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Abstract

Accurate estimates of fishing effort are necessary in order to assess interactions with the
wider ecosystem and for defining and implementing appropriate management. In intertidal
and inshore fisheries in which vessel monitoring systems (VMS) or logbook programmes
may not be implemented, quantifying the distribution and intensity of fishing can be
difficult. The most obvious effects of bottom-contact fishing are often physical changes to
the habitat, such as scarring of the sediment following dredging or trawling. We explored
the potential of applying remote sensing techniques to aerial imagery collected by an
unmanned aerial vehicle, or drone, in an area of intertidal mud flat (0.52 kmz) in Poole
Harbour, UK, where shellfish dredging is widely carried out and conflicts between
commercial fishing interests and the conservation of internationally important shorebird
populations are a concern. Image classification and image texture analysis were performed
on imagery collected during the open dredge season in November 2015, in order to
calculate measures of fishing intensity across three areas of the harbour subject to different
management measures. We found a significant correlation between results of the image
texture analysis and official sightings records collected during the dredging season,
indicating that this method most accurately quantified dredging disturbance. The
relationship between shorebird densities and food intake rates and the results of this
analysis method were then investigated to assess the potential for using remotely sensed
measures of fishing effort to assess responses of overwintering shorebird populations to
intertidal shellfish dredging. Our work highlights the application of such methods, providing

a low-cost tool for quantifying fishing effort and predicting wildlife conflicts.

Keywords: remote sensing; unmanned aerial vehicle; intertidal; dredging; shellfishing;
shorebirds
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1. Introduction

In an era of rapid biodiversity loss and anthropogenic change, remote sensing is increasingly
used to aid environmental management and conservation by identifying links between
remotely detectable environmental parameters and patterns of biodiversity and species
abundance (Turner et al., 2003; Nagendra et al., 2013). Such approaches are most
frequently applied in terrestrial environments to monitor ecological responses to changing
patterns of land use and land cover (LULC). Yet work is increasingly exploring the potential
application of remote sensing in coastal and marine systems where multiple human
activities require careful management, particularly in protected areas (Nagendra et al.,

2013).

In the marine environment, fishing represents one of the largest sources of disturbance and
management must reconcile the impacts of commercial harvesting with the interests of
conservation. Many inshore fisheries target benthic invertebrates such as shellfish and
marine worms, which necessarily require the use of bottom-contact gears that can reduce
the abundance and density of target and non-target species (Collie et al., 2000; Kaiser et al.,
2006; Clarke et al., 2017) and elicit physical impacts to the environment (Martin et al.,
2014). Inshore harvesting may therefore compete with highly protected shorebird
populations for shellfish or worm prey (Goss-Custard et al., 2006; Bowgen et al., 2015), and
there have been well-documented conflicts between such inshore fisheries and the interests

of shorebird conservation (Atkinson et al., 2003; Verhulst et al., 2004; Ens, 2006).

Accurate estimates of the distribution and intensity of fishing are highly valuable when
assessing fishing interactions with the wider ecosystem and defining and enforcing

protected areas. Various data types to describe fishing effort may be collected, such as
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interviews with fishermen, market data, official catch statistics, surveys, sightings records
and logbook data (McCluskey and Lewison, 2008). Obtaining such data in small-scale,
artisanal and inshore fisheries, however, is often difficult. In offshore and larger fisheries
detailed data on vessel movements is obtained from vessel monitoring systems (VMS) that
can be used to produce detailed maps of fishing activity and effort. Techniques such as side-
scan sonar, bathymetric light detection and ranging (LiDAR) and multi-beam echo sounders
(MBES) (Kenny, 2003) can detect trawl marks or dredge scars on the seabed. Inshore and
intertidal fisheries, however, are often exploited by smaller vessels in small-scale local
fisheries for which VMS or logbook data are not compulsory (e.g. Clarke et al., 2018), and

accurate estimates of effort and distribution prove difficult to obtain.

In intertidal fisheries the gears utilised often leave significant scarring of the sediment when
exposed at low tide (Clarke et al. 2018), areas which may be easily accessed and
photographed using unmanned aerial systems (UAS) (also known as drones, unmanned
aerial vehicles (UAVs) and remotely piloted aircraft (RPA)). This imagery represents valuable
data to which remote sensing techniques are often applied. The conspicuousness of this
scarring coupled with the increased availability and affordability of UAS technology may
therefore provide a potentially accessible and low-cost approach for obtaining data on the
extent and intensity of bottom-fishing disturbance in intertidal habitats. Past studies have
utilised aerial imagery and remote sensing techniques to map intertidal habitat extents
(Thomson et al., 2003), to monitor intertidal morphological changes (Mason et al., 2010)
and to quantify propeller scarring in shallow subtidal seagrass beds (Robbins, 1997; Dunton
and Schonberg, 2002; Phinn et al., 2008), although their use in assessing impacts of bottom-

contact fishing remains largely untapped.
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Two commonly applied methods in ecological studies are image classification and image
texture analysis. Image classification of raster data is an often-used remote sensing
technique for characterising LULC and habitat mapping. Image classification can be broadly
grouped into two methods: unsupervised classification, whereby the classification aims to
group together data from a multiband raster according to their relative spectral qualities
with no user intervention, or supervised classification, in which data are allocated according
to their similarity to pre-defined, user characterised classes (Foody, 2002). Image texture
has previously been used in terrestrial ecological studies as a proxy for vegetation structure
and habitat complexity (Wood et al., 2012). Wood et al. (2013) built on this application of
texture analysis, exploring the efficacy of image texture derived from Landsat TM satellite
imagery and infrared aerial photography as a predictor of habitat quality and associated

avian species richness.

