 575.9 lM and 585.9 lM (see

Figure 7(b) and (d)).

Figure 4. Ca2þ wave propagation on the Cartesian grid in the absence of buffer and dye reactions. Snapshots are recorded at times
10, 25, 50, 75, 125, 150, 175, 190 and 300 ms (left to right, top to bottom). The colour bar denotes the Ca2þ concentration in lM.

Figure 5. Ca2þ wave propagation on the curvilinear grid in the absence of buffer and dye reactions. Snapshots are recorded at times
10, 40, 70, 125, 175, 225, 275, 375 and 550 ms (left to right, top to bottom). The colour bar denotes the Ca2þ concentration in lM.

Arif et al. 7



BD system on the Cartesian and curvilinear domains

In this section, results are presented for the BD system.

The same set of equations as in the previous section are
solved but with reactions included, i.e.

Jdye 6¼ 0; Jbuffer 6¼ 0. Figures 8 and 9 show the Ca2þ

wave propagation in the presence of buffer and dye

reactions. The mean wave velocity is observed to be

approximately 167.15 lm/s in the Cartesian and

103.53 lm/s in the curvilinear case. Figure 10 shows

the time courses of the wave at times t ¼
100; 200; 300 and 400 ms (a and c) and the normalised

Figure 6. Cytosolic Ca2þ wave propagation without buffer and dye reactions. The spatial characteristics of the wave propagation are
plotted on the (a) Cartesian domain at times 50, 100, 150 and 200 ms and (b) curvilinear domain at times 100, 200, 300 and 400 ms.
Output is given from five separate simulations.

Figure 7. Cytosolic (a, c) and sarcoplasmic (b, d) Ca2þ concentrations are plotted on the Cartesian (a, b) and curvilinear (c, d)
domains. See Figure 3 in previous section for the location of the sensors. Output is given from five separate simulations.
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Figure 8. Ca2þ wave propagation on the Cartesian grid in the presence of buffer and dye reactions. Snapshots are recorded at times
10, 40, 75, 110, 150, 200, 300, 350 and 700 ms (left to right, top to bottom). The colourbar denotes the Ca2þ concentration in lM.

Figure 9. Ca2þ wave propagation on the curvilinear grid in the presence of buffer and dye reactions. Snapshots are recorded at times
10, 40, 60, 125, 225, 400, 500, 660 and 900 ms (top to bottom left to right). The colourbar denotes the Ca2þ concentration in lM.

Figure 10. Ca2þ wave propagation in the presence of buffer and dye reactions. The spatial characteristics of the wave propagation
are plotted at times 100, 200, 300 and 400 ms on the (a) Cartesian and (c) curvilinear domains. Output is given from five separate
simulations.
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fluorescent indicator dye profile, F=F0 (b and d). The
normalised fluorescent indicator profile is recorded at
the cell centre.

The Ca2þ concentration increases rapidly initially
thus a steep rise in the normalised fluorescent value.
The concentration is high enough so that neighbouring
sites will activate eventually leading to wave of Ca2þ.
As Ca2þ propagates from the region the concentration
will decrease leading to a decrease in the normalised
fluorescent values. There is a small delay from initially
activated channels to the neighbouring channels
becoming active which explains the next two phases
in the profile of decreasing then increasing trend.
F=F0 profile peaks at 1.13 and 1.135 in the Cartesian
and curvilinear cases, respectively. The shape observed
around the peak and the pattern of rise and fall is also
observed in experimental3–6,8,9,17,40–42 and other
numerical studies.17,21,24,26

A large variation is observed in the sparks and
blinks (Figure 11). The amplitude of the sparks range
41.3–53.46 lM with a drop to 71.68–89.62 lM for SR
Ca2þ content in the Cartesian case (Figure 11(a)) and
that in the curvilinear case are 55.67–74.55 lM for
spark amplitude and 26.98–80.11 lM for drop in SR
Ca2þ concentration (Figure 11(c)).

Discussion and conclusion

In this paper, the application of Ca2þ waves on curvi-

linear grids is successfully demonstrated with compar-

isons against the Cartesian case. This enables the

quantitative analysis on Ca2þ sparks/blinks and

waves by taking into account more realistic cell mor-

phology. The in silico study undertaken here included

BD and NBND systems to observe the Ca2þ wave

characteristics on the different systems. It has been

shown in the case of the NBND system that although

not much variation was observed in the amplitudes of

the cytosolic and sarcoplasmic Ca2þ concentration pro-

files, the computed wave velocity in the Cartesian case

was much higher (almost twice as much) than that in

the curvilinear case (which is closer to the experimen-

tally observed value of 100 lm/s). After adding buffer

and dye, the same parameters become invalid in this

new system thus a search for new parameters which

produces a meaningful solution is required. In both

the BD and NBND cases, the wave velocity calculated

on the curvilinear coordinate system provided a closer

estimate to that observed experimentally (i.e. 100 lm/

s). In the BD cases, the fluorescent indicator dye pro-

files follow a pattern which is recorded experimentally.

