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Abstract 

 Fear conditioning and extinction is a construct integral to understanding trauma-, 

stress- and anxiety-related disorders.  In the laboratory, associative learning paradigms that 

pair aversive with neutral stimuli are used as analogues to real-life fear learning.  These 

studies use physiological indices, such as skin conductance, to sensitively measure rates and 

intensity of learning and extinction.  In this review, we discuss some of the potential 

limitations in interpreting and analysing physiological data during the acquisition or 

extinction of conditioned fear.  We argue that the utmost attention should be paid to the 

development of modelling approaches of physiological data in associative learning 

paradigms, by illustrating the lack of replicability and interpretability of results in current 

methods.  We also show that statistical significance may be easily achieved in this paradigm 

without more stringent data and data analysis reporting requirements, leaving this particular 

field vulnerable to misleading conclusions.  This review is written so that issues and potential 

solutions are accessible to researchers without mathematical training.  We conclude the 

review with some suggestions that all laboratories should be able to implement, including 

visualising the full data set in publications and adopting modelling, or at least regression-

based, approaches.   

 

 

 

 

 

 

Keywords: Fear learning, extinction, methods, data analysis, return of fear, replicability 

crisis, conditioning, Skin conductance responses (SCR), physiological responding 
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1.1 General Introduction 

Mechanisms underlying post-traumatic stress disorder (PTSD) and anxiety disorders 

are commonly tested in a laboratory paradigm based on Pavlovian fear learning and use 

psychophysiological responding as the primary outcome variable.  In light of the replicability 

crisis (Button et al., 2013; Open Science Collaboration, 2015; Simmons, Nelson, & 

Simonsohn, 2011; Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011), this field of 

research has recently received significant attention for the renewal (Krypotos, Blanken, 

Arnaudova, Matzke, & Beckers, 2017; Krypotos, Klugkist, & Engelhard, 2017) and 

synchronisation (Lonsdorf et al., 2017; Lonsdorf & Merz, 2017) of methodological 

parameters underlying potential issues with the reliability of findings.  In this review, we first 

describe the paradigm and replicability crisis, before demonstrating the many ways in which 

the currently accepted analysis strategies of psychophysiological data may leave research on 

fear conditioning vulnerable to systemic error.  Next, we advise several strategies for 

optimising the interpretability of results, as well as how the field may be advanced to avoid 

many of the errors commonly attributed to psychological research.  We argue that a concerted 

effort is required by researchers to devise and continuously improve data strategies that 

intuitively reflect and describe fear and extinction learning, rather than relying on null-

hypothesis testing.   

 

1.2 Physiological Testing of Fear Conditioning and Extinction in Humans 

 In studies of Pavlovian ‘fear learning’, participants learn to associate a neutral 

stimulus (e.g. a coloured circle on a computer screen) with an aversive ‘unconditioned 

stimulus’ (e.g. an electric shock, see Figure 1) after these stimuli are repeatedly paired 

together (LeDoux, 2014; Lonsdorf et al., 2017).  The new conditional stimuli (CS+) are 

contrasted to the safety signal (CS-), which is never paired with an aversive outcome.  
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Repeated presentation of the CS+ with no aversive outcome in healthy populations results in 

reduced conditional responding to the CS+.  The mechanism by which this occurs is termed 

‘fear extinction’; however, it is important to note that subjective fear itself is not necessarily 

manipulated during these paradigms (see LeDoux, 2014).  For instance, one influential view 

postulates that associative memory of the CS+ is overridden by safety learning over 

successive presentations of a CS+ in absence of an aversive effect (Bouton, 2004).  In this 

approach, the associative learning process underlies both real-life and simulated trauma, with 

the subjective experience of fear itself a by-product of this process at a different 

psychoneurological level.  Alternatively, the propositional learning framework asserts that 

fear learning and extinction is affected by associative learning in combination with higher-

order cognitive processes such as reasoning and existing knowledge (De Houwer, 2009).  In 

this review, the terms ‘associative learning’ and ‘fear learning or extinction’ will be broadly 

employed as indexable physiologically, though readers should be aware that there is currently 

inconclusive evidence as to what processes best reflect the actual phenomenon.  Since 

extinction of fear is essential to recovery from traumatic stress as well as anxiety disorders, 

understanding how and why fear extinction occurs has important clinical value (Milad & 

Quirk, 2012; Yehuda et al., 2015; Zuj, Palmer, Lommen, & Felmingham, 2016).   

Fear extinction efficacy can be estimated in the laboratory.  Physiological measures, 

such as skin conductance or fear-potentiated startle, are recorded to index participant arousal 

at different stages of the paradigm, with higher arousal reflective of heightened anticipation 

to the aversive stimulus.  Measures such as skin conductance are conventionally scored by 

subtracting responding before stimulus onset from responding following stimulus onset, 

which is thought of as necessary due to the continuous stream of physiological data 

(Boucsein, 2012).  In this way, researchers hone in on the differential response to the CS+ 

and CS- in terms of relative excitability (Lonsdorf et al., 2017).  Physiological responding to 
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CS+ compared to CS- is essential to determining whether fear conditioning has occurred 

(indicated by increased responding to CS+ compared to CS-), as well as whether fear 

extinction has occurred (reduced differential responses between the CS+ and CS-).  Reviews 

on the efficacy and diversity of associative learning paradigms (Lonsdorf et al., 2017), as 

well as the comparability of such research to real-world illnesses such as anxiety and PTSD 

are available (Graham, Callaghan, & Richardson, 2014; Milad & Quirk, 2012; Milad, 

Rosenbaum, & Simon, 2014; Zuj, Palmer, Lommen, et al., 2016).  Clinical populations, such 

as those with PTSD, exhibit impaired reduction in CS+ responses during extinction and recall 

of learned extinction compared to healthy controls (Milad et al., 2009; Wessa & Flor, 2007).   

 

 

Figure 1.  Simple two-day associative learning paradigm.  Orange circle = CS+, blue circle = 

CS-, shock symbol represents unconditioned stimulus (eg. Electric shock) 

 

 Despite the translational basis of fear conditioning and extinction research, there are 

some existing issues with its operationalization in the laboratory (Bach et al., 2018; Beckers, 

Krypotos, Boddez, Effting, & Kindt, 2013; Lonsdorf et al., 2017; Lonsdorf & Merz, 2017; 

Sjouwerman, Niehaus, Kuhn, & Lonsdorf, 2016).  Group differences between healthy and 

clinical populations, such as anxiety for which the primary aetiological mechanism is 

believed to be fear extinction, are often undetectable in individual studies and may only 

emerge in meta-analysis as negligible, small or small-moderate effect sizes, which have been 
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reported before correction for publication bias (Beckers et al., 2013; Duits et al., 2015; Lissek 

et al., 2005).  Further, small paradigmatic differences, such as inclusion of contingency 

awareness instructions, difference in psychophysiological measurement tool or type of 

unconditioned stimulus can influence associative learning in terms of data output and 

presumably psychophysiological processes underlying data (Bach et al., 2018; Sjouwerman et 

al., 2016; Tzovara, Korn, & Bach, in press; Weidemann, Satkunarajah, & Lovibond, 2016).  

In a recent paper, fourteen European fear conditioning and extinction groups collectively 

noted an increasingly wide variation of paradigm design and methodologies, and hence 

produced a series of guidelines for enhancing replicability (Lonsdorf et al., 2017).  The 

review covers variants of associative learning paradigms, physiological measurement 

strategies, data reduction strategy, and other methodological considerations.  However, there 

were no recommended analytic strategies for associative learning research in this paper.  