The present study assessed the efficacy of the two approaches of image analysis - image
classification and image texture - in accurately quantifying the spatial extent and intensity of
shellfish dredging in intertidal mudflats based on the presence of dredge scarring in aerial
imagery collected from a designated protected area. Following validation of each measure
using routinely collected fishing sightings, the relationship between the most accurate
measure and the distribution and feeding behaviour of key shorebird populations was
investigated. Such methods may represent valuable tools for fisheries managers in
accurately and effectively assessing fishing disturbance, with potential implications for

management.
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2. Methods

2.1 Study Area and Fishery

The study was carried out in Poole Harbour (Lat/Long: 50.6796, -2.0238), on the south coast
of the UK in north-west Europe. Poole Harbour is a micro-tidal estuary with large extents of
intertidal mudflats, sandflats and saltmarsh. The estuary is a designated Special Protection
Area (SPA) under the European Birds Directive (2009/147/EC) due to its important breeding

and non-breeding bird assemblages.

Poole Harbour supports a fishery of local economic importance for the non-native Manila
clam Ruditapes philippinarum and the common cockle Cerastoderma edule, which are
harvested using a unique ‘pump-scoop’ dredge. This was developed by local fishermen for
use in intertidal and shallow subtidal areas and its defining characteristic is a pump powered
by the engine of the vessel that pumps seawater through the back of the dredge, rinsing
sediment from the dredge whilst in use (Jensen et al.,, 2004; Clarke et al. 2018). At low
water, spiral scarring typical of such shellfishing gears can be seen clearly in intertidal
mudflats, ranging from around 5 to 12 metres in diameter (Figure 1). A previous study
identified a reduction in fine sediment content in areas following heavy dredging (Clarke et
al., 2018). In 2015, a byelaw was introduced to regulate dredging within the harbour, with a
zonation of permitted dredging intensity (Table 1). In addition to supporting this significant
commercial fishery, the introduced Manila clam also supports overwinter survival of
molluscivorous bird predators within the harbour, such as Eurasian oystercatcher
Haematopus ostralegus and Eurasian curlew Numenius arquata (Caldow et al., 2007), and
there is therefore concern regarding impacts of the fishery on overwintering bird

populations.
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The study was carried out in Wytch Lake, an intertidal area of 0.52 km? within Poole
Harbour that is subject to pump-scoop dredging and encompasses three areas subject to
different management regimes. The intertidal habitats within the study area as classified
according to Connor et al. (2004) largely comprise polychaete and bivalve dominated mid
estuarine muds and Hediste diversicolor and Macoma balthica in littoral sandy mud (Herbert
et al., 2010). The outer extent of Wytch Lake is open to dredging all season (May —
December) and has historically been dredged intensively by fishermen (i.e. chronic
dredging). The middle section of the site is open to short-term (i.e. acute) dredging from July
to October, while all commercial dredging activity is prohibited in the southern part of the
site in the upper reaches of Wytch Lake (i.e. control conditions). The study site and
management areas are presented in Figure 2, with the levels of fishing pressure summarised
in Table 1. Fishing intensity in each management area was derived from Southern Inshore
Fisheries and Conservation Authority (SIFCA) sightings data and discussions with local

fishermen.

2.2 Bird Surveys

To assess the distribution and density of shorebirds, bird observations were conducted
between September 2015 and March 2016. The site was visited twice a month on a low
spring tide, with the exception of October 2015 when only a single count was conducted. On
each visit, counts of each species present were made, along with detailed individual
observations of the most abundant species present throughout the study area. This was
done across all management areas subject to different levels of dredging effort throughout
the 2015/16 winter. In order to expedite counts, each management area was subdivided

into smaller survey ‘sectors’, defined by local features such as saltmarsh or channel
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boundaries (Figure 2). These sectors were labelled according to their dredging intensity (CH:
chronic, long-term dredging; AC: acute, short-term dredging; and CN: control conditions, no

commercial dredging) and numbered (Figure 2).

Each survey was conducted on a low tide of 0.9m or lower and as close to the lowest spring
tide as permitted by daylight hours. A Swarovski STS 80 HD spotting scope was used to
record birds from distances of 50 — 500m (depending on the survey patch). Bird numbers in
each survey patch were counted every half hour, starting from one hour prior to low tide to
one hour after low tide. The species most consistently present during the study period and
for which density data were subsequently analysed were oystercatcher Haematopus
ostralegus, curlew Numenius arquatus, black-tailed godwit Limosa limosa, Common

redshank Tringa totanus and Common shelduck Tadorna tadorna.

In the time between the half-hourly species counts, videos of individual birds were recorded
using a Pentax K-30 D-SLR camera and a Swarovski Telephoto Lens System to fit the camera
to the spotting scope. Each individual bird was recorded for a period of 90 seconds. Feeding
rates (or prey capture rates) were calculated as the number of times a bird swallowed a
prey item per 90 seconds. These feeding observations were carried out for oystercatcher
Haematopus ostralegus, curlew Numenius arquata and black-tailed godwit Limosa limosa
islandica, a species for which Poole Harbour receives SPA designation. These represent the
larger and more abundant species present within the site that are easily recorded at
distance. The capture of prey is easily identifiable for these species due to the characteristic

head movement involved in swallowing.
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2.3 Intake Rates

