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ABSTRACT. A new type of model, FFLUX, to describe the interaction between atoms has been 

developed as an alternative to traditional force fields. FFLUX models are constructed from applying 

the kriging machine learning method to the topological energy partitioning method, Interacting 

Quantum Atoms (IQA). The effect of varying parameters in the construction of the FFLUX models is 

analyzed, with the most dominant effects found to be the structure of the molecule and the number of 

conformations used to build the model. Using these models the optimization of a variety of small 

organic molecules is performed, with sub kJ mol-1 accuracy in the energy of the optimized molecules. 

The FFLUX models are also evaluated in terms of their performance in describing the potential energy 

surfaces (PESs) associated with specific degrees of freedoms within molecules. While the accurate 

description of PESs presents greater challenges than individual minima, FFLUX models are able to 

achieve errors of <2.5 kJ mol-1 across the full C-C-C-C dihedral PES of n-butane, indicating the future 

possibilities of the technique.   
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1. INTRODUCTION 

      With the huge advances made in computer technology made in the last two decades, molecular 

modelling and simulation have become key techniques in chemistry and physics providing vital 

insights into the interaction of systems. However, one of the key challenges in computational chemistry 

remains obtaining a description of a system’s potential energy surface (PES) that is accurate, 

transferable, computationally efficient and as simple as possible.1 The most rigorous method of 

describing the interaction between particles is provided by a quantum mechanical (QM) description of 

some kind. However, the high computational cost of QM models means that, even with the advances 

in computer power/speed, they are, and will be for the foreseeable future, unsuitable to use in the study 

of many systems. The major alternative method of describing a PES of a system is to use a classical 

force field (FF), which consists of a series of potentials describing the different interactions between 

sites in the system. Ensuring that the PES described by a FF is one that accurately reproduces reality 

(or at least the most relevant or important attributes of it) is a complex task. Even modern biomolecular 

FFs, which are the result of many decades of work, are still being revised and developed in the light 

of new data.2-4 

 While the traditional biomolecular FFs, (e.g. CHARMM2 or AMBER3) have many advantages 

they also suffer from a number of limitations, such as a point charge description of electrostatics, the 

artificial distinction of bonding and non-bonding interactions, a lack of reactivity, limited 

transferability, etc. Because of these limitations the last decade has seen an increased focus on 

developing a new generation of FFs that both address these limitations and provide a more accurate 

and deeper description of the PESs of (bio)molecular systems.5,6  A non-exhaustive list of such next-

generation force fields includes AMOEBA7, NEMO8, SIBFA9, XED10, EFP11 and DMACRYS12, 

which all share the important advance of multipolar electrostatics as justified in a recent perspective13, 

as do the Gaussian Multipole Model (GMM)14, the Exact Potential Multipole Method (EPMM)15, and 

the water potential16 family ASP-Wn17 and DPP218.  

             Our strategy to develop such a next-generation FF is based around combining machine 

learning (which is also in this context by several other groups19-28) with the quantum chemical 

topological energy partitioning scheme called Interacting Quantum Atoms (IQA).29 Under this 

approach, originally called Quantum Chemical Topology Force Field (QCTFF),30 now renamed 

FFLUX,31,32 the resulting FF has interacting atoms that are endowed with quantum mechanical 
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information. Unlike the other next-generation force fields, our approach is not based on long-range 

Rayleigh Schrödinger perturbation, which has far reaching consequences for its design. 

 In the development of a FFLUX model the properties of atoms, whether multipole moments or 

energy contributions, are assigned from QM calculations using the IQA partitioning scheme. The 

machine learning method kriging (also known as Gaussian process regression33,34) is then used to 

construct potentials that link the properties of atom i with its position relative to the position of other 

atoms in the system (either all the atoms in a system or a subset of them). Kriged potentials have been 

used to model the variation of atomic multipole moments and of kinetic, exchange and correlation 

energies as a function of configurational changes in the system.32 Recent work has indicated that FF 

models developed from the kriging of a single physical property, the atomic energy term 𝐸"#$$  (which 

consists of a sum of all the different types of energy contributions),32 are able to provide a description 

of the PES of small molecules.      

It has been shown that the description of PESs by FFLUX is of such quality that the energy 

and geometry of molecules at an energy minimum can be reproduced to considerable accuracy (<1 kJ 

mol-1 and root-mean-square-deviation < 0.2 Å in the case of glycine).35 However, to reproduce a PES a 