Similarly, few recommendations for data analysis exist in the field.  Recent efforts from a 

European laboratory have introduced the Bayesian approach to this paradigm (Krypotos, 

Blanken, et al., 2017; Krypotos & Engelhard, 2018; Krypotos, Klugkist, et al., 2017), which 

overcomes many of the problems associated with null hypothesis testing by using ‘Bayes 

factors’ to estimate the relative likelihood of the null and experimental hypotheses given an 

observed effect.  This research group has developed a statistical package on R that can be 

easily and routinely applied to fear conditioning and extinction data (condir; see Krypotos, 

Klugkist, et al. (2017)).   

However, on a deeper level, how accurately fear conditioning or extinction can truly 

be derived from the data generated when conducting this paradigm is uncertain.  What is the 

relationship between psychophysiological responding and the process of fear extinction?  In 

the rush to apply this paradigm to real-life problems, this issue has been almost completely 

overlooked, and not just in this field (Eisenberg et al., 2018).  Some researchers have 
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developed modelling methods for skin conductance data by utilising the full data in time-

series analyses sensitive to event-related responses (Bach et al., 2018; Bach, 2014; Bach, 

Daunizeau, Friston, & Dolan, 2010; Bach, Flandin, Friston, & Dolan, 2009, 2010; Bach, 

Friston, & Dolan, 2010, 2013; Staib, Castegnetti, & Bach, 2015).  Whereas this approach has 

focussed largely on fear learning, we here primarily discuss fear extinction, as this is the 

process most relevant to therapy.  Further, despite the availability of open-source code and  

program (PsPM, Bach, et al. 2009; Bach, et al. 2013), there has been little uptake of this or 

other modelling approaches in the field.  Therefore, in the present paper we outline the 

critical statistical issues inherent to the conventional approach in a way that is conceptually 

accessible to the general psychological audience, with the aim of improving methodological 

outcomes in the near future. 

 

2.1 Basis of Statistical Issues in Associative Learning Paradigms 

Establishing whether there is a difference between responding over successive trials 

in this paradigm is difficult in practice, even when effect sizes should be large, such as 

between clinical and healthy populations (Beckers et al., 2013).  Compared to real life 

trauma, effect sizes for the psychophysiological responding are rarely large (Duits et al., 

2015; Lissek et al., 2005).  Floor effects of responding are often observed after a few 

extinction trials; hence group differences must be observable between what is generally only 

two to three trials.  This is because the aversive stimulus, compared to real life trauma, is only 

a mildly uncomfortable stressor that may not always produce a large difference in responding 

between groups, especially if there is only a small difference in responding expected between 

the groups.  This is compounded by noisy data characterised by large individual variability, 

where differences between groups is likely masked by arbitrary differences between and 

within individuals (Bach, Flandin, et al., 2010; Beckers et al., 2013; Boucsein, 2012; 
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Lonsdorf & Merz, 2017).  For this reason, if experimenters are interested in comparing more 

than two groups, it quickly becomes impractical to collect a large enough sample size to 

adequately power a psychophysiological associative learning experiment using even lenient 

multiple correction techniques.  Further, there are a large number of independent variables to 

consider: with two stimuli (CS+ and CS-), a minimum of two experimental groups (often 

more), at least five trials in a phase (eg. extinction phase) and at least three phases (i.e. 

habituation, acquisition, extinction).   

 Most academics in psychology will be familiar with the false positive problem.  

Research projects that are inadequately powered, that have complex research designs with 

multiple or flexible outcomes, that have small effect sizes, and that are analysed in multiple 

methods are more likely to be false than true (Ioannidis, 2005).  Aside from the conventional 

Type 1 and Type 2 errors, less known errors include ‘Type M’ and ‘Type S’ errors (Gelman 

& Carlin, 2014), which occur when the power is low and statistical significance is reached.  

More specifically, experiments that are underpowered and find a significant effect that is real 

necessarily overestimate the effect size by many orders of magnitude (Type M), and have a 

good probability of estimating the effect with the wrong sign (Type S).  For instance, an 

effect found in a study with β=.06 has a 24% chance of having the wrong sign and is more 

likely than not to be at least nine times higher in magnitude than the true effect (Gelman, 

2016).  This is arguably worse than a non-significant finding, which at least reminds us that 

we need better measurement to accurately estimate the difference.  Importantly, due to small 

effect sizes and noisy, imprecise psychophysiological measurements, studies using 

conventional data analysis strategies in the associative learning paradigm are typically hugely 

underpowered, with estimates for adequate power from ours and the University of Zurich 

laboratory (β=.80 and above) likely starting from N=200 for a single comparison of a small 

effect size (also see Bach et al. (2018); Bach, Tzovara, and Vunder (2017)).  For instance, a 
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recent power analysis with an effect size based on existing data from a statistical paper 

(Khemka, Tzovara, Gerster, Quednow, & Bach, 2017) identified that 74 participants were 

required to detect a 50% reduction in responding during fear extinction of an experimental 

compared to a control group (Bach et al., 2017), which is a very large reduction.  However, 

most studies include less than 74 subjects, anticipate small effect sizes and perform multiple 

comparisons. 

Aside from the underwhelming power in most of these studies, a more subtle yet also 

critical issue with data analyses currently employed are the theoretical assumptions made by 

the most commonly chosen techniques.  Most of this literature has analysed physiological 

scores between trials using unordered ANOVA, or has grouped means of trials together and 

compared the differences using ANOVA.  It is often possible that patterns reflecting overall 

decreased arousal of one group compared to another will emerge by averaging trials.  

However,  many of the patterns in the data that may better describe the hypothesized process 

of fear extinction (as indexed by reduction in physiological arousal) may not be well reflected 

by the averaged data.  We will give an example of this later in this paper.  Ideally, data should 

be modelled based on the patterns that would be expected to be seen given that an individual 

or a group is experiencing a certain psychological process (Farrell & Lewandowsky, 2015); 

however little attention has yet been given to how psychophysiological responding might 

acutely reflect psychological fear extinction or associative learning processes (Bach, Flandin, 

et al., 2010).  Overall, it is concerning how little agreement there is between groups as to how 

these psychophysiological results should be analysed and reported.  Not only does this 

increase false positive errors (Ioannidis, 2005), but it is not good scientific practice to have a 

field with many different acceptable methodologies and treat findings as equal when separate 

methodologies are actually testing different parameters and assumptions that are often not 

apparent in conventional data analysis strategies.  As we will discuss later, the application of 
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statistical modelling to cognitive psychology (Forstmann & Wagenmakers, 2015) increases 

the relevance of data outcomes to the theoretical model being tested and is an ideal method of 

increasing power to detect important effects.   

 

2.2 Brief Review of the Analysis Disparity between Studies 

 We will here illustrate what we consider to be the first major statistical issue in the 

analysis and reporting of psychophysiological data in associative learning paradigms: that of 

lack of power and consequent inconsistency of method design between studies.  Before 

reading the following section, please note that this review is not intended to single out any 

particular paper or research group and it is not our opinion that any of the following analytic 

strategies are by themselves problematic.  However, it is relevant to note the wide variation 

of statistical methodology across and within research groups, and this will later be discussed 

with reference to both the excessive flexibility in statistical decision-making as well as in 

making a case for more thoughtful analysis strategies in this field.  We also acknowledge that 

similar findings across different studies using different methods and analytic approaches may 

suggest that the findings are robust and insensitive to minor paradigmatic changes.  However, 

it is also a well-documented risk factor for poorer replicability (Ioannidis, 2005; Simmons et 

al., 2011) and we discuss later in this paper how the problems associated with it may be 

largely avoided by alternative approaches such as modelling. 

