
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Global Ecology and Biogeography

                                             

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa41196

_____________________________________________________________

 
Paper:

Gilljam, D., Knape, J., Lindén, A., Mugabo, M., Sait, S. & Fowler, M. (2018).  The colour of environmental fluctuations

associated with terrestrial animal population dynamics. Global Ecology and Biogeography

http://dx.doi.org/10.1111/geb.12824

 

 

 

 

 

 
Released under the terms of a Creative Commons Attribution License (CC-BY). 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/186324173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa41196
http://dx.doi.org/10.1111/geb.12824
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Global Ecol Biogeogr. 2018;1–13.	 ﻿�   |  1wileyonlinelibrary.com/journal/geb

 

Received: 4 January 2018  |  Revised: 19 July 2018  |  Accepted: 24 July 2018
DOI: 10.1111/geb.12824

R E S E A R C H  P A P E R

The colour of environmental fluctuations associated with 
terrestrial animal population dynamics

David Gilljam1  | Jonas Knape2 | Andreas Lindén3 | Marianne Mugabo4 |  
Steven M. Sait4 | Mike S. Fowler1,5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.

1Dynamic Ecology Group, Department of 
Biosciences, College of Science, Swansea 
University, Swansea, United Kingdom
2Department of Ecology, Swedish University 
of Agricultural Sciences, Uppsala, Sweden
3Novia University of Applied Sciences, 
Ekenäs, Finland
4Faculty of Biological Sciences, School of 
Biology, University of Leeds, Leeds, United 
Kingdom
5Population Ecology Group, Institut 
Mediterrani d’Estudis Avançats (UIB‐CSIC), 
Esporles, Spain

*Correspondence
David Gilljam, Dynamic Ecology Group, 
Department of Biosciences, College of 
Science, Swansea University, Swansea SA2 
8PP, United Kingdom.
Email: d.a.gilljam@swansea.ac.uk

Funding information
Natural Environment Research Council, 
Grant/Award Number: NE/N00213X/1 and 
NE/N002849/1

Abstract
Aim: The temporal structure (colour) of environmental variation influences population 
fluctuations, extinction risk and community stability. However, it is unclear whether 
environmental covariates linked to population fluctuations are distinguishable from a 
purely random process (white noise). We aimed to estimate colour coefficients and 
relative support for three models commonly representing coloured stochastic pro‐
cesses, in environmental series linked to terrestrial animal population fluctuations.
Location: North America and Eurasia.
Time period: 1901–2002.
Major taxa studied: Birds, insects and mammals.
Methods: We analysed multiple abiotic environmental covariates, comparing point 
estimates and confidence intervals of temporal structure in competing models fitted 
using white noise, autoregressive [AR(1)] and 1/f processes in the time domain and 
the frequency domain (where time series were analysed after decomposition into 
different sinusoidal frequencies and their relative powers). All animal time series 
were sampled annually for ≤ 50 years, potentially inflating type II errors. We also 
considered 101‐year series of matched environmental covariates, performing a sta‐
tistical power analysis evaluating our ability to draw robust conclusions.
Results: Temperature‐related variables were associated with the largest fraction of 
population fluctuations. Ninety‐three per cent of shorter environmental series were in‐
distinguishable from white noise, limited by time‐series length and associated with wide 
confidence intervals. The longer environmental series analysed in the time domain of‐
fered sufficiently high statistical power to identify correctly colour estimates ≥ |0.27|, 
indicating that 20% of series were best described by a slightly reddened noise process.
Main conclusions: Focusing on the short time‐scales typically available for ecolo‐
gists, most environmental variables associated with terrestrial animal population 
fluctuations are best characterized by white noise processes, although type II errors 
are common. The correct detection of intermediately coloured noise with power 0.8 
requires ≥ 16 data points in the time domain or ≥ 47 points in the frequency domain. 
Over longer time‐scales, where type II errors are less likely, one‐fifth of populations 
are associated with coloured (often reddened) variables.
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1  |  INTRODUCTION

A major issue in population biology concerns how the colour of en‐
vironmental variation interacts with population dynamics to drive 
observed patterns of population fluctuations (e.g., Dillon et al., 2016; 
Halley, 1996; Ruokolainen, Lindén, Kaitala, & Fowler, 2009; Steele, 
1985). Here, colour refers to the temporal and/or spatial structure 
of variation that describes system dynamics. Analogous to the vis‐
ible light spectrum, low frequencies (slow fluctuations) dominate in 
red environments, high frequencies (rapid fluctuations) dominate 
in blue environments, while no frequencies are dominant in white, 
purely random environments (Halley, 1996). Environmental colour 
is predicted to interact with population demographic processes, 
such as survival, reproductive and developmental rates, stage 
structure or age structure, the intensity of intra‐ and interspecific 
competition and the shape and strength of density dependence 
(Ruokolainen, Lindén, et al., 2009). These interactions will modify 
the size of and correlation between the environment and popula‐
tion fluctuations, affecting ecological factors such as the extinc‐
tion risk of single species populations (Cuddington & Yodzis, 1999; 
Inchausti & Halley, 2003; Pimm & Redfearn, 1988; but see Fowler & 
Ruokolainen, 2013a) and in multispecies communities and spatially 
structured systems (Fowler & Ruokolainen, 2013b; Gonzalez & de 
Feo, 2007; Gudmundson, Eklöf, & Wennergren, 2015; Lögdberg & 
Wennergren, 2012; Ruokolainen, Ranta, Kaitala, & Fowler, 2009). 
The interaction between environmental colour and population de‐
mographic processes will also modify species interactions (e.g., 
prey–predator, competition, host–parasites) and ecosystem stabil‐
ity and function (Fowler & Ruokolainen, 2013a, 2013b; Greenman 
& Benton, 2005; Gudmundson et al., 2015; Inchausti & Halley, 
2003; Lögdberg & Wennergren, 2012; Ripa & Heino, 1999; Ripa 
& Ives, 2003; Roughgarden, 1975; Ruokolainen & Fowler, 2008; 
Ruokolainen, Fowler, & Ranta, 2007; Ruokolainen, Ranta, et al., 
2009). Furthermore, the response of species to coloured environ‐
mental variation depends on the time‐scale considered, the extent 
to which it coincides with the life cycle of an organism and the par‐
ticular life‐history traits that are affected by environmental change 
(Heino & Sabadell, 2003). Additionally, environmental variables in 
reddened environments imply consecutive periods (days, weeks, 
years) of favourable or unfavourable conditions, which may de‐
crease or increase extinction risk, respectively (Schwager, Johst, & 
Jeltsch, 2006). Populations with undercompensating growth tend 
to respond slowly to environmental changes; therefore, fluctuations 
in density are amplified under red environmental variation, which 
increases their extinction risk (Roughgarden, 1975). Large‐scale 
changes in climate variables associated with the El Niño Southern 
Oscillation (SO) or North Atlantic Oscillation (NAO) indices, which 

