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Abstract
Aim:	The	temporal	structure	(colour)	of	environmental	variation	influences	population	
fluctuations,	extinction	risk	and	community	stability.	However,	it	is	unclear	whether	
environmental	covariates	linked	to	population	fluctuations	are	distinguishable	from	a	
purely	random	process	(white	noise).	We	aimed	to	estimate	colour	coefficients	and	
relative	 support	 for	 three	models	 commonly	 representing	 coloured	 stochastic	 pro‐
cesses,	in	environmental	series	linked	to	terrestrial	animal	population	fluctuations.
Location:	North	America	and	Eurasia.
Time period:	1901–2002.
Major taxa studied:	Birds,	insects	and	mammals.
Methods:	We	analysed	multiple	abiotic	environmental	covariates,	comparing	point	
estimates	and	confidence	intervals	of	temporal	structure	in	competing	models	fitted	
using	white	noise,	autoregressive	[AR(1)]	and	1/f	processes	in	the	time	domain	and	
the	 frequency	domain	 (where	 time	 series	were	analysed	after	decomposition	 into	
different	 sinusoidal	 frequencies	 and	 their	 relative	 powers).	 All	 animal	 time	 series	
were	 sampled	 annually	 for	 ≤	50	 years,	 potentially	 inflating	 type	II	 errors.	We	 also	
considered	101‐year	series	of	matched	environmental	covariates,	performing	a	sta‐
tistical	power	analysis	evaluating	our	ability	to	draw	robust	conclusions.
Results:	 Temperature‐related	 variables	 were	 associated	 with	 the	 largest	 fraction	 of	
population	fluctuations.	Ninety‐three	per	cent	of	shorter	environmental	series	were	in‐
distinguishable	from	white	noise,	limited	by	time‐series	length	and	associated	with	wide	
confidence	intervals.	The	longer	environmental	series	analysed	in	the	time	domain	of‐
fered	sufficiently	high	statistical	power	to	identify	correctly	colour	estimates	≥	|0.27|,	
indicating	that	20%	of	series	were	best	described	by	a	slightly	reddened	noise	process.
Main conclusions:	 Focusing	on	 the	 short	 time‐scales	 typically	 available	 for	 ecolo‐
gists,	 most	 environmental	 variables	 associated	 with	 terrestrial	 animal	 population	
fluctuations	are	best	characterized	by	white	noise	processes,	although	type	II	errors	
are	common.	The	correct	detection	of	intermediately	coloured	noise	with	power	0.8	
requires	≥	16	data	points	in	the	time	domain	or	≥	47	points	in	the	frequency	domain.	
Over	longer	time‐scales,	where	type	II	errors	are	less	likely,	one‐fifth	of	populations	
are	associated	with	coloured	(often	reddened)	variables.
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1  |  INTRODUCTION

A	major	issue	in	population	biology	concerns	how	the	colour	of	en‐
vironmental	 variation	 interacts	with	 population	 dynamics	 to	 drive	
observed	patterns	of	population	fluctuations	(e.g.,	Dillon	et	al.,	2016;	
Halley,	1996;	Ruokolainen,	Lindén,	Kaitala,	&	Fowler,	2009;	Steele,	
1985).	Here,	colour	refers	to	the	temporal	and/or	spatial	structure	
of	variation	that	describes	system	dynamics.	Analogous	to	the	vis‐
ible	light	spectrum,	low	frequencies	(slow	fluctuations)	dominate	in	
red	 environments,	 high	 frequencies	 (rapid	 fluctuations)	 dominate	
in	blue	environments,	while	no	frequencies	are	dominant	 in	white,	
purely	 random	 environments	 (Halley,	 1996).	 Environmental	 colour	
is	 predicted	 to	 interact	 with	 population	 demographic	 processes,	
such	 as	 survival,	 reproductive	 and	 developmental	 rates,	 stage	
structure	or	age	structure,	 the	 intensity	of	 intra‐	and	 interspecific	
competition	 and	 the	 shape	 and	 strength	 of	 density	 dependence	
(Ruokolainen,	 Lindén,	 et	 al.,	 2009).	 These	 interactions	will	modify	
the	 size	of	 and	 correlation	between	 the	 environment	 and	popula‐
tion	 fluctuations,	 affecting	 ecological	 factors	 such	 as	 the	 extinc‐
tion	risk	of	single	species	populations	(Cuddington	&	Yodzis,	1999;	
Inchausti	&	Halley,	2003;	Pimm	&	Redfearn,	1988;	but	see	Fowler	&	
Ruokolainen,	2013a)	and	in	multispecies	communities	and	spatially	
structured	systems	 (Fowler	&	Ruokolainen,	2013b;	Gonzalez	&	de	
Feo,	2007;	Gudmundson,	Eklöf,	&	Wennergren,	2015;	Lögdberg	&	
Wennergren,	 2012;	 Ruokolainen,	 Ranta,	 Kaitala,	 &	 Fowler,	 2009).	
The	 interaction	between	environmental	colour	and	population	de‐
mographic	 processes	 will	 also	 modify	 species	 interactions	 (e.g.,	
prey–predator,	 competition,	 host–parasites)	 and	 ecosystem	 stabil‐
ity	and	 function	 (Fowler	&	Ruokolainen,	2013a,	2013b;	Greenman	
&	 Benton,	 2005;	 Gudmundson	 et	 al.,	 2015;	 Inchausti	 &	 Halley,	
2003;	 Lögdberg	 &	Wennergren,	 2012;	 Ripa	 &	 Heino,	 1999;	 Ripa	
&	 Ives,	 2003;	 Roughgarden,	 1975;	 Ruokolainen	 &	 Fowler,	 2008;	
Ruokolainen,	 Fowler,	 &	 Ranta,	 2007;	 Ruokolainen,	 Ranta,	 et	 al.,	
2009).	 Furthermore,	 the	 response	of	 species	 to	 coloured	environ‐
mental	variation	depends	on	the	time‐scale	considered,	the	extent	
to	which	it	coincides	with	the	life	cycle	of	an	organism	and	the	par‐
ticular	life‐history	traits	that	are	affected	by	environmental	change	
(Heino	&	 Sabadell,	 2003).	 Additionally,	 environmental	 variables	 in	
reddened	 environments	 imply	 consecutive	 periods	 (days,	 weeks,	
years)	 of	 favourable	 or	 unfavourable	 conditions,	 which	 may	 de‐
crease	or	 increase	extinction	risk,	respectively	 (Schwager,	Johst,	&	
Jeltsch,	 2006).	 Populations	 with	 undercompensating	 growth	 tend	
to	respond	slowly	to	environmental	changes;	therefore,	fluctuations	
in	 density	 are	 amplified	 under	 red	 environmental	 variation,	which	
increases	 their	 extinction	 risk	 (Roughgarden,	 1975).	 Large‐scale	
changes	 in	climate	variables	associated	with	 the	El	Niño	Southern	
Oscillation	 (SO)	or	North	Atlantic	Oscillation	 (NAO)	 indices,	which	

may	encapsulate	overall	fluctuations	in	local	environmental	fluctu‐
ations	(Post	&	Forchhammer,	2002),	also	impact	on	the	dynamics	of	
populations	(Coulson	et	al.,	2001;	Hallett	et	al.,	2004).