FF must not only be able to describe a minimum but also attributes such as the difference in energy 

between minima and the height of energy barriers separating them. To date FFLUX has not been 

systematically tested to see how well it reproduces specific attributes on PESs away from the global 

minimum. In addition, there are still a number of open questions regarding the optimal methods of 

developing FFLUX potentials.  Therefore, the present study has two aims: (1) to refine the procedure 

for the generation of FFLUX FFs by comparing results of a number different molecular species, 

representative of the organic groups found in biomolecules, (2) to show that FFLUX is able to 

reproduce PESs associated with bond stretches, angle bends and dihedral rotations within such 

molecules. 
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2. METHODS 

2.1 Procedure for Generation of FFLUX Potentials 

       In this work FFLUX models are developed and tested for five small organic molecules, which are 

representative of the groups found in amino acids: methanol, propane, n-butane, isobutane and N-

methylacetamide (NMA). As outlined in previous work,32,35 the development of FFLUX models for the 

atoms in a molecule involves a number of distinct steps: (1) generation of a conformational ensemble 

used for training the machine learning models (and for validation purposes), (2) calculation of the 

wavefunction of each conformation, (3) calculation of the IQA atomic energies for each conformation, 

and (4) mapping of the IQA atomic energies to geometric features via the kriging machine learning 

method. Finally, the resulting FF is tested by calculating the energy of different conformations and by 

optimizing molecular geometries. The computational details associated with each step are described 

below in Section 2.2.    

 

2.2 Computational Details 

2.2.1 Generation of Conformational Ensembles  

      During the development of FFLUX as a FF method, a number of different methods of generating 

an ensemble of conformers, to be used to construct FFLUX models, have been tried. In the present 

work the standard method of conformation generation was based on distortion according to  the normal 

modes of molecules via the in-house code TYCHE.36 Normal mode sampling is an established method 

to obtain a physically relevant sampling of PESs, also used recently37 in the training of a deep neural 

network on DFT energies of organic molecules. Normal mode sampling involves taking “seed” 

geometries, typically conformations corresponding to energy minima, of the molecule and then putting 

energy (corresponding to an input temperature) into the normal modes leading to an ensemble of 

randomly distorted temperature-weighted geometries of the molecule. For propane, n-butane, 

isobutane and NMA, the B3LYP/6-31+G(d,p) minimum energy conformation was used as the single 

input “seed” and the distortions carried out at a temperature of 1750 K (preliminary studies have shown 

that this temperature gives a good level of sampling around bonds/angles). This method was also used 

for methanol, but with three input seeds, corresponding to the three equivalent minimum energy 

conformations around the H-C-O-H dihedral angle, used to construct the ensemble. In the case of 

methanol, two alternative methods of generating conformational ensembles were used in addition to 

the ensemble constructed via TYCHE in order to allow comparison. From this point on ensemble E1 
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refers to TYCHE’s output. Ensemble E2 was generated using the in-house code EROS. This method 

also involved distortion of the molecule along the normal modes but the distortions were not made by 

putting energy into the system but instead by randomly distorting the normal modes, to a maximum of 

20% of the minimum energy conformation. For example, the C-O bond, with a bond length of 1.425 

Å, could take any value between 1.140 and 1.710 Å. The final method for conformer generation was 

to perform an in vacuo MD simulation of the molecule and randomly extract conformations. These 

MD simulations were performed using the MMFF94x FF38 using the Molecular Operating Environment 

program.39 These in vacuo simulations were performed at 300 K for 1 ns using a timestep of 1 fs and 

with conformations dumped every 1 ps. The conformations obtained from these simulations make up 

ensemble E3.    

 

2.2.2 DFT Calculations 

After generation of the ensemble the wavefunctions of all the conformations in the ensemble were 

obtained from DFT calculations using the B3LYP40 functional and the 6-31+G(d,p) basis set with 6d 

orbitals included. All DFT calculations were performed using GAUSSIAN09.41  

 

2.2.3 Atomic Property Calculations 

      The IQA partitioning scheme derives from Quantum Chemical Topology (QCT),42-44 a parameter-

free approach to partitioning the wavefunction using only the gradient vector of the electron density. 

Under IQA the energy of a molecule, 𝐸"#$%&', is partitioned into the sum of atomic energies, 𝐸"#$$ , which 

are composed of intra-atomic, 𝐸()*+,$  (for atom A), and inter-atomic, components , where A’ is any 

atom but atom A. It is possible to the break down the intra- and inter-atomic energies further into 

kinetic, exchange-correlation and electrostatic contributions and construct FFLUX models for these 

various different components. However, because a previous study showed that a FFLUX model built 

at the 𝐸"#$$  level performed at least as well as the combination of models built from the separate 

contributions,32 all the models in the present work are built at the 𝐸"#$$  level.      

        The calculations of the IQA energies from the wavefunctions were performed using the program 

AIMAll,45 with the default parameter options and with the original implementation for the calculation 

of the two-electron integrals (i.e. not using the “TWOe implementation”46).  

2.2.4 Construction of Models via Kriging Machine Learning  

AAV ¢
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       Before building the kriging models any conformations where the atomic integration error of 

AIMAll, L(Ω), was above a threshold value for one or more atoms were removed from the ensemble 

of sample conformations. For propane, models were constructed using L(Ω) = 0.001, 0.0005 and 

0.00025 Ha, for methanol L(Ω) = 0.00025 Ha and for all other molecules L(Ω) = 0.0005 Ha. A number, 

Ntrn, of the remaining conformations in the sample were then randomly selected as the training set used 

to build the kriging model, (some of) the remaining conformations in the sample are then used as a 

validation set, allowing the quality of kriging models to be tested. 

