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Abstract—Virtualization techniques aim at handling the grow-
ing demand for computing, storage and communication resources
in cloud computing. However, cloud providers often offer their
own proprietary virtualization platforms. As a result, cloud
users’ VMs are tightly coupled to providers’ IaaS, hindering
live migration of VMs to different providers. A number of live
cloud migration approaches have been proposed to solve this
coupling issue. Our approach, named LivCloud, is among those
approaches. It is designed over two stages, basic design stage
and the enhancement stage. The implementation of the basic
design has been introduced and evaluated on Amazon EC2 and
Packet bare metal cloud. This paper discusses the implementation
of the second stage, the enhancement of the basic design on
Packet. In particular, it illustrates how LivCloud is implemented
in two different scenarios. The first scenario deploys KVM
bridge networking, OpenvSwitch and C scripts used to meet the
network configuration changes during the VMs relocating. This
scenario achieves better downtime of one second compared to the
basic design of LivCloud. The second scenario uses OpenVPN,
OpenDayLight (ODL) and Cisco OpenFlow Manager (OFM) to
successfully live migrate VMs back and forth between LivCloud
and Packet. This scenario achieves better downtime between
400 and 600 milliseconds. As part of the discussion, the paper
proposes a third potential scenario to successfully meet the live
cloud migration requirements. This scenario aims to eliminate
any downtime occurred in the first two scenarios by utilizing
the Open Overlay Router (OOR), Locator Identifier Separator
Protocol (LISP) and ODL.

Keywords—Virtualization; Virtual Machine; Network Virtu-
alization; Nested Virtualization; Live Cloud Migration; Cloud
infrastructure (IaaS); Software Defined Networking (SDN)

I. INTRODUCTION

There is a growing trend in adopting cloud computing

services. In 2017, RightScale conducted cloud computing

trends survey in which 1,002 IT professionals at large and

small enterprises were interviewed about their adoption of

cloud infrastructure and related technologies [27]. 85 per-

cent of enterprises deploy multi-cloud services, up from 82

percent in 2016. On the other hand, private cloud adoption

decreased from 77 percent to 72 percent as enterprises focus

more on public cloud services. Despite the notable upwards

trend, there are still concerns about cloud computing security,

interoperability and managing cost [3], [27]. On the other

hand, the security concerns fell from 29 to 25 percent in

comparison with 2016. Moreover, according to [13], those

issues are not the only future challenges to cloud computing,

but also: (i) scalability and elasticity, (ii) resource management

and scheduling, (iii) reliability, (iv) sustainability and (v) het-

erogeneity.
Every provider have been developing their own APIs and

proprietary features to their selected hypervisor. This has

made it difficult for cloud users to live-migrate VMs to other

providers - one aspect of vendor lock-in with substantial

consequences [28], [32].
Live migration across the Internet takes a notable amount

of time due to transferring the storage, limited Internet band-

width, traffic re-routing, faulty behavior of Internet links and

IP address management [7], [33]. It must keep the existing

connections of the migrated VM to other VMs and cloud

users. As a result, the live migration process can maintain

the continuity of delivering the hosted services on migrated

VMs. Various approaches from industry and academia have

been proposed to improve live cloud migration of VMs at

cloud IaaS [3], [32]. The implementation of those solutions

are still challenging because they are implemented on top of

uncontrolled public cloud IaaS [30]. As a result, a number

of approaches succeeded to overcome virtualization hetero-

geneity by devising Software Defined Networking (SDN) and

nested virtualization [4], [28]. However, they suffer limitations

in terms of flexibility (decoupling VMs from underlying hard-

ware), performance (migration downtime) and security (secure

live migration). Our proposed live cloud migration, LivCloud,

considers these three criteria as critical. It is designed over

two stages, the basic design and its enhancement of the basic

design. The basic design has been implemented and evaluated

in a previous paper [2].
The basic design evaluation outperforms a number of pre-

vious approaches in terms of security and the migrated VMs

hardware specifications (RAM & virtual disk sizes) despite its

relatively acceptable performance (downtime of 2 seconds).
In this paper, the enhancement of the basic design is

introduced and evaluated by conducting live cloud migration in

two different scenarios. Despite both scenarios achieve better

downtime than the basic design stage, Dynamic DNS and a

script written in C are still needed to successfully finish the

process. As a result, a third potential scenario is proposed to

tackle these limitations of the first two scenarios by:

1) Using IPsec VPN and OpenvSwitch (OvS).