may encapsulate overall fluctuations in local environmental fluctu‐
ations (Post & Forchhammer, 2002), also impact on the dynamics of 
populations (Coulson et al., 2001; Hallett et al., 2004).

One of the main challenges when studying the impact of co‐
loured environmental variation on population dynamics is the ac‐
curacy of colour coefficients estimated from environmental time 
series. Autocorrelated processes have been observed and studied 
in many different fields, and the terminologies and methodologies 
used for their description and detection vary across disciplines. For 
example, within the geophysical and climatological sciences, vari‐
ability correlated at all time‐scales is often referred to as long‐term 
persistence (e.g., Halley, 2009; Rybski et al., 2006) or the ‘Hurst ef‐
fect’ (Hurst, 1951; reviewed by O’Connell et al., 2016), where strong 
long‐term persistence characterizes a domination of low‐frequency 
(slow or reddened) fluctuations. In ecology, two methods are com‐
monly used to generate and/or statistically model coloured stochas‐
tic processes; autoregressive [AR(k), where k gives the order of the 
process, most frequently performed in the time domain] or sinu‐
soidal [1/fβ, where β is the spectral exponent, describing the linear 
relationship between log(signal power) and log(frequency) in the fre‐
quency domain, referred to hereafter as 1/f processes]. Analysis in 
the time domain investigates correlations between values of the se‐
ries at different times, whereas analysis in the frequency domain is a 
standardized method for decomposing the overall variance of a time 
series into contributions from different frequencies (e.g., Chatfield, 
1996; Dillon et al., 2016). These processes differ in some respects; 
for example, the variance grows continuously with observation time 
in a 1/f process, whereas variance growth will eventually cease in 
an autoregressive process (Halley, 2005). The methodology used 
and the time‐scales at which observations of the focal variable are 
made will impact our perception of the true variability of, for exam‐
ple, climate covariates (Király & Jánosi, 2002; Ruokolainen, Lindén, 
et al., 2009). For example, in a white noise process, the total variance 
is independent of observation sampling frequency but scales lin‐
early with the amount of sample aggregation, whereas in a coloured 
process the total variance depends on time‐series length, sample 
timing and aggregation (Halley, 2007). In 1/f models, low sampling 
frequency can result in a systematic ‘whitening’ (or ‘aliasing’) of the 
power spectrum, which yields estimates closer to zero compared 
with the true colour (Kirchner, 2005). However, aliasing can be off‐
set by sampling aggregation (e.g., seasonal averages calculated from 
daily samples; Halley, 2007, 2009; Kirchner, 2005). The detection 
of processes other than white noise (avoiding type II statistical er‐
rors) is especially difficult when time series are short and the true 
colour is close to zero (Gerrodette et al., 1987; Miramontes & Rohani, 
2002; Pimm & Redfearn, 1988), which has led to the development 
of several alternative approaches for overcoming such difficulties 

K E Y W O R D S

climate, environmental forcing, environmental variation, fluctuations, frequency domain, 
population dynamics, spectral colour, time domain, time series
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(Cannon, Percival, Caccia, Raymond, & Bassingthwaighte, 1997; 
Halley, 2009; Miramontes & Rohani, 2002; Pimm & Redfearn, 1988; 
Rohani, Miramontes, & Keeling, 2004).

Inaccuracies in estimation and differences across approaches 
can potentially filter through to generate statistical artefacts and 
important differences in population dynamics, affecting, for exam‐
ple, extinction risk forecasts (Halley & Kunin, 1999). Given the short 
time‐scales typically available for ecological time‐series data, two 
important questions in population biology are therefore: (a) what 
model form (e.g., white noise, autoregressive or 1/f process) best 
characterizes, and (b) what statistical power do we have for correctly 
detecting autocorrelation in the environmental variables that drive 
natural population fluctuations? Identifying the role of coloured envi‐
ronmental noise in driving population dynamics, moderating species 
interactions and shaping community structure is especially important 
in the context of climate change and the future challenges faced by 
biodiversity. Climate warming is expected to change the spatio‐tem‐
poral structure of natural environmental fluctuations (Wigley, Smith, 
& Santer, 1998). For example, recent evidence suggests that El Niño 
years are increasing in frequency (Power, Delage, Chung, Kociuba, & 
Keay, 2013; i.e., becoming less red). In contrast, Northern Hemisphere 
weather systems are expected to start changing more slowly (i.e., be‐
coming redder) because of amplified arctic warming causing weak‐
ened jet streams (Hurrel & Loon, 1997; Mann et al., 2017).

