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Abstract 

Plasmodium falciparum is an obligate intracellular parasite, which causes 95% of 

worldwide malaria cases annually. Malarial symptoms occur during replication of 

parasites inside erythrocytes. Multiple cycles of host cell invasion, replication inside 

a parasitophorous vacuole (PV) and escape from the host cell result in gradually 

increasing parasitaemia. Escape from the host cell (egress) is regulated by 

proteases and may involve perforin-like proteins. PfSUB1, a subtilisin-like serine 

protease, is essential to P. falciparum blood stage development and egress. Just 

before cell rupture, the protease is discharged into the PV, where it is processes 

multiple parasite surface proteins and PV proteins.  

The main aim of this project was to analyse the function of PfSUB1 by three 

approaches which relied on in vitro biochemical analyses and P. falciparum 

transfections. Firstly, a conditional knockdown approach was used to analyse the 

function of PfSUB1 using the FKBP regulatable system. Two complementary 

strategies were used: down-regulation of PfSUB1 levels using a C-terminal FKBP 

domain and inhibition of PfSUB1 activity using an N-terminal FKBP fusion with the 

PfSUB1 prodomain (a potent inhibitor of recombinant PfSUB1). Expression of 

recombinant PfSUB1-FKBP in Sf9 insect cells demonstrated that FKBP does not 

interfere with PfSUB1 activity, FKBP was successfully integrated into the 

endogenous pfsub1 gene. In the second approach, in vitro studies showed that 

recombinant E. coli-derived FKBP-prodomain fusion protein inhibits recombinant 

PfSUB1. Strong evidence was obtained which indicates that episomal expression of 

a non-regulatable prodomain in P. falciparum is not tolerated by the parasite.  

Secondly, to further characterise the enzyme, an in silico approach was 

used to predict new SUB1 substrates, and a proteomic approach was taken to 

validate substrates in vitro. Several putative new substrates were identified, which 

suggest that PfSUB1 is a multifunctional enzyme with numerous roles in invasion 

and egress.  

Finally, attempts were made to establish a PfSUB1-sensitive FRET-based 

system to monitor PfSUB1 activity in vivo. A recombinant FRET reporter was 

expressed in E. coli; this was shown to exhibit FRET and to be PfSUB1-sensitive in 

vitro. Preliminary in vivo data are presented, which suggest that protease-sensitive 

FRET is possible in P. falciparum.  
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1. Introduction 

1.1. Malaria: a devastating worldwide burden 

Malaria is a mosquito-borne disease, which kills up to three million people per year. 

Around 500 million non-fatal cases of malaria are presented annually (Snow et al., 

2005, Breman, 2001), though this figure may be a vast underestimate due to 

difficulties in monitoring the disease. Malaria is caused by protozoan parasites of 

the genus Plasmodium, which have an intricate life cycle involving replication inside 

erythrocytes, resulting in gradually increasing parasitaemia, which can be fatal. 

Around 95% of cases are caused by P. falciparum (World Health Organisation, 

2009), which is the only species able to cause cerebral malaria due to its ability to 

sequester in the brain. It is therefore considered the most dangerous species of 

Plasmodium. Malaria is most prevalent in sub-Saharan Africa and South East Asia. 

In those areas, children under the age of five and pregnant women are particularly 

at risk. Importantly, malaria is both preventable and treatable with antimalarial 

drugs. However, owing to widespread drug resistance and continued obstacles in 

vaccine development, as well as resistance of the mosquito vector to insecticides, it 

remains a global health burden. Malaria causes significant morbidity and mortality 

across the world and is a hindrance to socioeconomic development in countries 

where it is prevalent. New drugs, vaccines and insecticides are urgently required to 

combat this devastating disease. 

1.1.1. Malaria throughout history 

Malarious symptoms were described as early as the 5th century BC by Hippocrates 

(Cox, 2002). Malaria is identifiable in his writings by the clinical symptom of periodic 

fever and the use of cinchona powder as a cure; the active ingredient of this is 

quinine, which is still used as an antimalarial drug today. Early remedies for malaria 

also included alcohol and opium. In the 1600s, an apothecary apprentice developed 

the first antimalarial formulation which was, in essence, a white wine infusion of 

cinchona powder (Reiter, 2000). The name malaria is derived from the mediaeval 

Italian term “mala aria,” literally meaning bad air, since the cause of malaria was 

thought to be strong-smelling products of anaerobic bacteria in saline mud in 

marshes (Reiter, 2000). In England, malaria was known as “ague,” meaning marsh 
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fever, and is described in many literary works and throughout history. The author 

Geoffrey Chaucer describes a periodic fever in Nun’s Priest’s tale, and William 

Shakespeare mentions ague in eight of his plays. The Italian poet Dante, who died 

of malaria, also refers to ague in The Inferno (Reiter, 2000). Malaria plagued the 

political leader Oliver Cromwell, who is thought to have died from it in 1658; also, by 

DNA analysis, it was recently discovered that the Egyptian pharaoh Tutankhamun 

was infected with P. falciparum when he died in 1323 BC (Hawass et al., 2010). 