       Full methodological details of how a property of an atom can be linked to the geometrical features 

through kriging machine learning were given in previous work.35,47 In this work the kriging machine 

learning generates potentials that express the atomic energies 𝐸"#$$  as a function of positions of all the 

atoms in the molecule. The predicted molecular energy of a conformation is the sum of all the predicted 

atomic energies, 𝐸-"#$$ , and where each atomic energy is given by 

𝐸-"#$$ = 𝜇$ + ∑ 𝑎3$
4567
389 exp =−∑ 𝜃@$

4ABC5
@89 D𝑓@,3$ − 𝑓@$D

GH
I

J             (1) 

where  𝜇$ is the mean value of all the training data points, 𝑎3$is the kriging weight of training point j, 

𝜃@$ is the activity of feature-space described by the summation index h, 𝑓@,3$ is the known feature value 

from training point j, 𝑓@$ is the current feature for which a prediction must be made and 𝑝@$ is the 

smoothness of the feature space. Kriging models can be constructed by optimizing 𝜃@$ and/or 𝑝@$. In 

the present study  𝑝@$ was fixed at 2 as initial tests (see Section S1, Figure S1 and Table S1 in the 

Supporting Information) showed that for molecules the size of those in the present study optimizing  

𝑝@$ (as well as 𝜃@$) resulted in only limited improvement, if any, in the performance of the resulting 

kriging models. In addition, there is a significant computational cost associated with optimizing  𝑝@$.     

        The kriging models were calculated using the in-house developed program FEREBUS,48 with the 

values of the Kriging parameters optimized using particle swarm optimization to maximize the 

concentrated log-likelihood, as outlined previously.48,49 FEREBUS uses the radial basis function (RBF) 

kernel but alternative kernels, such as the Matérn one, can also be used. Preliminary work shows that 

the latter can outperform the former but a systematic study will be published in the future. 

 

2.2.5 Geometry Optimizations  
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     Geometry optimizations were performed using an in-house modified version of the 

DL_POLY_4.08 program.50 The simulations were performed using the 0 K optimizer, where, at each 

timestep, the system is relaxed before the integration of the equations of motion. The equations of 

motion were integrated using the velocity Verlet algorithm. The results of tests with different timesteps 

are described in Section S2 and Table S2, with models giving consistent, and accurate, results for 

timesteps of 0.5, 1.0 and 2.0 fs. Ultimately, a timestep of 1 fs was used for all production simulations.  

 

 

 

 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Determination of the Minimum Energy Conformations of Molecules Using FFLUX Models 

          Before investigating the ability of FFLUX models to reproduce the PES associated with different 

degrees of freedom within molecules, (vida infra) FFLUX models are compared and tested across the 

range of molecules - methanol, propane, n-butane, isobutane and NMA - in order to assess their 

performance at describing energy and geometry of the systems, and determine which input parameters, 

for example Ntrn or L(Ω), have the greatest effect on the quality of a model.  

        An initial test of the quality of the generated FFLUX model is its ability to reproduce the energy 

of conformations in the validation set. The prediction error of a conformation is the absolute difference 

in the sum of the atomic energies calculated from AIMAll with those calculated using FFLUX. A plot 

of prediction error against the cumulative percentage of conformations in the validation set results in 

an S-curve. Figure 1 shows S-curves for a variety of different models, constructed using different 

parameters. S-curves give an indication of the quality of kriging models from the position of the curve 

on the x-axis (the lower the values the better the model), their gradient (the steeper the curve the better 

the model) and the shortness of the tail near 100% (the shorter the better). Figure 1(a) compares S-

Curves for models containing 1000 conformations in the training set for all five molecules (1500 to 

2500 conformations are in each validation set). The S-curves shown in Figure 1(a) suggest that the 

models for all five molecules are of good quality, with more than 95% of the energies of the validation 

conformations within 10 kJ mol-1 of their B3LYP energy in all cases. Figure 1(b) shows S-curves of 
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models built for propane with different number of conformations in the training set, while Figure S2 

shows equivalent S-curves for n-butane, isobutane and NMA. Figure S3 presents the same error 

distributions as in Figure 1 but in an alternative way, which is non-cumulative (unlike an S-curve). 

Table 1 gives the mean absolute errors (MAE) and maximum absolute errors for the different models. 

In general, the greater the number of atoms in the system the more challenging it is to generate a model 

of an equivalent quality due to increase in the dimensionality of the features in the model. However, 

the particular geometric attributes of a molecule also play a role in model quality, with the MAEs for 

n-butane being lower than those of isobutane at the same number of training conformations. Increasing 

Ntrn results in S-curves that are shifted to lower errors and lower MAE, again suggesting better quality 

models. Overall, it appears that for the size of molecules tested here a training set of 1000 

conformations will typically result in FFLUX models, which give MAE < 4.0 kJ mol-1 when tested 

against the validation set. In contrast to increasing the number of conformations, reducing the atomic 

integration error threshold has a negligible effect (at least over the range tested) as seen from the S-

curves for propane models with different L(Ω) (Ntrn = 500 for all three models), see Figure 1(c). As 

changing L(Ω) resulted in no improvement all further experiments and analysis of propane models 

were done with models build using L(Ω) = 0.0005 Ha.          