Figure 11. Time courses of the Ca2þ wave propagation located at sensors 1–5. Cytosolic Ca2þ concentrations are plotted on the (a)
Cartesian and (c) curvilinear domains. Similarly, sarcoplasmic Ca2þ concentrations are plotted on the (b) Cartesian and (d) curvilinear
domains. See Figure 3 in previous section for the location of the sensors. Output is given from five separate simulations.
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The variation in spark amplitudes as well as that in SR
blinks can be attributed to the fact that the channel
sites are dependent on the grid. The same study can
be carried out with more information regarding their
actual location which can then be applied to both the
Cartesian and curvilinear domains.

The formation and development of Ca2þ sparks into
waves appear differently in the Cartesian and curvilin-
ear grids. The wave propagation region appears to be
more elongated in the y-direction for the curvilinear
cases. This may be due to either the distribution of
CRUs being grid dependent or the partially contracted
state of the cell morphology making the distribution of
CRUs in the bottom half of the domain more dense
and coarser in the top half compared to that in the
central part of the cell. In either case, having a curvi-
linear representation of the problem is a major contri-
bution towards a more realistic cell shape which can
handle more sophisticated shapes than the one pre-
sented here. The underlying algorithms used in the gen-
eration of the curvilinear domain ensure the conformal
mapping of grid points. Although some regions will be
densely or coarsely populated with grid points the
CRDT algorithm maintains a relatively smooth distri-
bution. Therefore, the distribution of CRUs will be
dense or coarse in the respective regions accordingly.
Having a spatially dependent distribution rather than a
grid dependent one will make the curvilinear model
more realistic since it is known that CRUs are longitu-
dinally 2 lm and transversely 0.4–0.8 lm apart. The
spatial distribution of the channels can be obtained
from images of the location of the individual CRUs
from experiments. From this, one can directly use
this information to set the exact locations on the grid
or can derive a spatial distribution function of the
channels. The curvilinear domain can easily be adapted
to accommodate these points as well as include control
functions to have more grid point populated areas pos-
sibly around the channels.43

A general buffer term was represented by a single
ODE. However, it is known that Ca2þ can bind to
buffers consisting of calmodulin, troponin C, binding
sites on the SR and sarcolemmal (SL) membranes.
Therefore, a more detailed model accounting for each
of these buffers would improve this model.
Additionally, Ca2þ bound buffers and dye in the SR
have different reaction and diffusional properties than
that in the cytosol. Therefore, an additional set of
equations accounting for this would make this model
more comparable to the real case scenario. For the
sarcoplasmic Ca2þ concentration, an ODE has been
used. However, diffusion is also present in this com-
partment so a PDE can be used to account for this.

Recently, it has been shown that cytosolic Ca2þ dif-
fusion follows an anomalous subdiffusion. Fick’s Law

is known to produce Ca2þ full-width at half maximum

(FWHM) of 1 lm, half of that observed experimental-

ly. Anomalous subdiffusion is known to address this

issue and produce FWHM of closer to 2 lm. Here

transformation to curvilinear coordinates is more

straightforward with Fick’s Law-based diffusion.

Bearing this in mind this simplification was maintained

in order to demonstrate the application. The model

presented in this paper can always be extended to an

anomalous subdiffusion model. Although the current

work presents a study of stochastic Ca2þ sparks and

blinks on Cartesian and curvilinear grids it would be

interesting to undertake a similar study under deter-

ministic conditions where wave propagation is mea-

sured upon a trigger in subcellular release.
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Appendix 1

The numerical conversion for the source strength, Ks,
involves the Green’s function obtained from the

analytical solution of the diffusion problem for the
two-dimensional case and convolving this with the
Heaviside function. Some description on the derivation
is given previously.27 The deduced relations for each of
the Cartesian and curvilinear cases are given below.
For an anisotropic case where DCx ¼ 0:3 lm2=ms
and DCy ¼ DCz ¼ 0:15 lm2=ms, the following is
obtained for the molar flux, r, that contains the
source strength

r ¼

7:74596669 1� erf
0:05270462768ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

30
�
Dx2 þ 2ðDy2 þ Dz2Þ

�r8<
:

9=
;
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0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�r
E1

0:08333333333Dx2

þ 0:1666666667Dy2
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(7)

where E1 xð Þ ¼ Ð1
z

e�t

t
dt is an exponential integral.

Dx; Dy and Dz are distances between points in the
x; y and z directions, respectively. In the case of the
Cartesian coordinates, the molar flux is a scalar.
However, in curvilinear coordinates, it is spatially
dependent and becomes a vector.
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