2) Using OpenVPN Ethernet Bridging [15], OvS, Cisco

OpenFlow Manager (OFM) [10] and OpenDayLight

(ODL) controller [14].
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3) Introducing ODL, OvS, Locator Identifier Separator Pro-

tocol (LISP) [9] and Open Overlay Router (OOR) [4].

With respect to security, IPsec VPN is used for the first time

in such an environment and it has no effect on performance.

A study in [1] shows that fully live migrating VMs with

their virtual disks and large RAM is still an ongoing effort

to tackle instability and performance. Hence, the next step is

implementing LivCloud using LISP, ODL, OvS and OOR.

Before discussing the three scenarios in more detail, we

highlight the structure of the rest of the paper. Section II

introduces a brief summary of related work highlighting

existing approaches to achieve live cloud migration. Section III

presents LivCloud’s architecture that covers the enhancement

of the basic design. It also highlights the experimental setup.

Section IV discusses the implementation of the two live cloud

migration scenarios on Packet and the empirical results of the

experiments. In Section V, a third potential scenario is intro-

duced to successfully meet live cloud migration requirements.

Future work and conclusion are presented in Section VI.

II. RELATED WORK

The literature review reveals that there are a number of

approaches that aim to achieve live cloud migration using

SDN technologies such as OpenFlow protocol. In [16], an

SDN architecture named, LIME, is introduced to live-migrate

VMs and virtual switches. It is built on Floodlight controller.

It simultaneously runs and clones the virtual switches on

multiple physical switches. If this process is not implemented

correctly, it may lead to services corruption. This architecure

needs the provider’s agreement to be implemented on top

of public cloud IaaS. In [28], an interesting approach is

introduced which is implemented on top of a number of

cloud providers, including Amazon EC2, Rackspace and HP

Cloud. It uses nested virtualization (Xen-Blanket [28]) that

copes with cloud heterogeneity. Xen-Blanket leverages the

paravirtualization (PV-on-HVM) drivers on Xen, which cannot

run unmodified operating systems (i.e., Windows) [28]. The

approach achieves relatively acceptable performance, about 1.4

seconds migration downtime [34]. It is claimed that OvS was

used in, but without any details.

Another approach in [5] proposes an open LISP implemen-

tation for public transportation based on Open Overlay Router

with an SDN controller, OpenDayLight. This approach is

implemented on an emulated environment, GNS3 [6]. The real

challenge is how to implement such design on uncontrolled

environment, such as Amazon EC2 because the provider’s

networking system is highly complicated [2]. Also, networks

are hard to manage because their configurations change during

VMs re-instantiation on the new location. In [7], Migration

of a VM cluster is suggested to various clouds based on

different constraints such as computational resources and

better economical offerings. It is designed based on SDN

OpenFlow protocol and allows VMs to be paired in cluster

groups that communicate with each other independently of

the cloud IaaS. It separates the VM internal network from the

cloud IaaS network. Consequently, VMs can be migrated to

different clouds overcoming network complexity such as static

IPs. The design also adopts SDN architecture for rerouting

traffic when VMs relocation migration occurs. The design is

evaluated on OpenStack environment.

In [18], an IaaS framework with regional datacenters for

mobile clouds is presented. It is designed based on software-

defined networking (SDN) to address the network bandwidth

consumption during migration. The framework is simulated

and evaluated in Mininet-based test environment [17]. Im-

plementing such a design can be more challenging on un-

controlled environments. Finally, virtual network migration

is designed and tested on the Global Environment for Net-

working Innovation (GENI) [19], [20] which is Wide-Area

SDN-enabled infrastructure. The migration in this study is the

process of remapping the virtual network to the physical net-

work to dynamically allocate the resources during migration,

manage hosts connected to the virtual network and minimize

packet loss. However, maintaining transparent migration to the

users and the running applications is still challenging.