To estimate intake rates for the three bird species, invertebrate data collected in November
2015 from each management area as part of a separate study was used (Clarke et al., 2018).
Intake rates were calculated as the recorded feeding rates for each species multiplied by a
weighted average prey mass. This was based on the relative abundance of prey items from
November 2015 within each prey size class in each species diet, as reported by Goss-Custard
et al. (2006). This weighted average ash-free dry mass (AFDM) (M) in grams, across all prey
size classes that could potentially be consumed by each bird species, was calculated by first

using:

n
M = Z pim;
=1

Where n = number of size classes, p; = proportion of size class i (i.e. numerical abundance of
size classes divided by the total numerical abundance of all prey size classes that could
potentially be consumed), and m; = published ash-free dry mass value for size class i. This
approach assumes that birds consumed prey size classes in proportion to their abundance.
The AFDM values were published values that have been used in a number of previous
modelling studies that have used individual-based models (IBMs) to predict the effects of
environmental change on wading birds (Stillman et al., 2001; Durell et al., 2006; Bowgen et
al., 2015). The weighted average was then used to estimate the intake rates of individuals
from each species based on the feeding rate observed through video analysis (i.e. feeding
rate multiplied by the weighted average intake). As core sampling of the invertebrate
assemblage was conducted in a grid design and did not cover the whole of each

management area, this weighted average was extrapolated across all survey sectors within
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each of the three dredge management areas. With the caveat that these provide only an
estimate of intake rates that may vary between locations throughout the study area over
time, intake rates were compared for each species across dredging intensities as an

indication of dredging impacts on energetic intake.

2.4 Aerial Survey

Given the sub-division of each management area into survey sectors, it was considered
preferable to quantify fishing effort for each survey sector to allow a more detailed
assessment, rather than to broadly compare shorebird responses across management areas.
Therefore, a drone survey was undertaken to obtain aerial imagery across the study site

from which estimates of fishing intensity could be derived.

At low tide (spring tide, LW 13:25, Height 0.5m) on 23rd November 2015 a DJI Phantom 3
Pro quad-copter Unmanned Aerial System (UAS) was flown over the study site using the
Drone Deploy application (Drone Deploy, 2018). This was flown in a conventional aerial
survey pattern of parallel flight lines to acquire vertical stereo aerial photographs (VSAP).
The orientation, length and spacing of this flight was designed to account for wind direction
and strength (to minimise drift and crabbing and abrupt changes in altitude due to gusting
of winds) and to ensure photo overlap of at least 70% along-track and 30% cross-track. All
flights were undertaken with wind speeds less than 15 mph and at the maximum

permissible altitude of 400ft (122m).

A total of 1,191 (12-megapixel) images were acquired in JPEG format and processed using
structure from motion and multi-view stereo photogrammetry (SfM-MVS) in Agisoft
Photoscan Professional v1.4.2. Texture and pattern were abundant in photographs covering

the shoreline but lacking in the majority of images which covered the intertidal mud flats.
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Initial exterior orientation of individual photographs was estimated using six degrees-of-
freedom (DoF) ephemeris data (i.e. eastings, northings, elevation, kappa, phi and omega).
This was provided from the navigation-grade Global Navigation Satellite System (GNSS),
digital compass and accelerometers onboard the Phantom 3 Pro and stored within the JPEG
format imagery (in EXIF format). The relative exterior orientation was also initiated in the
same way using SfM and refined using sparse cross-correlation image-matching based on all
six DoF. Un-matched photographs from this process were rejected, with 1,049 remaining.
The resulting sparse point cloud of tie points identified across multiple images was culled
based on numbers of cross-correlated photographs, reprojection error, reprojection
uncertainty and projection accuracy per point. Camera calibration, location and orientation
were then optimised based upon the remaining 145,496 tie points, using a bundle
adjustment (i.e. minimising the errors between image locations of observed and predicted
image points using non-linear least-squares analysis across all images in the “bundle”, as

summarised by Triggs et al. (1999)).

Dense cross-correlated image-matching was then used to create a dense point cloud of
323,491,411 points, identified in multiple images from multiple view angles. From this
method each point has an x, y and z coordinate, from which a triangular irregular network
(TIN) mesh of 64,520,192 faces and a digital elevation model (DEM) of 6.5cm ground sample
distance (GSD, or cell size) was produced. This was used to ortho-rectify each image. The
resulting orthophotographs were mosaicked and reprojected to Ordnance Survey British

National Grid (OS BNG) projection, using Airy Spheroid (1936).

The resulting 24-bit red, green and blue (RGB) orthophotograph mosaic had a GSD of

3.05cm. Due to mud flats dominating the imagery, with associated safety concerns and
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limited tidal windows, it was not deemed feasible to collect ground control points (GCPs)
which could be used either in the process of ortho-rectification or to validate the geometric
accuracy of the derived output. Therefore, it was only possible to perform exterior
orientation based on the aforementioned 6 DoF ephemeris. For this reason, the theoretical
absolute locational uncertainty of each pixel is +/- 3m, although in reality the bundle
adjustment is likely to have improved this considerably (but by an unquantifiable level). The
relative locational uncertainty is likely to be considerably better and of the order of a few

pixels (i.e. approximately 12cm).

The mosaicked images were loaded into a Geographical Information System (GIS) (ArcMap
v10.1) for analysis. The image was then clipped to the extent of the intertidal habitat within
the study site and divided into nine separate survey polygons. These were sub-divisions of
the study area in which monthly bird observations had been carried out during the winter of

2015/2016 (Figure 2).

2.5 Image Analysis

2.5.1 Image Classification

Areas of no data were removed prior to analyses being undertaken. First, an unsupervised
classification was performed on the aerial imagery of the intertidal extent of the study area,
clipped to each survey sector. The unsupervised classification process allocates image pixels
into classes according to their individual spectral values. The user defines the maximum
number of output classes into which pixels are allocated, which is often set at approximately
10 times the number of bands in the input raster (ESRI, 2018). A maximum of 30 output
classes were therefore specified for the unsupervised classification process. In order to

expedite the analysis process and overcome small-scale variation in reflectance across the
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mosaic this process was performed on aerial imagery clipped to each survey sector

separately.