One	 of	 the	 main	 challenges	 when	 studying	 the	 impact	 of	 co‐
loured	 environmental	 variation	 on	 population	 dynamics	 is	 the	 ac‐
curacy	 of	 colour	 coefficients	 estimated	 from	 environmental	 time	
series.	Autocorrelated	processes	 have	been	observed	 and	 studied	
in	many	different	 fields,	and	the	 terminologies	and	methodologies	
used	for	their	description	and	detection	vary	across	disciplines.	For	
example,	 within	 the	 geophysical	 and	 climatological	 sciences,	 vari‐
ability	correlated	at	all	time‐scales	is	often	referred	to	as	long‐term	
persistence	(e.g.,	Halley,	2009;	Rybski	et	al.,	2006)	or	the	‘Hurst	ef‐
fect’	(Hurst,	1951;	reviewed	by	O’Connell	et	al.,	2016),	where	strong	
long‐term	persistence	characterizes	a	domination	of	low‐frequency	
(slow	or	reddened)	fluctuations.	In	ecology,	two	methods	are	com‐
monly	used	to	generate	and/or	statistically	model	coloured	stochas‐
tic	processes;	autoregressive	[AR(k),	where	k	gives	the	order	of	the	
process,	 most	 frequently	 performed	 in	 the	 time	 domain]	 or	 sinu‐
soidal	[1/fβ,	where	β	 is	the	spectral	exponent,	describing	the	linear	
relationship	between	log(signal	power)	and	log(frequency)	in	the	fre‐
quency	domain,	referred	to	hereafter	as	1/f	processes].	Analysis	in	
the	time	domain	investigates	correlations	between	values	of	the	se‐
ries	at	different	times,	whereas	analysis	in	the	frequency	domain	is	a	
standardized	method	for	decomposing	the	overall	variance	of	a	time	
series	into	contributions	from	different	frequencies	(e.g.,	Chatfield,	
1996;	Dillon	et	al.,	2016).	These	processes	differ	in	some	respects;	
for	example,	the	variance	grows	continuously	with	observation	time	
in a 1/f	process,	whereas	variance	growth	will	 eventually	cease	 in	
an	 autoregressive	 process	 (Halley,	 2005).	 The	 methodology	 used	
and	the	time‐scales	at	which	observations	of	the	focal	variable	are	
made	will	impact	our	perception	of	the	true	variability	of,	for	exam‐
ple,	climate	covariates	(Király	&	Jánosi,	2002;	Ruokolainen,	Lindén,	
et	al.,	2009).	For	example,	in	a	white	noise	process,	the	total	variance	
is	 independent	 of	 observation	 sampling	 frequency	 but	 scales	 lin‐
early	with	the	amount	of	sample	aggregation,	whereas	in	a	coloured	
process	 the	 total	 variance	 depends	 on	 time‐series	 length,	 sample	
timing	and	aggregation	(Halley,	2007).	 In	1/f	models,	 low	sampling	
frequency	can	result	in	a	systematic	‘whitening’	(or	‘aliasing’)	of	the	
power	 spectrum,	 which	 yields	 estimates	 closer	 to	 zero	 compared	
with	the	true	colour	(Kirchner,	2005).	However,	aliasing	can	be	off‐
set	by	sampling	aggregation	(e.g.,	seasonal	averages	calculated	from	
daily	 samples;	Halley,	 2007,	 2009;	 Kirchner,	 2005).	 The	 detection	
of	processes	other	 than	white	noise	 (avoiding	type	II	statistical	er‐
rors)	 is	especially	difficult	when	time	series	are	short	and	the	true	
colour	is	close	to	zero	(Gerrodette	et	al.,	1987;	Miramontes	&	Rohani,	
2002;	Pimm	&	Redfearn,	1988),	which	has	 led	to	the	development	
of	 several	 alternative	 approaches	 for	 overcoming	 such	 difficulties	
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(Cannon,	 Percival,	 Caccia,	 Raymond,	 &	 Bassingthwaighte,	 1997;	
Halley,	2009;	Miramontes	&	Rohani,	2002;	Pimm	&	Redfearn,	1988;	
Rohani,	Miramontes,	&	Keeling,	2004).

Inaccuracies	 in	 estimation	 and	 differences	 across	 approaches	
can	 potentially	 filter	 through	 to	 generate	 statistical	 artefacts	 and	
important	differences	 in	population	dynamics,	 affecting,	 for	 exam‐
ple,	extinction	risk	forecasts	(Halley	&	Kunin,	1999).	Given	the	short	
time‐scales	 typically	 available	 for	 ecological	 time‐series	 data,	 two	
important	 questions	 in	 population	 biology	 are	 therefore:	 (a)	 what	
model	 form	 (e.g.,	 white	 noise,	 autoregressive	 or	 1/f process)	 best	
characterizes,	and	(b)	what	statistical	power	do	we	have	for	correctly	
detecting	 autocorrelation	 in	 the	environmental	 variables	 that	drive	
natural	population	fluctuations?	Identifying	the	role	of	coloured	envi‐
ronmental	noise	in	driving	population	dynamics,	moderating	species	
interactions	and	shaping	community	structure	is	especially	important	
in	the	context	of	climate	change	and	the	future	challenges	faced	by	
biodiversity.	Climate	warming	is	expected	to	change	the	spatio‐tem‐
poral	structure	of	natural	environmental	fluctuations	(Wigley,	Smith,	
&	Santer,	1998).	For	example,	recent	evidence	suggests	that	El	Niño	
years	are	increasing	in	frequency	(Power,	Delage,	Chung,	Kociuba,	&	
Keay,	2013;	i.e.,	becoming	less	red).	In	contrast,	Northern	Hemisphere	
weather	systems	are	expected	to	start	changing	more	slowly	(i.e.,	be‐
coming	 redder)	because	of	amplified	arctic	warming	causing	weak‐
ened	jet	streams	(Hurrel	&	Loon,	1997;	Mann	et	al.,	2017).

Previous	efforts	have	been	made	to	estimate	the	colour	param‐
eters	 of	 natural	 environmental	 variables	 (e.g.,	 García‐Carreras	 &	
Reuman,	2011;	Vasseur	&	Yodzis,	2004).	To	date,	however,	no	study	
has	 attempted	 to	 do	 this	 for	 multiple	 environmental	 variables	 that	
have	been	linked	explicitly	and	robustly	to	natural	animal	population	
time	 series.	 Here,	 using	 abiotic	 environmental	 variables	 that	 have	
been	appropriately	coupled	to	population	fluctuations	across	a	wide	
range	of	terrestrial	animal	taxa	and	geographical	 locations	(Knape	&	
de	Valpine,	2011),	we	have	evaluated	 the	statistical	 support	 for	dif‐
ferent	 colours	 and	 the	underlying	processes	 in	 the	natural	 environ‐
mental	variables	associated	with	animal	populations.	This	represents	
a	useful	step	forward	given	(a)	the	lack	of	statistical	support	for	many	
purported	 power‐law	 relationships,	 such	 as	 those	 investigated	 here	
(Stumpf	&	Porter,	2012),	and	(b)	the	predicted	sensitivity	of	population	
responses	to	the	colour	of	environmental	noise	and	the	correspond‐
ing wide‐ranging	effects	on	species	and	their	interactions	with	other	
species.	Our	initial	aim	was	to	investigate	whether	animal	populations	
respond	to	a	broad	range	of	abiotic	environmental	drivers	or	to	some	
subset	of	possible	 variables.	We	 then	assessed	 the	 level	 of	 statisti‐
cal	support	and	power	in	natural	environmental	time	series	for	three	
models	 commonly	 used	 to	 characterize	 or	 simulate	 (coloured)	 sto‐
chastic	processes:	white	noise	(a	purely	random	process	without	any	
temporal	 structure),	AR(1)	and	1/f	models.	Support	 for	 these	meth‐
ods	was	assessed	by	analysis	in	both	the	frequency	and	time	domains	
(Chatfield,	1996;	Dillon	et	al.,	2016)	to	allow	meaningful	comparison	
across	the	methods.	We	also	evaluated	the	multi‐segmenting	method	
(MSM)	of	Miramontes	and	Rohani	(2002),	especially	designed	for	esti‐
mating	1/f	colour	coefficients	from	short	time	series.	We	recorded	the	
frequency	of	different	environmental	coefficient	estimates	(including	

their	confidence	 intervals)	 to	 (a)	establish	the	evidence	for	different	
coloured	 environmental	 covariates	 associated	with	 population	 fluc‐
tuations	 in	different	animal	 taxa,	 and	 (b)	 assess	whether	 results	are	
characterized	 by	 lack	 of	 statistical	 power	 using	 the	 relatively	 short	
(≤	50‐year)	length	of	available	animal	population	time	series	through	
comparison	with	longer	(101‐year)	versions	of	the	same	associated	en‐

vironmental	series.

