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a  b  s  t  r  a  c  t

This work presents efficient MILP-based approaches for the planning and scheduling of mul-

tiproduct multistage continuous plants with sequence-dependent changeovers in a supply

chain network under demand uncertainty and price elasticity of demand. This problem

considers multiproduct plants, where several products must be produced and delivered to

supply the distribution centres (DCs), while DCs are in charge of storing and delivering these

products to the final markets to be sold. A hybrid discrete/continuous model is proposed

for  this problem by using the ideas of the Travelling Salesman Problem (TSP) and global

precedence representation. In order to deal with the uncertainty, we proposed a Hierar-

chical Model Predictive Control (HMPC) approach for this particular problem. Despite of its

efficiency, the final solution reported still could be far from the global optimum. Due to this,

Local Search (LS) algorithms are developed to improve the solution of HMPC by reschedul-

ing successive products in the current schedule. The effectiveness of the proposed solution

techniques is demonstrated by solving a large-scale instance and comparing the solution

with the original MPC and a classic Cutting Plane approach adapted for this work.

©  2018 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical

Engineers. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1.  Introduction

In this paper, we address the integration of planning and scheduling

on multiproduct multistage continuous plants in a supply chain (SC)

network with price elasticity of demands under uncertainty. For this,

decisions at tactical and operational levels should be done together to

improve the efficiency of the supply chain network.

Tactical decisions in SC are focused on different echelon nodes

including plants, distribution centres (DCs), markets. Here, planning

decisions have to also consider the interrelation between different

echelon nodes in a complex SC network. These include assignment

and transportation decisions on products; for example from which

plant DCs must be supplied and from which DCs individual mar-

kets are served at each time period. Other important issue is the

sequence-dependent changeovers along consecutive time periods.

This limitation forces the system to take into account the previous

∗ Corresponding author.
E-mail address: l.papageorgiou@ucl.ac.uk (L.G. Papageorgiou).

states of the plants at the end of each time period in order to plan

the next time period. The inventory level at plants and DCs represents

another important hard condition between planning and scheduling

decisions that have to be made along the time. Pricing strategies are

also important decisions for industries, and are actually affected by

the demands. Therefore, the price elasticity of demand relationship

is considered in this problem, in which the elasticity coefficient could

vary at each time period in each product market.

Scheduling decisions have to consider assignment, sequencing and

timing decisions at many plants introducing much more complexity.

In continuous plants, products must be processed by following a series

of production stages. This kind of production environment requires

efficient scheduling techniques to deal with complex timing, sequenc-

ing and production limitations. For example, one of the main complex

features of this process is the occurrence of sequence-dependent

changeovers between different products in each processing unit. Such

https://doi.org/10.1016/j.cherd.2018.08.021
0263-8762/© 2018 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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limitation usually becomes more difficult when the resolution of the

problem increases, due to the increasing number of decisions that

have to be made. Another issue relies in the combinatorial complexity

when many products must  be sequenced simultaneously in the system.

Finally, the assignment of products to processing units could increase

the problem complexity in terms of decision variables.

In this particular problem, multiproduct multistage continuous

plants, with a single production unit per stage where sequence-

dependent changeovers occur between different products in each

processing unit, are considered.

Common applications in multiproduct multistage batch plants with

a single-unit stage can be found in automated manufacturing systems

(Geiger et al., 1997; Bhushan and Karimi, 2003, 2004; Karimi et al., 2004;

Aguirre et al., 2011, 2012; Castro et al., 2011b, 2012; Zeballos et al., 2011;

Novas and Henning, 2012), surface-treatment process of metal compo-

nents in aircraft manufacturing plants (Paul et al., 2007), hoist schedul-

ing problem in electronics industry (Phillips and Unger, 1976; Shapiro

and Nuttle, 1988; Crama 1997) and many other areas like car-part man-

ufacturing (Lu et al., 2017), health-care applications (Rahman et al.,

2015), clothing industry (Chang et al., 2015). For continuous plants,

Pinto and Grossmann (1994, 1998) addressed the cycle scheduling prob-

lem of multiple products in continuous plants considering a sequence

of stages with a single production line. Then, Alle and Pinto (2002,

2004) and Alle et al. (2004) proposed different formulations for a similar

problem considering a single-unit stage in a flowshop plant with inter-

mediate storage policies. Some similar applications for hybrid flowshop

plants with dedicated units can be found in Birewar and Grossmann

(1989); Moon et al. (1996); Munawar and Gudi (2005); Bhattacharya and

Bose (2007) and Bose and Bhattacharya (2008, 2009), etc.

In this work, we are going to focus our attention on multiproduct

multistage continuous plants in a supply chain network with demand

under uncertainty. Efficient solution approaches that properly combine

the integration of planning and scheduling decisions for the process

industry in supply chain networks and also allow properly manag-

ing the uncertainty are still required. A brief literature review of main

approaches in this area are presented below.

1.1. Literature review

There are some works that try to solve a similar problem by using dif-

ferent kind of solution methods (see Table 1). Bose and Pekny (2000)

proposed a general Model Predictive Control (MPC) framework for plan-

ning and scheduling problems under uncertainty. Afterward, Perea

et al., (2000) developed a dynamic approach for supply chain manage-

ment mixing the ideas of process dynamics and control. Then, some

of the authors, in Perea-Lopez et al. (2001), studied the decentralised

control of supply chain systems by using classical control laws for

the total cost, customer satisfaction and demand variations. Later on,

they extend that work in Perea-Lopez et al. (2003) for the optimisation

of a centralised supply chain by using a MPC and mixed-integer pro-

gramming models. Braun et al. (2003) presented a robust and flexible

decision framework for dynamically managing inventories and cus-

tomer requirements in demand supply chain networks. Mestan et al.

(2006) addressed the optimal operation of multiproduct supply chain

systems by using MPC strategy and continuous/discrete dynamics and

logic rules, for switching between different operating conditions. More

recently, Kaplan et al. (2011) studied a centralised multi-period multi-

echelon multi product supply chain network with variations in demand

and prices with the elasticity in price demand by using MINLP models.

Terrazas-Moreno et al. (2011) presented a Lagrangian method to study

the behavior of the temporal and spatial decomposition in a multi-site

multi-period production planning problem with sequence dependent

changeovers. Liu et al. (2012) presented a Hierarchical Model Predictive

Control (HMPC) approach proposed for complex planning and schedul-

ing problems with demand under uncertainty. Then, Calfa et al. (2013)

introduced a hybrid bi-level Lagrangian decomposition approach for

tackling large-scale industrial case study. Subramanian et al. (2013) pro-

posed a dynamic model and MPC approach to deal with multiproduct

multi-echelon supply chain problem. Nasiri et al. (2014) developed a

Lagrangian relaxation approach for the integrated supply chain plan-

ning and distribution with stochastic demands. Muñoz et al. (2015)

proposed a hierarchical-based strategy based on Lagrangian decom-

position for the multi-period multisite supply chain planning and

scheduling problem of multipurpose batch plant. More recently, Felfel

et al. (2016) introduced a two stages stochastic linear programming

approach for a multi-period, multi-product, multi-site, multi-stage sup-

ply chain planning problem under demand uncertainty, and Aqlan and

Lam (2016) proposed a simulation-optimisation based tool for supply

chain optimisation under risk and uncertainty.

Some other works for the integration of scheduling and control

can be found in Zhuge and Ierapetritou (2014); Baldea and Harjunkoski

(2014); Chu and You (2014); Fu et al. (2014, 2015), etc. Main approaches

developed for the integration of production planning and transport can

be seen in Mula et al. (2010) and Díaz-Madroñero et al. (2015). Strategic

and operational planning approaches, including handling of uncertain-

ties and multi-objective formulations, can be seen in Guillén et al.

(2005); You and Grossmann (2008); Guillén-Gosálbez and Grossmann

(2009); Papageorgiou (2009), etc. Finally, suitable reviews about integra-

tion of planning and scheduling in the process industry can be found in

Maravelias and Sung (2009); Safaei et al. (2010); Shah and Ierapetritou

(2012); Engell and Harjunkoski (2012).

1.2. Motivation

To the best of our knowledge, and despite of all previous works men-

tioned, there are limited robust solutions that properly solve this kind

of problems by integrating constructive and improvement approaches

in an efficient manner, especially for the supply chain planning prob-

lem with multiple production stages at plants under uncertainty.