9 

 

 

Figure 1. S-Curves showing the prediction error of the sum of the atomic 𝐸"#$$  energies: (a) Models 

for the different molecules, each model built from 1000 conformations. (b) Models of propane built 

from varying numbers of conformations (L(Ω) constant at 0.0005 Ha). (c) Models of propane built 

with varying L(Ω) (Ntrn constant at 500). 
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Table 1. Mean absolute errors, kJ mol-1, (maximum absolute errors in parentheses) of the 

conformations in the validation sets for FFLUX models generated with varying numbers of 

conformations in the training set, Ntrn, for propane, n-butane, isobutane and NMA.  

Molecule Ntrn 

 125 250 500 1000 2000 

Methanol 3.03 (17.71) 1.95 (18.17) 1.15 (10.68) 0.72 (7.02) 0.52 (5.02) 

Propane 5.97 (110.53) 4.05 (77.94) 3.21 (65.30) 2.15 (66.21) 1.43 (36.84) 

n-Butane 7.75 (105.95) 5.74 (107.66) 4.13 (74.85) 2.84 (116.78) 2.11 (30.07) 

Isobutane 8.51 (214.81) 6.63 (182.17) 5.04 (129.22) 3.61 (26.40) 2.70 (161.07) 

NMA 7.62 (35.21) 4.45 (38.20) 2.75 (19.07) 2.00 (11.17) 1.48 (10.55) 

 

While S-curves provide an indication of the quality of a model they only compare the energy 

difference of conformations, and do not provide information about where the FFLUX model deviates 

from the PES it has been built from. To further gauge the accuracy of the different FFLUX models 

geometry optimizations of all conformations in the TYCHE generated samples were performed. In 

general, the FFLUX minimum energy conformation was an excellent match to the DFT minimum both 

in terms of energetics, Table 2, and geometry, Table 3. Each model optimized the geometry of more 

than 99% of the 4000 conformations it was tested against to the same minimum on the PES. For all 

the molecules except NMA, a model generated using a training set of 500 conformations was able to 

obtain a minimum energy within 1 kJ mol-1 of the value of the DFT minimum. Even in the case of 

NMA sub kJ mol-1 accuracies were obtained for models with 1000 conformations in the training set. 

Likewise the difference between the RMSD over all the atoms in the system, i.e. including the 

hydrogen atoms, of the B3LYP minimum energy conformation and the FFLUX optimized minima was 

excellent for methanol, propane, n-butane and isobutane while reasonable for NMA. When calculated 

over all atoms, the RMSD calculated for NMA is significantly higher than those for the other 

molecules. This worse fit is due to the fact that in a few of the FFLUX optimized conformations the 

hydrogens on the methyl carbons are displaced, as evidenced by the much lower values of the RMSDs 

calculated for the heavy atoms only. A similar issue with the optimization of methyl hydrogens was 

observed in our previous study on glycine35. Our hypothesis is that the large energy penalty that arises 
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from the distortion of the H-C-N-O dihedral “drowns out” any energy penalty that might arise from 

poor optimization of the methyl hydrogens, i.e. it is favorable for FFLUX to ensure the planarity of 

the central amide group, possibly at the expense of methyl hydrogen geometry optimization 

As with the S-curves increasing the number of conformations in the training set improves the 

performance of the FFLUX model at capturing the energy and geometry of a global minimum. 

However, the results summarized in Tables 2 and 3 indicate that a “good” S-curve for the validation 

set does not necessarily correspond to a FFLUX model that gives minimum energy conformation in 

good agreement with the B3LYP value. This assertion is most obvious in the case of NMA, which 

yields S-curves with a lower MAE than n-butane and isobutane, yet the geometry-optimized minimum-

energy conformations obtained using FFLUX are “better” in the case of n-butane and isobutane than 

in that of NMA. As such, while S-curves provide a reasonable initial test of a FFLUX model they do 

not show the full picture in regards to the quality of a model.  

Table 2. Difference in energy (kJ mol-1) of the minimum energy conformation obtained from DFT 

calculations with those determined using the FFLUX models, with varying numbers of conformations 

in the training set, Ntrn.  

Molecule Ntrn 

 125 250 500 1000 2000 
Methanol -0.758  -0.167 -0.052 -0.032 -0.016 

Propane -1.787 -0.775 -0.410 -0.167 -0.041 

n-Butane -5.224 -1.716 -0.720 -0.269 -0.129 

Isobutane -2.577 -1.234 -0.733 -0.612 -0.220 

NMA -9.876 -3.424 -3.692 -0.753 -0.088 
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Table 3. Root mean square difference (RMSD), Å, between the minimum energy conformation 

obtained from DFT calculations with those determined using the FFLUX models, with varying 

numbers of conformations in the training set, Ntrn. RMSD are calculated over all atoms and over all the 

non-hydrogen atoms. 