Next, for pixels representing exposed mudflats in the estuary, each of the output pixel
classes was manually allocated into one of three groups: 1 — scarred sediment; 2 — a
combination of scarred and naturally disturbed sediment; 3 — undisturbed sediment. This
process was done iteratively using best judgement, by highlighting an individual output class
from the image classification process and determining whether pixels within that class
represented either: scarred sediment as a result of pump-scoop dredging (i.e. physically
disturbed sediment through fishing effort); undisturbed sediment; or a combination of
artificially (i.e. by dredging) and naturally (i.e. by seafloor geomorphological processes)
disturbed sediment. It was decided during initial exploratory analysis that using three
groups was the optimal approach; in some cases a single pixel class was mixed in its
composition, representing spatially separated areas of both artificially and naturally
disturbed sediment. Areas such as this were grouped separately within the middle group in
order to account for this uncertainty and ensure a conservative approach. Such uncertainty
may result from, for example, geomorphological processes along creeks and channels,
natural hydrodynamic processes and gradients in sediment characteristics across shore
heights, and partial physical recovery of older scars. These three groups and the criteria for

their selection are summarised in Table 2.

Once pixel classes had been grouped together, the reclassify tool was used to create three
new classes based on the new groups. For each of the survey sectors in which bird
observations were carried out, the area of each of these new output classes was then

calculated using the calculate geometry tool, to quantify the area of sediment affected by
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dredging activity. For these calculations a scale factor was assigned to each group based on
the confidence in the classification in correctly characterising disturbed sediment due to
dredging activity, and the absolute area of each class was then multiplied by the
corresponding scale factor (Table 2). This accounted for the uncertainty in the second group,

taking a conservative approach in applying a scale factor of 0.5 to this group.

2.5.2 Texture Analysis

Image texture analysis was also carried out on the aerial imagery using the focal statistics
tool in ArcMap 10.1. Neighbourhood analysis was performed, whereby a value is calculated
for each cell, or pixel, in the output raster as a function of the original pixel values within a
specified ‘neighbourhood’ surrounding that pixel. In this case a measure of variety, or ‘pixel
diversity’, was assigned to each image pixel. This was calculated as the number of unique
pixel values in a surrounding grid of a specified size, thus providing a measure of image
texture. This neighbourhood analysis used a moving window (kernel) of 200 x 200 pixels, or
7 x 7m, thereby covering an area of 49m?. Given that the diameter of dredge scarring from
the image was generally measured as between 5 and 12 metres, this covered sufficient area
to capture any variation in sediment spectral characteristics due to dredging activity. Pixel
values in the output raster therefore represent the diversity in the pixel values across the
surrounding 49m? of mudflat. The x and y position of the processing pixel in the grid was

determined by:

X = (width of neighbourhood +1) / 2

Y = (height of neighbourhood +1) / 2.
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Pixel diversity values from the raster output from the neighbourhood analysis were then
summarised for each of the survey sectors using the zonal statistics tool. These could then
be used to compare relative texture across the study area as a surrogate for dredging effort;
a higher mean pixel diversity value was taken as indicative of increased habitat

heterogeneity and sediment disturbance.

2.6 Statistical Methods and Comparison and Validation of Methods

One-way ANOVA was performed on pixel diversity measures to compare values between
survey sectors. In order to compare the two methods of image analysis a Spearman’s rank
correlation was carried out on the results for each of the nine survey sectors. The strength
with which each method relates to the known distribution of dredging effort was then
investigated by performing a Kendal’s correlation of the number of SIFCA patrol sightings in
each survey sector from 2011 to 2015 with the results from each of the methods. This
method provides an estimate of Kendall’s tau-b correlation coefficient, which is more
effective when there are ties within the data. This was the case here as in four of the sectors

no sightings were observed.

2.7 Relating Shorebird Responses to Dredging Intensity

Following validation, the most accurate measure was carried forward in order to investigate
the relationship between fishing intensity and both bird species distribution and
feeding/intake rates using a generalised linear model (GLM) framework. Species distribution
patterns were investigated for Eurasian oystercatcher, Eurasian curlew, black-tailed godwit,
redshank Tringa totanus and shelduck Tadorna tadorna; the species most abundant
throughout the winter and for which sufficient count data was obtained. The appropriate

error distribution for each species model was determined based on the over-dispersion
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parameter (theta) and the distribution of model residuals. The Akaike Information Criterion
(AIC) value and diagnostic plots for each model were then taken as indicative of model
quality. In this analysis each half-hourly count during each survey was treated as a replicate.
The number of days through the winter (from the first survey on 02/09/2015) and/or the
height of low water were also included as covariates to account for residual variation where

AIC values indicated a better model fit when included.

2.8 Statistical Notes

Pseudoreplication is evident in the dataset as for each survey patch there is only one
measure of fishing intensity and the same value re-occurs each time the patch is analysed,
resulting in non-independence. Furthermore, long-lived shorebirds such as the species
observed in this study display strong between-year and season-long site fidelity (Ens and
Goss-Custard, 1986; Marks and Redmond, 1996; Finn et al.,, 2001). Therefore, the birds
observed in each fortnightly count are to likely be the same individuals and hence also non-
independent (Zharikov and Skilleter, 2004). However, introducing random-effects or
repeated measures into the model to account for this would reduce the analysis down to
impractical degrees of freedom. The GLM approach allows the appropriate error structure
and link function to take into account the over-dispersion and the heterogeneity of variance
in the data due to non-independence, and is considered the best option here. The models
used in our analyses therefore represent the best fit models that deal with these issues
while allowing for a biologically reasonable analysis to be undertaken, identifying the broad

trends between species distributions, feeding rates and intake rates and fishing intensity.
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3. Results

3.1 Image Classification

Outputs of the image classification show that dredging effort is mainly concentrated in the
outer reaches of the study site (Figure 3). Inset on Figure 3 are magnified images of areas
broadly characterised by each of the three output classes. Dredging effort in the area
opened to dredging in 2015 appears to be at similar levels to the heavily dredged area
subject to chronic dredging pressure (Figure 5; Table 3). The extent of scarring in the
northern-most section of the heavily dredged site (CH1) appears relatively low however,
comparable to levels of scarring observed in the control site (Figure 5). While no commercial
fishing activity was observed by SIFCA in the control site during the study period, low levels

of scarring are evident in the results.