There is a clear disparity between analysis strategies across studies in the associative 

learning paradigm.  For example, Phelps and colleagues (2004) divided extinction phases 

from the first and second days of testing into early and late extinction trials, subtracted CS- 

from CS+ responses to yield a differential score for each participant, and compared the mean 

differential scores between early and late trials.  This approach maximised power in a low-

powered fMRI design where only eleven participants were included in the final analysis 
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(Button et al., 2013; Phelps, Delgado, Nearing, & LeDoux, 2004), and the authors 

consequently removed the first three trials of extinction recall on day two before their 

analysis due to suspected noise.  In similar fMRI paradigms with thirty-one and fourteen 

participants respectively, Milad et al. (2009) and Milad et al. (2007), reported mean 

differences between CS+ and CS- in each phase, rather than differential scores and removed 

the last four trials during recall, only analysing the first four instead.  We can immediately see 

how fMRI-fear extinction studies may be consistently underpowered.  These two papers also 

reported a retention extinction index, which is a score that accounts for individual variability 

in physiological responding to the unconditioned stimulus during acquisition (Lonsdorf et al., 

2017).  However, in the first paper, only responses to the first two CS+ trials during 

extinction recall were considered (Milad et al., 2007), compared to the first four CS+ trials in 

the second paper (Milad et al., 2009), despite there being the same number of trials in each 

experiment.  Differences in data strategy was not based on differences between goals and 

experimental design, since all three studies cited above examined extinction recall as the 

primary outcome in two day paradigms and it was admitted in these papers that post hoc 

removal of trials was used to account for floor effects on physiological responding.  It is 

important to note that post hoc data inclusion/exclusion rules, as well as changes to analysis 

plan, form part of what is known as the ‘garden of forking paths’ or ‘researcher degrees of 

freedom’ and can both increase false positive error rates as well as greatly exaggerate effect 

sizes (Button et al., 2013; Gelman & Loken, 2013; Simmons et al., 2011).  Undoubtedly this occurs 

in the majority of studies unintentionally and is, in our view, driven by the restraints of a 

paradigm that utilises an inefficient and underpowered design, which we will discuss later in 

the review.  Therefore, we wish to again emphasise that these decisions are not the fault of 

any particular researcher but are generally the product of low power to detect an effect that in 

many cases will be a true effect.  In cases where changes are made post-hoc to the data set – 
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no matter how justified they may be – findings using the full data set should be reported 

alongside the primary findings (Simmons et al., 2011).   

Variation in analysis strategy becomes a more major issue when a field normalises 

excessive flexibility in trial reduction and analysis strategy, which results in higher 

‘researcher degrees of freedom’ (Simmons et al., 2011; Wagenmakers et al., 2011).  Changes 

to both data and methodology is a subtle, and usually unintentional (Gelman & Loken, 2013) 

method that increases the likelihood that a significant result will be found.  Excessively 

flexible fields are problematic since variability in possible designs and data reduction post-

hoc is analogous to multiple comparisons and is not reflective of an alpha level of α=.05 

(Gelman & Loken, 2013; Simmons et al., 2011).  As examples of the flexibility in this field, 

Phelps et al. (2004), Schiller et al. (2010) and Soliman et al. (2010) divided extinction trials 

into ‘early’ and ‘late’ phases, whereas Lonsdorf et al. (2015) and Raes and De Raedt (2012) 

did not compartmentalise any phases.  Conversely, Pappens et al. (2014), Spoormaker et al. 

(2012) and Norrholm et al. (2011) divided extinction trials into three, five and six blocks of 

trials respectively for mean block comparisons using ANOVA.  Other research groups have 

used the more broad strategy of conducting ANOVAs across ungrouped trials, rather than 

grouping them into smaller segments (Pace-Schott et al., 2009; Zuj, Palmer, Hsu, et al., 

2016), or have tested the mean responses across trials of each experimental phase (Klumpers 

et al., 2012), though these papers struggled to find significant effects.  Other papers have 

chosen and excluded different extinction or extinction recall trials to compare using ANOVA 

(Graham & Milad, 2013; Kindt, Soeter, & Vervliet, 2009; Rabinak et al., 2013).  

Interestingly, others have calculated an extinction retention index using again different 

methods to those described previously by selecting to use either all recall trials, the first CS+ 

trial, the first differential trial, the first two differential trials, or the first four CS+ trials 

(Graham & Milad, 2013; Milad et al., 2005; Milad et al., 2010; Raio, Brignoni-Perez, 
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Goldman, & Phelps, 2014; Zeidan et al., 2011).  Critically, whilst we maintain that none of 

these methods are potentially any less justifiable than others, the large number of reporting 

styles provides a vast number of potential comparisons that statistically changes the 

likelihood that rejection of the null hypothesis is accurate (Gelman & Loken, 2013; Ioannidis, 

2005; Rosenthal, Rosnow, & Rubin, 2000; Simmons et al., 2011).  In summary, we recognise 

excessive variability in: (a) block combination and ordering; (b) trial inclusion and exclusion; 

(c) trial calculation; and, (d) data analysis strategy. It should also be noted that, in a recent 

addendum to their 2010 paper, Schiller et al. (2018) reported that changing complex SCR 

exclusion criteria changed the outcome and effect sizes of the study.  Therefore, and as 

recommended in Lonsdorf, et al. (2017), consistent and justifiable exclusion criteria should 

also be a target for future studies.   

 There is not necessarily a problem with variability in methodology between projects 

and research groups.  However, differences between study designs should ideally be openly 

reported, justified and evaluated against existing designs (Bach et al., 2018; Forstmann & 

Wagenmakers, 2015a; Gelman & Loken, 2013).  In the rest of this paper, we therefore focus 

largely on how a priori (or post-hoc, in some cases) data analysis strategy and post-hoc 

corrections to data specifically contribute to lack of replicability (such choices made likely 

due to lack of power; see details on power analyses in the above sections).  For these reasons, 

it is also our opinion that the field is essentially in an "exploratory phase" and all found 

results need to be weighed very carefully against both established theory and independent 

replicability.  It is also likely that researchers will often find themselves frustrated when 

results are not intuitive or do not replicate, particularly when it comes to large effect findings 

of studies with small numbers of observations.  Similarly, there may be many well-conducted 

studies that do not find significant effects, and this may be again due to a lack of power of the 

overall design and analysis strategy. 