Molecule Atoms 

included in 

RMSD 

calculation 

Ntrn 

 125 250 500 1000 2000 

Methanol All 0.013±0.001 0.013±0.001 0.009±0.001 0.008±0.001 0.002±0.001 

 Non-H 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 

Propane All 0.071±0.002 0.011±0.001 0.043±0.001 0.014±0.001 0.004±0.001 

 Non-H 0.042±0.001 0.010±0.004 0.010±0.004 0.008±0.005 0.006±0.005 

n-Butane All 0.060±0.001 0.037±0.001 0.026±0.001 0.016±0.001 0.026±0.002 

 Non-H 0.028±0.001 0.024±0.001 0.007±0.001 0.009±0.001 0.007±0.001 

Isobutane All 0.116±0.006 0.022±0.001 0.023±0.001 0.017±0.001 0.012±0.001 
 Non-H 0.012±0.001 0.007±0.001 0.006±0.001 0.008±0.001 0.004±0.001 

NMA All 0.105±0.077 0.199±0.084 0.179±0.147 0.147±0.006 0.039±0.021 

 Non-H 0.040±0.029 0.034±0.004 0.018±0.002 0.013±0.001 0.028±0.016 

 

 

       Overall these results show that FFLUX models are able to reproduce the energy and geometry of 

the minimum energy conformations to a very high level. As might be expected, increasing the number 

of conformations used for training the FFLUX model usually leads to an improvement in the agreement 

between the model and the target PES. For all the molecules tested except NMA, a training set of 500 

conformations (generated via a temperature-based normal mode distortion method) is sufficient to 

result in a difference in energy of less than 1 kJ mol-1 between the FFLUX and DFT minimum energy 

conformations.    
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3.2 Evaluation of the Performance of Different Training Ensembles for Methanol 

        It is clear from both the above results and previous studies32 that one of the most important 

elements in constructing an accurate FFLUX model is the ensemble of conformations used in the 

training of the machine learned potential. Increasing the number of conformations in the training set 

(generally) leads to improvement in the accuracy of the resulting model, but is also more costly both 

in terms of constructing the model and in its evaluation at each MD timestep. Thus, it is highly 

desirable to use a method of generating training conformations that can give a model with high degree 

of accuracy constructed from only a small number of conformations. To this end, ensembles of 

conformations were generated for methanol using three different procedures and the resulting models 

compared. Ensemble E1 was generated using a temperature-based distortion of normal modes, 

ensemble E2 was generated from randomly sampled distortion of normal modes within limits, and 

ensemble E3 generated from extracting random snapshots of an in vacuo MD simulation of a methanol 

molecule at 300 K.   

 Figure 2 shows the S-curves generated with varying number of conformations in the training 

set for each ensemble, the mean and maximum absolute errors for each model against the validation 

sets are summarized in Table 4. It is immediately obvious that E1 and E3, which are broadly 

comparable with each other, result in much better S-curves than E2, and have significantly lower mean 

and maximum absolute errors. Geometry optimizations were performed in order to test the molecules 

further, with the difference in energies of the B3LYP and FFLUX optimized conformations, ΔEmin, 

(Table 4) greatest for the models generated using E2. However, even in the case of E2, a model with 

500 conformations in the training set sufficed to ensure ΔEmin < 1 kJ mol-1. Comparing E1 and E3, the 

latter shows a small improvement over the former both regarding the errors measured from the 

validation set and ΔEmin. However, both models return excellent agreement with the B3LYP description 

of the molecule. The greater accuracy of E1 and E3 indicates that ensembles of conformations used to 

construct the FFLUX model should contain a reasonable percentage of conformations close to the 

global minimum. Thus, ensemble E2, which is not weighted by any temperature dependence, provides 

the kriging machine learning models with as much information about the system in high energy states 

as in low energy states. We note that a FFLUX model might result in seemingly larger errors when 

tested against the validation set because it samples more “difficult” parts of conformational space, 

which may result in a worse S-curve. Population distributions of the energies of the conformations that 

are used in the training sets for ensembles E1, E2 and E3 do suggest that the poor performance of E2 
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is partly due its use of high energy conformations in the training set (see Figure S4). Moreover, as 

highlighted in recent work, the level of error observed against a validation set of conformations may 

be higher than the level of error observed in the calculation of other properties, e.g. the vibrational 

spectrum51. In other words, just because it results in a poor S-Curve, E2 may still be able to reproduce 

other properties of the system with a reasonable degree of accuracy. However, for the present study 

the key motivation is to reproduce the PES of the system, at which E2 is clearly less successful than 

the other two ensembles.    