III. LIVCLOUD ARCHITECTURE

The LivCloud design is distilled into two stages: basic

design and the enhancement of the basic design [1]. The

basic design stage helps connecting the local network to the

cloud IaaS through nested virtualization and secure network
connectivity. Firstly, nested virtualization is achieved by con-

figuring QEMU-KVM on the local network and public cloud

IaaS. Nested virtualization is configuring one hypervisor (in

the upper layer) within a virtual machine hosted on another

hypervisor [35]. It is known of low perofmrnce, but the high

hardware specifications of today’s servers overcome this issue

[26]. Most of legacy hypervisors, such as QEMU-KVM, Xen

and VMware can run nested virtualization [33]. LivCloud uses

QEMU-KVM as a hypervisor on both sides. Virtual machine

manager is a user interface for managing virtual machines

mainly on QEMU-KVM. Any physical or virtual machine

that has QEMU-KVM configured can be connected locally or

remotely over SSH to virtual manager [1]. The basic design

has been implemented and tested [2].

At this development stage, an enhancement of basic design

of LivCloud is implemented. It deploys various technologies

such as OpenDayLight (ODL), OpenFlow and LISP protocols

to:

1) Enhance network throughput.

2) Maintain VMs connections and configurations.

3) Reserve resources and prediction of potential failure.

Figure 1 shows the final configurations of LivCloud. Live

cloud migration is implemented and evaluated in Scenario 1

and Scenario 2. The next section explains these scenarios in

more detail. Both scenarios are built and tested on a general

experimental setup that can be distilled as follows:

1) QEMU-KVM is enabled on the local network and public

cloud IaaS. QEMU-KVM supports running modified and

unmodified OS. QEMU has high emulation capability of

drivers (i.e network card driver) and KVM provides high
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Fig. 1: The final configuration of LivCloud [1]

acceleration to enhance drivers performance. Also, KVM

needs to access the underlying CPU architecture to pass

it to the virtualized CPU of the hosted VMs [1], [29].

2) IPsec VPN tunnel is configured to secure the migra-

tion. The secure connection between local network and

Packet’s network is an essential part of live cloud migra-

tion.

3) Both sides are connected to Virtual Machine Manager

(VMM) [25] in order to live migrate VMs between the

local network and cloud IaaS.

4) Both sides are connected to the shared storage on the

local network.

5) Dynamic DNS is used to maintain the migrated VM’s

connections and configurations. Dynamic DNS is used to

keep a domain name pointing to the same physical or

virtual server connected to the Internet regardless of any

IP addresses changes [11].

IV. LIVE CLOUD MIGRATION SCENARIOS

Two different live cloud migration scenarios are imple-

mented and evaluated in this section. These scenarios are

chosen to cover the potential solutions of live cloud migration.

These solutions may help cloud users live migrate their VMs

with very low costs. The technologies used in the approach

are either open-source or very low cost.

A. The general experimental setup

This setup is used in both scenarios and some elements

may be added or removed accordingly. It can be used at

this level or at a larger size with respect to the number

of servers and virtual machines. To implement the general

setup, a local network (172.16.10.0/24) based in Bournemouth

(UK) which has two physical servers (Local-Host and NFS

server) is connected to a Ubuntu server (Cloud-Host) 14.04

(private address, 172.20.20.0/24) on Packet’s datacenter in

Frankfurt (Germany). Moreover, Network throughput, CPU

utilization, network latency, migration downtime and disk I/O

performance are the main parameters used to analyze the

live migration impact. Network throughput is measured using

iPerf [21], while network latency is measured by pinging the

migrated VM’s DNS record. Disk I/O performance is tested on

Local-Host and Cloud-Host using hdparm command [23]. If

any downtime happens during the process, Wireshark is used

to calculate it [22].

Packet Bare Metal Cloud provides customers with dedicated

single tenant-physical servers [26]. The bare metal server

complements or substitutes virtualized cloud services with a

dedicated server that eliminates the overhead of virtualization,

but maintains flexibility, scalability and efficiency [26]. Figure

2 shows the enhancement implementation on Packet. The

lab setup as shown in Figure 2 consists of one HP Z440

workstation, Local-Host is connected to the Internet through

EdgeRouter X and Netgear L2 switch providing 1 Gbps. The

workstation has 32 GB of RAM, 1TB disk and 4-core 2.8GHz

Intel(R) Xeon(R) E5-1603 v3 CPU. 64-bit Ubuntu Server

16.04 LTS, QEMU-KVM (Layer 1 hypervisor), OpenvSwitch

(OvS) and QEMU-KVM bridged networking are installed and

configured on the machine [1]. OvS has flow classification,

caching and better performance over the traditional Linux

Bridge. Moreover, it has its own load balancer which is used

to distribute loads across available routes [8].