3.2 Image Texture

Outputs of the image texture analysis (Figure 5) indicate that pixel diversity values, as a
proxy for sediment disturbance, follow the same broad trend as those from the image
classification methods (Table 4; Figure 6). Taken as estimates of image texture, higher values
of pixel variety, or diversity, are attributed to the site subject to chronic fishing pressure and
a decreasing trend occurs towards the control site at the upper reaches of the channel,
where the lowest mean values are observed. This indicates that image texture is generally
greater in those areas subject to more intense fishing, although some of the AC (short-term
fishing) survey sectors appear to show areas of relatively low diversity values compared to
the extent of scarring identified through the image classification technique. Standard
deviations are presented (Figure 6) as standard errors of pixel values are too small to be

visible when plotted (Table 4) due to the large sample size deriving from the number of
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pixels in the high resolution imagery. One-way ANOVA indicates high significance between

pixel diversity values between survey sectors (F (8, 430109098) = 12046456.95, p < 0.0001).

The range of pixel diversity values is lowest in the control sectors and highest in sectors in
the site dredged most intensely. The largest range is observed in sector CH3, consistent with
the largest extent of scarring identified through the image classification process. Conversely
however, sector CH1 shows the second highest range of pixel values, in contrast to the
lowest extent of scarring identified through image classification of all sectors. This may be
due to areas of high variance in pixel diversity and sediment characteristics (Figure 5) within
this sector being grouped in the middle pixel class through image classification, potentially

underestimating the extent of scarring.

3.3 Comparison and Validation of Methods

There is no correlation between the results of the two analyses (percentage of scarred
sediment vs. mean pixel diversity) (Figure 7a) (rs = 0.21, p = 0.58). However, with CH1
removed from the analysis, the sector in which scarring was lowest and a clear outlier in the
scatterplot, a significant correlation between the outputs of the two methods is evident (rs

=0.74, p < 0.05).

A significant positive relationship between the number of sightings of dredge activity in each
survey sector and the mean pixel diversity is evident (Figure 7b) (tau = 0.81, p <0.001), but
there is no significant relationship with the percentage of scarred sediment (Figure 7c) (tau
=0.09, p = 0.75). This suggests that the image texture approach more accurately represents
the known distribution of fishing effort. With the outlier of CH1 removed this relationship is
unchanged (pixel diversity vs. sightings: tau = 0.75, p < 0.05; scarring extent vs. sightings: tau

= 0.43, p = 0.15). Pixel diversity values were therefore considered to best represent known



398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

fishing distribution from SIFCA official sightings data and were carried forward into the

analysis of species densities and feeding/intake rates.

3.4 Species Distribution in Relation to Dredging Intensity
Numbers of all species were variable over the course of the winter and across the

management areas.

The best-fitting models for each species are presented (Table 5). Oystercatcher, curlew, and
shelduck all occur in higher densities in areas of higher dredging intensity, as represented by
increased values of image texture, whereas densities of redshank and black-tailed godwit
show no relationship with dredging intensity (Figure 8). A significant effect of the number of
days through winter is evident on oystercatcher and redshank densities, with a decrease
and increase in densities of each species respectively over time. The height of low water
shows a significant effect on oystercatcher and curlew densities, which demonstrate an

increase on higher tides (Table 5).

3.5 Feeding and Intake Rates

A total of 355 videos were recorded of oystercatcher (n = 150), black-tailed godwit (n = 73)
and curlew (n = 132) throughout the study site. Species feeding rates across all survey
patches were variable throughout the winter of 2015/16, although no difference between
months is apparent for any of the species for which this data was collected (oystercatcher
(F(6,143) = 0.97, p = 0.45); black-tailed godwit (F(5,67) = 1.01, p = 0.42); curlew (F(6,125) =
0.86, p = 0.52)). Data across all months were therefore pooled before further analyses were

undertaken.
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There is no significant effect of pixel diversity on oystercatcher feeding rates, although
results show a significant positive effect on intake rates (Table 6), indicating that
oystercatchers obtain more energy in areas of higher fishing disturbance across the study
site during winter 2015/16. Feeding rates of black-tailed godwit however appear
significantly lower in areas of higher sediment disturbance/pixel diversity (Table 6). The
same trend is not evident in intake rates however; although the data shows a negative trend
there is no significant effect on mean AFDM intake evident throughout the study area.
Feeding and intake rates of curlew show a similar trend to black-tailed godwit, with
significantly lower feeding rates observed in areas of higher sediment disturbance/pixel
diversity, although again, however, this lower rate of feeding does not result in a reduction

in AFDM intake (Table 6).
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4, Discussion

Our results suggest that the methods used to analyse remotely obtained aerial imagery may
provide accurate estimates of the extent and intensity of intertidal dredging, and
demonstrates their application for conservation and management. Image classification
methods may quantify the spatial extent of affected habitat, whilst image texture can
provide a measure of sediment disturbance against which shorebird responses can be
assessed. Whilst other techniques, such as geographic object-based image analysis
(GEOBIA), combine the advantages of the two methods used here, such methods are
suitable for discrete objects within the image (Blaschke et al., 2014). Due to the nature of
the dredging, the scarring in the imagery overlaps significantly, through both the initial
dredging process itself and repeated fishing over time. Given the complexity of the dredge
scars (Figure 3), portioning the image according to the geometry, shape and texture of

scarring is therefore considered unlikely to yield effective results.