In this work, we proposed a mixer-integer linear programming

(MILP) solution approaches for the supply chain planning and schedul-

ing of multiproduct multistage continuous plant that efficiently

combine MPC and Local Search (LS) strategies. For this, two novel hybrid

time formulations are developed to deal with planning and scheduling

decisions in different time scales (weekly planning decisions and daily

scheduling decisions). These novel formulations based on the main

ideas of TSP and precedence concepts can be decomposed easily in

subproblems to be solved sequentially. Thus, hierarchical and iterative

approaches can be applied to find good quality solutions. Here, we have

adapted the HMPC approach proposed in Liu et al. (2012) to deal with the

complex features of this problem including the uncertainty on product

demand. The product demand is uncertain and follows a uniform dis-

tribution between specific upper and lower bounds as it was proposed

in Liu et al. (2012). This well-known HMPC approach has been broadly

used in the past for solving industrial size case studies in an iterative

way. But, as many of the decision variables are successively fixed iter-

ation by iteration, the final solution reported by this method could still

be far from the global optimum. To overcome this issue, alternative

solution techniques based on LS strategies, such as the one presented

in Castro et al. (2011a), are proposed. LS strategies for the temporal, pro-

duction and spatial decomposition are developed and implemented as

an inner loop inside the HMPC in order to improve the solution obtained

in an iterative way. Thus, for each iteration of the HMPC, a selected LS

approach is applied by rescheduling successive products from the cur-

rent schedule (Méndez et al., 2006). Thus, the proposed approach could

be able to compensate the main drawback of the classic MPC approach

and provide a better quality solution of the system for a realisation of

uncertainty in shorter CPU time.

The remaining of this paper is structured as follows. In Section 2,

we present the multiproduct multistage continuous plant planning and

scheduling problem in a supply chain network study. Section 3 presents

hybrid discrete/continuous time MILP formulations for this problem.

In order to solve the uncertainty, an efficient solution methodology is

developed in Section 4, based on the main ideas of the HMPC and LS

approaches. A Cutting Plane approach is also implemented for com-

parison. Computational analysis and results of a large-scale case study

proposed are summarised in Section 5. Final conclusions and future

work directions are provided at the end in Section 6.
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Table 1 – Brief literature review of main solution approaches for the integration of planning and scheduling in supply
chain networks.

Reference Main problem issues Solution approach

Bose and Pekny (2000) Supply chain planning and scheduling under uncertainty with
centralised and decentralised distribution control

MPC + simulation-optimisation
modules

Perea et al. (2000) Centralised supply chain management of multiproduct multisite
distribution networks with single-unit multiproduct batch plants

Dynamic model + control heuristics

Perea-Lopez et al. (2001) Decentralised supply chain of multiproduct multisite distribution
networks with single-unit batch/continuous plants

Dynamic model + heuristic control
laws

Perea-Lopez et al. (2003) Centralised/decentralised supply chain with multiproduct,
multiechelon distribution networks with multiproduct batch plants

MILP + Dynamic model + MPC

Braun et al. (2003) Supply chain with multi-product, multi-echelon demand networks
under uncertainty

MPC  + control-oriented framework

Mestan et al. (2006) Decentralised multiproduct supply chain systems under uncertainty MPC + continuous/discrete dynamic
and logic rules

Kaplan et al. (2011) Centralised multi-period multi-echelon multi product supply chain
network with variations in demand and prices

MINLP models

Terrazas-Moreno et al. (2011) Multi-site, multi-period, and multi-product planning problem with
sequence-dependent changeovers

MILP  + Temporal and spatial
Lagrangean decomposition
approaches

Liu et al. (2012) Multiechelon supply chain planning and scheduling with
multiproduct continuous plants under demand uncertainty

MILP + MPC and HMPC

Calfa et al. (2013) Supply chain planning and scheduling network with single-stage,
multiproduct batch plants

MILP  + Bi-level and Temporal
Lagrangian decomposition

Subramanian et al. (2013) Multiproduct, multi-echelon supply chain problem Distributed MPC + Dynamic model

Nasiri et al. (2014) Integrated supply chain planning and distribution with stochastic
demands

MINLP + Bi-level lagrangian
relaxation + Genetic algorithms

Muñoz et al. (2015) Multi-period multisite supply chain planning and scheduling problem
of multipurpose batch plant

MILFP  + lagrangian decomposition
strategy + ontology framework

Felfel et al. (2016) Multi-period, multi-product, multi-site, multi-stage supply chain
planning problem under demand uncertainty

Two-stage stochastic linear
programming model + Pareto frontier

Aqlan and Lam (2016) Supply chain optimisation under risk and uncertainty Simulation-optimisation framework

Fig. 1 – Supply Chain Network example with 3 plants, 8 DCs, 16 markets.
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Fig. 2 – Assignment, sequencing and timing decisions in a multiproduct multistage continuous plant.

2.  Problem  statement

Given a set of products i and echelon nodes n (plants s,
distribution centres c and markets m)  of the supply chain net-
work and their possible connections and transportation times
defined by Tinn′ and �inn′ , and given also the information about
initial demands (D0

int), production rate (riln), production yields
(yiln), changeover times (�c

ijln) at each production stage l, min-
imum and maximum inventory levels (Imin

int, Imax
int), initial

selling prices (P0
int) and production cost (CPin), changeover cost

(CCijn) and unmet demand cost (CUin) at each echelon node,
we  aim to find the total amount of products to produce (PRilnt)
at each plant, to stores (Iint) at each echelon node and to sell
(SVint) or to unmet the demand (Uint) to each market at each
time period t of the planning horizon H, as well as the price
to charge (Pint), in order to maximise the total profit TP of the
whole supply chain, as illustrated in Fig. 1

For this problem, important operational decisions related
with the production assignment (Lint, Eint, Fint), sequencing
(Zijnt & ZFijnt) and timing (TSilnt & Tilnt) must be made in multi-
ple stages l on a multiproduct continuous plant s to produce,
store and deliver the products by the end of every time period
t (see Fig. 2).

As can be seen in Fig. 2, Eint represents the assignment of
product i to plant n at time period t, while Fint/Lint, takes value 1
if this product is the first/last in the production sequence. The
production sequence inside each time period is defined by Zijnt

which indicates whether product i is processed immediately
before product j in the production sequence. This variable
allows the execution of changeovers between different prod-
ucts inside each time period defined by (�c

ijln). According to
this, initial processing time (TSilnt) and production time (PTilnt)
in each stage l are defined to accomplish within bound limi-
tations (LB, UB).

As the plants operate without any break, sequencing pro-
duction decisions between consecutive time periods t-1 and t
must be taken into account via binary variable ZFijnt . This deci-
sion allows managing the production process of each stage l

between consecutive time periods, adopting value 1 if product
i  is the last product of time period t-1 and product j is the first
product at time period t.

All those planning decisions at each echelon node and
scheduling decisions at each production plant result in a com-
plex and challenging supply chain problem to solve. In the
following section, different solution methodologies for this
problem are discussed and analysed in detail.

3.  Hybrid  time  formulations  for  Supply
Chain  Planning  and  Scheduling

In this work, we extend the previous MILP formulation devel-
oped by Liu et al. (2012) to consider multiple production stages
in multiproduct continuous plants in a supply chain network.
The proposed formulation is based on the main ideas of the
travelling salesman problem (TSP) and the precedence-based
relationships summarised in Méndez et al. (2006). In Fig. 3, we
introduce the analogy from the TSP and the precedence-based
ideas applied to our particular problem with the information
of the main decision variables presented above.

If we do a parallelism between these two problems, we
can interpret both as a unique problem. The TSP can be seen
as a planning problem where each time period t represents
a round-trip of the salesman where each node represents
a product to produce and the arcs are the time needed to
changeover from one product to the other. Following this idea,
each round-trip can be seen as a scheduling problem, as it is
presented in the right-hand side, where the time spent by the
salesman at each node can be seen as the production time
of this product in the production stage l. Thus, the TSP for-
mulations can be used to model the planning and scheduling
problem presented above.

Using the strength of the TSP and the precedence-based
concepts, novel hybrid formulations are developed to tackle
the supply chain planning and scheduling problem in mul-
tiproduct multistage continuous plants. This hybridisation
refers to the concept of merging discrete and continuous time
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Fig. 3 – Analogy between TSP and precedence-based ideas for a multiproduct multistage continuous plant.

representations for planning and scheduling decisions respec-
tively in a single robust formulation.

First, we  introduce the main notation used in these models
and then in [M1] we extend the MILP model proposed by Liu
et al. (2012) for a single-stage plant, to couple with multiple
stages by using the main ideas of immediate-precedence con-
cepts (see also Liu et al., 2008, 2009, 2010a,b). Then, in [M2],
we present a TSP/general-precedence representation for the
multiproduct multistage continuous plant in the supply chain
network.