14 
 

  

2.3 An Example using Unpublished Data 

To make the implications of this issue completely clear, as well as to lead into the 

second major statistical problem detailed in this paper, we decided to use a few of the 

different analysis strategies to examine some unpublished data that we had.  We recently 

conducted a study testing the stress hormone theory proposed by Joels and Baram (2009), 

where “first wave” hormones (catecholamines) may enhance extinction learning but “second 

wave” hormones (glucocorticoids) may impair extinction learning.  Briefly, participants were 

exposed to a standard associative learning paradigm, where they underwent a single session 

consisting of habituation, acquisition, early extinction and late extinction phases.  During fear 

acquisition, a 75% reinforcement schedule was used, with a mild electric shock serving as the 

US, and coloured circles serving as the CS+/-.  In between acquisition and extinction, there 

was a twenty minute break where we administered an abbreviated version of the Maastricht 

Acute Stress Test (MAST; Smeets, et al. 2012) to some participants. Participants were 

separated into three groups: a first wave group (who underwent the stress procedure 

immediately before early extinction who thereby had increased adrenal hormones during 

extinction learning); a second wave group, who underwent the five-minute MAST at the 

beginning of the break (who thereby had increased glucocorticoid hormones during 

extinction learning); and a control group, who did not experience stress induction.  Skin 

conductance response (SCR) was recorded as the dependent variable, with the mean SCR 2 

seconds prior to stimulus onset subtracted from the mean SCR 12 post stimulus onset, as per 

standard ‘peak and trough’ procedure (Lonsdorf et al., 2017).  Due to a short time schedule, 

limited resources and lower than expected effects of our laboratory stressor on salivary 

hormone and stress levels, this study was underpowered and we were left with clear null 

findings (unpublished data; Figure 2).  Mixed models ANOVAs showed that the trial × group 
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and trial × group × stimulus interactions were not significant for early or late extinction (all 

p>.05), precluding any evidence that our experimental manipulation affected the fear 

extinction learning.   
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Figure 2.  Skin Conductance Responses to CS+ and CS- by group and experimental phase.  A 

panel = Control, B panel = First-wave group, C panel = Second wave group. 

 



17 
 

 Our analysis strategy was to compare all trials in each phase between the stimulus 

conditions and between the groups.  This means that, with a sample size of only 15 males per 

group, this analysis was certainly underpowered and we could have reasonably opted for a 

more simple method that would have enhanced the likelihood of finding a pattern given the 

small effect of our laboratory stressor.  This choice may have seemed all the more reasonable 

when we realised post hoc that the effect of our stress manipulation was much smaller than 

anticipated (however this constitutes the garden of forking paths, see Gelman & Loken, 

2013).  Further, our new data analysis could have been conducted in any number of ways, if 

we drew our strategy from the existing literature.   

For this example, we opted to compare our findings using several of the different 

techniques used in published fear extinction studies.  We first examined the mean differential 

responses between acquisition and early extinction, and early extinction and late extinction, 

followed by the differential mean responses of the first, first two and first four trials before 

and after extinction.  None of these analyses produced significant phase × group or phase × 

group × stimulus interactions (p>.1, data not shown).  However, by grouping the CS+ and 

CS- responses together and analysing by phase instead of trial, we found significant 

differences between groups on overall response from the acquisition to early extinction 

phases (Figure 3; p=.024, ηp
2=.16), and from the early extinction to late extinction (Figure 3; 

p=.012, ηp
2=.19).  Notably, these results were in opposite directions between the analyses 

with relatively large effect sizes, and it could be reasonably argued that, by grouping the trials 

in this way, we had found some tentative support for the hypothesis as late learning seemed 

to be impaired in the second wave group.  None of the other approaches that we tried (mean 

CS+ and CS- responses examined during the first, first two and first four trials before and 

after the start of extinction, respectively) were successful in producing significant effects 

(p>.1, data not shown).  Therefore, in our brief excursion to the practice of p-hacking, the 
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findings in Figure 3 may have been submitted for publication and justified, given that it is a 

intuitive effect given our expectations derived from our theoretical background. 

 

 

Figure 3.  Mean Skin Conductance Responses during acquisition and early extinction phases, 

and early and late extinction phases, between experimental groups 

 

 Few researchers may test this number of potential comparisons, and instead may lean 

towards choosing a strategy post hoc after viewing the data (Gelman & Loken, 2013), if at 

all.  However, it is likely that negligible effects are susceptible to optimisation when data is 

being analysed, as there is no doubt that the larger part of these studies suffers from lack of 

adequate power due to individual variability in psychophysiological responding, particularly 

for skin conductance paradigms. 

Relatedly, the second critical issue in current methodological designs stems from 

optimisation of effects using inconsistent analyses.  When data is analysed using any 

statistical technique, a model involving parameters and assumptions is applied to the data 

(Forstmann & Wagenmakers, 2015b).  The way that data is analysed is meant to say 

something about the overall pattern observable in the data, such that reflects the 

psychological process being studied.  The essence of this review is captured not so much by 

p-hacking but by how misleading our chosen analysis and conclusion is in context to the 
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patterns observable in our dataset, and subsequently how this choice of analysis limits the 

relevance of our conclusion to fear extinction itself.  Firstly, the effect in Figure 3 is not 

particularly evident when looking at the skin conductance responses across trials in Figure 2.  

The hypothesised effect occurs only during late extinction in the final two trials of the second 

wave group, where they seem to display increasing responses compared to other groups, and 

in a heightened response among first wave participants in a single early extinction trial 

(Figure 2).  This does not intuitively reflect what we might think the psychological process 

underlying fear extinction would look like over time.  Rather, a real effect for fear extinction, 

as captured using physiological responding, might have shown a more pronounced and 

enduring decrease in the rate of linear extinction of the second wave compared to control 

groups, given that theoretically extinction learning is an inhibitory learning that occurs over 

time (Bouton, 2004).  Our final chosen analysis was therefore able to detect an unintuitive 

effect that was not well described in context of the data and certainly does not provide certain 

distinctiveness from noise between trials.  Therefore, despite finding a significant effect, our 

ability to interpret the effect in context to both the data and fear extinction itself is limited, 

due to the assumptions and parameters imposed by the analysis.  Relatedly, a small sample 

size with the reported effect sizes is unconvincing when visualising the actual data, 

suggesting that a type M error in our analysis visualised in Figure 3 was likely and ultimately 

highly misleading (Gelman & Carlin, 2014).   

Keeping in mind that accurate estimates of individual variability are the basis for most 

statistical tests, it is important to recognise that in this particular paradigm it is actually 

standard procedure to use only a small proportion of the information collected thought to be 

best relevant to the hypothesis (due to temporal proximity to stimulus presentation).  Most 

commonly, researchers will subtract the mean SCR values immediately prior to the stimulus 

onset from the mean SCR values after the stimulus onset, to garner an index of relative 
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anticipation between trials.  Usually these data points are only a few seconds long, and a 

small amount of the actual information collected, with inter-trial interval information 

discarded prior to analysis (Lonsdorf et al., 2017).  Therefore, the larger part of information 

collected that may have otherwise improved error estimates is not used in analysis.  Inter-trial 

interval information would otherwise allow us to recognise the rate and magnitude of SCR 

fluctuation of each individual participant, as well as to gauge the rate of change in SC level.  

Notably, SC level is known to slowly change over time and is not accounted for using 

conventional techniques (Benedek & Kaernbach, 2010a; Boucsein, 2012).  This problem 

becomes even more pronounced when researchers are given license to remove trials that are 

reaching a floor effect during extinction or are otherwise unusual.  We can therefore also 

expect that actual error estimates obtained in most analyses are poor, which in turn will have 

unfortunate effects when we come to running our analyses in either the case of type 1 or type 

2 errors.  We also did not correct for multiple comparisons – if we had done so, these effects 

would have been marginally, or not, significant, depending on which correction was used.  