2  |  METHODS

2.1 |  Data	sources

We	 investigated	 abiotic	 environmental	 variables	 that	 were	 ex‐
plicitly	 linked	 to	 natural	 population	 fluctuations	 as	 covariates	 in	
log‐scale	 first‐	or	 second‐order	 autoregressive	models	by	Knape	
and	 de	 Valpine	 (2011).	 They	 carried	 out	 a	 large‐scale	 analy‐
sis	 of	 natural	 population	 time	 series	 from	 the	Global	 Population	
Dynamics	Database	(GPDD;	NERC	Centre	for	Population	Biology,	
1999),	which	were	coupled	with	a	range	of	geo‐spatially	matched	
environmental	covariates	and	with	indices	for	the	North	Atlantic	
Oscillation	[Hurrel	Station‐Based	DJFM	(Winter)	NAO	Index]	and	
Southern	Oscillation	(SO)	annual	Index.	The	coupling	by	Knape	and	
de	Valpine	(2011)	only	used	environmental	covariates	that	signifi‐
cantly	 reduced	 the	model	 process	 error	 variance	when	 included	
in	 models	 fitted	 to	 the	 GPDD	 population	 time‐series	 data.	 The	
spatially	matched	 environmental	 variables	were	 annual	 seasonal	
averages	of	monthly	mean,	maximum	and	minimum	temperatures	
(calculated	from	the	same	temperature	data)	and	of	precipitation	
(in	millimetres)	 and	 frost	 day	 frequency,	 obtained	 from	 the	CRU	
TS	v.2.1	database	(Mitchell	&	Jones,	2005).	These	environmental	
variables	provided	the	main	data	source	for	our	present	analysis,	
and	details	of	how	corresponding	population	and	environmental	
time	series	were	initially	filtered	are	fully	described	by	Knape	and	
de	Valpine	 (2011).	We	further	 filtered	the	available	environmen‐
tal	series	for	analysis	by	selecting	only	those	covariates	that	were	
selected	 in	 the	 most	 parsimonious	 model	 describing	 population	
fluctuations	by	Knape	and	de	Valpine	(2011)	according	to	Akaike	
information	 criterion	 corrected	 for	 small	 sample	 size	 (AICC;	 371	
series	out	of	492)	and	had	≥	10	consecutive	(annual)	data	points.	
We	excluded	10	further	environmental	time	series	that	were	not	
suitable	 for	 spectral	analysis	because	 they	showed	 identical	val‐
ues	for	all	except	one	data	point.	We	also	excluded	135	repeated	
series;	if	the	same	environmental	variable	was	associated	with	the	
dynamics	of	several	species,	overlapping	in	time,	only	the	part	of	
the	environmental	variable	with	the	longest	corresponding	popu‐
lation	time	series	was	used.

We	performed	the	analyses	both	on	the	time	interval	for	which	
population	data	were	available	 in	the	matched	GPDD	natural	pop‐
ulation	time	series	[following	Knape	&	de	Valpine	(2011),	hereafter	
referred	 to	as	 the	 ‘short’	 series]	and	on	 the	entire	 series	 from	the	
CRU	TS	v.2.1	database	(years	1901–2002,	the	‘long’	series).	The	lat‐
ter	approach	increased	statistical	power	under	the	assumption	that	
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the	 same	 covariates	 also	 affected	 the	 corresponding	 populations	
before	(or	after)	the	populations	had	been	surveyed.	Given	that	win‐
ter	 series	were	 composed	 of	 environmental	 data	 from	December,	
January	and	February,	 the	 final	year	of	 the	 long	series	missed	 the	
last	2	months	and	was	excluded.	For	consistency,	we	also	removed	
the	last	year	from	the	other	environmental	covariate	types.	Finally,	
21	 series	 were	 removed	 where	 no	 match	 between	 the	 original,	
short	 series	 and	 the	 long	CRU	 series	 could	 be	 found.	 This	 left	 us	
with	163	unique	 short	 (≤	50‐year)	 and	160	unique	 long	 (101‐year)	
environmental	time	series	for	our	main	analysis	(Figure	1;	Supporting	
Information	 Appendix	 S1	 Table	 S1).	 All	 environmental	 time	 series	
were	 standardized	 to	 have	 zero	 mean	 and	 unit	 variance,	 and	 de‐
trended	(see	‘Time	series	analysis	and	model	comparison’).

The	 terrestrial	 animal	 population	 time	 series	were	 composed	of	
annual	abundance	estimate	data	from	birds,	mammals	and	insects.	We	
recorded	the	distributions	of	environmental	covariate	types	and	the	
classes	of	the	associated	animal	series	[in	this	analysis,	all	covariates	
related	 to	 temperature	 (mean,	maximum	and	minimum	seasonal	av‐
erages)	were	pooled].	This	left	us	with	224	unique	animal	population	
time	series	driven	by	the	environment	 in	our	 final	analyses.	For	 the	
long	time	series,	we	also	recorded	the	proportions	of	animal	classes	

associated	with	coloured	or	white	environmental	covariates	(see	‘Time	
series	analysis	and	model	comparison’).

2.2 |  Time	series	analysis	and	model	comparison

We	compared	three	statistical	models	commonly	used	to	generate	
and/or	 characterize	 stochastic	 coloured	 time	 series:	 white	 noise,	
AR(1)	and	1/f	models.	The	white	noise	model	(i.e.,	a	random	process	
with	no	temporal	structure)	is	a	special	case	of	both	latter	models,	
but	is	described	using	one	parameter	less.	To	evaluate	the	strength	
of	 support	 for	 these	 models,	 we	 analysed	 data	 in	 the	 frequency	
domain,	where	we	fitted	the	theoretical	power	spectra	to	the	em‐
pirical	 periodograms	 of	 the	 detrended	 time	 series	 (detrending	 re‐
moved	the	 least‐squares	straight‐line	fit	with	respect	to	year	from	
the	environmental	 time	 series,	 then	used	 the	 residuals	 for	 further	
analysis).	Given	that	detrending	has	the	potential	to	‘whiten’	power	
spectra,	we	also	performed	the	main	analysis	using	non‐detrended	
data	(see	Supporting	Information	Appendix	S2).	This	differs	from	the	
normal	approach	for	AR(1)	models,	where	parameters	are	generally	
estimated	in	the	temporal	domain.	However,	we	first	estimated	the	
autocorrelation	coefficients	in	the	frequency	domain	to	ensure	that	