Previous efforts have been made to estimate the colour param‐
eters of natural environmental variables (e.g., García‐Carreras & 
Reuman, 2011; Vasseur & Yodzis, 2004). To date, however, no study 
has attempted to do this for multiple environmental variables that 
have been linked explicitly and robustly to natural animal population 
time series. Here, using abiotic environmental variables that have 
been appropriately coupled to population fluctuations across a wide 
range of terrestrial animal taxa and geographical locations (Knape & 
de Valpine, 2011), we have evaluated the statistical support for dif‐
ferent colours and the underlying processes in the natural environ‐
mental variables associated with animal populations. This represents 
a useful step forward given (a) the lack of statistical support for many 
purported power‐law relationships, such as those investigated here 
(Stumpf & Porter, 2012), and (b) the predicted sensitivity of population 
responses to the colour of environmental noise and the correspond‐
ing wide‐ranging effects on species and their interactions with other 
species. Our initial aim was to investigate whether animal populations 
respond to a broad range of abiotic environmental drivers or to some 
subset of possible variables. We then assessed the level of statisti‐
cal support and power in natural environmental time series for three 
models commonly used to characterize or simulate (coloured) sto‐
chastic processes: white noise (a purely random process without any 
temporal structure), AR(1) and 1/f models. Support for these meth‐
ods was assessed by analysis in both the frequency and time domains 
(Chatfield, 1996; Dillon et al., 2016) to allow meaningful comparison 
across the methods. We also evaluated the multi‐segmenting method 
(MSM) of Miramontes and Rohani (2002), especially designed for esti‐
mating 1/f colour coefficients from short time series. We recorded the 
frequency of different environmental coefficient estimates (including 

their confidence intervals) to (a) establish the evidence for different 
coloured environmental covariates associated with population fluc‐
tuations in different animal taxa, and (b) assess whether results are 
characterized by lack of statistical power using the relatively short 
(≤ 50‐year) length of available animal population time series through 
comparison with longer (101‐year) versions of the same associated en‐

vironmental series.

2  |  METHODS

2.1 |  Data sources

We investigated abiotic environmental variables that were ex‐
plicitly linked to natural population fluctuations as covariates in 
log‐scale first‐ or second‐order autoregressive models by Knape 
and de Valpine (2011). They carried out a large‐scale analy‐
sis of natural population time series from the Global Population 
Dynamics Database (GPDD; NERC Centre for Population Biology, 
1999), which were coupled with a range of geo‐spatially matched 
environmental covariates and with indices for the North Atlantic 
Oscillation [Hurrel Station‐Based DJFM (Winter) NAO Index] and 
Southern Oscillation (SO) annual Index. The coupling by Knape and 
de Valpine (2011) only used environmental covariates that signifi‐
cantly reduced the model process error variance when included 
in models fitted to the GPDD population time‐series data. The 
spatially matched environmental variables were annual seasonal 
averages of monthly mean, maximum and minimum temperatures 
(calculated from the same temperature data) and of precipitation 
(in millimetres) and frost day frequency, obtained from the CRU 
TS v.2.1 database (Mitchell & Jones, 2005). These environmental 
variables provided the main data source for our present analysis, 
and details of how corresponding population and environmental 
time series were initially filtered are fully described by Knape and 
de Valpine (2011). We further filtered the available environmen‐
tal series for analysis by selecting only those covariates that were 
selected in the most parsimonious model describing population 
fluctuations by Knape and de Valpine (2011) according to Akaike 
information criterion corrected for small sample size (AICC; 371 
series out of 492) and had ≥ 10 consecutive (annual) data points. 
We excluded 10 further environmental time series that were not 
suitable for spectral analysis because they showed identical val‐
ues for all except one data point. We also excluded 135 repeated 
series; if the same environmental variable was associated with the 
dynamics of several species, overlapping in time, only the part of 
the environmental variable with the longest corresponding popu‐
lation time series was used.

We performed the analyses both on the time interval for which 
population data were available in the matched GPDD natural pop‐
ulation time series [following Knape & de Valpine (2011), hereafter 
referred to as the ‘short’ series] and on the entire series from the 
CRU TS v.2.1 database (years 1901–2002, the ‘long’ series). The lat‐
ter approach increased statistical power under the assumption that 
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the same covariates also affected the corresponding populations 
before (or after) the populations had been surveyed. Given that win‐
ter series were composed of environmental data from December, 
January and February, the final year of the long series missed the 
last 2 months and was excluded. For consistency, we also removed 
the last year from the other environmental covariate types. Finally, 
21 series were removed where no match between the original, 
short series and the long CRU series could be found. This left us 
with 163 unique short (≤ 50‐year) and 160 unique long (101‐year) 
environmental time series for our main analysis (Figure 1; Supporting 
Information Appendix S1 Table S1). All environmental time series 
were standardized to have zero mean and unit variance, and de‐
trended (see ‘Time series analysis and model comparison’).

The terrestrial animal population time series were composed of 
annual abundance estimate data from birds, mammals and insects. We 
recorded the distributions of environmental covariate types and the 
classes of the associated animal series [in this analysis, all covariates 
related to temperature (mean, maximum and minimum seasonal av‐
erages) were pooled]. This left us with 224 unique animal population 
time series driven by the environment in our final analyses. For the 
long time series, we also recorded the proportions of animal classes 

associated with coloured or white environmental covariates (see ‘Time 
series analysis and model comparison’).