Similarly, corrections for implicit multiple comparisons – that is, the multiple comparisons 

that could be conducted but are not (Rosenthal et al., 2000) – were not conducted and have 

not been attempted in any fear conditioning paper to our knowledge. 

 

2.4 Differences in Psychophysiological Measures 

 One of the most profound current problems in this paradigm is that we are largely 

unaware of how psychophysiological outcomes reflect the actual processes underlying fear 

conditioning and extinction, despite adequate knowledge of how these outcomes are derived 

from psychological stimuli (Bach et al., 2018).  Importantly, each psychophysiological 

measure is derived through different sympathetic nervous system pathways and are therefore 

likely to reflect different aspects of psychological responsivity (Bach et al., 2018).  For 
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instance, whereas skin conductance responding is derived from sympathetic sudomotor nerve 

fibres to sweat glands (Boucsein, 2012), fear-potentiated startle is modulated by various 

stimuli through activation of the ventrocaudal pontine reticular formation which is linked to 

the amygdala and thus central nervous system (Davis, 1992; Yeomans, Li, Scott, & 

Frankland, 2002).  Whereas skin conductance is an index primarily of arousal, fear-

potentiated startle is sensitive to both valence and arousal, meaning that it is useful for a 

wider breadth of less invasive stimuli, such as images (Lang, 1995).  Indeed, of the measures 

routinely employed, skin conductance and fear-potentiated startle appear to index fear 

extinction most sensitively (Jovanovic, Norrholm, Sakoman, Esterajher, & Kozarić-Kovačić, 

2009); however, there is recent evidence for possible uses of measurements of pupil dilation 

(Korn, Staib, Tzovara, Castegnetti, & Bach, 2017), bradycardia (Castegnetti et al., 2016) and 

respiration (Castegnetti, Tzovara, Staib, Gerster, & Bach, 2017).   

Despite a slow uptake it is increasingly recognised that different measures do not 

index fear conditioning and extinction identically; for instance, it has previously been 

reported that skin conductance responding is less sensitive to differences in fear acquisition 

than fear-potentiated startle (Glover et al., 2011).  Further, some research suggests that skin 

conductance may reflect anticipation due to uncertainty during the paradigm, rather than 

solely reflecting anticipation of the aversive stimulus (Li, Schiller, Schoenbaum, Phelps, & 

Daw, 2011; Tzovara et al., in press; Zhang, Mano, Ganesh, Robbins, & Seymour, 2016).   

Despite this, however, remarkably little is known about the relationship between 

psychophysiological responding and the psychological process of fear extinction itself, and 

studies using different measures are too often treated equally despite indexing different 

processes.   This understanding might be greatly improved by indexing fear extinction using 

simultaneous measurement methods that assess different physiological aspects of 

psychological responding (Bach et al., 2018).  Further, it is important to consider that there 
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will be pronounced differences in outcomes between studies using different measures (Bach 

et al., 2018; Glover et al., 2011), and these studies may not be reliably comparable. 

 

3.1 Potential Solutions 

 Given all of these problems, what may be the best way to provide a reliably accurate 

description of this form of physiological data?  We have several suggestions that might help, 

though acknowledge that without a significant amount of statistical development this field 

will be prone to a serious lack of replicability.  Most obviously – though probably least 

practically – is that increasing sample size will always enhance the probability that found 

effects are true findings that reflect the wider populations being studied.  We will discuss 

later in this article, however, how simply increasingly sample size is not the most efficient fix 

for this problem.  Secondly, non-averaged responses should be reported and visualised in the 

publication, so that the reality of an effect, or no effect, is more apparent and readers can 

better understand the effect they are being told is there.  In terms of data analysis strategy, we 

argue that, in most cases, analysing the full data set (applicable to both the untransformed as 

well as transformed data points) is preferable to the averaged, or reduced, trials.  However, at 

this stage it is unlikely that more descriptive methods of full transformed data sets will be 

more successful in detecting group differences than analysing averaged trials using ANOVA.  

What we argue for here is a movement towards identifying common patterns observed across 

trials during fear extinction that may not reflect group differences otherwise identified by 

averaging trials, with the view of increasing power using modelling to detect these 

descriptive effects in the future.  Moreover, different trials are usually compared across 

studies, leaving little room for collective interpretation of expected physiological patterns in 

conditioning and extinction.  For instance, had we only had slightly more power, we may 

have found post-hoc that trial 3 was different from trial 4 in early extinction (Figure 2), but 
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this would have contradicted the overall pattern of the data.  It is clear, therefore, that an 

unfocused ANOVA is a poor reflection of the full data set across trials.  Regardless, 

unfocused ANOVA is the prevailing statistical option in this field currently. 

Our foremost suggestion therefore is that modelling-based approaches should be 

adopted for psychophysiological responding in this paradigm.  The best motivation for 

developing models is that they give us something that as a field agreeably represents the 

actual process of under investigation, rather than verbal and diffuse descriptions between 

research groups that result from different combinations of unfocused and tests with 

unspecified parameters and assumptions (Farrell & Lewandowsky, 2015).  If researchers 

have competing hypotheses as to what parameters observed in the data constitute fear 

extinction, these can be played out with competing models that can easily be applied to lots 

of existing data (both sides can model each other's data).  When a new model is proposed, it 

can be tested against old data, provided the data are made available.  Constantly improving 

models can continuously better estimate patterns in data, and thus perform better, more 

intuitive and reliable comparisons that are meaningful in context of the mechanism being 

explored (Farrell & Lewandowsky, 2015).  For instance, the increase in SCR towards the end 

of extinction in our second wave group (Figure 2) could have resulted from a form of 

gambler’s fallacy, where an increasing number of unreinforced CS presentations triggers the 

expectancy that the chance of shock increases.  A research group could adopt this as their 

working hypothesis, such that poor extinction learning exhibits this effect.  A competing 

group might model a more linear, sustained pattern during extinction learning for an impaired 

group.  The model fit for each of these working hypotheses could be compared easily across 

multiple datasets, with the better fitting model across multiple samples evidently most likely 

to be true. 



24 
 

In effect, this approach to modelling data also begins to reverse what statistics is 

conventionally used for: instead of being a tool to provide group differences in an existing 

theory, it can be used to feedback information to what is happening during fear extinction, 

associative learningor relevant process.  Statistical analysis then becomes an additional and 

powerful tool that helps us to understand the process being studied.  As a result of this, 

application of statistical modelling can also massively boost power to detect effects that are 

directly relevant to the research question (Forstmann & Wagenmakers, 2015b), however 

these parameters must first be identified, specified and rigorously tested (Heathcote, Brown, 

& Wagenmakers, 2015). 