The other machine on the private network is configured

as NFS server (FreeNAS 9.3) for the lab. The Packet 64-

bit Ubuntu TYPE 1E server 14.04, Cloud-Host is connected

through two bonded network cards providing 20 Gbps. The

server has 32 GB of RAM, 240 GB disk and 4-physical core

2.0GHz/3.4GHz burst Intel E3-1578L v3 CPU. By default

nested virtualization or hardware-assisted virtualization fea-

tures (Intel VT-x, Intel VT-d and Extended Page Tables) are

enabled on any Packet server [26]. QEMU-KVM (Layer 2

hypervisor), OpenvSwitch (OvS) and QEMU-KVM bridged

networking are installed and configured on the server.

Packet offers various types of bare metal servers including,

Type 1 and Type 1E servers which both have similar hard-

ware specifications as specifications of Local-Host [26]. As a

result, the live migration has no issues in terms of hardware

architecture. Previously, Type 1 in Packet’s datacenter in
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Fig. 2: The enhancement implementation on Packet

Amsterdam, Holland, was used in implementing the basic

design of LivCloud. However, KVM NAT networking had to

be configured instead of the bridged option. Packet does not

allow layer 2 networking in this type. This made the migration

process more complicated in terms of VMs’ networking and

IPsec VPN configurations.

In this paper, Type 1E is deployed and KVM bridge is

possible thanks to the configuration with spare Ethernet net-

work card (eth1) [26]. Layer 2 bridge is implemented through

this interface and the cloud private network (172.20.20.0/24)

is installed as shown in Figure 2. Many configurations are

carefully considered including PAT behind the server’s public

IP and enabling IPv4 forwarding to have the bridge functions

correctly.

Any VM on either Local-Host or Cloud-Host can be con-

figured with a local disk or a disk hosted on the local network

NFS server. The local network and the Packet private network

are securely connected via IPsec VPN tunnel. Local-Host and

Cloud-host are connected through the tunnel via the virtual

machine manager that is installed on Local-Host. In the case

of Local-Host being temporarily not accessible, both hosts can

still be connected via the virtual machine manager installed on

Cloud-Host. A remote Ubuntu desktop is installed on Cloud-

Host using VNC server (vnc4server) and through TightVNC,

cloud users can be remotely connected to Cloud-Host [36].

At this setup, Dynamic DNS is used to maintain the migrated

VMs’ connections and configurations. Dynamic DNS is used

to keep a domain name pointing to the same physical or

virtual server connected to the Internet regardless of any IP

addresses changes [11]. no.ip is a dynamic DNS provider that

is chosen to register the DNS records. Dynamic DNS clients

(noip-2.1.9-1) are installed and configured on all migrated

VMs [11]. Dynamic DNS records are used to maintain the

existing connections to the migrated VMS. VMs’ dynamic

DNS records are registered on the dynamic DNS provider,

noip [11] associated with either the public IP of Local-Host or

Cloud-Host. Once the migration to the host is completed, the

dynamic DNS client installed on the migrated VMs updates the

provider with this host’s public IP, so that the name records are

updated accordingly. The other VMs and the cloud users are

connected to these records not to the IP addresses. Therefore,

any changes of public and private IP addresses, the DNS client

updates the records accordingly. Table I shows the migrated

VMs’ specifications, VMs’ architecture and associated DNS

names. As far as the related literature is concerned, the VMs’

specifications are the highest in this environment.

TABLE I: Migrated VMs’ specifications and DNS names

DNS records VM’s
Architecture vCPU RAM (GB) Virtual

disk (GB)
Shared disk/
non-Shared

ub-NonShared-2.ddns.net 64-bit 2 2 12 Non-Shared
ub-shared-2.ddns.net 64-bit 2 2 15 Shared
ub-shared-3.ddns.net 64-bit 2 3 15 Shared
ub-shared-4.ddns.net 64-bit 2 4 15 Shared

xp-NonShared-2.ddns.net 32-bit 2 2 10 Non-Shared
xp-shared-2.ddns.net 32-bit 2 2 15 Shared
xp-shared-3.ddns.net 32-bit 2 3 15 Shared