2.2 |  Time series analysis and model comparison

We compared three statistical models commonly used to generate 
and/or characterize stochastic coloured time series: white noise, 
AR(1) and 1/f models. The white noise model (i.e., a random process 
with no temporal structure) is a special case of both latter models, 
but is described using one parameter less. To evaluate the strength 
of support for these models, we analysed data in the frequency 
domain, where we fitted the theoretical power spectra to the em‐
pirical periodograms of the detrended time series (detrending re‐
moved the least‐squares straight‐line fit with respect to year from 
the environmental time series, then used the residuals for further 
analysis). Given that detrending has the potential to ‘whiten’ power 
spectra, we also performed the main analysis using non‐detrended 
data (see Supporting Information Appendix S2). This differs from the 
normal approach for AR(1) models, where parameters are generally 
estimated in the temporal domain. However, we first estimated the 
autocorrelation coefficients in the frequency domain to ensure that 

F I G U R E  1  Characteristics of the environmental time series used in the study. (a) The geographical positions in U.S.A. and Canada (left), 
Eurasia (middle) and U.K. and Ireland (zoomed in, right) of the Global Population Dynamics Database (GPDD) natural population time‐series 
data, whose fluctuations are associated with the geo‐spatially linked environmental covariates analysed here (a small jitter is added to allow 
overlapping locations to be shown). (b) Three example environmental time series, coloured based on their associated colour parameters, 
estimated from the frequency domain (spectral exponent, β; autocorrelation coefficient, ρf (± 95% CIs); middle long series is defined as 
‘blue’ based on β alone; black series denote white noise). Upper, middle and lower environmental series show summer frost day frequency, 
summer precipitation and winter minimum temperature, associated with population dynamics of Euphydryas editha (bay checkerspot 
butterfly), Contopus virens (eastern wood‐pewee) and Libellula quadrimaculata (four‐spotted chaser), respectively (thick part of lines shows 
dates corresponding to available animal population data). (c) Length (in years) of the short time series used in the analyses; median = 18 years
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the competing models compared the same data. The empirical perio‐
dograms (power spectra) were obtained with a standard fast Fourier 
transform algorithm using the ‘fft’ function in MATLAB (v.2014a), 
where the number of frequencies evaluated equals ceil

[
(n+1)∕2

]
−1 

(ceil rounds a number to the next larger integer).
The theoretical power spectrum of the AR(1) model is (Chatfield, 

1996, p. 100):

where ρ is the autocorrelation parameter and σ is the standard devi‐
ation of the (environmental) time series. For 1/f (short for 1/fβ) pro‐
cesses, the corresponding function is:

where β is the spectral exponent (slope) and α is a constant regulating 
the intercept of the spectrum and thus the strength of fluctuations.

The theoretical power spectral densities were fitted to the peri‐
odograms on the decibel scale (any logarithmic scale would be valid 
and will not affect our conclusions), using a least‐squares approach. 
The decibel transformation is a special case of logarithmic transfor‐
mation, namely:

That is, the power was decibel transformed (the dB operator is 
scaled logarithmically) before model fitting, making the multiplica‐
tive model additive.

To evaluate the white noise model, we fitted a linear regression 
with an intercept only:

where fi is the empirical periodogram and εf are normal, indepen‐
dent, identically distributed residuals.

For the AR(1) process, we fitted the model:

solving for the maximum likelihood (i.e., least‐squares) solution for 
parameter ρ, using the function ‘fminbnd’ in MATLAB (v.2014a) for 
one‐dimensional nonlinear minimization. We used ordinary least 
squares to fit the remaining parameters in each iteration. The inter‐
cept α2 then corresponds to dB(σ2) (see Equation 1).

The power spectrum for the 1/f process is linear on the log–log 
scale and can be fitted as:

where the intercept α3 corresponds to 10α (see Equation 2).
We recorded parameter estimates from the frequency domain 

for the spectral exponent (β) and autocorrelation coefficient (ρf) for 

each time series, and symmetric 95% confidence intervals (CIs) for 
each estimate, based on the t‐distribution. The statistical signifi‐
cance of parameter estimates was determined by assessing whether 
the range of the 95% CIs of the estimate spanned zero. Furthermore, 
we estimated the autocorrelation coefficient (± 95% CIs) from the 
temporal (time) domain (ρT), in common with the majority of previ‐
ous work. This allowed us to determine whether the loss of power 
associated with estimating autocorrelation in the frequency domain 
(where ca. n/2 data points are used in the coefficient estimation) had 
an important influence on our results and conclusions. We also com‐
pared colour coefficients with a null hypothesis of intermediately 
reddened colour, generally referred to as pink noise in the frequency 
domain (e.g., Halley, 1996), here considered to represent ecologically 
non‐trivial temporal structure on the annual scale. Given that the 
true underlying process for environmental fluctuations is unknown, 
this was done by checking whether CIs of the estimates spanned 
β = −1 for the 1/f models and ρf = ρT = 0.7 for the AR(1) models. 
We note that 1/f noise has no characteristic time‐scales, and a pink 
noise spectrum contains equal density influences (memory) on all 
time‐scale intervals if expressed on an octave scale (Halley, 1996; 
Halley & Kunin, 1999; Keshner, 1982), whereas the characteristic 
time‐scale, τ, of a AR(1) process is defined by ρ = exp(−1/τ) (i.e., for 
ρ = 0.7, τ = 2.804 years). However, for simplicity, we refer here to β = 
−1 and ρf = ρT = 0.7 as pink noise.

To compare relative model performance in the frequency do‐
main, we recorded AICC values from the 1/f, AR(1) and white noise 
models. Using AICC values, we calculated model weights (wi) and ev‐
idence ratios (Ei) as follows:

and

where ΔAICCi = AICCi – AICCmin, and R is the total number of models 
being compared (Anderson, 2008).

Finally, given that the detection of colour in short time series 
is difficult, we also evaluated the MSM of Miramontes and Rohani 
(2002), suggested to improve accuracy of 1/f colour estimates from 
time series as short as 47 time points (see Supporting Information 
Appendix S3).