F I G U R E  1  Characteristics	of	the	environmental	time	series	used	in	the	study.	(a)	The	geographical	positions	in	U.S.A.	and	Canada	(left),	
Eurasia	(middle)	and	U.K.	and	Ireland	(zoomed	in,	right)	of	the	Global	Population	Dynamics	Database	(GPDD)	natural	population	time‐series	
data,	whose	fluctuations	are	associated	with	the	geo‐spatially	linked	environmental	covariates	analysed	here	(a	small	jitter	is	added	to	allow	
overlapping	locations	to	be	shown).	(b)	Three	example	environmental	time	series,	coloured	based	on	their	associated	colour	parameters,	
estimated	from	the	frequency	domain	(spectral	exponent,	β;	autocorrelation	coefficient,	ρf	(±	95%	CIs);	middle	long	series	is	defined	as	
‘blue’	based	on	β	alone;	black	series	denote	white	noise).	Upper,	middle	and	lower	environmental	series	show	summer	frost	day	frequency,	
summer	precipitation	and	winter	minimum	temperature,	associated	with	population	dynamics	of	Euphydryas editha	(bay	checkerspot	
butterfly),	Contopus virens (eastern	wood‐pewee)	and	Libellula quadrimaculata	(four‐spotted	chaser),	respectively	(thick	part	of	lines	shows	
dates	corresponding	to	available	animal	population	data).	(c)	Length	(in	years)	of	the	short	time	series	used	in	the	analyses;	median	=	18	years
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the	competing	models	compared	the	same	data.	The	empirical	perio‐
dograms	(power	spectra)	were	obtained	with	a	standard	fast	Fourier	
transform	 algorithm	using	 the	 ‘fft’	 function	 in	MATLAB	 (v.2014a),	
where	the	number	of	frequencies	evaluated	equals	ceil

[
(n+1)∕2

]
−1 

(ceil rounds	a	number	to	the	next	larger	integer).
The	theoretical	power	spectrum	of	the	AR(1)	model	is	(Chatfield,	

1996,	p.	100):

where ρ	is	the	autocorrelation	parameter	and	σ	is	the	standard	devi‐
ation	of	the	(environmental)	time	series.	For	1/f	(short	for	1/fβ)	pro‐
cesses,	the	corresponding	function	is:

where β	is	the	spectral	exponent	(slope)	and	α	is	a	constant	regulating	
the	intercept	of	the	spectrum	and	thus	the	strength	of	fluctuations.

The	theoretical	power	spectral	densities	were	fitted	to	the	peri‐
odograms	on	the	decibel	scale	(any	logarithmic	scale	would	be	valid	
and	will	not	affect	our	conclusions),	using	a	least‐squares	approach.	
The	decibel	transformation	is	a	special	case	of	logarithmic	transfor‐
mation,	namely:

That	 is,	the	power	was	decibel	transformed	(the	dB	operator	 is	
scaled	 logarithmically)	before	model	 fitting,	making	the	multiplica‐
tive	model	additive.

To	evaluate	the	white	noise	model,	we	fitted	a	linear	regression	
with	an	intercept	only:

where fi is	 the	 empirical	 periodogram	and	 εf	 are	 normal,	 indepen‐
dent,	identically	distributed	residuals.

For	the	AR(1)	process,	we	fitted	the	model:

solving	for	the	maximum	likelihood	 (i.e.,	 least‐squares)	solution	for	
parameter	ρ,	using	the	function	‘fminbnd’	in	MATLAB	(v.2014a)	for	
one‐dimensional	 nonlinear	 minimization.	 We	 used	 ordinary	 least	
squares	to	fit	the	remaining	parameters	in	each	iteration.	The	inter‐
cept	α2	then	corresponds	to	dB(σ2)	(see	Equation	1).

The	power	spectrum	for	the	1/f	process	is	linear	on	the	log–log	
scale	and	can	be	fitted	as:

where	the	intercept	α3	corresponds	to	10α	(see	Equation	2).
We	 recorded	parameter	estimates	 from	 the	 frequency	domain	

for	the	spectral	exponent	(β)	and	autocorrelation	coefficient	(ρf)	for	

each	time	series,	and	symmetric	95%	confidence	intervals	 (CIs)	for	
each	 estimate,	 based	 on	 the	 t‐distribution.	 The	 statistical	 signifi‐
cance	of	parameter	estimates	was	determined	by	assessing	whether	
the	range	of	the	95%	CIs	of	the	estimate	spanned	zero.	Furthermore,	
we	estimated	 the	autocorrelation	 coefficient	 (±	95%	CIs)	 from	 the	
temporal	 (time)	domain	(ρT),	 in	common	with	the	majority	of	previ‐
ous	work.	This	allowed	us	to	determine	whether	the	loss	of	power	
associated	with	estimating	autocorrelation	in	the	frequency	domain	
(where	ca. n/2	data	points	are	used	in	the	coefficient	estimation)	had	
an	important	influence	on	our	results	and	conclusions.	We	also	com‐
pared	 colour	 coefficients	with	 a	 null	 hypothesis	 of	 intermediately	
reddened	colour,	generally	referred	to	as	pink	noise	in	the	frequency	
domain	(e.g.,	Halley,	1996),	here	considered	to	represent	ecologically	
non‐trivial	 temporal	 structure	on	 the	 annual	 scale.	Given	 that	 the	
true	underlying	process	for	environmental	fluctuations	is	unknown,	
this	was	 done	 by	 checking	whether	CIs	 of	 the	 estimates	 spanned	
β	 =	 −1	 for	 the	1/f	models	 and	ρf	 =	ρT	 =	 0.7	 for	 the	AR(1)	models.	
We	note	that	1/f	noise	has	no	characteristic	time‐scales,	and	a	pink	
noise	 spectrum	 contains	 equal	 density	 influences	 (memory)	 on	 all	
time‐scale	 intervals	 if	 expressed	on	an	octave	 scale	 (Halley,	1996;	
Halley	 &	 Kunin,	 1999;	 Keshner,	 1982),	 whereas	 the	 characteristic	
time‐scale,	τ,	of	a	AR(1)	process	is	defined	by	ρ	=	exp(−1/τ)	(i.e.,	for	
ρ	=	0.7,	τ	=	2.804	years).	However,	for	simplicity,	we	refer	here	to	β	=	
−1	and	ρf	=	ρT	=	0.7	as	pink	noise.

To	 compare	 relative	model	 performance	 in	 the	 frequency	 do‐
main,	we	recorded	AICC	values	from	the	1/f,	AR(1)	and	white	noise	
models.	Using	AICC	values,	we	calculated	model	weights	(wi)	and	ev‐
idence	ratios	(Ei)	as	follows:

and

where ΔAICCi	=	AICCi	–	AICCmin,	and	R	is	the	total	number	of	models	
being	compared	(Anderson,	2008).

Finally,	 given	 that	 the	 detection	 of	 colour	 in	 short	 time	 series	
is	difficult,	we	also	evaluated	the	MSM	of	Miramontes	and	Rohani	
(2002),	suggested	to	improve	accuracy	of	1/f	colour	estimates	from	
time	series	as	short	as	47	time	points	 (see	Supporting	 Information	
Appendix	S3).

2.3 |  Power	analysis	for	colour	estimates

The	 power	 for	 detecting	 trends	 in,	 for	 example,	 time‐series	 data,	
using	least‐squares	linear	regression,	can	be	derived	from	the	rela‐
tionship	between	the	slope,	b	(corresponding	here	to	either	ρ or β),	
the	number	of	data	points,	n,	the	variance	of	the	residuals,	σ2

res
,	and	

of	the	independent	variable,	σ2
x
,	of	the	regression	(Gerrodette,	1987):

(1)P (f)=
σ2

1+ρ2−2ρcos(2πf)

(2)P (f)=10α+β log10 f

(3)dB (x)=10 log10 x

(4)dB
[
P
(
fi
)]
=α1+εf

(5)dB
[
P
(
fi
)]
=α2−dB

[
1+ρ2−2ρcos(2πf)

]
+εf

(6)dB
[
P
(
fi
)]
=α3+βdB(f)+εf

(7)wi=

exp
�
−

1

2
ΔAICCi

�

∑R

r=1
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�
−
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ΔAICCr

�
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where zA	 (zB)	 is	 the	value	of	a	 standard	normal	variable	where	 the	
area	under	one	tail	of	the	probability	density	function	beyond	zA	(zB) 
is	A	 (B).	That	is,	A	 is	the	probability	of	having	a	type	I	error	(reject‐
ing	the	null‐hypothesis,	H0,	even	if	no	true	trend	exists)	and	B is	the	
probability	of	having	a	type	II	error	(not	rejecting	H0	even	if	a	true	
trend	exists).	Power	(1	–	B)	is	then	the	probability	of	avoiding	type	II	
errors	(correctly	rejecting	H0).