While the above results indicate the need for training sets to provide detailed information of 

the system at the minimum, an accurate description of the minimum is necessary but not sufficient for 

a FF to reproduce the PESs of a system. The next step (see Section 3.3) in testing FFLUX is 

determining where the FFLUX models deviate most strongly from the PES that they are attempting to 

reproduce.  
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Figure 2. S-Curves showing the prediction error of the sum of the atomic 𝐸"#$$  energies for different 

models of methanol, made using (a) ensemble E1 (TYCHE), (b) ensemble E2 (EROS) and (c) 

ensemble E3 (MD). 
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Table 4. Mean absolute errors (MAE) and maximum absolute errors of the conformations in the 

validation sets and the difference in energy between the minimum energy conformations predicted by 

the DFT calculations and by FFLUX, ΔEmin, for models generated from the three different ensembles 

of methanol conformations and with varying numbers of conformations in the training sets, Ntrn.  

Ntrn MAE / kJ mol-1 Maximum  / kJ mol-1 ΔEmin / kJ mol-1 

 E1 E2 E3 E1 E2 E3 E1 E2 E3 

125 3.03 9.72 2.42 17.71 53.39 16.18 -0.758 -3.530 -0.620 

250 1.95 7.32 1.45 18.17 40.12 12.39 -0.167 -2.839 -0.136 

500 1.15 4.16 0.79 10.68 28.73 6.78 -0.052 -0.923 -0.059 

1000 0.72 2.80 0.51 7.02 16.01 4.50 -0.032 -0.462 -0.022 

2000 0.52 1.81 0.38 5.02 23.02 5.14 -0.016 -0.089 -0.014 

4000 0.39 1.11 0.38 4.36 6.21 4.61 -0.013 -0.042 -0.014 

 

 

 

 

3.3 Ability of FFLUX to Describe Potential Energy Surfaces  

      The ability of a FF to reproduce the energy of minimum energy conformations alone is insufficient 

for a FF to model molecular systems accurately. Ideally a FF needs to be able to reproduce the full 

PES of a system and, in the best case scenario, with transferability across a wide range of conditions. 

In practice few FFs meet this ideal model but at the very least a FF needs to be able to reproduce the 

PES(s) around minima, and the energy difference between different minima with a reasonable degree 

of accuracy. To see how FFLUX performs in this regard, the PES of the C-O bond stretch, C-O-H 

angle bend and H-C-O-H dihedral angle rotation in methanol have been mapped using the B3LYP 

functional, and the energy difference between the DFT calculations and different FFLUX models 

compared.    
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       The PES along the bond/angle/dihedral was obtained by performing a relaxed scan along the 

degree of freedom in question (i.e. performing a geometry optimization for all the other degrees of 

freedom in the molecule) at the B3LYP/6-31+G(d,p) level. The scan along the C-O bond was 

performed over the range 1.285-1.585 Å in 0.01 Å steps, the scan of the C-O-H angle from 93-125° in 

1° steps, and the scan over the H-C-O-H dihedral over the full 360° in 5° steps (giving a total of 31, 

33 and 72 conformations for the bond, angle and dihedral scans, respectively). The energy of 

conformations obtained from the DFT calculations was then compared with their energy within 

different FFLUX models. As in the case of the S-curves and ΔEmin the performance of models derived 

from E2 was much worse than models derived from the other two ensembles, as such the discussion 

below concentrates on models constructed from E1 and E3.   
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Figure 3. Comparison of the B3LYP and FFLUX models potential energy surfaces of the C-O bond 

length in methanol: (a) energy of conformations relative to the B3LYP minimum energy conformation 

for FFLUX models with 1000 conformations in the training set, (b) and (c) the difference in energy 

between  FFLUX and DFT for models constructed from (b) E1 and (c) E3. 
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Figure 4. Comparison of the B3LYP and FFLUX models potential energy surfaces of the C-O-H bond 

angle in methanol: (a) energy of conformations relative to the B3LYP minimum energy conformation 

for FFLUX models with 1000 conformations in the training set. (b) and (c) the difference in energy 

between  FFLUX and DFT for models constructed from (b) E1 and (c) E3. 
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        The performance of the FFLUX models in describing the PES of the relaxed scan of the C-O 

bond length and C-O-H bond angle are shown in Figures 3 and 4, respectively (see also Figure S5). 

There are a number of points to note from these results. First, as in the case of the S-curves and ΔEmin, 

the performance of models derived from E2 was much worse than models derived from the other two 

ensembles (see Figure S5), and with the models constructed from ensemble E3 slightly better than 

those constructed from E1. Second, the FFLUX models typically show very good agreement to B3LYP 

at the center of the PES (close to the optimized geometry) but become less accurate the further the 

bond length/angle is from the optimal value. Third, the C-O-H bond angle is reproduced by the FFLUX 

models to a greater level of accuracy than the the C-O bond stretch, due to the greater pliability of the 

bond angle bend. Fourth, whereas FFLUX models built from only 125 conformations are able to 

reproduce the minimum energy with a high degree of accuracy (< 1 kJ mol-1), achieving the same level 

of accuracy across the full range of the PESs tested requires a greater number of training 

conformations, especially in the case of the C-O bond stretch. 