2.3 |  Power analysis for colour estimates

The power for detecting trends in, for example, time‐series data, 
using least‐squares linear regression, can be derived from the rela‐
tionship between the slope, b (corresponding here to either ρ or β), 
the number of data points, n, the variance of the residuals, σ2

res
, and 

of the independent variable, σ2
x
, of the regression (Gerrodette, 1987):

(1)P (f)=
σ2

1+ρ2−2ρcos(2πf)

(2)P (f)=10α+β log10 f

(3)dB (x)=10 log10 x

(4)dB
[
P
(
fi
)]
=α1+εf

(5)dB
[
P
(
fi
)]
=α2−dB

[
1+ρ2−2ρcos(2πf)

]
+εf

(6)dB
[
P
(
fi
)]
=α3+βdB(f)+εf

(7)wi=

exp
�
−

1

2
ΔAICCi

�

∑R

r=1
exp

�
−

1

2
ΔAICCr

�

(8)Emin,i=
wmin

wi

=exp

(
−
1

2
ΔAICCi

)
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where zA (zB) is the value of a standard normal variable where the 
area under one tail of the probability density function beyond zA (zB) 
is A (B). That is, A is the probability of having a type I error (reject‐
ing the null‐hypothesis, H0, even if no true trend exists) and B is the 
probability of having a type II error (not rejecting H0 even if a true 
trend exists). Power (1 – B) is then the probability of avoiding type II 
errors (correctly rejecting H0).

Using Equation 9 and the normal cumulative density function, 
Φ, power (1 – B) can be calculated as a function of b, n, σ2

x
, σ2

res
 and 

zA/2 (A):

To evaluate our power to conclude correctly that colour coef‐
ficients (b in Equations 9 and 10) from regressions failing to reject 
our null hypothesis are not significantly different from zero, we 
performed a retrospective power sensitivity analysis (Gerrodette, 
1987; Peterman, 1990; Thomas, 1997), varying b from zero to two 
in increments of 0.01. By rearranging Equation 9 we also evaluated 
the smallest detectable colour and the time‐series length needed 
to recognize a specific colour, for a given level of power. The anal‐
yses were performed using the observed residual and independent 
variable variances from the linear least‐squares regressions in the 
frequency (1/f; Equation 6) and time domains, using data from the 
short and long environmental time series, with A = 0.05.

Our power analysis is based on standard least‐squares linear re‐
gression (Gerrodette, 1987). Estimates for AR models have a differ‐
ent sampling distribution, and the power formulas (Equations 9 and 
10) are not strictly correct when |ρT| approaches one and the AR(1) 
process is no longer stationary. We therefore performed a simula‐
tion‐based power analysis using long artificial time series of known 
colour to confirm our results. Given that the AR(1) process in the 
frequency domain (Equation 5) is nonlinear, this was not included at 
all in the power analysis.

3  |  RESULTS

3.1 |  Environmental variable types and species 
responses

Among the environmental variables analysed, those related to 
temperature were associated with the fluctuations of the larg‐
est fraction (42%) of populations, whereas the NAO (5%) and SO 
(8%) climate indices affected the smallest fractions of populations 
(Figure 2a). Precipitation and frost day frequency influenced the 
fluctuations of 23 and 21% of the population time series, respec‐
tively. Seasonally, environmental covariates related to spring were 
associated with the largest fraction (30%) of all variables, with the 

remaining 25% summer, 24% winter and 20% autumn variables 
(Figure 2a). In total, 224 unique terrestrial animal populations were 
associated with 163 environmental covariates, where 126 (56%) 
were bird populations, 69 (31%) insects and 29 (13%) were mam‐
mals, respectively (Figure 2b). Given the potential for taxonomic 
selection bias (over‐representation of some species/taxa) present 
in the original GPDD database, we did not compare our results with 
the underlying percentages from the GPDD or CRU data sets.

3.2 |  Temporal analysis of environmental time series

Out of 163 environmental series (S, ≤ 50 years), most were indistin‐
guishable from white noise processes (Figure 3). Analysis of the entire, 
longer environmental series (L, 101 years) showed a larger fraction 
of estimates being significantly different from zero (Figure 3d–f) 
compared with short series (Figure 3a–c); the estimates that were 
distinguishable from white noise processes tended to be reddened 
(Figure 3d–f). The means of the estimated colour coefficients (± 95% 
CIs) were μ(βS) = −0.088 ± 0.116; μ(βL) = −0.086 ± 0.038; μ(ρf S) = 

(9)b2nσ2
x
≥ (zA∕2+zB)

2σ2
res

(10)power=1−Φ

(
zA∕2−

√
b2nσ2x

σ2res

)

F I G U R E  2   (a, b) The distribution of (a) environmental variable 
types, associated with (b) fluctuations in different terrestrial animal 
population taxa. All environmental variables related to temperature 
[Temp (mean, maximum and minimum seasonal averages)] were 
pooled because they were based on the same temperature data 
(Mitchell & Jones, 2005). Precip and Frost denote precipitation 
and frost day frequency, respectively. There were n = 224 unique 
population time series associated with both (a) and (b). There were 
163 unique environmental variable time series in (a), because the 
El Niño Southern Oscillation (SO) and North Atlantic Oscillation 
(NAO) indices are associated with several populations
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0.053 ± 0.052; μ(ρf L) = 0.047 ± 0.023; μ(ρT S) = 0.028 ± 0.036 and 
μ(ρT L) = 0.102 ± 0.020.