Using	Equation	9	 and	 the	normal	 cumulative	 density	 function,	
Φ,	power	(1	–	B)	can	be	calculated	as	a	function	of	b,	n,	σ2

x
,	σ2

res
 and 

zA/2	(A):

To	evaluate	our	power	to	conclude	correctly	that	colour	coef‐
ficients	(b	in	Equations	9	and	10)	from	regressions	failing	to	reject	
our	 null	 hypothesis	 are	 not	 significantly	 different	 from	 zero,	we	
performed	a	retrospective	power	sensitivity	analysis	(Gerrodette,	
1987;	Peterman,	1990;	Thomas,	1997),	varying	b	from	zero	to	two	
in	increments	of	0.01.	By	rearranging	Equation	9	we	also	evaluated	
the	smallest	detectable	colour	and	the	time‐series	length	needed	
to	recognize	a	specific	colour,	for	a	given	level	of	power.	The	anal‐
yses	were	performed	using	the	observed	residual	and	independent	
variable	variances	from	the	linear	least‐squares	regressions	in	the	
frequency	(1/f;	Equation	6)	and	time	domains,	using	data	from	the	
short	and	long	environmental	time	series,	with	A	=	0.05.

Our	power	analysis	is	based	on	standard	least‐squares	linear	re‐
gression	(Gerrodette,	1987).	Estimates	for	AR	models	have	a	differ‐
ent	sampling	distribution,	and	the	power	formulas	(Equations	9	and	
10)	are	not	strictly	correct	when	|ρT|	approaches	one	and	the	AR(1)	
process	 is	no	 longer	stationary.	We	therefore	performed	a	simula‐
tion‐based	power	analysis	using	long	artificial	time	series	of	known	
colour	 to	 confirm	our	 results.	Given	 that	 the	AR(1)	 process	 in	 the	
frequency	domain	(Equation	5)	is	nonlinear,	this	was	not	included	at	
all	in	the	power	analysis.

3  |  RESULTS

3.1 |  Environmental	variable	types	and	species	
responses

Among	 the	 environmental	 variables	 analysed,	 those	 related	 to	
temperature	 were	 associated	 with	 the	 fluctuations	 of	 the	 larg‐
est	 fraction	 (42%)	of	populations,	whereas	 the	NAO	 (5%)	 and	SO	
(8%)	climate	indices	affected	the	smallest	fractions	of	populations	
(Figure	 2a).	 Precipitation	 and	 frost	 day	 frequency	 influenced	 the	
fluctuations	of	23	and	21%	of	 the	population	 time	series,	 respec‐
tively.	Seasonally,	environmental	covariates	related	to	spring	were	
associated	with	the	largest	fraction	(30%)	of	all	variables,	with	the	

remaining	 25%	 summer,	 24%	 winter	 and	 20%	 autumn	 variables	
(Figure	2a).	In	total,	224	unique	terrestrial	animal	populations	were	
associated	 with	 163	 environmental	 covariates,	 where	 126	 (56%)	
were	bird	populations,	69	 (31%)	 insects	and	29	 (13%)	were	mam‐
mals,	 respectively	 (Figure	 2b).	 Given	 the	 potential	 for	 taxonomic	
selection	 bias	 (over‐representation	 of	 some	 species/taxa)	 present	
in	the	original	GPDD	database,	we	did	not	compare	our	results	with	
the	underlying	percentages	from	the	GPDD	or	CRU	data	sets.

3.2 |  Temporal	analysis	of	environmental	time	series

Out	of	163	environmental	series	(S,	≤	50	years),	most	were	indistin‐
guishable	from	white	noise	processes	(Figure	3).	Analysis	of	the	entire,	
longer	environmental	series	(L,	101	years)	showed	a	larger	fraction	
of	 estimates	 being	 significantly	 different	 from	 zero	 (Figure	 3d–f)	
compared	with	short	series	 (Figure	3a–c);	 the	estimates	 that	were	
distinguishable	from	white	noise	processes	tended	to	be	reddened	
(Figure	3d–f).	The	means	of	the	estimated	colour	coefficients	(±	95%	
CIs)	 were	 μ(βS)	 =	 −0.088	±	0.116;	 μ(βL)	 =	 −0.086	±	0.038;	 μ(ρf S)	 =	

(9)b2nσ2
x
≥ (zA∕2+zB)

2σ2
res

(10)power=1−Φ

(
zA∕2−

√
b2nσ2x

σ2res

)

F I G U R E  2   (a,	b)	The	distribution	of	(a)	environmental	variable	
types,	associated	with	(b)	fluctuations	in	different	terrestrial	animal	
population	taxa.	All	environmental	variables	related	to	temperature	
[Temp	(mean,	maximum	and	minimum	seasonal	averages)]	were	
pooled	because	they	were	based	on	the	same	temperature	data	
(Mitchell	&	Jones,	2005).	Precip	and	Frost	denote	precipitation	
and	frost	day	frequency,	respectively.	There	were	n	=	224	unique	
population	time	series	associated	with	both	(a)	and	(b).	There	were	
163	unique	environmental	variable	time	series	in	(a),	because	the	
El	Niño	Southern	Oscillation	(SO)	and	North	Atlantic	Oscillation	
(NAO)	indices	are	associated	with	several	populations
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0.053	±	0.052;	 μ(ρf L)	 =	 0.047	±	0.023;	 μ(ρT S)	 =	 0.028	±	0.036	 and	
μ(ρT L)	=	0.102	±	0.020.

Specifically,	when	colour	exponents	were	estimated	 in	the	fre‐
quency	domain,	a	white	noise	model	was	considered	the	best	and	
most	parsimonious	 fit	 to	 the	short	data	 series	 in	151	 (93%)	cases,	

while 1/f	and	AR(1)	models	were	considered	best	in	seven	(4%)	and	
five	(3%)	of	cases,	respectively	(Figures	3	and	4).	Only	two	(1%)	of	
the	 parameter	 estimates	 were	 found	 to	 differ	 significantly	 from	
zero	under	both	1/f	and	AR(1)	models.	These	general	patterns	are	
reflected	in	the	longer	time	series;	106	(66%)	were	best	described	by	

F I G U R E  3  Estimated	colour	coefficients	from	environmental	variables	associated	with	natural,	terrestrial	animal	population	fluctuations.	
Grey	bars	show	the	frequency	of	point	estimates	for	different	colours;	black	bars	show	only	those	estimates	that	were	significantly	different	
from	zero.	(a,	d)	Spectral	exponents	(β).	(b,	e)	Autocorrelation	coefficients	(ρf)	estimated	from	the	frequency	domain.	(c,	f)	Autocorrelation	
coefficients	estimated	from	the	time	domain	(ρT).	Panel	rows	show	results	based	on	short	(a–c;	n	=	163)	and	long	(d–f;	n = 160)	time	series.	
Bars	above	the	top	row	indicate	the	corresponding	colour	of	the	estimated	coefficients.	Vertical	dashed	lines	show	mean	values	across	all	
estimated	coefficients