 In the case of the bond stretch and angle bend the PES have a single minimum and, on the 

range sampled, no maxima. In contrast the PES of the methanol H-C-O-H dihedral, being periodic, 

has three energetically equivalent minima and maxima. It should be noted that in the present 

formulation of FFLUX each atom is distinct, so that the three hydrogens bonded to the carbon atom 

are not equivalent within the FFLUX model. Previous work has also indicated that while normal mode 

sampling methods tend to sample bond lengths and angle quite well, they have a harder time sampling 

dihedral angles.36  
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Figure 5. Comparison of the B3LYP and FFLUX models potential energy surfaces of the H-C-O-H 

dihedral angle of methanol: (a) energy of conformations relative to the B3LYP minimum energy 

conformation for FFLUX models with 1000 conformations in the training set, (b) and (c) the difference 

in energy between FFLUX and DFT for models constructed from (b) E1 and (c) E3. 
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      Thus, accurately reproducing the PES of the H-C-O-H dihedral is a tough challenge for the FFLUX 

models. The PESs of the dihedral angle at the B3LYP level and for FFLUX models containing 1000 

conformations in their training set is shown in Figure 5(a). Yet again the models built from the E2 

ensemble perform significantly worse than those constructed from other two ensembles (Figure S5(c)), 

with even a model trained from 1000 conformations predicting the location of some of the 

minima/maxima wrongly. For the E1 models 500+ conformations in the training set is enough to 

ensure the location of the stationary points in the PES are captured accurately, and with a maximum 

error in the energy of <1.5 kJ mol-1. The models based on E3 perform even better, 500 conformations 

is enough to ensure deviations in the energy of <0.5 kJ mol-1. Unfortunately even the best model (E3 

Ntrn=4000)  fails in one respect, the three minima are not energetically equivalent, with the minimum at 

60° being 0.33 kJ mol-1 higher in energy than the other two minima. This is not a direct failing of 

FFLUX but, in this case, arises from the fact that in the calculation of the 𝐸"#$$  energies, AIMALL 

introduces atomic integration errors52 due to the numerical imprecision of the quadrature over complex 

volumes, resulting in the three minima becoming slightly non-equivalent energetically. 

 In consequence of the successful reproduction of the PES of the different normal modes of 

methanol by FFLUX models, it was decided to test if the FFLUX models could reproduce a complex 

PES, such as that defined by the C-C-C-C dihedral rotation in n-butane. Not only is n-butane a larger 

molecule than methanol but the C-C-C-C dihedral PES has energy barriers 3 or 5 times the size of 

those in the H-C-O-H dihedral rotation of methanol and also has non-equivalent minima (and maxima). 

The ensemble of configurations that were to make up the training set for the new model of n-butane 

was constructed as follows. First, a relaxed scan of the C-C-C-C dihedral of n-butane, in 5° steps, was 

performed at the B3LYP level, resulting in 73 configurations (0/360° was included twice). Second, 

each of these 73 conformations was used as seed geometries for a temperature based normal mode 

distortion, which resulted in the generation of 100 distorted conformations from each seed. Finally, a 

random 4000 of the 7300 sample conformations were used to construct the training set of the model. 

Geometry optimizations using the resulting FFLUX model were then performed starting from each of 

the 73 seed conformations. Figure 6(a) shows the PES of the C-C-C-C dihedral for B3LYP DFT 

calculations and for the FFLUX model, as well of each of the 73 seed conformations as determined 

from AIMAll calculations (it should be noted that these 73 seed conformations do not form part of the 

training set for the FFLUX model). Figure 6(b) shows the difference between the energies calculated 

with AIMAll/FFLUX and the B3LYP energies. FFLUX is able to reproduce large parts of the PES 
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with a high degree of accuracy: even the worst energy difference is less than 2.5 kJ mol-1. However, 

there are parts of the PES that the FFLUX model does not capture accurately. Interestingly, while the 

global minimum and maximum are reproduced well by the FFLUX model, the description of the PES 

at the local minima/maxima is poor. In fact, the description of the PES at ~120/240° is so poor that 

false minima have been introduced to the PES, geometry optimizations performed from these starting 

conformations result in optimized conformations with a dihedral angle of ~120/240°, i.e. the FFLUX 

models have local minima at these dihedral angles.  