Specifically, when colour exponents were estimated in the fre‐
quency domain, a white noise model was considered the best and 
most parsimonious fit to the short data series in 151 (93%) cases, 

while 1/f and AR(1) models were considered best in seven (4%) and 
five (3%) of cases, respectively (Figures 3 and 4). Only two (1%) of 
the parameter estimates were found to differ significantly from 
zero under both 1/f and AR(1) models. These general patterns are 
reflected in the longer time series; 106 (66%) were best described by 

F I G U R E  3  Estimated colour coefficients from environmental variables associated with natural, terrestrial animal population fluctuations. 
Grey bars show the frequency of point estimates for different colours; black bars show only those estimates that were significantly different 
from zero. (a, d) Spectral exponents (β). (b, e) Autocorrelation coefficients (ρf) estimated from the frequency domain. (c, f) Autocorrelation 
coefficients estimated from the time domain (ρT). Panel rows show results based on short (a–c; n = 163) and long (d–f; n = 160) time series. 
Bars above the top row indicate the corresponding colour of the estimated coefficients. Vertical dashed lines show mean values across all 
estimated coefficients

F I G U R E  4  Comparison of the relative performance of three modelling approaches describing temporal environmental variation 
evaluated in the frequency domain. (a, b) Differences in Akaike information criterion corrected for small sample size (AICC) values for 
white noise, 1/f and AR(1) models. The ΔAICC AR(1) and ΔAICC 1/f show the difference between white noise and AR(1), and white noise and 
1/f models, respectively. Negative values indicate white noise being the best (more parsimonious) model. Points are semi‐transparent to 
visualize overlaps. Panels present results based on (a) short and (b) long environmental series. (c) The AICC weights (w) for models based on 
short (left) and long (right) time series
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white noise, 33 (21%) by 1/f and 21 (13%) by AR(1) models (Figures 
3 and 4), with 11 (7%) of the longer time series differing significantly 
from zero under both 1/f and AR(1) models. Of these, the major‐
ity (10) were reddened, and only one was blue. We also performed 
this analysis without detrending the weather data, to ensure our 
analyses of colour coefficients were not biased by our method of 
detrending the time series. We found a weak whitening effect attrib‐
utable to our detrending approach in our main analysis (Supporting 
Information Appendix S2, Figure S2.1), more so in the short series 
compared with the long series. The means of the estimated colour 
coefficients (± 95% CIs) using the un‐detrended (raw) data were 
μ(βS) = −0.240 ± 0.111; μ(βL) = −0.165 ± 0.038; μ(ρf S) = 0.118 ± 0.053 
and μ(ρf L) = 0.083 ± 0.024. Comparing colour exponents from the 
main analysis in the frequency domain with estimates from the 
MSM did show slightly stronger colours using the MSM on the short 
series, but not for the long series. The means of the estimated co‐
lour coefficients (± 95% CIs) using the MSM method were μ(βS) = 
−0.243 ± 0.129 and μ(βL) = −0.114 ± 0.034 (Supporting Information 
Appendix S3).

Considering relative model performances from the frequency 
domain, the mean difference (± 95% CIs) between AICC values from 
white noise and 1/f or AR(1) models for the short time series were 
similar: μ(ΔAICC[1/fS]) = −4.544 ± 0.635 and μ(ΔAICC[AR(1)S]) = 
−4.533 ± 0.620 (Figure 4a). There was a greater difference in model 
performance for the long time series, although variation around the 
mean differences remained high: μ(ΔAICC[1/fL]) = −0.634 ± 0.353 
and μ(ΔAICC[AR(1)L]) = −0.785 ± 0.325 (Figure 4b). When comparing 
1/f and AR(1) models, the ΔAICC values were −0.011 ± 0.160 (short 
series) and −0.151 ± 0.161 (long series), and AICC weights (normal‐
ized model relative likelihoods) showed comparable support for both 
models (Figure 4c; Supporting Information Appendix S1, Figure S1.1). 
The AICC weights consistently supported white noise models in the 
shorter time series, with an increase in relative likelihood for both 
1/f and AR(1) models describing the longer time series (Figure 4c; 
Supporting Information Appendix S1, Figure S1.1).

Colour coefficients can also be compared with a ‘null’ hypoth‐
esis of pink noise (β = −1, ρf = 0.7). Spectral exponent (β) 95% CIs 
included pink noise in 98 (60%) of short time series and only two 
(1%) estimated from long time series. Autocorrelation coefficient (ρf) 
CIs included pink noise in 70 (43%) short series and two (1%) of the 
long series.

Five (3%) of the 163 autocorrelation coefficients estimated in the 
temporal domain (ρT) from short time series were found to differ sig‐
nificantly from zero (Figure 3c). For the 160 long series, 32 (20%) of 
the estimates differed significantly from zero (Figure 3f). The mean 
ρT estimates were μ(ρT S) = 0.028 ± 0.036 and μ(ρT L) = 0.102 ± 0.020 
(Figure 3c, f), with strong correlations between the colour coeffi‐
cient estimates from 1/f and AR(1) methods (Supporting Information 
Appendix S1, Figure S1.2).

We found that larger fractions of the coloured environmental co‐
variates were associated with mammals, whereas smaller fractions 
were associated with birds, compared with the white covariates 
(Supporting Information Appendix S1, Figure S1.3). Averaged over 

all models, 20 (14%) and seven (32%) cases of the long environmental 
time series characterized as white or coloured, respectively, were 
associated with population time series of mammals, 88 (64%) and 
10 (46%) cases, respectively, with birds, and 30 (22%) and five (22%) 
cases, respectively, with insects (Supporting Information Appendix 
S1, Figure S1.3). Given that sample sizes for coloured fractions were 
very low (Supporting Information Appendix S1, Figure S1.3), we did 
not test for significant differences between fractions.