F I G U R E  4  Comparison	of	the	relative	performance	of	three	modelling	approaches	describing	temporal	environmental	variation	
evaluated	in	the	frequency	domain.	(a,	b)	Differences	in	Akaike	information	criterion	corrected	for	small	sample	size	(AICC)	values	for	
white	noise,	1/f	and	AR(1)	models.	The	ΔAICC	AR(1) and ΔAICC	1/f	show	the	difference	between	white	noise	and	AR(1),	and	white	noise	and	
1/f	models,	respectively.	Negative	values	indicate	white	noise	being	the	best	(more	parsimonious)	model.	Points	are	semi‐transparent	to	
visualize	overlaps.	Panels	present	results	based	on	(a)	short	and	(b)	long	environmental	series.	(c)	The	AICC	weights	(w)	for	models	based	on	
short	(left)	and	long	(right)	time	series
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white	noise,	33	(21%)	by	1/f	and	21	(13%)	by	AR(1)	models	(Figures	
3	and	4),	with	11	(7%)	of	the	longer	time	series	differing	significantly	
from	 zero	 under	 both	 1/f	 and	AR(1)	models.	Of	 these,	 the	major‐
ity	(10)	were	reddened,	and	only	one	was	blue.	We	also	performed	
this	 analysis	 without	 detrending	 the	 weather	 data,	 to	 ensure	 our	
analyses	of	 colour	 coefficients	were	not	biased	by	our	method	of	
detrending	the	time	series.	We	found	a	weak	whitening	effect	attrib‐
utable	to	our	detrending	approach	in	our	main	analysis	(Supporting	
Information	Appendix	S2,	Figure	S2.1),	more	so	 in	the	short	series	
compared	with	the	long	series.	The	means	of	the	estimated	colour	
coefficients	 (±	95%	 CIs)	 using	 the	 un‐detrended	 (raw)	 data	 were	
μ(βS)	=	−0.240	±	0.111;	μ(βL)	=	−0.165	±	0.038;	μ(ρf S)	=	0.118	±	0.053	
and μ(ρf L)	=	0.083	±	0.024.	Comparing	colour	exponents	 from	 the	
main	 analysis	 in	 the	 frequency	 domain	 with	 estimates	 from	 the	
MSM	did	show	slightly	stronger	colours	using	the	MSM	on	the	short	
series,	but	not	for	the	long	series.	The	means	of	the	estimated	co‐
lour	 coefficients	 (±	95%	CIs)	 using	 the	MSM	method	were	μ(βS)	 =	
−0.243	±	0.129	and	μ(βL)	=	−0.114	±	0.034	(Supporting	Information	
Appendix	S3).

Considering	 relative	 model	 performances	 from	 the	 frequency	
domain,	the	mean	difference	(±	95%	CIs)	between	AICC	values	from	
white	noise	and	1/f	or	AR(1)	models	for	the	short	time	series	were	
similar:	 μ(ΔAICC[1/fS])	 =	 −4.544	±	0.635	 and	 μ(ΔAICC[AR(1)S])	 =	
−4.533	±	0.620	(Figure	4a).	There	was	a	greater	difference	in	model	
performance	for	the	long	time	series,	although	variation	around	the	
mean	 differences	 remained	 high:	 μ(ΔAICC[1/fL])	 =	 −0.634	±	0.353	
and μ(ΔAICC[AR(1)L])	=	−0.785	±	0.325	(Figure	4b).	When	comparing	
1/f	and	AR(1)	models,	the	ΔAICC	values	were	−0.011	±	0.160	(short	
series)	and	−0.151	±	0.161	(long	series),	and	AICC	weights	 (normal‐
ized	model	relative	likelihoods)	showed	comparable	support	for	both	
models	(Figure	4c;	Supporting	Information	Appendix	S1,	Figure	S1.1).	
The	AICC	weights	consistently	supported	white	noise	models	in	the	
shorter	time	series,	with	an	 increase	 in	relative	 likelihood	for	both	
1/f	 and	AR(1)	models	describing	 the	 longer	 time	series	 (Figure	4c;	
Supporting	Information	Appendix	S1,	Figure	S1.1).

Colour	coefficients	can	also	be	compared	with	a	 ‘null’	hypoth‐
esis	of	pink	noise	 (β	=	−1,	ρf	=	0.7).	Spectral	exponent	 (β)	95%	CIs	
included	pink	noise	 in	98	 (60%)	of	 short	 time	series	and	only	 two	
(1%)	estimated	from	long	time	series.	Autocorrelation	coefficient	(ρf)	
CIs	included	pink	noise	in	70	(43%)	short	series	and	two	(1%)	of	the	
long	series.

Five	(3%)	of	the	163	autocorrelation	coefficients	estimated	in	the	
temporal	domain	(ρT)	from	short	time	series	were	found	to	differ	sig‐
nificantly	from	zero	(Figure	3c).	For	the	160	long	series,	32	(20%)	of	
the	estimates	differed	significantly	from	zero	(Figure	3f).	The	mean	
ρT	estimates	were	μ(ρT S)	=	0.028	±	0.036	and	μ(ρT L)	=	0.102	±	0.020	
(Figure	 3c,	 f),	with	 strong	 correlations	 between	 the	 colour	 coeffi‐
cient	estimates	from	1/f	and	AR(1)	methods	(Supporting	Information	
Appendix	S1,	Figure	S1.2).

We	found	that	larger	fractions	of	the	coloured	environmental	co‐
variates	were	associated	with	mammals,	whereas	smaller	 fractions	
were	 associated	 with	 birds,	 compared	 with	 the	 white	 covariates	
(Supporting	 Information	Appendix	S1,	Figure	S1.3).	Averaged	over	

all	models,	20	(14%)	and	seven	(32%)	cases	of	the	long	environmental	
time	 series	 characterized	 as	white	 or	 coloured,	 respectively,	were	
associated	with	population	 time	 series	 of	mammals,	 88	 (64%)	 and	
10	(46%)	cases,	respectively,	with	birds,	and	30	(22%)	and	five	(22%)	
cases,	respectively,	with	insects	(Supporting	Information	Appendix	
S1,	Figure	S1.3).	Given	that	sample	sizes	for	coloured	fractions	were	
very	low	(Supporting	Information	Appendix	S1,	Figure	S1.3),	we	did	
not	test	for	significant	differences	between	fractions.

3.3 |  Power analysis for colour estimates

The	 statistical	 power	 to	 identify	 a	 coloured	 signal	 from	 white	 noise	
correctly	 was,	 as	 expected,	 higher	 for	 the	 long	 time	 series	 compared	
with	 the	 short,	 and	 in	 the	 time	domain	 compared	with	 the	 frequency	
domain	 (Figure	 5a).	Mean	 power	 values	 (±	95%	 CIs)	 for	 pink	 environ‐
ments	 (|β| =	 1,	 ρT =	 0.7)	 were	 0.575	±	0.041	 and	 0.865	±	0.016	 (short	
series),	and	0.995	±	0.002	and	1.000	±	0.000	(long	series),	respectively.	
Consequently,	the	smallest	detectable	colour	is	lowest	in	the	time	domain	
using	the	long	time	series	and	highest	in	the	frequency	domain	using	the	
short	 series	 (Figure	 5b).	Moreover,	 the	 time‐series	 length	 required	 to	
detect	colour	correctly	increases	rapidly	for	colour	close	to	white	noise	
(Supporting	Information	Appendix	S1,	Figure	S1.4).	Correct	detection	of,	
for	example,	pink	noise	with	power	0.8	would	require	at	least	47	±	6	data	
points	in	the	frequency	domain	(β = 1)	or	16	±	1	points	in	the	time	domain	
(ρT =	0.7)	based	on	the	short	series,	whereas	correct	identification	of	a	sig‐
nal	with	a	colour	exponent	|β| =	0.1	with	power	0.8	would	require	at	least	
4,637	±	583	points	in	the	frequency	domain.