With the outlier of sector CH1 excluded, for which results of the classification did not
correspond to the image texture results, both methods appear equivalent, although when
compared to official sightings data results suggest that pixel spectral diversity, and hence
habitat heterogeneity/sediment disturbance, may be a more accurate measure of dredging
disturbance than image classification results. Uncertainty in the classification method is
accounted for by introducing a third class in which pixels represent scarred sediment in one
place and naturally disturbed sediment in another. These inconsistencies likely arise due to
the relative homogeneity of the habitat. Remote sensing techniques are generally applied at
a much broader scale than that used in this study (Hall et al., 1991; Quattrochi and

Goodchild, 1997) to identify LULC patterns or habitat extents over many hectares. Soft
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sediment intertidal mudflats and sandflats are comparably uniform habitats however,
potentially affecting the accuracy with which the classification process can identify spectral

differences.

Results from the classification process may be confounded by other sources of disturbance
causing similar spectral values to those disturbed by pump-scoop dredging, such as natural
hydrodynamic processes. Other confounding factors include the gradient in sediment
characteristics at different shore levels and the pooling of water within scars, resulting in
similar spectral values to natural channels and small creeks. The method used accounts for
such inconsistencies, although the lack of a significant relationship between the extent of
scarring calculated through this method and the fisheries sightings data demonstrates the
potential inaccuracies. Low levels of sediment disturbance in the control site may indicate
sediment disturbance from the processes described above, particularly as this area is close
to a main channel, or perhaps more likely as a result of scarring from a SIFCA shellfish stock
assessment in May 2015 and historic illegal fishing activity that has shown partial recovery.
Whilst the analysis was performed separately for each survey sector, it is noteworthy that
the only area in which some disparity across sector borders appears in Figure 3 is between
sectors AC4 and CN2. This disparity appears to be largely accounted for in the higher areas
of uncertainty in sector CN2 that may be driven by changes in sediment characteristics in
the upper reaches of the study site (Clarke et al., 2018) and partial recovery of some
scarring following the 2015 stock assessment. Results of the unsupervised classification

appear consistent across all other sector borders however.

The notable discrepancy between the results of the two analysis methods in one of the

historically dredged survey sectors (CH1) is likely due to areas of high variance in sediment
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characteristics (and therefore pixel diversity) (Figure 4) being grouped into the middle class
during the image classification process, and therefore likely to be under-represented in the
estimates of scarring extent. This survey sector does indeed have large areas of habitat
categorised as Class 2 (Figure 3), which may explain the observed disparity, and with this
removed from the correlation analysis a significant relationship between scarring and pixel
diversity is observed. It is worth noting that fisheries patrols are not carried out at the same
frequency at which fishing occurs. Patrols are carried out irregularly, although
approximately weekly, and sightings data are likely to vastly underestimate fishing activity.
If scarring extent was correlated with true fishing values in each sector a stronger
relationship may be observed. However while VMS data is lacking these sightings are the
best available data and pixel diversity most strongly correlates with this distribution of
effort. The lower pixel diversity values in some of the AC sectors (subject to short-term
dredging) derived from the image texture analysis appear contrary to the magnitude of
dredge scarring quantified through the image classification methods. However, these areas
of low pixel diversity may be those subject to heavy dredging, resulting in consistently

disturbed sediments, and consequently similar pixel values across such areas.

The approach taken in this study required a priori information on the nature of the
disturbance (i.e. the size of the spiral scarring) to decide on an appropriate scale at which to
run the image classification analysis, and it is acknowledged that replication in this study is
relatively low due to the number of survey sectors used. The site may have been divided
into more sectors, perhaps using a gridded design. We propose that an investigation into
the effect of scale over different grid sizes, particularly in image texture, would be

worthwhile, as scale is an important consideration in remote sensing (Woodcock and
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Strahler, 1987). However, the survey sectors were defined according to the design of the
bird observations, with the aerial survey undertaken subsequently to provide an accurate

estimate of scarring in each sector.

Our results demonstrate the potential for these methods to be integrated into an
assessment of species abundance, distribution and functional responses to this kind of
environmental disturbance. Previous work on the impacts of pump-scoop dredging on
benthic communities in Poole Harbour (Clarke et al., 2018) showed a decline in bivalve
molluscs and an increase in polychaetes and other opportunistic worms in areas of the study
area due to dredging. It would therefore be reasonable to assume that those bird species
for which bivalve molluscs comprise a key dietary component (e.g. oystercatcher, curlew
(Goss-Custard et al., 2006)) would be more susceptible to the impacts of this kind of
dredging. However results suggest that there is currently no effect of dredging pressure in
determining species distribution patterns throughout the site. In fact, for the two species for
which molluscs represent a significant prey item, oystercatcher and curlew, there appears a
positive trend between dredging intensity and species densities. This preference for areas
more disturbed by dredging potentially highlights that these birds depend on the same
areas targeted by clam fishermen throughout the winter, in which case both may be
competing for the same resource of bivalve prey. Given that in excess of 100% of a
population’s winter food requirements needs to be maintained for population survival, due
to the effects of competition and interference (Goss-Custard et al., 2004; Stillman and
Wood, 2013), this spatial overlap of impact and conservation interests could be of concern
should insufficient prey remain after the closure of the fishery in December, in particular the

target species of the fishery (clams and cockles) for molluscivorous oystercatcher and
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curlew. Clearly there remains spatial and temporal overlap with the overwintering period
for shorebird populations under the new management measures, and managers should
remain vigilant that effort is controlled through the permit system to allow sufficient food to

remain.

The height of low water on each survey, when included in the GLMs, had a positive effect on
some species densities. Higher tides likely forces birds to feed higher up the shore and in a
relatively smaller area, increasing bird densities. Black-tailed godwit however, a designated
SPA species, appear to occur at lower densities on higher tides, potentially indicating that
they leave the study area at these times. It may be that at higher tides when more of the
study area is inundated, this species needs to leave the site to feed elsewhere to fulfil its

daily energy requirements, which cannot be met in the upper reaches of the study area.