3.3 |  Power analysis for colour estimates

The statistical power to identify a coloured signal from white noise 
correctly was, as expected, higher for the long time series compared 
with the short, and in the time domain compared with the frequency 
domain (Figure 5a). Mean power values (± 95% CIs) for pink environ‐
ments (|β| = 1, ρT = 0.7) were 0.575 ± 0.041 and 0.865 ± 0.016 (short 
series), and 0.995 ± 0.002 and 1.000 ± 0.000 (long series), respectively. 
Consequently, the smallest detectable colour is lowest in the time domain 
using the long time series and highest in the frequency domain using the 
short series (Figure 5b). Moreover, the time‐series length required to 
detect colour correctly increases rapidly for colour close to white noise 
(Supporting Information Appendix S1, Figure S1.4). Correct detection of, 
for example, pink noise with power 0.8 would require at least 47 ± 6 data 
points in the frequency domain (β = 1) or 16 ± 1 points in the time domain 
(ρT = 0.7) based on the short series, whereas correct identification of a sig‐
nal with a colour exponent |β| = 0.1 with power 0.8 would require at least 
4,637 ± 583 points in the frequency domain.

4  |  DISCUSSION

We have shown that the majority (93%) of environmental variables 
that have previously been linked to terrestrial animal population 
fluctuations do not appear to show any recognizable temporal 
structure (colour), when estimated over a maximum of 50 years. 
However, there is considerable uncertainty associated with the 
colour estimates for these short series, indicated by wide confi‐
dence intervals (Supporting Information Appendix S1, Table S1). 
Our power analysis (Figure 5) clarifies this uncertainty; power is 
not high enough to draw strong conclusions in the frequency do‐
main using the short series; however, in the time domain, we can 
be relatively certain (power ca. 0.8) that we correctly identified 
any pink noise (ρT ≥ 0.7) in environmental series of ≥ 16 years, cor‐
responding to 69% of our short time series. When longer (101‐
year) versions of the matched environmental time series were 
used, 34% were best described by a coloured noise, either 1/f or 
AR(1), process in the frequency domain, and the estimates that 
were distinguishable from white noise processes tended to be red‐
dened. In the time domain, 32 of the 160 (20%) long series were 
distinguishable from white noise. Here, power is sufficiently high 
(0.95) for us to be confident that any pink (or blue) noise in the 
frequency domain (|β| ≥ 1) and coloured noise with an absolute es‐
timate |ρT| ≥ 0.35 in the time domain were correctly detected. If a 
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power of 0.8 is considered, we correctly identified coloured noise 
with an estimate |ρT| ≥ 0.27. Only 2% of the covariates (7% for the 
long series) were consistently considered coloured under both 1/f 
and AR(1) models. Temperature was the most common environ‐
mental variable associated with the animal population fluctuations 
(42%), although precipitation and frost day frequency were both 
associated with sizeable proportions of the populations (23 and 
21%, respectively; Figure 2). Comparing the fractions of coloured 
or white environmental covariates associated with animal classes, 
mammals and birds showed the largest differences; 14, 64 and 
22% of the long environmental time series characterized as white 
were associated with mammals, birds and insects, respectively, 
whereas the corresponding percentages characterized as coloured 
were 32, 46 and 22%.

Although there were fewer white noise series among the lon‐
ger (101‐year) environmental time series examined, extrapolated 
beyond the range of available population data, the model forms se‐
lected and colour coefficients estimated generally agreed with the 
results from the short series. However, the colour of environmental 
variables is known to be dependent on the time‐scale considered 
(e.g., Halley, 2007; Kirchner, 2005; Miramontes & Rohani, 2002; 
Pimm & Redfearn, 1988; Sabo & Post, 2008). The level of support 
for coloured time series should increase with the length of the 

series, because fluctuations at low (compared with high) frequen‐
cies require a longer time to be detected. Indeed, the entire distribu‐
tion of model evidence ratios was slightly shifted in the direction of 
support for coloured processes, comparing the long series with the 
short (Supporting Information Appendix S1, Figure S1.1). Including 
the longer environmental series improves our statistical power for 
detecting colour (Figure 5; Supporting Information Appendix S1, 
Figure S1.4) at the cost of weakening the empirical link to population 
dynamics, because the coupled animal population time series were 
not as long. Examining the environmental time series in the temporal 
domain also increases statistical power, mainly owing to loss of data 
in the frequency domain where the number of degrees of freedom 
is around half of that compared with the time domain. Clearly, the 
time domain offers an advantage when it comes to identifying cor‐
rectly colour coefficients close to white noise in the sorts of data 
sets typically available to ecologists. The lack of longer (> 101‐year) 
environmental time series could also be why we found such small 
differences between the 1/f and the AR models (Halley, 2005), and 
the reason why the MSM approach showed the same results as the 
main analysis (Supporting Information Appendix S3). Our short and 
long series provided only up to three or four segment sizes, respec‐
tively, for the MSM regression (Supporting Information Appendix 
S3, Figure S3.1).

F I G U R E  5  Power functions (a, c) and absolute values of smallest detectable colour parameter (b, d) for 1/f models in the frequency 
and AR(1) models in the time domains, for short (n = 10–50 years; a, b) and long (n = 101 years; c, d) environmental variables associated 
with natural, terrestrial animal population fluctuations. Thick lines in (a, c) are the mean for all series. Dashed lines show white (β = ρT = 
0), pink/blue (|β| = 1, |ρT| = 0.7) and red/violet (|β| = 2, |ρT| = 0.99) noise in the two domains. A power of, for example, 0.8 equals the risk 
of a type II error of 0.2 (four times higher than a type I error risk of 0.05). Note the varying scales in (b, d)
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Our analysis was based on covariates linked to population fluc‐
tuations where changes in population sizes were recorded annually; 
any cycles with a period shorter than 1 year are therefore not pres‐
ent in the data. Organisms with shorter life spans, for example, hav‐
ing multiple generations within a single year, might therefore show 
different results. In the case of red environmental noise, extinction 
risk decreases in annually reproducing species, but increases for se‐
melparous and perennial species (Heino & Sabadell, 2003). The long 
environmental time series analysed here ran from 1901 to 2002, 
and as longer time series (with a higher temporal resolution) become 
available, we recommend re‐analysis based on the approach used 
here.