Statistical modelling has been successfully applied to other psychological fields.  For 

instance, choice reaction time has a strong modelling history with great improvements in the 

ability of this field to predict decision-making (Brown & Heathcote, 2008; Logan, Cowan, & 

Davis, 1984; Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004).  Advances in this field have 

led to successful predictive models that can be applied to other fields, such as neuroscience 

and schizophrenia (Culbreth, Westbrook, Daw, Botvinick, & Barch, 2016; Forstmann & 

Wagenmakers, 2015b; Heathcote, Suraev, et al., 2015; Smith & Ratcliff, 2015).  However, 

perhaps the most relevant advance in this field has been acute, strategic predictions of 

responding across research groups, with rigorously and meaningfully defined boundaries for 

what constitutes effects.  Ideally, the associative learning paradigm will need to move in this 

direction before any true certainty about the processes that we are observing, and hence 

ultimate replicability, may be achieved.  Indeed, work by statisticians at the Zurich University 

have already developed several models that utilise the full physiological data, improve error 

estimates and increase power to detect relevant effects (Bach, 2014; Bach, Daunizeau, et al., 

2010; Bach et al., 2009; Bach, Flandin, et al., 2010; Bach, Friston, et al., 2010; Bach et al., 

2013; Staib et al., 2015).   
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Finally, it is important to note that, despite modelling having major advantages over 

conventional statistical approaches, many arbitrary decisions that can affect the overall 

efficacy of the model still exist when models are constructed (Heathcote, Brown, et al., 

2015).  What sets modelling as an approach aside from conventional statistics is that 

decisions are based on rational criteria and are openly validated between different models 

(Heathcote, Brown, et al., 2015).  One proposition for the fear conditioning and extinction 

literature is that this may be achieved using predictive validity, whereby known methods that 

inference fear extinction from physiological data are compared against a new method (Bach 

et al., 2018).  Surprisingly, very few studies have compared different physiological measures 

or methods during fear extinction, and yet results are usually interpreted equally despite a 

lack of knowledge whether the process is being measured identically.  Similarly, effect sizes 

resulting from models that specify different parameters can be compared with effect sizes 

from known methods to determine whether arbitrary changes between models are appropriate 

(Bach et al., 2018).  In this regard, however, researchers will need to be sensitive to the 

validity and reliability of combining multiple measures in the same experiment given recent 

evidence that inclusion of the startle measure in addition to skin conductance delayed fear 

learning (Sjouwerman et al., 2016).  This line of research, then, will require careful study 

design to be successful. 

 

3.2 Simple Models for Psychophysiological Data that Intuitively Describe Fear Extinction 

In this section, we describe several different basic models that may intuitively reflect 

what most research groups presume – but most likely do not directly test – is occurring at a 

physiological level during their associative learning paradigms.  We would like to first note 

that we are not ourselves tied to any particular model given the lack of available empirical 

evidence comparing such models. 
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The most simple model that may intuitively describe fear conditioning and extinction 

data is the linear model.  The linear model might be suitable for this paradigm as we are 

expecting change in responding to occur as a function of time, for successful fear extinction.  

This is contrast to general ANOVA, which is insensitive to the order of means and does not 

take into consideration the overall pattern of the data.  Therefore, linear functions provide 

more power for detecting effects where the change in the data over trials is the interest of the 

researcher (Rosenthal et al., 2000).  Linear regression, contrasts within the ANOVA function 

or mixed models may be used for this, and could indeed be used routinely and immediately 

without any additional model development.  All three of the above-mentioned approaches are 

undoubtedly better suited to physiological responses, and are readily available in all statistical 

packages.  Mixed models may be superior to contrasts in most study designs due to contrasts, 

as part of the ANOVA function, assuming measurements (in this case trials) are categorical 

and therefore equally spaced.  This is often not the case for the associative learning 

paradigms, where timing between trials is often randomised.  However, we might also expect 

that psychophysiological responding might not change in a linear fashion – conversely, we 

might expect that at the start of fear extinction responding might remain high and then later 

decrease more rapidly.  Other simple models aside from linear patterns might therefore be 

similar to exponential decay functions, which intuitively might reflect floor effects in 

physiological responses at later stages of extinction and thus removing the necessity and 

unfortunate liberty of removing trials post hoc.  Even at this simple stage, it is clear that these 

choices of test more intuitively describe the process (fear extinction) that we intend to study 

than does unfocused ANOVA. 

Further, given that fear extinction is achieved when there is no response to a 

previously feared stimulus, it might be a useful approach to count and compare the number of 

trials that experimental groups take before reaching negligible responding.  More efficient 
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fear extinction would be indexed by shorter time to negligible responding, and poorer fear 

extinction learning by longer.  Although research would need to outline what constitutes 

negligible responding, one suggestion might be that three or more consecutive trials where 

the peak and trough SCR score is not significantly different to zero.  This simple approach is 

theoretically intuitive and might also circumvent the need to remove floor effect trials during 

extinction learning.  Alternatively, using untransformed time-series data, signal detection to 

establish negligible responding may be employed as routinely done in other fields (eg. 

electromyography, see Hinder, Schmidt, Garry, Carroll, & Summers, 2011 for example, and 

Raez, Hussain, & Mohd-Yasin, 2006 for review).  Other fields using physiological measures 

detect signals using signal-noise ratios, such as if the signal is four times higher than 

background noise it is considered a true signal. 

The small amount of data collected per subject, but access to large numbers of 

participants with a particular focus on group comparisons rather than individual comparisons 

also make this field an ideal candidate for hierarchical modelling, which is a Bayesian 

approach.  Hierarchical modelling is appealing as it formally addresses the problem of group 

comparisons with many subjects per group, which is increasingly recognised as an important 

contributor to the noise in physiological responding (Lonsdorf & Merz, 2017). It also allows 

that some effects are going to be purely individually driven, and some are going to differ 

because of group, which is relevant to fields with high individual variability.  If researchers 

are hesitant to use hierarchical modelling (a Bayesian approach), then multi-level modelling 

may also be useful and, similar to mixed models or simple linear models, can be conducted 

with a standard statistics package.   

What would be most ideal would be full development of models that account for each 

specific parameter assumed to be important to both collection of psychophysiological 

responding (that is, the relationship between the psychophysiological measure used to 
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physiological arousal) and the hypothesised process underlying fear extinction.  For instance, 

in Figure 4 we illustrate how psychophysiological responding during fear extinction might 

reduce as an exponential product of the reinforcement rate and the number of extinction CS+ 

trials, with individual responding rate as a factor too.  This may be expressed by the equation:  

 

ni+1 = ni * (1-RR)ni+1+b+ε 

 

where i is the trial number, n is the arousal level, RR is the reinforcement rate and b is the 

baseline arousal.  This model for fear extinction tells us that arousal will reduce as it becomes 

less likely that no shock was delivered due to chance, based on the original reinforcement 

rate. This is necessarily an exponential decrease in arousal, as it becomes exponentially less 

likely, at a 75% reinforcement rate, for example, that no shock would occur on multiple 

consecutive occasions.  Obviously, this is too simplistic given the complexities of the 

relationship between the sympathetic nervous system and fear extinction learning, however it 

should illustrate how using model-based statistics may enhance our understanding of the 

physiological process during fear extinction learning.  Further, it makes the important 

assumption that trials will be correlated with one another, which is not necessarily made 

using unfocussed ANOVA.  Further to this, and due to the tendency for CS- responses to also 

increase and decrease during the paradigm, the baseline variable would need to account for 

the tonic drift in SC level and has been accordingly discussed elsewhere (Benedek & 

Kaernbach, 2010a).  Beyond the expected tonic fluctuation in SC level that affect the SC-, we 

might also expect in situations where participants respond physiologically to the CS- even 

though it is the safety signal.  This response might be modelled by indexing average deviance 

from the baseline SC level; if the average deviance is significantly higher than zero than this 
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may imply generalisation of associative learning to the CS-.  However, as with the CS+, this 

idea serves just as an example and may be elaborated with further work. 