B. Scenario 1:

The general setup described in Section IV-A is used in

this scenario without adding any technology to successfully

live migrate the VMs mentioned in Table I. QEMU-KVM

supports live migration with different networking options,
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including bridged network and NAT network. Bridge network

has successfully been implemented as mentioned in Section

IV-A. Packet offers various server types including 1E server

that its networking setup allows OpenvSwitch and the bridge

configurations. QEMU-KVM live migration copies the RAM

and CPU states over a number of iterations while the OS

and the applications are running. This means the drivers’

states, such as network cards (NICs) stay as they are on the

sender side [30]. The migrated VMs’ NICs are configured to

request IP addresses from the NAT’s DHCP server. During the

migration, the VMs’ NICS need to be triggered to renew their

IPs on the receiver’s network. To this end, we have written a

script in C language to be run on Windows or Linux to enable

the following:

1) Continuously testing the Internet connectivity by pinging

Google server (8.8.8.8). If connectivity is maintained, the

script does nothing.

2) If the connectivity is lost, the script forces the migrated

VM to renew the IP address and trigger the dynamic DNS

client to update the VM’s record on the noip.

The script has the following structure:

Algorithm 2 Steps of C script in Scenario 1

1: Input:
2: while (true) do
3: Sleep (T)

4: if connection to 8.8.8.8 is false then
5: if (Operating System is Windows) then
6: - Trigger the network card to renew its IP address

7: - Re-run Dynamic DNS client

8: else if (Operating System is Unix) then
9: - Trigger the network card to renew its IP address

10: - Re-run Dynamic DNS client

11: end if
12: end if
13: end while

The total migration time varies because of the VM’s hard-

ware specifications and the Internet traffic. For example, live

migrating the Ubuntu VM (ub-shared-4: 4GB RAM & 2

vCPU) takes on average about 7 minutes in terms of migration

time. The XP VM (xp-shared-2: 2 GB RAM & 2vCPU)

takes about 3 minutes. Unfortunately, the migration process

does not yield the desired results in case of xp-shared-3 and

xp-NonShared-2. However, the migration downtime in other

VMs migration is just under one second due to the latency

in updating the public IP and the DNS records. Due to the

extra overhead processing and migration downtime added by

security mechanism, such as IPsec to live migration, it has

been avoided in many live cloud migration approaches. The

downtime is increased about 5 times when IPsec is added to

live migration as in [31]. The study illustrates the increase of

both migration downtime and total time migration, from less

than 2 seconds to almost 8 seconds downtime when IPsec

VPN is implemented. However, by comparing a direct ping

Fig. 3: A direct ping latency & IPsec VPN latency

through the Internet to Cloud-Host’s public IP and ping to

Cloud-Host’s private IP (172.20.20.1) through the IPsec tunnel

from Local-Host, the round trip time (RTT) is almost identical

in the first and the second scenarios. In fact, the connection

through the tunnel is slightly faster. Figure 3 shows A direct

ping latency & IPsec VPN latency.

C. Scenario 2:

We update the general setup with the following technolo-

gies, OpenVPN [15], Cisco OpenFlow Manager (OFM) [10]

and Zodiac-FX OpenFlow switch [24]. Figure 4 shows the

changes made in this scenario. OpenVPN has the ability to

extend one network across multiple sites (Ethernet bridging)

[15], [28]. The local network (172.16.10.0/24) is extended

to the cloud network, so the migrated VM has an IP ad-

dress within the local network range. OFM is connected to

OpenDaylight controller through RESTCONF API [10] to re-

route the migrated VM internally and Dynamic DNS is used

to re-route it externally. This scenario uses OpenVPN tunnel

instead of IPsec tunnel. The local network (172.16.10.0/24) is

extended using OpenVPN across to Packet’s private network

(172.20.20.0/24) using TAP interface [15]. Zodiac switch is

added to the general topology to configure OF protocol. Zodiac

switch is connected to ODL [24]. Then, OFM is connected

to ODL using RESTCONF API which is an application

developed by Cisco to run on top of ODL. IT visualizes

OpenFlow topologies, its program paths and gather its stats

[10]. Figure 5 shows how OFM is connected to ODL.

By configuring OFM, any changes of VMs or hosts location

can be re-routed internally through Zodiac switch. However,

Dynamic DNS is still needed to re-route the VMs’ location to

external users. Also, during the migration, the VMs’ NICS

and OpenVPN client file need to be triggered to renew

their IPs on the receiver’s network and update the OpenVPN

configurations. This requires the modification of the C script

used in Section IV-B to yield the desired results.