4  |  DISCUSSION

We	have	shown	that	the	majority	(93%)	of	environmental	variables	
that	have	previously	been	 linked	 to	 terrestrial	animal	population	
fluctuations	 do	 not	 appear	 to	 show	 any	 recognizable	 temporal	
structure	 (colour),	when	estimated	over	 a	maximum	of	50	years.	
However,	 there	 is	 considerable	 uncertainty	 associated	 with	 the	
colour	estimates	 for	 these	 short	 series,	 indicated	by	wide	confi‐
dence	 intervals	 (Supporting	 Information	Appendix	 S1,	 Table	 S1).	
Our	power	analysis	 (Figure	5)	clarifies	 this	uncertainty;	power	 is	
not	high	enough	to	draw	strong	conclusions	in	the	frequency	do‐
main	using	the	short	series;	however,	in	the	time	domain,	we	can	
be	 relatively	 certain	 (power	 ca.	0.8)	 that	we	 correctly	 identified	
any	pink	noise	(ρT ≥	0.7)	in	environmental	series	of	≥	16	years,	cor‐
responding	 to	 69%	 of	 our	 short	 time	 series.	When	 longer	 (101‐
year)	 versions	 of	 the	 matched	 environmental	 time	 series	 were	
used,	34%	were	best	described	by	a	coloured	noise,	either	1/f or 
AR(1),	 process	 in	 the	 frequency	 domain,	 and	 the	 estimates	 that	
were	distinguishable	from	white	noise	processes	tended	to	be	red‐
dened.	In	the	time	domain,	32	of	the	160	(20%)	long	series	were	
distinguishable	from	white	noise.	Here,	power	is	sufficiently	high	
(0.95)	 for	 us	 to	be	 confident	 that	 any	pink	 (or	 blue)	 noise	 in	 the	
frequency	domain	(|β| ≥	1)	and	coloured	noise	with	an	absolute	es‐
timate	|ρT|	≥	0.35	in	the	time	domain	were	correctly	detected.	If	a	
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power	of	0.8	is	considered,	we	correctly	identified	coloured	noise	
with	an	estimate	|ρT|	≥	0.27.	Only	2%	of	the	covariates	(7%	for	the	
long	series)	were	consistently	considered	coloured	under	both	1/f 
and	AR(1)	models.	 Temperature	was	 the	most	 common	 environ‐
mental	variable	associated	with	the	animal	population	fluctuations	
(42%),	although	precipitation	and	frost	day	frequency	were	both	
associated	with	 sizeable	 proportions	 of	 the	 populations	 (23	 and	
21%,	respectively;	Figure	2).	Comparing	the	fractions	of	coloured	
or	white	environmental	covariates	associated	with	animal	classes,	
mammals	 and	 birds	 showed	 the	 largest	 differences;	 14,	 64	 and	
22%	of	the	long	environmental	time	series	characterized	as	white	
were	 associated	 with	 mammals,	 birds	 and	 insects,	 respectively,	
whereas	the	corresponding	percentages	characterized	as	coloured	
were	32,	46	and	22%.

Although	 there	were	 fewer	white	 noise	 series	 among	 the	 lon‐
ger	 (101‐year)	 environmental	 time	 series	 examined,	 extrapolated	
beyond	the	range	of	available	population	data,	the	model	forms	se‐
lected	and	colour	coefficients	estimated	generally	agreed	with	the	
results	from	the	short	series.	However,	the	colour	of	environmental	
variables	 is	 known	 to	 be	 dependent	 on	 the	 time‐scale	 considered	
(e.g.,	 Halley,	 2007;	 Kirchner,	 2005;	 Miramontes	 &	 Rohani,	 2002;	
Pimm	&	Redfearn,	1988;	Sabo	&	Post,	2008).	The	 level	of	support	
for	 coloured	 time	 series	 should	 increase	 with	 the	 length	 of	 the	

series,	 because	 fluctuations	 at	 low	 (compared	with	 high)	 frequen‐
cies	require	a	longer	time	to	be	detected.	Indeed,	the	entire	distribu‐
tion	of	model	evidence	ratios	was	slightly	shifted	in	the	direction	of	
support	for	coloured	processes,	comparing	the	long	series	with	the	
short	 (Supporting	 Information	Appendix	S1,	Figure	S1.1).	 Including	
the	 longer	environmental	series	 improves	our	statistical	power	for	
detecting	 colour	 (Figure	 5;	 Supporting	 Information	 Appendix	 S1,	
Figure	S1.4)	at	the	cost	of	weakening	the	empirical	link	to	population	
dynamics,	because	the	coupled	animal	population	time	series	were	
not	as	long.	Examining	the	environmental	time	series	in	the	temporal	
domain	also	increases	statistical	power,	mainly	owing	to	loss	of	data	
in	the	frequency	domain	where	the	number	of	degrees	of	freedom	
is	around	half	of	that	compared	with	the	time	domain.	Clearly,	the	
time	domain	offers	an	advantage	when	it	comes	to	identifying	cor‐
rectly	colour	coefficients	close	 to	white	noise	 in	 the	sorts	of	data	
sets	typically	available	to	ecologists.	The	lack	of	longer	(>	101‐year)	
environmental	 time	series	could	also	be	why	we	 found	such	small	
differences	between	the	1/f and	the	AR	models	(Halley,	2005),	and	
the	reason	why	the	MSM	approach	showed	the	same	results	as	the	
main	analysis	(Supporting	Information	Appendix	S3).	Our	short	and	
long	series	provided	only	up	to	three	or	four	segment	sizes,	respec‐
tively,	 for	 the	MSM	 regression	 (Supporting	 Information	 Appendix	
S3,	Figure	S3.1).

F I G U R E  5  Power	functions	(a,	c)	and	absolute	values	of	smallest	detectable	colour	parameter	(b,	d)	for	1/f	models	in	the	frequency	
and	AR(1)	models	in	the	time	domains,	for	short	(n = 10–50	years;	a,	b)	and	long	(n = 101	years;	c,	d)	environmental	variables	associated	
with	natural,	terrestrial	animal	population	fluctuations.	Thick	lines	in	(a,	c)	are	the	mean	for	all	series.	Dashed	lines	show	white	(β = ρT	=	
0),	pink/blue	(|β| =	1,	|ρT|	=	0.7)	and	red/violet	(|β| =	2,	|ρT|	=	0.99)	noise	in	the	two	domains.	A	power	of,	for	example,	0.8	equals	the	risk	
of	a	type	II	error	of	0.2	(four	times	higher	than	a	type	I	error	risk	of	0.05).	Note	the	varying	scales	in	(b,	d)
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Our	analysis	was	based	on	covariates	linked	to	population	fluc‐
tuations	where	changes	in	population	sizes	were	recorded	annually;	
any	cycles	with	a	period	shorter	than	1	year	are	therefore	not	pres‐
ent	in	the	data.	Organisms	with	shorter	life	spans,	for	example,	hav‐
ing	multiple	generations	within	a	single	year,	might	therefore	show	
different	results.	In	the	case	of	red	environmental	noise,	extinction	
risk	decreases	in	annually	reproducing	species,	but	increases	for	se‐
melparous	and	perennial	species	(Heino	&	Sabadell,	2003).	The	long	
environmental	 time	 series	 analysed	 here	 ran	 from	 1901	 to	 2002,	
and	as	longer	time	series	(with	a	higher	temporal	resolution)	become	
available,	we	 recommend	 re‐analysis	 based	 on	 the	 approach	 used	
here.