3.1.  Notation

Indices
c DCs
i,j Final products
k  Price levels
l,l’ Single-unit stages
m Markets
n,n’ Echelon nodes (s, c, m)
s  Manufacturing plants
t,t’ Time periods

Sets
C Set of DCs
L  Set of stages
M Set of markets
PIn Set of products stored at echelon node n
PMn Set of products sold at echelon node n
PSn Set of products produce at echelon node n
S Set of plants

Parameters
CCijn Unit changeover cost from product i to j at echelon

node n ($)
CPin Unit production cost of product i at echelon node n

($)

CTinn′ Transportation cost of product i from echelon node n
to echelon noden n’($)

CUin Unit unmet demand cost of product i at echelon node
n($)

DF0
int Initial demand forecast of product i sold at echelon

node n in time period t (tons)
D0

int Initial demand of product i sold at echelon node n in
time period t (tons)

H Last time period in the planning horizon
I0in Initial inventory of product i at echelon node n (tons)
Imax

int Maximum inventory level of product i allowed at ech-
elon n (tons)

Imin
int Minimum inventory level of product i allowed at ech-

elon n (tons)
ITint Inventory target of product i at echelon node n in time

period t (tons)
LCH Length of the control horizon
LB Lower bound of production time in a time period

(hours)
N A large number
P0

in Initial price of product i sold at echelon node n ($)
PL

ink Price level k of product i sold at echelon node n ($)
PEin Price elasticity coefficient of product i at echelon

node n
riln Production rate of product i in stage l at echelon node

n (tons/hour)
Tinn′ Network connectivity between echelon nodes n and

n’ of product i
TH Total length of the control horizon
UB Upper bound of production time in a time period

(hours)
wi Control weight for inventory deviations
wp Control weight for price changes
yiln Production yields of product i in stage l at echelon

node n
˛int Forecast error of initial demand of product i at eche-

lon n in time period t
�inn′ Transportation time of product i from echelon node

n to echelon node n’(hours)
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�c
ijln Changeover time from product i to j in stage l at ech-

elon node n (hours)

Binary variables
Eint 1 if product i is processed at echelon node n in time

period t
Fint 1 if product i is the first one processed at echelon

node n in time period t
Lint 1 if product i is the last one processed at echelon node

n in time period t
Xijnt 1 if product i is processed before product j at echelon

node n in time period t
Yinkt 1 if product i is sold at price level k at the echelon

node n in time period t
Zijnt 1 if product i is processed just before product j at

echelon node n in time period t
ZFijnt 1 if product i in period t-1 is processed just before

product j in period t at echelon node n

Positive variables
CET1lnt Changeover time in stage l at the beginning of time

period t at echelon node n (hours)

CET2lnt Changeover time in stage l at the end of time period
t at echelon node n (hours)

Dint Actual demand of product i sold at echelon node n in
time period t (tons)

Iint Inventory of product i at echelon node n in time
period t (tons)

IDint Inventory deviation of product i at echelon node n in
time period t (tons)

Pint Price of product i sold at echelon node n in time
period t ($)

PCint Price changes of product i sold at echelon node n in
time period t ($)

PRint Production amount of product i at stage l in time
period t at echelon node n (tons)

PTilnt Production time of product i at stage l in time period
t at echelon node n (hours)

Qinn′ Amount of product i flow from echelon node n to
echelon node n’ in time period t (tons)

SVint Sales of product i at echelon node n in time period t
(tons)

SYinkt Amount of sales of product i sold at echelon node n
at price level k in time period t (tons)

TSilnt Starting time of product i at stage l in echelon node
n in time period t (hours)

Uint Unmet demand of product i sold at echelon node n
in time period t (tons)

Free variables
OF Objective function ($)
TP Profit ($)

3.2.  TSP-continuous  time  formulation  using
immediate-precedence  sequencing  variables  [M1]

Here, we  introduce an optimisation model based on Liu et al.
(2012) to consider multiple stages in continuous multiproduct
plants. The main equations used from the original model in

Liu et al. (2012) are explained in detail in the Appendix A by
Eqs. (A.1)–(A.20) while the new added equations are described
below by Eqs. (1)–(11). The proposed new model developed
here incorporates all the equations described in Appendix A
with the new equations in Eqs. (1)–(11).

3.2.1.  Timing  constraints
Timing constraints are presented in Eqs. (1)–(4). Notice that
Eqs. (1)-(2) define the lower (LB) and upper bounds (UB) of
the processing time of each product i at production stage l at
echelon node n in time period t (PTilnt), while Eqs. (3)-(4) deter-
mine the changeover time constraints and the upper bound
constraint for each time period. Here, the total changeover
time between two consecutive time periods �c

ijln is split in
two consecutive time periods t and t-1 by variables CET1lnt and
CET2ln,t-1.

PTilnt ≤ UB · Eint ∀n ∈ S, i ∈ PSn, l, t (1)

PTilnt ≥ LB · Eint ∀n ∈ S, i ∈ PSn, l, t (2)

CET1lnt + CET2ln,t−1 =
∑

i,j ∈ PSn

�c
ijln · ZFijnt ∀n ∈ S, l, t > 1 (3)

∑

i ∈ PSn

PTilnt +
∑

i,j ∈ PSn, i /= j

�c
ijln · Zijnt + CET1lnt|t>1 + CET2lnt|t<H ≤ UB ∀n ∈ S, l, t (4)

3.2.2.  Sequencing  constraints  in  the  same  unit
Eqs. (5)–(7) define sequencing decisions in the each processing
unit. Eq. (5) is proposed based on the immediate-precedence
concepts, while Eqs. (6)-(7) are used to bound the initial time
of each task TSilnt based on the information of the processing
time PTilnt and changeover times CET1lnt and CET2lnt.

TSjlnt ≥ TSilnt + PTilnt + �c
ijln · Zijnt − UB · (1 − Zijnt)

∀n ∈ S, i, j ∈ PSn, l, t, i /= j
(5)

TSilnt ≥ CET1lnt|t>1 − UB · (1 − Eint)

∀n ∈ S, i ∈ PSn, l, t > 1
(6)

TSilnt + PTilnt + CET2lnt|t<H ≤ UB

∀n ∈ S, i ∈ PSn, l, t
(7)

3.2.3.  Sequencing  constraints  in  consecutive  units
Then, Eqs. (8)-(9) are introduced in this model to take into
account sequencing decisions between consecutive stages l
and l + 1.

TSjlnt ≤ TSj,l+1,nt ∀n ∈ S, i ∈ PSn, l < |L|, t (8)

TSilnt + PTilnt ≤ TSi,l+1,nt + PTi,l+1,nt

∀n ∈ S, i ∈ PSn, l < |L|, t
(9)

3.2.4.  Production  constraints
Eqs. (10)-(11) are derived to calculate the production amount
PRilnt determined by the unit production rate riln and pro-
duction time PTilnt in each time period t and affected by the
production yield at that stage, yiln, as well as the production
amount from the previous stage.

PRilnt = riln · PTilnt ∀n ∈ S, i ∈ PSn, l, t (10)
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yi,l+1,n · PRilnt = PRi,l+1,nt ∀n ∈ S, i ∈ PSn, l < |L| , t (11)

3.3.  TSP-continuous  time  formulation  using
general-precedence  sequencing  variables  [M2]

This model is developed to consider sequence-depending
changeover issues with general-precedence variables instead
of the immediate-precedence variables proposed in [M1]. In
the proposed model, Eq. (5) is replaced by Eqs. (12)–(15) after
the introduction of the new variables. The main advantage
of using general-precedence concepts relies on the possibil-
ity to obtain tight formulation in terms of binary variables.
Thus, significant improvement can be achieved when we  try
to decompose the entire model in reduced sub-models to be
solved sequentially.

3.3.1.  Sequencing  constraints  in  the  same  unit
Here, we  introduce a new general-precedence variable Xijnt to
consider sequencing decisions between different products in
the same unit in Eqs. (12)-(13). This new variable only runs
for product combinations when i > j, but not for all i /= j as
the immediate-precedence formulation in [M1], reducing the
number of binaries to a half. Here, variable Zijnt can be set as
a continuous variable. Then, we  have to introduce additional
constraints, Eqs. (14)-(15), to force this variable to takes 0-1 val-
ues. Despite of the reduced number of binary variables in this
formulation, we  need to create much more  continuous vari-
ables and equations that also affect the convergence of the
model.