 

 

Figure 4.  Physiological extinction as a product of previous trial arousal and likelihood of 

shock given reinforcement rate.  Note: RR = reinforcement rate, b = baseline arousal 

 

Work at the Zurich University, and others, have begun to optimise our understanding 

of the relationships between various physiological measures and psychological responding 

and have thus significantly expanded on the modelling approach to fear learning (Bach, 2014; 

Bach, Daunizeau, et al., 2010; Bach, Flandin, et al., 2010; Bach, Friston, et al., 2010; 

Benedek & Kaernbach, 2010a, 2010b).  In these studies, the underlying relationship between 
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sympathetic nervous system responsivity and the psychological processes during associative 

learninghas been modelled using time-series data (ie. untransformed psychophysiological 

data) with promising future directions of precisely enhancing our understanding of what 

exactly is being measured during this paradigm (Bach et al., 2018).  However, there is need 

for more research groups to attempt modelling strategies, and most of the more appealing 

approaches for fear extinction specifically are yet to be identified and tested.  This argument 

is not a case for uniform analyses; rather, when models begin to be identified and tested, they 

may be routinely assessed by other researchers and continuously improved estimations of fear 

extinction in physiological responding may be obtained.  In summary, modelling of 

physiological data during fear extinction can improve our understanding of the actual 

mechanisms involved as we are forced to specify and estimate processes that occur in the 

actual data (Forstmann & Wagenmakers, 2015a). 

 

3.2.1 A Rerun of the Unpublished Data using a Simple Linear Method 

 Running the analyses for our unpublished data from earlier using linear trends, we 

observed several informative findings.  During acquisition, there was a trial × stimulus linear 

contrast p=.018, ɳp
2=.13, which suggested that SCRs for the CS- reduced across trials, 

whereas the CS+ did not (see Figure 2).  This suggested that there was increased anticipation 

to the CS+ presentations, as would have been expected.  The ANOVA was also significant 

(p=.032, ɳp
2=.05), however as predicted this effect was smaller.  During early extinction, 

there was a significant linear contrast of trial (p<.001, ɳp
2=.42), suggesting that skin 

conductance responses reduced over trials overall.  No other significant main effects or 

interactions were observed.  Again, during late extinction there was a significant linear trial 

contrast, p<.001, ɳp
2=.35, suggesting an overall decrease in skin conductance over trials.  

However, there were again no other significant effects.  For both early and late extinction 
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phases the ANOVA effect for trial was significant, though with smaller effect sizes (ηp
2 = .21 

and ɳp
2=.14, respectively).  For both of these effects, the only significant differences between 

trials were between trials one and the rest of the trials, which further highlights the limitations 

of using ANOVA for this form of data.  Examining Figure 2, we decided to run exploratory 

quadratic trend analyses for the trial × group interactions for early and late extinction.  These 

yielded a non-significant trend for early extinction (p=.085), and a significant trend for late 

extinction (p=.020; not significant after correction for multiple comparisons – see Figure 5).  

Our conclusion from this analysis would be that there was an interesting curve towards higher 

responding in the second wave group at the end of late extinction, which was captured by an 

exploratory quadratic trend that was not significant after correcting for multiple comparisons.  

Further investigation of why fear decreased and then increased for the second wave group 

could be the subject of replication so as to establish whether this effect was due to noise or to 

a mechanism involved in impaired fear extinction learning. Though, given our small sample 

size (N=45) and post-hoc analysis, this ‘finding’ would be admittedly highly exploratory and 

would require future research to establish that the effect was not driven by error variance.  

 

Figure 5.  Quadratic trends for early 

and late extinction 
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In this analysis, we present and analyse the whole of the data that we collected.  Due 

to using individual trial means and focused tests, we are able to accurately and transparently 

describe the patterns in our data, rather than leaving readers relying on distal and averaged 

numbers as evidence.  If we had decided to use averaged data, readers would look at this data 

strategy, see the relationship to the data itself in Figure 2 and be able to interpret our findings 

in context.  This is not to say that our averaged ANOVA method in Figure 2 was not useful 

for finding an effect.  However, the use of focused tests rather than the more general ANOVA 

method allowed us to identify the physiological pattern occurring during fear extinction, as 

well as resulting in much higher effect sizes over the full dataset that reflected our improved 

ability to describe the actual patterns found in the data.  The focused test also allowed us to 

narrow in on the exact nature of the difference between groups in the late extinction phase, 

whereas in our first analysis we were only able to recognise that there was a difference 

somewhere between groups on early and late extinction.  This is clearly a more powerful, 

transparent and intuitive way of analysing the data and leaves the reader with no questions. 

 

3.3 The Modelling Solution versus the Power Problem 

 At this stage, one important question that researchers might have would be: due to 

low power in most study designs, might not we sometimes expect the data to be linear, and 

sometimes not?  How could we factor for this in advance?  It is because of this very question 

that modelling the full data set is a critical issue.  A practical matter in modelling 

physiological responding in this paradigm will be enhancing estimates of individual 

variability.  As mentioned earlier, psychophysiological data is noisy data that is highly 

dependent on individual differences, a myriad of physiological processes and environmental 

or chance factors.  One suggestion is that improving estimations of variability may potentially 

be achieved by increasing the number of trials in each experiment.  If researchers and ethics 
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committees are agreeable, extra trials may then be added to all phases; otherwise, trials added 

to the end of studies (i.e. extinction phases) when no aversive stimuli are experienced would 

be acceptable.  Whilst additional trials may only reflect floor effects in terms of extinction, 

additional trials at these times would give additional information as to the individual 

variability that is based on factors not associated with learning or extinction.  However, this 

suggestion is secondary to utilising the data in between trials, such as using time series 

modelling.  Including additional trials will also improve and strengthen estimations of trends 

across data, whether said trends be linear, quadratic, exponential or otherwise.  However, if 

researchers wish to use this approach and leave their study open to the possibility that trends 

might present as different kinds of functions, then corrections for multiple comparisons will 

be essential.  We recommend using more liberal techniques, such as the false discovery rate 

technique (Benjamini & Hochberg, 1995).  Most efficiently, however, estimations of 

individual variability may also be improved by incorporating the data not included in the 

original data point calculations.  Treating the data like a time-series, or as a continuous trace 

(or other model forms), reduction of the data may not be necessary (Bach et al., 2009).  

Intriguingly, there would also be potential to detect intuitive effects in the unused 

information, in addition to improving error estimates for the reliability and detection of 

conventional effects. 

The ability to detect effects with relatively high power and precision using modelling 

of trends (or other models) should to some extent preclude the use of the retention index, 

which is used to determine relative fear during extinction recall.  This is because effects 

found using statistical modelling during extinction recall will be based on comparisons 

between predicted slope and direction, rather than absolute physiological response levels, 

which the extinction index corrects for.  In support of the extinction recall index, however, 

we found in combined fear acquisition data from the study described above and another 
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similar study (combined N=93) that the highest CS+ during acquisition was significantly 

correlated with the average CS+ during extinction (r=.70, p<.001), implying that indexing 

recall scores using this method might be valid.  If researchers wish to use the extinction recall 

index, it is strongly recommended that a consistent strategy be adopted across studies.  

 

4.1 Summary of Fundamental Statistical Issues and Recommendations 

The major statistical issues identified in this paper are summarised below: 

1. Psychophysiological response data is “noisy”.  High levels of individual variability 

in physiological data reduces power and makes true effects more difficult to establish 

due to random, arbitrary fluctuations in the data. 