During the evaluation process, OpenVPN bridging, OFM

and the modified script are proved to function slightly better

than the previous scenario. For example, live migrating the

Ubuntu VM (ub-shared-3: 3GB RAM & 2 vCPU) takes on
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Fig. 4: The enhancement implementation on Packet using OpenVPN

Fig. 5: The connection between OFM and ODL [10]

average about 5 minutes in comparison to 7 minutes in the

scenario 1. The XP VM (xp-shared-2: 2 GB RAM & 2vCPU)

takes about the same time as the scenarion 1, 3 minutes.

Similar to the scenario 1, the migration process does not

yield the desired results when live migrating xp-shared-3 and

xp-NonShared-2. However, the migration downtime in other

VMs migration mentioned in Table I is between 400 and 600
milliseconds due to the latency in updating the public IP and

the DNS records. The downtime is about 1 second in Scenario

1. Moreover, OpenVPN Bridging has limitations in terms of

scalibility and Maximum Transmission Unit (MTU) tuning

[15], [30]. The updated version of the script has the following

structure:

D. Simulation results

These results are the average of conducting the experiment

of a total of 15 runs. In terms of the experiment times, it

is done during the morning, afternoon and during the night.

Algorithm 4 Steps of C script in Scenario 2

1: Input:
2: while (true) do
3: Sleep (T)

4: if connection to 8.8.8.8 is false then
5: if (Operating System is Windows) then
6: - Trigger the network card to renew its IP address

7: - Re-run OpenVPN client

8: - Re-run Dynamic DNS client

9: else if (Operating System is Unix) then
10: - Trigger the network card to renew its IP address

11: - Re-run OpenVPN client

12: - Re-run Dynamic DNS client

13: end if
14: end if
15: end while

First, we compare Scenario 2 against Scenario 1 with respect

to network throughput, network latency, CPU overhead and

disk I/O performance.

Then, live migration of the Ubuntu VMs and XP VMs

mentioned earlier is performed back and forth between Local-

Host and Cloud-Host in both scenarios. Only the most notable

statistics are summarized in Figure 6. In summary, deploying

OpenVPN Bridging is proved to outperform using only IPsec

tunnel in all evaluation aspects. Figure 6(a) shows that the net-

work throughput is considerably affected in the first scenario

than the second scenario. In the first scenario, when migrating

ub-share-3 VM that has 3GB RAM, the network throughput

VM is more affected than ub-shared-4 that has 4GB RAM. It

is most likely due to the Internet congestion at that time.

In the second scenario, when the VM’s hardware size is
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(a) Network throughput (b) Network latency

(c) CPU overhead (d) Disk I/O performance

Fig. 6: Results statistics

larger the network throughput decreases. In particular, Figure

6(b) shows that there is notable increase in network latency

during live migration ub-shared-4 VM in both scenarios be-

cause this VM has the largest RAM size, 4GB. The total

migration time reaches about 7 minutes in the first scenario

and 5 minutes in the second. In case of ub-shared-2 & 3, the

network latency is fairly better in the second scenario than the

first one.

Figure 6(c) shows that CPU load increases by about 39% in

Scenario 1 and by 38% in the second one during live migration

ub-shared-4. Figure 6(d) shows that I/O performance of disks

of Local-Host and Cloud-Host are slightly effected by the

migration process in both scenario. However, It is affected

more by the first scenario than the second one.

As mentioned earlier, in Scenario 1 there is downtime of

roughly 1s during live migration back and forth between the

two hosts. The downtime in the second scenario is between

400 to 600 milliseconds, which means using OpenVPN bridg-

ing is slightly faster.

V. DISCUSSION

In this section, we discuss the limitations of the first two

scenarios and propose a third potential scenario that copes with

these limitations.

A. The first two scenarios limitations

As discussed in the first two scenarios, to successfully finish

the live migration, a number of steps have to be considered in-

cluding Dynamic DNS, the C script and OpenVPN. Yet, there

are still challenges to VMs relocating and migration downtime.

In a nutshell, we have to implement the following steps to

achieve successful migration and maintain the downtime as

low as possible:

1) Configuring Dynamic DNS on the migrated VMs and the

DNS provider to maintain the external and the internal

connections to other VMs and cloud users. As shown in

Section IV-D, there is still downtime in both scenarios

because of updating and propagating any change in

Dynamic DNS records.