TSjlnt ≥ TSilnt + PTilnt + �c
ijln · Zijnt − UB · (1 − Xijnt)

∀n ∈ S, i, j ∈ PSn, i > j, t
(12)

TSilnt ≥ TSjlnt + PTjlnt + �c
jiln · Zjint − UB · Xijnt

∀n ∈ S, i, j ∈ PSn, i > j, t
(13)

Xijnt ≥ Zijnt ∀n ∈ S, i, j ∈ PSn, i > j, t (14)

1 − Xijnt ≥ Zjint ∀n ∈ S, i, j ∈ PSn, i > j, t (15)

4.  Efficient  MILP-based  solution  approaches

The solution approach developed in this work emphasises the
strengths of MPC  approach for dealing with the uncertainty
and a tailored LS algorithm for this problem. The aim of this
solution methodology is to build an initial solution quick using
an HMPC approach developed in Liu et al. (2012) in a construc-
tive phase, and then enhance this solution, in an improvement
phase, by using a LS algorithm. Similar ideas of LS strategies
can be found in Liu et al. (2010b); Méndez and Cerdá (2003);
Kopanos et al. (2010); Castro et al. (2011b); Aguirre et al. (2014,
2017). More  information about efficient solution approaches
for MILP-based solution approaches for the process indus-
try can be found in Kallrath (2000); Méndez et al. (2006) and
Harjunkoski et al. (2014).

The main idea of the improvement phase is to enhance the
local solution obtained by the HMPC evaluating the impact of
releasing a number of products (NP) and/or time periods (NT)
from the schedule in the current horizon for each selected
number of plants (NS). Thus, the HMPC tends to deal with the
uncertain behaviour of the system, when actual information is
revealed, providing an initial feasible and good quality result,

Fig. 4 – Basic ideas of the HMPC + LS solution approach.

while the LS aims to improve this solution at each iteration in
a quick way.

One of the main differences from existing LS solutions
strategies in the literature is here the possibility to decom-
pose the problem in several ways, releasing decision variables
for time periods, products or echelon nodes per iteration. We
called that as temporal (LST), production (LSP) and spatial (LSS)
decomposition respectively. We will demonstrate that a total
improvement of 10% can be reached by using LS in an inner
loop inside HMPC.

A basic notion of the HMPC + LS algorithm is presented in
Fig. 4 Here it can be seen how these two algorithms inter-
act at each iteration. Thus, given a control horizon length
of the problem LCH and a planning horizon H, in each itera-
tion iter,  the algorithm starts running the HMPC for periods
iter ≤ t < LCH + iter to obtain an initial local solution and then
runs the LS algorithm for the same period in order to obtain
an improved result. A detailed explanation of the different
steps of HMPC approach and the different strategies for the LS
are provided below in Sections 4.1 and 4.2, respectively. Once
an initial local solution is obtained, all decision variables for
period t = iter, and the iteration is updated by iter = iter + 1 to
consider the following control horizon. The algorithm ends
when the iteration reaches the horizon length of the problem
iter = H.

In order to compare the efficiency of our solution strategy,
a Cutting Plane approach is implemented inside the MPC. The
basic idea of this algorithm is presented below in Fig. 5. As
it can be seen, the algorithm starts similarly than the one
described above defining a control horizon length LCH and a
planning horizon H. At each iteration iter,  a reduced model
is solved to obtain an initial relaxed solution of the problem.
Due to sequencing decisions are removed from the original
model [M1], relaxed solutions may violate some restrictions of
the original problem generating undesirables subtours. These
subtours can be eliminated by including subtour breaking con-
straints. Thus, the following step of this algorithm consists to
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Fig. 5 – Basic ideas of the MPC  + Cutting Plane approach.

add integer cuts one-by-one in order to remove subtours iter-
atively. The addition ends when no more  subtours are found,
and a feasible integer solution is reported. This procedure is
repeated till the number of iterations iter reach the planning
horizon H. A detailed description of these steps is presented
in Section 4.3.

The main features of the original MPC  and the proposed
HMPC, LS and Cutting Plane approaches are summarised in
Table 2. Further details about equations needed and variables
released and fixed per step are presented in the following Sec-
tions 4.1–4.3.

4.1.  Hierarchical  Model  Predictive  Control  (HMPC)

The HMPC used in this work is an improved version of the one
proposed in Liu et al. (2012). Our HMPC has three consecutive
steps: the first one to determine which products have to be
processed at each time period, the second one for sequenc-
ing decisions of selected products at each time period and
the third one to check solution reliability. If the solution is
not reliable, the addition of integer cuts at the end is possi-
ble, removing the current solution and giving the possibility
of finding a new feasible solution.

Infeasible solutions may happen for different reasons due
to timing limitations, production bounds, and inventory and
backlog levels. The idea of decomposing the problem in only
two steps, solving first the assignment decisions and subse-
quently adding sequencing decisions, may turn the problem
to an infeasible solution. In order to avoid that, additional
timing constraints can be added to the first step to overes-
timate the production time required for the production of

the selected products in a particular time period, as in Liu
et al. (2012). The equations have the limitation to not consider
in detail sequence-dependent changeovers, whose times, in
some cases, are larger than the production time for a par-
ticular product, when triangular inequality constraints are
violated. For this particular cases, the idea of maintaining the
information about sequencing decisions, without explicitly
considering timing constraints, will give us a better overes-
timation of timing decisions, and in many  of the cases better
bounds and consequently better results. Despite of that, possi-
ble sub-tours may occur, and additional sub-tour elimination
constraints must be added in the second step, as timing con-
straints, in order to avoid infeasible solutions in the system.
In this second step, sequencing decisions are optimised by
fixing the information of the selected products performed at
each time period. The result after this step may still return
an infeasible solution, which is partially solved adding a new
integer cut of the current solution and returning to the first
step. This sequential procedure is performed till a feasible
solution for assignment and sequencing decisions is found.
Finally, assignment and sequencing decisions are fixed and
timing, production, inventory, demand and the pricing deci-
sions are optimised by solving a reduced model in the third
step. A suitable description of each step is presented below
while a detailed algorithm is shown in Fig. 6.

4.1.1.  Initialisation:  dealing  with  uncertainty
Before starting, the control horizon length LCH, forecast error
˛int and iteration parameter iter must be initialised. Here we
consider uncertainty in the demand forecast where D0

int rep-
resents the initial demand at time period t, corresponding to a
given initial price, P0

in. This uncertain initial forecast demand
D0

int follows a uniform distribution, with an expected value of
DF0

int and a forecast error of ˛int ∈ (0, 1). In general, the initial
demand is revealed at the beginning of the current time period
t, allowing the possibility to react with the current schedule
by changing some operational decisions to adapt to the new
state of the system (reactive scheduling). Thus, at each iter-
ation, iter,  the uncertainty is revealed and the demand D0

int

is updated by a uniform distribution according to the follow-
ing expression. For the remaining periods, t > iter,  we assume
that D0

int = DF0
int. After that, the algorithm starts by solving

the problem in a hierarchical way.

D0
int∼Uniform [(1 − ˛int) · DF0

int, (1 + ˛int) · DF0
int]

∀n ∈ M,  i ∈ PMn, t

4.1.2.  First  Step:  solve  the  production  assignment  problem
In the first step, a reduced model [M1 1] is solved without
sequencing constraints. To ensure that in every time period
some products must be produced we  introduce Eq. (16). Eq. (17)
forces Zijnt and ZFijnt to adopt positive values to avoid possible
infeasibilities at timing constraints in Eqs. (1)–(4). Assignment
decisions Eint are optimised by maximising Eq. (A.20) in model
[M1 1] considering Eqs. (A.1)–(A.18), (1)–(4), (10)-(11) with the
addition of new constraints in Eqs.(16)–(18). In case of infeasi-
bilities, additional integer cuts described in Section 4.1.4 can
be applied using Eq. (20).

Maximise OF in Eq. (A.20)
Subject to: Eqs. (A.1)–(A.18), (1)–(4), (10)-(11), (16)–(18), (20)

∑

t

Eint ≥ 1 ∀n ∈ S, i ∈ PSn (16)
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Table 2 – Description of main MILP models for each approach.