Power	law	relationships	are	often	proposed	to	describe	natural	
patterns,	although	few	of	them	are	backed	up	statistically	 (Stumpf	
&	Porter,	2012).	Our	results	illustrate	that	there	is	little	support	for	
power	law	characteristics	in	the	temporal	structure	[i.e.,	heavy	tailed	
distributions	of	slow	or	rapid	fluctuations	(low	or	high	frequencies)]	
of	most	of	the	environmental	covariates	analysed	here.	That	is,	we	
found	 weak	 support	 for	 recognizable	 temporal	 structure	 (colour)	
with	 an	 absolute	 colour	 coefficient	 in	 the	 time	 domain	 ≥	0.27	 in	
annual	variables	associated	with	terrestrial	animal	population	fluc‐
tuations.	Previous	work	has	suggested	that	the	colour	of	a	number	
of	terrestrial	environmental	variables	 is	distributed	between	white	
and	 pink	 noise	 (Vasseur	&	 Yodzis,	 2004).	Our	 approach	 builds	 on	
this	 earlier	 analysis	 by	 incorporating	 further	 statistical	 context	 to	
improve	 our	 understanding.	 García‐Carreras	 and	 Reuman	 (2011)	
suggested	that	there	was	a	correlation	between	animal	population	
and	 environmental	 spectral	 exponents,	 also	 using	 data	 from	 the	
GPDD.	However,	a	correlation	analysis	between	the	colour	param‐
eter	of	an	environmental	signal	and	that	of	raw	population	sizes	ig‐
nores	density‐dependent	feedback	mechanisms	and	uncertainty	in	
parameter	estimates,	and	can	easily	generate	spurious	correlations	
(Royama,	 1981).	We	 avoided	 those	 problems	 here	 using	 only	 the	
environmental	 covariates	 identified	 as	 meaningful	 components	 in	
population	models	by	Knape	and	de	Valpine	(2011).	Although	part	of	
this	coupling	identified	may	be	weak	owing	to	possible	model	over‐
fitting	(Knape	&	de	Valpine,	2011),	it	is	the	only	study	we	are	aware	
of	in	which	a	robust	statistical	model	selection	framework	has	been	
used	to	link	empirical	population	time‐series	fluctuations	with	envi‐
ronmental	 covariates	 [but	 see	Ferguson,	Carvalho,	Murillo‐García,	
Taper,	&	Ponciano	(2016)	for	a	simulation	study].

Given	 that	 relatively	 few	 environmental	 variables	 associated	
with	population	dynamics	are	temporally	autocorrelated,	this	should	
be	 put	 into	 context	 with	 a	 few	 recent	 studies	 providing	 indirect	
support	 to	 our	 results.	 Using	 a	 model‐based	 approach,	 Ferguson	
et	 al.	 (2016)	 estimated	 the	 degree	 of	 environmental	 autocorrela‐
tion	present	in	time	series	of	animal	population	data	and,	as	in	the	
present	study,	 found	 it	 to	be	 low.	Engen	et	al.	 (2013)	developed	a	
theoretical	method	using	age‐structured	populations	for	estimating	
the	 influence	 of	 autocorrelated	 environments	 on	 population	 dy‐
namics.	When	applied	to	data	sets	from	four	mammal	species,	they	
found	small	effects	of	autocorrelated	environments	on	population	
dynamics	 and	 concluded	 that	 using	white	 noise	 approximations	 is	

often	appropriate.	This	is	also	argued	by	van	de	Pol	et	al.	(2011),	who	
found	that	the	extinction	risk	of	a	shorebird	population	was	largely	
insensitive	to	noise	colour	because	of	the	poor	tracking	ability	of	de‐
mographic	rates	on	the	colour	of	the	environment.	None	of	the	three	
studies	 above	 analysed	 the	 temporal	 structure	 of	 environmental	
variables	per	se.	However,	taken	together,	it	is	clear	that	a	new	per‐
spective	on	the	role	of	coloured	environments	is	starting	to	emerge.	
Given	that	many	ecological	 factors,	such	as	species	extinction	risk	
and	ecosystem	function	and	stability,	depend	on	the	colour	of	the	
environment	 that	 populations	 are	 exposed	 to	 (e.g.,	 Gudmundson	
et	al.,	2015;	Ripa	&	 Ives,	2003;	Ruokolainen,	Lindén,	et	 al.,	2009),	
incorporating	empirically	supported	noise	processes	into	predictive	
models	of	population	and	community	dynamics	is	crucial	for	their	re‐
liability.	Furthermore,	when	non‐white	colours	have	been	detected	
reliably	 in	environmental	series,	we	can	ask	whether	this	coloured	
noise	is	ecologically	relevant.	This	will	depend	on,	for	example,	the	
demographic	details	of	 the	population	being	affected,	 such	as	 the	
intrinsic	growth	rate	and	shape	of	density	dependence	(Ruokolainen,	
Ranta,	et	al.,	2009;	Fowler	&	Ruokolainen,	2013b),	but	 it	 is	 largely	
still	an	open	question	of	considerable	ecological	interest.

Our	 results	 have	 implications	 for	 understanding	 the	 tempo‐
ral	structure	of	environmental	variation	driving	terrestrial	animal	
population	 dynamics.	 Temperature	 was	 shown	 to	 be	 the	 most	
important	 weather	 variable	 associated	 with	 population	 dynam‐
ics,	but	our	data	sets	were	confined	to	the	Northern	Hemisphere	
with	strong	seasonal	effects,	as	also	evidenced	by	the	important	
role	of	frost	days.	Environmental	time	series	from	a	wider	range	of	
geographical	locations	might	reveal	that	other	variables	also	have	
an	important	impact.	Our	main	analysis	did	not	include	long‐term	
environmental	 change	 (owing	 to	our	detrending	approach)	or	 its	
impact	on	species	in	marine	environments.	In	contrast	to	the	ter‐
restrial	environment,	marine	environmental	change	 is	 largely	red	
because	of	the	inertia	in	large	bodies	of	water	to	rapid	and/or	dra‐
matic	fluctuations	(Steele,	1985;	Vasseur	&	Yodzis,	2004).	For	both	
environments,	however,	there	is	increasing	concern	about	how	cli‐
mate	change	will	alter	the	colour	of	environmental	noise	and	the	
corresponding	 impact	 this	will	 have	on	 the	dynamics	of	 species.	
Recent	evidence	suggests	 that	 the	colour	of	 some	weather	vari‐
ables	is	becoming	both	more	blue	(e.g.,	El	Niño	years	increasing	in	
frequency;	Power	et	al.,	2013)	and	red	(e.g.,	Northern	Hemisphere	
weather	systems	start	changing	more	slowly;	Hurrel	&	Loon,	1997;	
Mann	et	al.,	2017).	Such	changes	could	have	profound	implications	
for	biodiversity	across	the	globe.

Based	on	the	results	presented	here,	we	propose	that	for	time	
spans	typical	for	ecological	time	series,	white	noise	or	weakly	red‐
dened	processes	often	best	describe	the	annually	measured	abiotic	
environmental	variables	that	are	associated	with	fluctuations	in	many	
terrestrial	 animal	 populations,	 and	 analyses	of	 coloured	processes	
are	best	performed	 in	 the	 time	domain	 to	maximize	confidence	 in	
parameter	estimates.	Given	that	population	trajectories	themselves	
are	 often	 autocorrelated,	 this	 implies	 that	 intrinsic	 and	 extrinsic	
biotic	 factors	such	as	density	dependence,	age	structure	and	spe‐
cies	interactions	are	the	most	likely	cause	for	such	fluctuations	(see	
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e.g.,	 Akçakaya,	 Halley,	 &	 Inchausti,	 2003;	 Ferguson	 et	 al.,	 2016).	
However,	more	effort	 is	needed	to	collect	coupled	population	and	
environmental	data	over	longer	time	spans	to	ensure	that	the	impor‐
tance	of	coloured	environmental	processes	is	not	underestimated.
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