2. Poor estimates of individual variability due to removal of information.  Although 

standard practice, removal of the larger part of the information (such as inter-trial 

interval information or removal of CS trials) during data preparation reduces 

estimates of individual variability, making the data even ‘noisier’. 

3. Lack of modelling approaches.  Current data analysis strategies are not guided by 

theoretical parameters inherent to either fear extinction or psychophysiological 

responding and hence are poor explanations of the data set. 

4. Studies are underpowered.  Following from #3, studies are unable to detect effects 

as methods are not developed to detect appropriate effects from the available data.  

Current data analysis strategies used in the field are not able to cope with the lack of 

power and must be swapped and changed post hoc to detect effects. 

5. Lack of consistency of analyses between studies.  A wide variation in possible 

strategies that researchers can justifiably use greatly increases researcher degrees of 

freedom.  Choosing an analysis post hoc is a common researcher degree of freedom 
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that seems innocent yet still has repercussions for error rates (Gelman & Loken, 

2013). 

6. Lack of transparency in reported data.  Accurate interpretation of significant 

effects discovered with data averaged across trials is difficult.  This is particularly 

troublesome given the prevalence of type 1, type M and type S errors in small sample 

sizes (Gelman & Carlin, 2014). 

7. Lack of consistency of blocks between studies.  Similar to the point above, there are 

dozens, even hundreds, of possible comparisons due to trial × block combinations.  

This problem is exacerbated by lack of universally agreed comparisons by which 

blocks reflect the processes of fear conditioning and extinction. 

8. Routine removal of trials, determined post hoc.  Although often reasonable and 

well justified, removal of data post hoc makes an implicit adjustment to false positive 

error rate, discussed in Gelman and Loken (2013).  

 

We also have the following recommendations for improving on these issues.  We are certain 

that most research groups will be able to implement at least a few of these strategies, even if 

they are not able or willing to work on a modelling approach.  However, with a concerted and 

united effort we would expect that initially inaccessible statistical strategies and concepts 

would be able to be routinely implemented by a wide range of laboratories after some initial 

models begin to be developed.  

 

1. Modelling the error based on unused information.  Since most of the physiological 

data is unused when the data is prepared (ie. removal of CS trials and inter-trial 

responding), statisticians may consider optimising the amount of data removed 
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performed prior to analysis. Under a modelling approach, such as using time-series, 

removal of data would not be necessary. 

2. Full data made visible across all trials, or provided for independent analysis.  

This removes the problems associated with apparently arbitrary, or otherwise 

justified, exclusion of experimental trials, and allows readers to interpret and visualise 

findings, reducing the rate of false positive results based on illogical or otherwise 

arbitrary patterns found in the full dataset. 

3. Rigorous development of predictive modelling, such as linear trends, exponential 

decay or Bayesian approaches.  This is likely to provide better, more intuitive 

descriptions of the data over time.  More targeted strategies can boost power and 

reduce the number of comparisons, as well as make interpretation more intuitive and 

potentially consistent across studies. 

4. Testing increased number of trials.  Increasing the number of trials may be provide 

a better estimate of individual variability when learning/extinction has finished, 

potentially resulting more accurate and reliable findings if modelling as time-series 

data is not possible.  However, this needs to be tested with issues such as study 

duration considered. 

5. Increased sample sizes to as many as practical.  An absolute minimum of 20 

participants per group is likely to be necessary (Button et al., 2013; Simmons et al., 

2011); however this is likely to remain problematic until error estimates are improved.  

Effect sizes in studies with sample sizes with less than 20 participants per group are 

very likely to be overestimated (Gelman & Carlin, 2014). 

6. Consistency of fear extinction index.  A consistent analysis strategy for the fear 

extinction index needs to be adopted across studies; however, adoption of one or more 

standard statistical models may make an index redundant. 
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7. Multiple comparisons corrected using more liberal techniques, such as False 

Discovery Rate.  Due to relatively low power, conservative techniques may be 

unfavourable.  FDR boosts power to detect real effects and should be adopted for 

researchers using exploratory modelling with simple techniques. 

8. Moving towards a hierarchical or multi-level modelling approach.  Any data 

collected tells us something both about that individual and the group that an 

individual comes from. Hierarchical modelling formally addresses this. 

 

5.1 Conclusion 

 In this paper, we have outlined several existing problems in the statistical side of an 

important associative learning paradigm that is instrumental to our understanding of anxiety 

disorders and PTSD.  This is an important issue, as the key point is that significant yet poorly 

interpretable results can be easily achieved in the current paradigm due to the lack adequate 

power and inconsistent analytical strategy between research teams.  We have attempted to 

illustrate both how prevalent these issues are, as well as how easily, and perhaps subtly, 

results may be misconstrued and poor evidence may be convincingly presented as 

confirmatory.  Not only does the absence of such a strategy limit certainty about findings, but 

it also detracts from an agreed definition of what fear extinction might actually look like 

physiologically, and a huge opportunity for furthering our understanding of fear extinction 

mechanisms based on feedback from our physiological data is being missed.  In light of 

recent efforts in validating and standardising this area of research (Bach et al., 2018; Bach et 

al., 2013; Beckers et al., 2013; Lonsdorf et al., 2017; Lonsdorf & Merz, 2017; Scheveneels, 

Boddez, Vervliet, & Hermans, 2016; Staib et al., 2015), we feel that inconsistencies and lack 

of power in the research may be at least partly statistical- rather than design- or even sample-

based.  It is our duty to report our opinion that the field is consequently in an exploratory 
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phase, and researchers need to be aware that many findings will be either false, exaggerated 

or in the wrong direction.  Critically, we do not intend to criticise any particular research 

team; the main point of this paper is to motivate interest in modelling physiological fear 

extinction data.  

This conclusion, however, does not preclude the hope that good, informative science 

is the direction and ultimate outcome from our efforts.  These issues are currently widespread 

in psychological research (Button et al., 2013; Gelman & Carlin, 2014; Gelman & Loken, 

2013; Ioannidis, 2005; Open Science Collaboration, 2015; Wagenmakers et al., 2011) and 

most of the issues mentioned here are not entirely specific to this field.  In many areas of 

psychology, teams are working towards ensuring that their paradigms are informative and 

reliable, and statistical modelling is a key step in achieving this (Forstmann & Wagenmakers, 

2015a).  Rigorous revision of the statistical properties of this paradigm is one of the essential 

developments that will greatly improve replicability.  Many of the suggestions in this paper, 

namely the recommendation of simple modelling such as with linear, polynomial or 

exponential trends, are a preliminary attempt at making the essential concepts available to the 

wider field who are not experts in statistics and these techniques remain untested in larger 

databases.  However, lessons can be learnt from existing modelling attempts by the Zurich 

group (Bach, 2014; Bach, Daunizeau, et al., 2010; Bach et al., 2009; Bach, Flandin, et al., 

2010; Bach, Friston, et al., 2010; Bach et al., 2013), and modelling software for this data is 

now developed for MATLAB (PsPM, Bach, et al. 2009; Bach, et al. 2013).  Efforts also need 

to be made so that modelling approaches are easily accessible to the broader research field 

who do not have advanced statistical training.  It is ours, and others (Krypotos, Klugkist, et 

al., 2017; Lonsdorf et al., 2017; Staib et al., 2015) optimistic opinions, that a concerted and 

transparent effort from the researchers in this field is achievable; an effort that will greatly 

improve the reputation and validity of the field.  
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