Methods Model Name Equations Objective Fixed variables

MPC Model: [M1] Eqs. (A.1)–(A.19), (1)–(11) Eq. (A.20) All variables | t ≤ iter

HMPC Step 1: [M1 1 + cuts] Eqs. (A.1)–(A.18), (1)–(4), (10)–(11), (16)–(18), (20) Eq. (A.20) All variables | t ≤ iter

Step 2: [M1 2] Eqs. (A.1)–(A.18), (1)–(11) Eq. (19) Pint , Eint, | iter ≤ t ≤ iter + LCH

Step 3: [M1] Eqs. (A.1)–(A.19), (1)–(11) Eq. (A.20) Eint, Zijnt,ZFijnt,Lint,Fint |  iter≤  t ≤ iter + LCH

LS LST: [M2] Eqs. (A.1)–(A.19), (1)–(4), (12)–(15) Eq. (A.20) Xijnt,Zijnt,Eint,ZFijnt,Lint,Fint |an,t = 0 or bi,n,t = 0
LSP: [M2] Eqs. (A.1)–(A.19), (1)–(4), (12)–(15) Eq. (A.20) Xijnt,Zijnt,Eint,ZFijnt,Lint,Fint |an,t = 0 or bi,n,t = 0
LSS: [M2] Eqs. (A.1)–(A.19), (1)–(4), (12)–(15) Eq. (A.20) Xijnt,Zijnt,Eint,ZFijnt,Lint,Fint |an,t = 0 or bi,n,t = 0

Cutting Plane Step 1: [rM1] Eqs. (A.1)–(A.19), (1)–(4), (10)–(11) Eq. (A.20) All variables | t ≤ iter
Step 2: [rM1 + cuts] Eqs. (A.1)–(A.19), (1)–(4), (10)-(11), (20) Eq. (A.20) All variables | t < iter
Step 3: [M1] Eqs. (A.1)–(A.19), (1)–(11) Eq. (A.20) Eint, Zijnt,ZFijnt,Lint,Fint |  iter ≤ t ≤ iter + LCH

MPC = Model Predictive Control, HMPC = Hierarchical Model Predictive Control, LST = temporal decomposition, LSP = Production decomposition,
LSS = Spatial decomposition.

∑

i,j ∈ PSn,i /=  j

Zijnt +
∑

i,j ∈ PSn,t>1

ZFijnt =
∑

i ∈ PSn

Eint − 1|t=1

∀n ∈ S, t

(17)

TP =
∑

t,k,n ∈ M,i ∈ PMn

PL
inkt · SYinkt −

∑

t,n ∈ M,i ∈ PMn,l=|L|
CPin · PRilnt

−
∑

t,n ∈ S,n′ ∈ Tinn′ ,i ∈ PIn,t

CTinn′ · Qinn′t −
∑

t,n ∈ M,i ∈ PMn

CUin · Uint (18)

4.1.3.  Second  step:  solve  the  production  sequencing
problem
Next, Eint are fixed and a reduced model [M1  2] is run min-
imising only the total changeover time. This model defined by
Eqs. (A.1)–(A.18), (1)–(11) aims to determine the best produc-
tion sequence at each plant in time period t by Zijnt & ZFijnt,
using Eq. (19) as objective function.

Minimise OF in Eq. (19)
Subject to: Eqs. (A.1)–(A.18), (1)–(11)

OF=
∑

t,n∈S,i,j∈PSn,i,j∈PSn,i /=  j

�c
ijnt · Zijnt +

∑

t>1,n∈S,i,j∈PSn,i,j∈PSn

�c
ijnt · ZFijnt

(19)

4.1.4.  Third  Step:  Solve  the  reduced  full  problem
Finally, assignment Eint, Lint, Fint and sequencing decisions Zijnt,
ZFijnt, are fixed, and [M1], including Eqs. (A.1)–(A.19), (1)–(11), is
solved to obtain an initial feasible solution of the problem for
the planning horizon considered, determining timing, produc-
tion, inventory, demand and the pricing decisions by objective
function in Eq. (A.20).

Minimise OF in Eq. (A.20)
Subject to: Eqs. (A.1)–(A.19), (1)–(11)

4.1.5.  Additional  cuts  to  remove  infeasible  solutions
In case that an infeasible solution is reported due to tim-
ing constraints in Eqs. (1)–(4), additional integer cuts can be
applied by Eq. (20) to remove the previous solution (Zold

ijnt,
ZFold

ijnt, Eold
int). This equation should be added sequentially

into model [M1 1] after each iteration (iter) returning to the
first step. Thus, infeasible sequences are removed sequen-
tially until a feasible solution is reached. When a feasible
solution is reached, the algorithm proceeds to follow to the
next step, updating the initial solution and going through LS
algorithm.

∑

i, j ∈ PSn, i /= j, Zold
ijnt = 1

Zijnt +
∑

i, j ∈ PSn, t > 1, ZFold
ijnt = 1

ZFijnt ≤
∑

i ∈ PSn, Eold
int

= 1

Eint − 1 ∀n ∈ S, t = iter
(20)

4.2.  Local  Search  algorithm  (LS)

The LS approach is described in detail in Fig. 6. This LS algo-
rithm starts by selecting a proper number of products (NP),
time periods (NT) and plant (NS) to release at each iteration,
denoted by iter1 for iterations of time periods, and iter2 for
iterations of products. These parameters are set at the begin-
ning, defining the search strategy of the algorithm in the
selection procedure. The selection procedure defines a set of
products i and periods t to release at each production plant
n by {ant = 1 & bint = 1| iter1 ≤ t < iter1 + NT & iter2 ≤ i < iter2 + NP,
iter3 ≤ n < iter3 + NS}, where ant and bint are binary parameters
to set whether time period t, product i at selected plant n
are released for re-optimisation. Thus, if the time period t
is between iter1 and iter1 + NT,  parameter ant is set to one to
release this time period t for each production plant n. In the
same way, if the product i is between iter2 and iter2 + NP then
this product is selected for reschedule by setting bint = 1 for
each selected plant defined by iter3 and iter3 + NS.  So, when ant

and bint are defined, some decision variables are fixed {Xijnt,
Zijnt, Eint, ZFijnt, Lint, Fint | ant = 0 or bint = 0}, while others are
released {Xijnt, Zijnt, Eint, ZFijnt, Lint, Fint | ant = 1 & bint = 1}. Next,
model [M2] in Eqs. (A.1)–(A.19), (1)–(4), (10)–(15) is run to opti-
mise all released decision variables for an improved result
by Eq. (A.20). If the result is enhanced, decision variables are
updated and the iteration number is increased by one; other-
wise the previous solution is kept. Notice that, Zijnt is defined
as a continuous variable at model [M2] in implementation
(by setting Z.prior = + inf in GAMS), which relax the discrete
restriction on that variable. Thus, Zijnt is enforced to adopt
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Fig. 6 – Detailed HMPC + LS algorithm.

[0,1] values due to the binary value of Xijnt. Based on that, we
can define two types of decomposition, temporal decomposi-
tions and production decomposition. The first one is defined
when releasing time periods defined by NT.  The second one
is done when a set of products are selected to reschedule by
NP. These two techniques can be combined in order to create
hybrid strategies. Also, those steps can be run for each plant
n separately or for all the plants simultaneously, allowing the
possibility of spatial decomposition aside from temporal and
product decomposition as explained above. If spatial decom-
position is applied, these steps are run in a closed loop for
each plant n by fixing the partial solution after each iteration
(dotted line in Fig. 6). Finally, when the total number of prod-
ucts iter2 + NP = |I| and time periods iter1 + NT = TH are reached,
the LS algorithm finishes. All decision variables for the current
time period t = iter are fixed, and Zijnt variable returns to a dis-

Fig. 7 – Decomposition approach applied for a single time
period.

crete mode by setting Z.prior = 1, and then the upper loop goes
back to the next MPC iteration.

A simple example considering products i1, i2 and i3 for
a plant n and time period t is presented in Fig. 7 showing
which decisions variables are released and which remain fixed
when a single product is selected to be optimised (ant & bint) by
the algorithm. In this case, by selecting i2 (ant = 1 & bi2,nt = 1),
assignment decisions Ei2,nt, for the plant n and time period t
are released and optmised by [M2], as well as the sequenc-
ing decisions Xi2,jnt, while the assignment decisions of the
other two products, i1 and i3, (Ei1,nt and Ei3,nt) and the general-
precedence sequencing decision between these two (Xi3,i1,nt)
remain fixed, with bi1,nt = 0 and bi3,nt = 0. The rest of decisions
of all products (Lint, Fint Zijnt, ZFijnt) are reoptimised by [M2].

4.2.1.  Decomposition  techniques
In this section we summarise the main decomposition tech-
niques (temporal, production and spatial decompositions)
used in this work:

1) Temporal decomposition (LST): NT = 1, NP = |I|, NS = |S|.  Thus,
at each iteration (iter1) all products at the time period are
rescheduled for all production plants.

2) Production decomposition (LSP): NT = LCH, NP = 3, NS = |S|.
Thus, 3 consecutive products are released at each iteration
(iter2) following the lexicographic order, for all time periods
and plants.

3) Spatial decomposition (LSS): NT = LCH, NP = 5, NS = 1. Thus,
five consecutive products for single plant n are selected at
each iteration (iter2) for all time periods.

4.3.  Cutting  Plane  approach

This Cutting Plane approach, specially adapted for this prob-
lem, has been embedded into the original MPC  described
above in order to solve the problem considering forecast
demand under uncertainty.

4.3.1.  First  step:  solve  the  relaxed  problem  without
sequencing  constraints
The first step provides a feasible solution of the reduced model
[rM1] without considering sequencing decisions in Eqs. (5)–(7).