The reason for the inaccuracies in the FFLUX model may arise from (1) deviations from the 

B3LYP PES introduced during the partitioning of the wavefunction into the atomic 𝐸"#$$  by AIMAll 

and/or (2) the kriging model constructed not accurately reproducing the AIMAll PES. Comparison of 

the AIMAll and B3LYP energies suggests that both of the areas probably need improvement. Certainly 

the AIMAll calculations do introduce some level of error, see Figure 6(b). In fact, the difference 

between the AIMAll and B3LYP energies (MAE = 0.38 kJ mol-1) is not that much less than the 

difference between the FFLUX and B3LYP energies (MAE = 0.67 kJ mol-1).  
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Figure 6. Comparison of the B3LYP and FFLUX models potential energy surfaces of the C-C-C-C 

dihedral of n-butane: (a) energy of conformations relative to the B3LYP minimum energy 

conformation for B3LYP calculations, AIMAll calculations and the FFLUX model. (b) The difference 

in energy between the AIMAll calculations/FFLUX model and the B3LYP calculations. 
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However, the false local maxima that occur in the FFLUX model at 60 and 330° suggest that there are 

also deficiencies in the kriging model itself (although the fact that the AIMAll PES is rather “rugged” 

around some of the stationary points may be partly responsible). These deficiencies of the kriging 

models can arise from a number of factors such poorly optimized 𝜃@$ parameters or a poor distribution 

of training points.  

 

3.4 Assessment of FFLUX Models and Future Developments  

    The above results show that, in principle, kriging machine learning methods can generate a model 

that is capable of reproducing a given PES (in this case the PES described by the B3LYP functional), 

with a considerable degree of accuracy. The method of FFLUX model construction detailed in the 

present work is able to reproduce the energies and geometries of the global minimum to < 0.5 kJ mol-

1 and < 0.05 Å, respectively. In addition, FFLUX models are able to provide a good description of the 

PES of specific normal modes within molecules, reproducing energy barriers and stationary points 

other than the global minimum. However, the agreement between FFLUX and the target PES can be 

improved further, both by revisions within the current methodological framework as well as by longer 

term future developments, including adaptive sampling53, biasing54 with metadynamics and the 

incorporation of symmetry19 into the models. Finally, we may consider Bayesian optimization55 as an 

appealing global optimization method to be used as an alternative to particle swarm optimization in 

order to optimize the hyperparameters. This method can also be applied to determine the ideal sampling 

of the PES for kriging, as was done before.56 

 Regarding the improvements to models that can be made with revisions to the current 

procedure, the first modification could be to try and reduce the errors between the AIMAll and B3LYP 

(or other target) PESs. These AIMAll integration errors do not appear to flow on into the FFLUX 

model in a manner that leads to a poor description of the PES close to the global minimum. However, 

such integration errors can become significant when looking at the description of specific PESs. 

Refinements to AIMAll parameters, such as increasing the quality of the integration grid, may bring 

the AIMAll PES closer to that of the target. The second area for revision is regarding the conformations 

that are used to construct the models. Increasing the number of conformations that a model is 

constructed from is one route to increasing model performance (generally), though with diminishing 

returns and increasing computational cost. A more effective approach is to use an alternative method 

of conformation generation that results in a more efficient ensemble. The results of the current work 
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have shown that an ensemble of conformations generating from non-Boltzmann-weighted sampling of 

normal modes is significantly less efficient (for molecules of 6 to 14 atoms) than one generated from 

Boltzmann- weighted sampling of normal modes. Moreover, an ensemble generated from in vacuo 

MD simulations seems more efficient still. A more through-going analysis of the performance of 

ensembles generated from MD simulations is an area of future work. Finally, very recent preliminary 

work in our group on adaptive sampling53 proved that the previously applied training sets used to model 

the water monomer were much larger than necessary. A reduction in training set size is possible by a 

few dozen times, without loss of accuracy. Such reduction is important because the evaluation of a 

kriging model is of the order of the number of its training points, and the ultimate use of FFLUX will 

be in the MD simulation of condensed matter. 

 

       

4. CONCLUSIONS 

       The development of alternatives to the traditional (bio)molecular force fields is an important future 

step for computational chemistry. By combining the kriging machine learning method with the 

Interacting Quantum Atoms quantum chemical topology partitioning scheme it has been possible to 

develop potentials that contain quantum mechanical information in their description of atomic 

interactions. The resulting FFLUX models are able to reproduce minimum energy conformations of 

molecules to <1 kJ mol-1 and <0.05 Å (in terms of the root-mean square deviation) on the DFT reference 

values. In addition, the ability of the FFLUX models to map out PESs associated with specific degrees 

of freedom in methanol and n-butane has been investigated, with the best performing models able to 

achieve a <2.5 kJ mol-1 accuracy across the full range of the PESs tested. The performance of the 

FFLUX models depends on both the size and method of generation of the ensemble of conformations 

used to construct the model. While increasing the number of conformations in the training ensemble 

typically leads to an improvement in the model there is diminishing return and an increasing 

computational cost associated with simply adding more and more conformations to the training 

ensemble. A more fruitful area for model construction to concentrate on is to refine/develop new 

techniques for the generation of an ensemble. FFLUX models need a high density of conformations 

at/near minima to give high accuracy for these features but also need higher energy conformations 

sampled so that the model can describe the full PES of a system. The present work has shown that 
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ensembles that contain a broad population distribution result in less effective FFLUX models than 

ensembles made with a Boltzmann distribution. The next step in the development of FFLUX is to 

explore ensemble generation techniques that are able to reduce to number of conformations needed to 

model systems accurately.     
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