Despite lower feeding rates in heavily dredged areas for curlew and black-tailed godwit, this
reduction does not translate to a significant reduction of AFDM intake; suggesting that prey
in these areas is more profitable than in areas of lower dredging pressure where feeding
rates are higher. Size of prey is a key determinant in the availability and profitability to bird
predators, as birds cannot consume individuals above certain sizes and other prey items
may be too small to be profitable (Zwarts and Blomert 1992; Piersma et al. 1993; Zwarts and

Wanink 1993).

Many long-lived shorebird species demonstrate high site-fidelity (Marks and Redmond,
1996; Milsom et al., 2000; Finn et al., 2001). Individuals may not respond immediately to
declines in feeding conditions, remaining in unprotected areas, or “ecological traps”, even
when adjacent protected areas support higher prey densities where survival rates and

individual body condition may be higher (Verhulst et al., 2004). A single winter after a
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change in shellfishery management is unlikely to provide strong signals of impacts to bird
survival or fitness, for which temporal trends across years are much more representative
(Cook et al., 2013). However this work gives a clear demonstration of the potential for these
methods to be applied to these systems in the future, and to help inform adaptive
management and ecosystem-based management of inshore fisheries with regards to

management of protected sites and shorebird interests.

The current application of these methods as a means of quantifying fishing pressure in
intertidal, and indeed subtidal habitats, is currently limited. Such methods may also be
applied successfully in subtidal environments to characterise data obtained through Light
Detection and Ranging (LiDAR) or side-scan sonar methods. Routinely collected aerial
imagery can complement fisheries patrols, strongly increasing confidence in mapping fishing
effort in inshore and intertidal fisheries and providing valuable information for
management. This study was carried out in a remote intertidal channel in Poole Harbour
surrounded by privately owned land where access is prohibited, hence the use of the UAS to
obtain imagery from this site demonstrates their potential in obtaining valuable information
from areas where access is difficult; the UAS used in this study was deployed from a publicly
accessible nature reserve separated from the study site by large extents of intertidal
mudflats. Where resources are limited and regular patrols to monitor fishing distribution are
unfeasible or impractical, the methods investigated in this study may offer a low-cost
solution for monitoring the extent and intensity of bottom-fishing in intertidal areas and

subsequent impacts on biodiversity.
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686 6. Figures

687

688 Figure 1 Scarring of intertidal sediments in Wytch Lake, Poole Harbour resulting from pump-scoop dredging observed from (a) aerial imagery and (b) imagery taken

689 from the shoreline. Feeding oystercatcher Haematopus ostralegus can be seen feeding in the background in (b).

690
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Figure 2. Aerial imagery of Wytch Lake obtained at low tide on November 23" 2015 with the nine survey
sectors outlined. CH = chronic dredging pressure; AC = acute, short-term dredging pressure, CN = control.
White areas indicate no data, which were cut from the image before analyses were undertaken. Biotopes

across the study site classified according to Connor et al. (2004) include polychaete and bivalve dominated



697 mid estuarine muds (LS.LMu.MEst) and Hediste diversicolor and Macoma balthica in littoral sandy mud

698  (LS.LMu.MEst.HedMac).
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700 Figure 3. Results of the unsupervised image classification process. The extent of each raster band in each of the survey sectors is evident. The magnified images on the

701 right correspond to the extent indicators on the main map of the survey site. Round Island is the area immediately to the north of survey sector CH1. Group 1:



702 Estimated > 90% pixels correctly classified as disturbed or scarred sediment. High confidence in classification; Group 2: Estimated 50% pixels correctly classified.

703 Intermediate confidence in classification; Group 3: Estimated > 90% pixels correctly classified as undisturbed sediment. High confidence in classification.
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705 Figure 4. Results of the image texture analysis, displayed as pixel diversity values ranging from high (red) to

706  low diversity values (green) across a 200 x 200 pixel (7m x 7m) grid.
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709 Figure 5. Percentage of each survey sector scarred by pump-scoop dredging derived from the unsupervised
710 image classification. Dark grey bars indicate values for whole sites. CH = chronic dredging pressure; AC =

711 acute, short-term dredging pressure, CN = control.
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713 Figure 6. Mean (t S.D.) diversity value of pixels in each survey sector derived from the image texture analysis
714 method. Dark grey bars indicate values for whole sites. CH = chronic dredging pressure; AC = acute, short-

715  term dredging pressure, CN = control.
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719 Figure 7. a) Mean pixel diversity plotted against % scarred sediment; b) no. fishing sightings vs. mean pixel

720 diversity; and c) no. fishing sightings vs. % scarred sediment for each survey sector.
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722 Figure 8. Generalised linear models of species densities against pixel diversities as a proxy for sediment

723

disturbance.
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7. Tables

Table 1. Fishing intensity and seasonal openings of each site sampled under the dredge permit byelaw,

which came in to force on 1% July 2015

Site Fishing Intensity Pre-byelaw Post-byelaw

Control (CN) Low (none) Closed Closed

Acute Dredging (AC) | Acute/Medium Closed Open (1% July - 31* October)
Chronic Dredging (CH) | Chronic/Heavy Open Open (25" May - 24™ December)

Table 2. Inclusion criteria for each of the three groups into which output classes from the unsupervised

classification were included. The scale factor applied to each group to calculate an estimate of spatial extent

of scarring is indicated.

Group Class Selection Criteria Scale Factor
Estimated > 90% pixels correctly classified as disturbed or scarred sediment.

1 1
High confidence in classification.
Estimated 50% pixels correctly classified. Intermediate confidence in

2 0.5
classification.
Estimated > 90% pixels correctly classified as undisturbed sediment. High

3 0
confidence in classification.