Maximise OF in Eq. (A.20)
Subject to: Eqs. (A.1)–(A.19), (1)–(4), (10)-(11)

4.3.2.  Second  step:  solve  the  relaxed  problem  by  adding
integer  cuts
In the second step, sub-tours are identified and additional cuts
are added to the reduced model [rM1] by Eq. (20). This repre-
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Table 3 – Set of products produced, stored and sold at
echelon node n.

Sets Products Nodes

PSn i1–i10 s1
i5–i14 s2
i11–i20 s3

PIn i1–i8 c1–c2
i4–i12 c3–c4
i8–i16 c5–c6
i12–i20 c7–c8

PMn i1–i8 m1–m4
i4–i12 m5–m8
i8–i16 m9–m12
i12–i20 m13–m16

Table 4 – Problem parameters.

Parameters

LB = 5 (h)
UB = 168 (h)
Imin

int = 0
Imax

int = 2·IT
int

I0
in = IT

int|t=1

CTinn′ = �inn′
N = 3·UB
H = 52 (weeks)
yiln = 0.9

sents a sub-tour breaking constraint of the TSP problem. The
algorithm continues in that way till no more sub-tours are
found. At this point, all tour breaking constraints are satisfied
by the optimal solution of the [rM1].

Maximise OF in Eq. (A.20)
Subject to: Eqs. (A.1)–(A.19), (1)–(4), (10)-(11), (20)

4.3.3.  Third  step:  solve  the  pricing  problem  with
sequencing  constraints
The third step is run in order to provide a feasible solution
for the pricing problem with sequencing constraints. For this,
all assignment and sequencing decision variables are fixed
and a reduced model [M1] is solved by setting free all pricing
decisions.

Maximise OF in Eq. (A.20)
Subject to: Eqs. (A.1)–(A.19), (1)–(11)

5.  Computational  analysis  and  results

5.1.  Example

In this section, we  are going to study a large-scale version of
the example provided by Liu et al. (2012). The original example
proposed for a single-stage problem with 3 production plants
(s1–s3), 8 distribution centres (c1–c8) and 16 markets (m1–m16)
is extended to consider 3 single-unit stages (l1-l3) and 20 prod-
ucts (i1–i20) by using a similar set of data (see Supplementary
Material). The structure of the supply chain was presented in
Fig. 1. According to this, plant s1 is connected with DCs {c1–c4},
plant s2 with {c3–c6} and s3 with {c5–c8}. While {c1-c2} are
connected with markets {m1–m4}, {c3-c4} with {m5–m8}, {c5-
c6} with {m9–m12} and {c7-c8} with {m13–m16}. The set of
products produced, stored and sold at each echelon node n
are defined by PSn, PIn, PMn in Table 3. Important information
about problem parameters are also summarised in Table 4.

In the analysis, we compare the results provided by the
original MPC, in which model [M1] is solved by iterations,
the HMPC given in Section 4.1, and HMPC + LS approaches
proposed in this work by using temporal, production and spa-
tial decompositions, considering price elasticity of demand.
We also evaluate the behaviour of these approaches in com-
parison with a commonly known cutting plane approach at
different control horizon lengths (LCH = 6,8,10).  This cutting
plane approach was embedded into the original MPC.

Results were obtained by using GAMS
®

v24.6 with Gurobi
®

v6.5 on an Intel
®

Xeon
®

CPU 3.5 GHz with12 parallel threads.
The time limit imposed for the LS algoritms is 60 s per iteration
and the optimality gap is set to 1%. For HMPC, a CPU limit of
60 s per model at each iteration and the relative termination
tolerance is set to 5%. Also, in the objective function, we  use a
weight for inventory wi = 2.5 and for the price change wp = 10.
Finally, for a fair comparison with HMPC, MPC, and Cutting
Plane is solved within a time limit of 180 s per iteration and an
optimality gap of 5%.

5.2.  Computational  results

This example considers an error of 20% in the demand fore-
cast for all periods, products and markets. In order to keep
this uncertainty under control, the MPC  is solved for the whole
scheduling horizon with the real demand revealed for the cur-
rent period, and the initial demand forecast for the following
unrevealed periods. The results about Profit ($), CPU time (s)
performance and Improvement percentage IP (%) for different
methods considering price elasticity of demand are reported
in Table 5.

Results in Table 5 indicate that the best solution has been
found by LST ($1,149,871) after 2232 s for a horizon length of
LCH = 10, while the worst solution has been reached by Cut-
ting Plane approach ($835,707) for LCH = 6 after 1111 s. It is
worth to notice that in general MPC  could find good qual-
ity results (IP% = 3.4% in average in comparison with HMPC)
but at expenses of longer CPU times. Also here it can be seen
that the improvement percentage IP(%) of LST after HMPC is
in average 10.27%, while the IP(%) is 4.23% for LSP and 5.26%
for LSS. All of HMPC + LS approaches perform better than the
MPC  and the Cutting Plane (average IP% = −1.35%) in about a
quarter of the CPU time, which demostrates the effectiveness
of integrating LS inside the HMPC for the large scale exam-
ple considered in this work. Note that for this example, when
LCH = 10 the MPC and Cutting Plane achieve lower profits than
when LCH = 8, due to the more  computational difficulties in
each iteration with a longer control horizon, and the resulting
further suboptimisality of the obtained solutions within the
CPU limits.

A ranking profile for (a) profit and (b) computational time
and (c) overall performance for the six different approaches
under study is shown in Fig. 8. Here the overall ranking is cal-
culated based on the average profit but using the average CPU
time as a tiebreaker.

Ranking the profits from the worse (1) to the best (6), it
can be seen in Fig. 8a, that the best solution for each hori-
zon length LCH is obtained by LST, followed by LSS and LSP,
while MPC only could have a very good solution for LCH = 6
and worse than LS algorithms for the other LCH. HMPC and
Cutting Plane are considerably worse than the others. On the
other hand, the ranking for the computational time in Fig. 8b
shows that MPC and Cutting Plane approaches report worse
CPU time followed by LSS, LST and LSP, respectively, while
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Table 5 – Result comparison for different solution approaches.

Horizon Profit ($)

HMPC MPC HMPC + LST HMPC + LSP HMPC + LSS Cutting Plane

LCH = 6 883,550 947,355 992,749 918,719 923,099 835,707
LCH = 8 1,026,616 1,070,885 1,130,891 1,076,072 1,085,255 1,059,760
LCH = 10 1,061,661 1,047,854 1,149,871 1,103,089 1,120,933 1,041,777

Average 987,395 1,022,031 1,102,681 1,052,718 1,063,218 979,081

Horizon CPU time (seconds)

HMPC MPC HMPC + LST HMPC + LSP HMPC + LSS Cutting Plane

LCH = 6 117 6902 1890 504 1126 1111
LCH = 8 300 9383 1905 948 2092 7552
LCH = 10 678 9385 2232 1,556 3655 16,335

Average 365 8557 2009 1003 2291 8333

Horizon IP (%)

HMPC MPC HMPC + LST HMPC + LSP HMPC + LSS Cutting Plane

LCH = 6 0.0 7.22 12.36 3.98 4.48 −5.41
LCH = 8 0.0 4.31 10.16 4.82 5.71 3.23
LCH = 10 0.0 −1.30 8.31 3.90 5.58 −1.87

Average 0.0 3.41 10.27 4.23 5.26 −1.35

MPC = Model Predictive Control, HMPC=Hierarchical Model Predictive Control, LST = temporal decomposition (NT = 1,NP = |I|,NS = |S|),
LSP = production decomposition (NT= LCH,NP = 3,NS = |S|), LSS = spatial decomposition (NT = LCH,NP = 5,NS = 1).

Fig. 8 – Ranking profile for (a) Profit (b) CPU time and (c) Overall (Profit & CPU time) for different approaches.

HMPC provides the best CPUs for the LCH cases analysed. Thus,
it is easy to demonstrate that HMPC + LS methods can take
the advantages of the decomposition improving the MPC and
reducing the total CPU time of the Cutting Plane approach.
For this example, it can be seen that the temporal decomposi-
tion in LST is more  effective than other methods followed by
spatial decomposition in LSS and production decomposition
in LSP by considering an overall ranking in Fig. 8c. In general,
Cutting Plane approach provides similar solutions to HMPC,
but spend a similar CPU time than MPC, which demonstrates
that this is not a promising approach for this particular prob-
lem. One of the main reasons is that Cutting Plane spends a
lot of time adding cuts to the relaxed problem and running
many  iterations to find a feasible solution, while HMPC takes
the advantages of the sequential procedure solving the model
in a hierarchical way on a single iteration.