Power law relationships are often proposed to describe natural 
patterns, although few of them are backed up statistically (Stumpf 
& Porter, 2012). Our results illustrate that there is little support for 
power law characteristics in the temporal structure [i.e., heavy tailed 
distributions of slow or rapid fluctuations (low or high frequencies)] 
of most of the environmental covariates analysed here. That is, we 
found weak support for recognizable temporal structure (colour) 
with an absolute colour coefficient in the time domain ≥ 0.27 in 
annual variables associated with terrestrial animal population fluc‐
tuations. Previous work has suggested that the colour of a number 
of terrestrial environmental variables is distributed between white 
and pink noise (Vasseur & Yodzis, 2004). Our approach builds on 
this earlier analysis by incorporating further statistical context to 
improve our understanding. García‐Carreras and Reuman (2011) 
suggested that there was a correlation between animal population 
and environmental spectral exponents, also using data from the 
GPDD. However, a correlation analysis between the colour param‐
eter of an environmental signal and that of raw population sizes ig‐
nores density‐dependent feedback mechanisms and uncertainty in 
parameter estimates, and can easily generate spurious correlations 
(Royama, 1981). We avoided those problems here using only the 
environmental covariates identified as meaningful components in 
population models by Knape and de Valpine (2011). Although part of 
this coupling identified may be weak owing to possible model over‐
fitting (Knape & de Valpine, 2011), it is the only study we are aware 
of in which a robust statistical model selection framework has been 
used to link empirical population time‐series fluctuations with envi‐
ronmental covariates [but see Ferguson, Carvalho, Murillo‐García, 
Taper, & Ponciano (2016) for a simulation study].

Given that relatively few environmental variables associated 
with population dynamics are temporally autocorrelated, this should 
be put into context with a few recent studies providing indirect 
support to our results. Using a model‐based approach, Ferguson 
et al. (2016) estimated the degree of environmental autocorrela‐
tion present in time series of animal population data and, as in the 
present study, found it to be low. Engen et al. (2013) developed a 
theoretical method using age‐structured populations for estimating 
the influence of autocorrelated environments on population dy‐
namics. When applied to data sets from four mammal species, they 
found small effects of autocorrelated environments on population 
dynamics and concluded that using white noise approximations is 

often appropriate. This is also argued by van de Pol et al. (2011), who 
found that the extinction risk of a shorebird population was largely 
insensitive to noise colour because of the poor tracking ability of de‐
mographic rates on the colour of the environment. None of the three 
studies above analysed the temporal structure of environmental 
variables per se. However, taken together, it is clear that a new per‐
spective on the role of coloured environments is starting to emerge. 
Given that many ecological factors, such as species extinction risk 
and ecosystem function and stability, depend on the colour of the 
environment that populations are exposed to (e.g., Gudmundson 
et al., 2015; Ripa & Ives, 2003; Ruokolainen, Lindén, et al., 2009), 
incorporating empirically supported noise processes into predictive 
models of population and community dynamics is crucial for their re‐
liability. Furthermore, when non‐white colours have been detected 
reliably in environmental series, we can ask whether this coloured 
noise is ecologically relevant. This will depend on, for example, the 
demographic details of the population being affected, such as the 
intrinsic growth rate and shape of density dependence (Ruokolainen, 
Ranta, et al., 2009; Fowler & Ruokolainen, 2013b), but it is largely 
still an open question of considerable ecological interest.

Our results have implications for understanding the tempo‐
ral structure of environmental variation driving terrestrial animal 
population dynamics. Temperature was shown to be the most 
important weather variable associated with population dynam‐
ics, but our data sets were confined to the Northern Hemisphere 
with strong seasonal effects, as also evidenced by the important 
role of frost days. Environmental time series from a wider range of 
geographical locations might reveal that other variables also have 
an important impact. Our main analysis did not include long‐term 
environmental change (owing to our detrending approach) or its 
impact on species in marine environments. In contrast to the ter‐
restrial environment, marine environmental change is largely red 
because of the inertia in large bodies of water to rapid and/or dra‐
matic fluctuations (Steele, 1985; Vasseur & Yodzis, 2004). For both 
environments, however, there is increasing concern about how cli‐
mate change will alter the colour of environmental noise and the 
corresponding impact this will have on the dynamics of species. 
Recent evidence suggests that the colour of some weather vari‐
ables is becoming both more blue (e.g., El Niño years increasing in 
frequency; Power et al., 2013) and red (e.g., Northern Hemisphere 
weather systems start changing more slowly; Hurrel & Loon, 1997; 
Mann et al., 2017). Such changes could have profound implications 
for biodiversity across the globe.

Based on the results presented here, we propose that for time 
spans typical for ecological time series, white noise or weakly red‐
dened processes often best describe the annually measured abiotic 
environmental variables that are associated with fluctuations in many 
terrestrial animal populations, and analyses of coloured processes 
are best performed in the time domain to maximize confidence in 
parameter estimates. Given that population trajectories themselves 
are often autocorrelated, this implies that intrinsic and extrinsic 
biotic factors such as density dependence, age structure and spe‐
cies interactions are the most likely cause for such fluctuations (see 
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e.g., Akçakaya, Halley, & Inchausti, 2003; Ferguson et al., 2016). 
However, more effort is needed to collect coupled population and 
environmental data over longer time spans to ensure that the impor‐
tance of coloured environmental processes is not underestimated.
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