734

735

736

Table 3. Measures of dredging extent derived from the image classification process described above,

including the estimate for each class using the scale factors from Table 2. Sector labels denoted with *

indicate areas where data is missing and values are calculated using available data only.

Management Recoded Scarring
Sector Area Percentage Scarring Estimate Estimated Total
Area (fishing Image Estimate
Label (hectares) Cover (%) (%) % Scarred
pressure) Class (hectares)
1 1.33 10.03 1.33 10.03
CH1 2 1.27 9.59 0.63 4.79 14.82
3 10.63 80.38 0.00 0.00
1 20.83 43.84 20.83 43.84
Chronic CH2 2 23.26 48.97 11.63 24.49 68.33
3 3.42 7.19 0.00 0.00
1 31.79 69.15 31.79 69.15
CH3* 2 12.57 27.33 6.28 13.67 82.82
3 1.62 3.51 0.00 0.00
1 53.94 50.55 53.94 50.55
Area Total CH 2 37.10 34.77 18.55 17.38 67.94
3 15.66 14.68 0.00 0.00
1 35.64 47.33 35.64 47.33
AC1 2 34.91 46.36 17.46 23.18 70.52
3 4.75 6.30 0.00 0.00
1 72.64 57.27 72.64 57.27
AC2* 2 32.61 25.71 16.31 12.85 70.12
3 21.60 17.03 0.00 0.00
Acute
1 27.79 48.63 27.79 48.63
AC3* 2 20.67 36.16 10.33 18.08 66.71
3 8.70 15.22 0.00 0.00
1 17.72 36.40 17.72 36.40
AC4* 2 23.25 47.75 11.62 23.87 60.27
3 7.72 15.86 0.00 0.00




737

738

153.80 49.94 153.80 49.94
Area Total AC 111.43 36.18 55.72 18.09 68.03
42.76 13.88 0.00 0.00
0.00 0.00 0.00 0.00
CN1 13.54 34.83 6.77 17.42 17.42
25.34 65.17 0.00 0.00
Control
0.00 0.00 0.00 0.00
CN2* 16.27 46.16 8.14 23.08 23.08
18.98 53.84 0.00 0.00
0.00 0.00 0.00 0.00
Area Total CN 29.81 40.22 14.91 20.11 20.11
44.32 59.78 0.00 0.00
207.74 42.50 207.74 42.50
Study Site
All 178.35 36.48 89.17 18.24 60.74
Total
102.74 21.02 0.00 0.00




739 Table 4. Zonal statistics for each individual survey sector. Each statistic is derived from the pixel diversity

740 values of the output raster from the moving window neighbourhood analysis described in the methods.

Survey
Site Min Max | Range | Mean (£S.D.) S.E. Variety Majority Minority | Median
Sector
CH1 13 140 127 38.41 £ 14.00 0.0026 128 25 13 36
CH2 14 134 120 35.11+ 13.52 0.0022 121 28 116 32
CH | CH3 2 151 149 27.20+12.73 0.0020 150 17 99 23
Area
2 151 149 33.18 £14.17 0.0014 150 26 135 30
Total
AC1 10 127 117 25.93 + 11.81 0.0015 118 17 124 22
AC2 2 113 111 23.76 £ 10.17 0.0001 112 18 101 21
AC3 2 120 118 20.66 + 11.23 0.0016 119 15 117 17
AC
AC4 2 109 107 21.86 £ 10.99 0.0016 108 18 108 19
Area
2 127 125 23.33£11.09 0.0001 126 17 124 20
Total
CN1 12 82 70 21.39 £ 9.65 0.0017 71 17 79 18
CN2 2 88 86 19.47 £ 8.24 0.0015 87 16 87 17
CN
Area
2 88 86 20.46 £9.04 0.0012 87 16 87 17
Total

741



742 Table 5. Outputs from best-fit generalised linear models to assess the effect of predictor variables on species distributions throughout the study site in winter 2015/16.

Oystercatcher

Model Parameter Estimate S.E. Test Statistic Probability Theta
Pixel Diversity 0.182 0.216 8.436 <0.001

Density ~ Pixel Diversity + Days Through Winter + LW Height Days Through Winter -0.004 0.002 -2.007 <0.05 1.16
LW Height 1.718 0.516 3.328 <0.01

Curlew

Model Parameter Estimate S.E. Test Statistic Probability Theta
Pixel Diversity 0.118 0.019 6.262 <0.001

Density ~ Pixel Diversity + LW Height 1.48
LW Height 0.624 0.453 3.585 <0.001

Black-tailed godwit

Model Parameter Estimate S.E. Test Statistic Probability Theta
Pixel Diversity 0.007 0.031 0.219 0.826
Density ~ Pixel Diversity + Days Through Winter + LW Height Days Through Winter -0.005 0.003 -1.814 0.070 0.48
LW Height -3.276 0.818 -4.006 <0.001
Redshank

Model Parameter Estimate S.E. Test Statistic Probability Theta




Pixel Diversity 0.033 0.020 1.683 0.092
Density ~ Pixel Diversity + Days Through Winter 0.92
Days Through Winter 0.011 0.002 4.728 <0.001
Model Parameter Estimate S.E. Test Statistic Probability Theta
Density ~ Pixel Diversity Pixel Diversity 0.054 0.020 2.681 <0.01 1.29

743



744 Table 6. Effect of image pixel diversity (as a proxy for fishing intensity) on feeding rate and intake rates in each species. Results represent outputs of best-fit GLMs.

Feeding Rate 0.010 0.013 0.800 0.425
Oystercatcher

Intake Rate 0.021 0.007 3.249 <0.01

Feeding Rate -0.032 0.014 -2.242 <0.05
Black-tailed godwit

Intake Rate -0.003 0.002 -1.454 0.150

Feeding Rate -0.033 0.012 -2.962 <0.01
Curlew

Intake Rate 0.001 0.004 0.179 0.858

745