Finally, Fig. 9 shows the behaviour of the approaches pre-
sented above for this problem, analysing the estimated profit
($) and the improvement percentage (IP%) obtained at each
iteration along the planning horizon considering a horizon
length LCH = 10. Here it can be seen how HMPC takes the advan-
tage of solving the problem in a hierarquical way providing
better results than the original MPC  and the Cutting Plane
approach at each iteration providing good results with less

variability. The corresponding data of Fig. 9 is summarised in
Table 6. Here it can be seen that the average improvement
percentage IP% of MPC  against HMPC is around −7.5% with a
standard deviation of 3.9% while the Cutting Plane is in aver-
age −1.4% with a standard deviation of 1.8%.

The results of the MPC and Cutting Plane approaches vary,
alternating between good and bad solutions at each iteration
in comparison with HMPC. Bad solutions maybe occur when
solver is interrupted, leaving a huge relative gap. This may
happen if full MILP model [M1] and/or reduced model [rM1]
can’t provide a solution with a small relative gap (<5%) after a
time limit imposed for each iteration. However, in some iter-
ations, the Cutting Plane approach has been able to find good
quality results, even better than the one provided by the HMPC.
On the other hand, LS methods (LSS, LST and LSP) behave sim-
ilarly providing improved results (Avg.: 2.4%, 1.9%, 1.8%) than
HMPC with less deviations (Stdev.: 0.8%, 0.9%, 1.0%).

6.  Discussion

Three scenarios considering time horizon LCH = 6, 8, and 10
(weeks) of an extended problem from the literature were
presented in this paper and solved by using six different
approaches; a well-known MPC and a Cutting Plane approach
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Fig. 9 – Performance of the algorithms at each iteration for LCH = 10.

Table 6 – Profit & improvement percentage (IP%) for different solution approaches in comparison with HMPC at each
iteration for LCH = 10.

HMPC MPC HMPC + LST HMPC + LSP HMPC + LSS Cutting Plane

Profit IP% Profit IP% Profit IP% Profit IP% Profit IP% Profit IP%

Avg. 253,983 – 236,438 −7.5 260,166 2.4 258,831 1.9 258,500 1.8 250,427 −1.4
Stdev. 10,152 – 11,771 3.9 9810 0.8 9970 0.9 9633 1.0 10,765 1.8

developed for this problem and proposed hierarchical MPC
called HMPC and LS approaches for temporal, production and
spatial decomposition. The integrated framework HMPC + LS
has obtained better results than other existing approaches for
the extended case study proposed here. In addition, further
discussions on the proposed approaches and computational
results are summarised as follow:

• Novelty of HMPC: In order to deal with the uncertainty in
demand forecast, a hierarchical MPC  has been proposed,
allowing solving the problem in a sequential way obtaining
good initial results in short CPU time. The main contri-
bution of our HMPC is the possibility of dealing with no
reliable solutions, with the addition of additional integer
cuts, returning always a feasible solution of the system in
a few iterations. As we  have mentioned before, infeasibili-
ties may happen when then minimum production amount
cannot be produced in a specific time period or due to the
inventory or backlog restrictions.

• HMPC vs MPC: One of the main drawbacks of the origi-
nal MPC  in comparison with HMPC relies on the CPU time

needed to converge to a reasonable gap (5%). For that rea-
son, we  imposed a CPU time limit (3 min) at each iteration
of the MPC, as well as the HMPC. According to this, we  could
demonstrate that the HMPC has obtained similar results
than the original MPC, 3% worse in average, reducing the
CPU time in one order of magnitude.

• CPU limit selection: The solution of MPC and HMPC do not
improve much by increasing the CPU time limit. Based on
the study, a reasonable computational time of 3 min  per iter-
ation is sufficient enough to obtain good quality solutions
per iteration. For the practical reasons, a CPU limit should
be defined according to the model behaviour and the total
computational time imposed for the comparison (1 h).

• Novelty of LS: Taking the advantages of the solution
reported by HMPC, LS decomposition has been integrated
as an inner loop inside the HMPC finding improved results.
Three LS approaches have been developed in order to
decompose the problem in temporal, production and spa-
tial ways allowing the possibility of improving the initial
solution in between 4–10% average within an hour of CPU
time.
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• Cutting Plane approach: In order to compare with other
existing decomposition methods, a Cutting Plane approach
has been implemented. In order to find good results, this
Cutting Plane approach has been embedded inside the MPC
and solved iteratively. The average result reported by this
method was similar to the one reported by the HMPC but
with a higher computational effort.

• HMPC + LS vs. Cutting Plane: The efficiency of the Cutting
Plane approach relies on the number of cuts added to the
MPC  to find a feasible solution. The addition of these cuts
increases the model size taking much more  CPU time to find
relatively good results. On the other hand, the integrated
HMPC + LS is able to find a feasible solution very fast while
spending the rest of the time trying to improve it.

7.  Concluding  remarks

An MILP-based model for the supply chain planning and
scheduling of process plants under uncertainty has been
presented. Planning decisions, such production amount,
inventory, sales, backlog and pricing, and scheduling deci-
sions for each time period, such as production assignment,
sequencing and timing, have been considered.

In this study, an extended version of a supply chain plan-
ning and scheduling problem from the literature has been
considered. Here a multiple products multistage continuous
plant with sequence-dependent changeovers and demand
under uncertainty is addressed. To deal with this complex
problem, different hybrid decomposition approaches have
been introduced and tested. The main contribution relies on
the integration of well known efficient solution techniques,
like MPC  and LSapproaches, into a unique framework in order
to deal with production planning and scheduling under uncer-
tainty in supply chain networks.

Results have demonstrated that the proposed framework
has been able to obtain good quality results of a supply
chain case study proposed in reasonable computational time.
The solutions obtained were compared favorably with other
decomposition techniques implemented for this problem.
Finally, new features of novel techniques embedded inside the
MPC  must be studied further in the future in order to create
a robust solution strategy for different types of uncertainties.
In addition, the investigation of the solution nervousness of
the proposed framework on a wider range of examples is an
interesting future work direction.
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Appendix  A.  Main  constraints  proposed  in  Liu
et al.  (2012)  for  a  single-stage  plant

Assignment  constraints

Assignment constraints based on the ideas of the TSP problem
are defined in Eqs. (A.1)–(A.5). Here, binary variables Fint and
Lint are considered to ensure that only one product is assigned
as first or last at echelon node n in time period t by Eqs.
(A.1)–(A.2). Then, variable Zijnt is derived to take into account
the immediate-precedence relationship between products i

and j at echelon node n in time period t while ZFijnt defines
if product i in time period t−1 is processed just before product
j in time period t at echelon node n. Thus, Eqs. (A.3)–(A.5) are
derived to ensure only one predecessor and successor of every
product i assigned to echelon node n in time period t by binary
variable Eint. Note that, Eqs. (A.3)–(A.5) are slightly modified
from the original version of Liu et al. (2012) in order to have
a reduced number of equations of the asymmetric TSP model
(see Aguirre et al., 2017).

∑

i ∈ PSn

Fint = 1 ∀n ∈ S, t (A.1)

∑

i ∈ PSn

Lint = 1 ∀n ∈ S, t (A.2)

∑

j ∈ PSn,j /= i

Zijnt +
∑

j ∈ PSn,j /=  i

Zjint = 2 · Eint − Lint − Fint

∀n ∈ S, i ∈ PSn, t

(A.3)

∑

j ∈ PSn,j /= i

Zijn,t−1 +
∑

j ∈ PSn

ZFijnt = Ein,t−1, ∀n ∈ S, i ∈ PSn, t (A.4)

∑

j ∈ PSn,j /= i

Zjint +
∑

j ∈ PSn

ZFjint = Eint ∀n ∈ S, i ∈ PSn, t (A.5)

Inventory  constraints

Inventory level Iint of each product i at each echelon node n in
time period t is stated in Eqs. (A.6)–(A.8), by relating production
amounts PRilnt, sales SVint and product flows  Qinn′t. Here the
initial inventory is defined by I0in.

Iint = Iin,t−1|t>1 + I0in|t=1 + PRilnt|l=L −
∑

n’ ∈ T
inn’

Q
inn’t

∀n ∈ S, i ∈ PIn, t

(A.6)

Iint=Iin,t−1|t>1 + I0in|t=1 +
∑

n’ ∈ T
in’n

Q
in’n,t−�

in’n
−

∑

n’ ∈ T
inn’

Q
inn’t

∀n ∈ C, i ∈ PIn, t

(A.7)

Iint = Iin,t−1|t>1 + I0in|t=1 +
∑

n’ ∈ T
in’n

Q
in’n,t−�

in’n
− SVint

∀n ∈ M,  i ∈ PIn, t

(A.8)

Demand  constraints

Eq. (A.9) is provided to estimate the unmet demand Uint of
products at echelon node n at the end of each time period.