2) Using the C script to cope with any change in network

configurations, help update DNS name records and re-

initiate OpenVPN in Scenario 2. These changes should

have dynamically happened without any script.

Based on these limitations, this paper discusses a potential

scenario that copes with any of these challenges. In the

following section, this scenario is discussed in more detail.

B. Scenario 3

To improve LivCLoud downtime and cope with VMs re-

location, an alternative scenario is being investigated. This

scenario adds to the general setup Open Overlay Router (OOR)

that can be configured to run Locator Identifier Separator

Protocol (LISP), OvS, ODL and Cisco OFM. OOR, which

is an open source software router to deploy programmable

overlay networks. OOR runs LISP to map overlay identifiers
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Fig. 7: The potential solution on Packet

to underlay locators and to dynamically tunnel overlay traffic

through the underlay network [4]. Figure 7 shows the scenario

design.

LISP creates two different namespaces: endpoint identifiers

(EIDs) and routing locators (RLOCs). Each host is identified

by an EID, and its point of attachment to the network by

an RLOC. Traffic is routed based on EIDs at LISP sites and

on RLOCs at transit networks. At LISP site edge points,

ingress/egress tunnel routers (xTRs) are deployed to allow

transit between EID and RLOC space.

LISP follows a map-and-encap approach. EIDs are mapped

to RLOCs and the xTRs encapsulate EID packets into RLOC

traffic. LISP introduces a publicly accessible Mapping System,

which is a distributed database containing EID-to-RLOC map-

pings. The Mapping System consists of both Map-Resolvers

(MRs) and Map-Servers (MS). Map-Servers store mapping

information and Map-Resolvers find the Map-Server storing

a specific mapping [9].

OpenDayLight controller can use the northbound REST API

to define the mappings and policies in the LISP Mapping

Service. OOR can leverage this service through a southbound

LISP plugin. It must be configured to use this OpenDayLight

service as their Map Server and/or Map Resolver. The south-

bound LISP plugin supports the LISP control protocol (Map-

Register, Map-Request, Map-Reply messages) and can also be

used to register mappings in the OpenDayLight mapping ser-

vice [12]. Each VM is assigned an EID, which represents the

private IP address and RLOC which represents the public IP

address. When the migration occurs the RLOC is maintained

and the EID is updated through ODL LISP Mapping Service,

MRs and MS servers.

The OOR configuration includes setting up two overlay

networks, EID prefix (10.16.10.0/24) on the local network

and EID prefix (192.168.20.0/24) on the cloud network. At

this development stage, Packet’s architecture does not allow

configuring those prefixes. The configurations need flexibility

in layer 2 networking, which is not possible on Packet’s

datacenters in either Amsterdam or Frankfurt. Both datacenters

are the closest to LivCLoud’s location, Bournemouth, UK.

Layer 2 networking is being considered in both centers very

soon.

VI. CONCLUSION AND FUTURE WORK

LivCloud is designed to overcome the limitations of previ-

ously proposed live cloud migration approaches. The evalua-

tion of enhancement design on Packet shows that live cloud

migration can be improved by using various techniques such

as, OpenVPN and Software Defined Network (SDN). Also, the

evaluation shows the migrated VMs’ RAM and disks sizes are

larger than the previous stage of LivCloud and any previous

approaches. Moreover, this stage performance outperforms

any previous approaches. However, there is still improvement

needed in maintaining the connectivity to the migrated VMs

without using extra techniques such as Dynamic DNS. The

migration downtime is most likely due to the time needed by

Dynamic DNS to be propagated across both sites.

In a nutshell, this paper shows: (i) performing two success-

ful live cloud migration scenarios; (ii) considering the migrated

VM’s architecture (32 or 64-bit) and hardware specifications,

(iii) deploying ODL and OFM in such environment and

(iv) using a customized script to dynamically change network

configurations and re-run the OpenVPN.

The next step of running LivCloud on Packet is to im-

plement and evaluate Scenario 3 that includes configuring

LISP protocol on the OOR to eliminate the need for the

customized script and Dynamic DNS. This scenario helps
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enhance the network throughput, maintain the connectivity to

the migrated VMs and eliminate any disconnection between

the cloud users and the migrated VMs by redirecting and re-

routing the migrated VMs’ new locations based on LISP and

ODL LISP mapping feature.
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