Uint = Dint − SVint ∀n ∈ M,  i ∈ PMn, t (A.9)

Price  elasticity  of  demand

When the initial demand D0
int, and price P0

in are known,
the manager can determine the price Pint to affect the actual
demand in the market Dint. These two continuous variables
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are related to each other by the price elasticity of demand
coefficient PEint, as stated in Eq. (A.10).

Dint − D0
int

D0
int

= PEin · Pint − P0
in

P0
in

∀n ∈ M, i ∈ PMn, t (A.10)

Pricing  constraints

In order to incorporate pricing decisions Eqs. (A.11)-(A.12) are
introduced. Eq. (A.11) selects a certain price at level k from a set
of available prices PL

ink by incorporating a new binary variable
Yink. Moreover, Eq. (A.12) enforces that only one price could be
selected for each product i in each market n at time period t.

Pint =
∑

k

PL
ink · Yinkt ∀n ∈ M, i ∈ PMn, t (A.11)

∑

k

Yinkt = 1 ∀n ∈ M,  i ∈ PMn, t (A.12)

Linearisation  constraints

Eqs. (A.13)-(A.14) are considered to linearise the product of
price Yinkt and sales SVint in the profit calculation. An auxil-
iary variable is introduced and can be activated only once by
Yink variable in Eq. (A.12).

SVint =
∑

k

SYinkt ∀n ∈ M,  i ∈ PMn, t (A.13)

SYinkt ≤ N · Yinkt ∀n ∈ M, i ∈ PMn, t, k (A.14)

Inventory  deviation

Eqs. (A.15)-(A.16) are introduced in order to maintain the
inventory deviations IDint in a low level along the entire plan-
ning horizon. This new variable is optimised with the total
profit stated in Eq. (A.20) to reduce the differences between
the inventory target ITint and the real inventory level Iint.

IDint ≥ IT int − Iint ∀n, i ∈ PIn, t (A.15)

IDint ≥ Iint − IT int ∀n, i ∈ PIn, t (A.16)

Price  change

Similarly, price changes PCint are considered by Eqs. (A.17)-
(A.18).This is calculated as the difference between prices at
consecutive time periods t−1 and t. For the first period an
initial price is considered by P0

in.

PCint ≥ Pint − Pin,t−1|t>1 − P0
in|t=1 ∀n ∈ M, i ∈ PMn, t (A.17)

PCint ≥ Pin,t−1|t>1 + P0
in|t=1 − Pint ∀n ∈ M, i ∈ PMn, t (A.18)

Total  profit

The total profit is provided in Eq. (A.19) by considering sales
revenues, production costs, changeover costs, transportation
costs and unmet demand costs.

TP =
∑

t,k,n ∈ M,i ∈ PMn

PL
ink · SYinkt −

∑

t,n ∈ M,i ∈ PMn,l=|L|
CPin · PRilnt −

∑

t,n ∈ S,i,j ∈ PSn,i /=  j

CCijn · Zijnt−
∑

t>1,n ∈ S,i,j ∈ PSn

CCijn · ZFijnt −
∑

t,n ∈ S,n′ ∈ T
inn’,i ∈ PIn

CTinn′ · Qinn′t −
∑

t,n ∈ M,i ∈ PMn

CUin · Uint

(A.19)

Objective  function

Finally, the objective function OF is defined by Eq. (A.20) intro-
ducing a weight for the total price change wp and a weight for
the total inventory deviation wi.

OF = TP − wi
∑

i,n,t

IDint − wp
∑

i,n,t

PCint (A.20)

Appendix  B.  Supplementary  data

Supplementary data associated with this article can be
found, in the online version, at https://doi.org/10.1016/
j.cherd.2018.08.021.

References

Aguirre, A.M., Méndez, C.A., Castro, P.M., 2011. A novel
optimization method to automated wet-etch station
scheduling in semiconductor manufacturing systems.
Comput. Chem. Eng. 35, 2960–2972.

Aguirre, A.M., Méndez, C.A., Castro, P.M., De Prada, C., 2012.
MILP-based approach for the scheduling of automated
manufacturing system with sequence-dependent transferring
times. Comput. Aided Chem. Eng. 30, 477–481.

Aguirre, A.M., Méndez, C.A., Castro, P.M., 2014. A hybrid
scheduling approach for automated flowshops with material
handling and time constraints. Int. J. Prod. Res. 52, 2788–2806.

Aguirre, A.M., Liu, S., Papageorgiou, L.G., 2017. Mixed integer
linear programming based approaches for medium-term
planning and scheduling in multiproduct multistage
continuous plants. Ind. Eng. Chem. Res. 56 (19), 5636–5651.

Alle, A., Pinto, J.M., 2002. Mixed-integer programming models for
the scheduling and operational optimization of multiproduct
continuous plants. Ind. Eng. Chem. Res. 4, 2689–2704.

Alle, A., Papageorgiou, L.G., Pinto, J.M., 2004. A mathematical
programming approach for cyclic production and cleaning
scheduling of multistage continuous plants. Comput. Chem.
Eng. 28, 3–15.

Alle, A., Pinto, J.M., 2004. Global optimization for the cyclic
scheduling and operation of multistage continuous plants.
Ind. Eng. Chem. Res. 43, 1485–1498.

Aqlan, F., Lam, S.S., 2016. Supply chain optimization under risk
and uncertainty: a case study for high-end server
manufacturing. Comput. Ind. Eng. 93, 78–87.

Baldea, M., Harjunkoski, I., 2014. Integrated production
scheduling and process control: A systematic review. Comput.
Chem. Eng. 71, 377–390.

Bhattacharya, S., Bose, S.K., 2007. Mathematical model for
scheduling operations in cascaded continuous processing
units. Eur. J. Oper. Res. 182, 1–14.

Bhushan, S., Karimi, I.A., 2003. An MILP approach to automated
wet-etch scheduling. Ind. Eng. Chem. Res. 42, 1391–1399.

Bhushan, S., Karimi, I.A., 2004. Heuristic algorithms for
scheduling an automated wet-etch station. Comput. Chem.
Eng. 28, 363–379.



356  Chemical Engineering Research and Design 1 3 8 ( 2 0 1 8 ) 341–357

Birewar, D.B., Grossmann, I.E., 1989. Efficient optimization
algorithms for zero-wait scheduling of multiproduct batch
plants. Ind. Eng. Chem. Res. 28, 1333.

Bose, S., Pekny, J.F., 2000. A model predictive framework for
planning and scheduling problems: a case study of consumer
goods supply chain. Comput. Chem. Eng. 24 (2–7), 329–335.

Bose, S.K., Bhattacharya, S., 2008. A two pass heuristic algorithm
for scheduling ‘blocked out’ units in continuous process
industry. Ann. Oper. Res. 159, 293–313.

Bose, S.K., Bhattacharya, S., 2009. A State Task Network model for
scheduling operations in cascaded continuous processing
units. Comput. Chem. Eng. 33, 287–295.

Braun, M.W., Rivera, D.E., Flores, M.E., Carlyle, W.M., Kempf, K.G.,
2003. A model predictive control framework for robust
management of multi-product, multi-echelon demand
networks. Annu. Rev. Control 27 (2), 229–245.

Calfa, B.A., Agarwal, A., Grossmann, I.E., Wassick, J.M., 2013.
Hybrid bilevel-lagrangean decomposition scheme for the
integration of planning and scheduling of a network of batch
plants. Ind. Eng. Chem. Res. 52, 2152–2167.

Castro, P.M., Harjunkoski, I., Grossmann, I.E., 2011a. Greedy
algorithm for scheduling batch plants with
sequence-dependent changeovers. AIChE J. 57, 373–387.

Castro, P.M., Aguirre, A.M., Zeballos, L.J., Mendez, C.A., 2011b.
Hybrid mathematical programming discrete-event simulation
approach for large-scale scheduling problems. Ind. Eng.
Chem. Res. 50, 10665–10680.

Castro, P.M., Zeballos, L.J., Méndez, C.A., 2012. Hybrid time slots
sequencing model for a class of scheduling problems. AIChE J.
58,  789–800.

Chang, P.-C., Lin, Y.-K., Chen, J.C., 2015. A fuzzy-based
assessment procedure for a clothing factory with
waste-prevention consideration. J. Cleaner Prod. 108, 484–493.

Chu, Y., You, F., 2014. Moving horizon approach of integrating
scheduling and control for sequential batch processes. AIChE
J.  60, 1654–1671.

Crama, Y., 1997. Combinatorial optimization models for
production scheduling in automated manufacturing systems.
Eur. J. Oper. Res. 99, 136–153.
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