Despite its historical prevalence, a scientific understanding of malaria only came 

about towards the end of the 19th century. In a hospital in Algeria, Alphonse 

Laveran discovered black pigment in a patients blood (Coluzzi, 1999). The black 

pigment is now known to be haemozoin, a biocrystallised by-product of 

haemoglobin digestion by malaria parasites. Laveran later identified gametocytes, 

the transmissible form of the parasite, in human blood. He was the first physician to 

hypothesise that mosquitoes in marsh areas transmitted the disease. Ronald Ross, 

a doctor, later established that mosquitoes do indeed transmit malaria (Coluzzi, 

1999). Ross pioneered early efforts to control malaria and later received the Novel 

Prize in Physiology or Medicine in 1902. 

1.1.2. The complexities of the Apicomplexa 

Malaria is caused by obligate intracellular protozoa of the genus Plasmodium, in the 

phylum Apicomplexa. There are over 5,000 apicomplexan genera, many of which 

are pathogenic. They have complex life cycles, including sexual and asexual 

replicative stages. Seven apicomplexan genera cause disease in humans: 

Plasmodium, Babesia, Cryptosporidium, Isospora, Cyclospora, Sarcocystis and 

Toxoplasma. Species of the genera Eimeria and Theileria cause poultry and bovine 

diseases respectively. Toxoplasma gondii infects almost all warm-blooded animals, 

but occasionally causes severe infections in immunocompromised humans and 

unborn babies. This parasite is readily amenable to genetic manipulation, transient 

and stable transfection methods are of high efficiency and it can be studied with 

relative ease by microscopy (Kim & Weiss, 2004, Soldati & Boothroyd, 1993). 

Hence, it is a useful model for several aspects of cell biology and host cell invasion 

by intracellular pathogens.  

Across the phylum, there is a conserved mechanism of host cell invasion. 

The invasive form of these parasites, termed a “zoite”, binds to the host cell non-
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specifically, then reorients so that its apical end directly faces the host cell surface. 

The zoite enters the host cell in an active, parasite-driven invasion step, whereby 

the parasite and host cell membranes form a moving junction through which the 

parasite enters the host cell. In most cases, as the zoite enters, a PV is formed, 

inside which it replicates. Notably, Theileria and Babesia spp. initially form a PV but 

it is not maintained; they replicate freely inside the host cell cytoplasm (Potgieter & 

Els, 1977, Shaw, 1997). Genome sequencing has revealed many similarities across 

the Apicomplexa phylum, and further studies have indicated that homologues of 

several important invasion molecules from different genera can be used to 

complement T. gondii proteins (Di Cristina et al., 1999, O'Connor et al., 2003), 

suggesting that the invasion machinery is conserved. 

A defining characteristic of apicomplexan zoites is a unique set of 

organelles, some of which secrete their contents in a temporal manner and contain 

functionally distinct sets of proteins (examples include: (Kafsack et al., 2008, 

Bannister et al., 2003, Kadota et al., 2004, Kaiser et al., 2004, Harris et al., 2005, 

Mercier et al., 2005, Sam-Yellowe et al., 2004)). Of these organelles, micronemes, 

rhoptries and dense granules (DGs) are important for host cell invasion. The cigar-

shaped micronemes vary in number and are 120 nm in length. In some studies in P. 

falciparum, micronemes appear to be attached to the end of a rhoptry (Bannister & 

Mitchell, 1989). Micronemes and rhoptries are located at the apical end of the zoite 

and release proteins that form the moving junction. In T. gondii, when release of 

proteins from micronemes is specificially inhibited, parasites cannot invade 

(Carruthers et al., 1999), suggesting that microneme proteins are crucial for 

parasite-host recognition.  

The club-shaped rhoptries are the largest apical organelles and the best 

studied. There are two distinct rhoptry subcompartments: the rhoptry neck and 

rhoptry bulb; the rhoptry bulb appears as a dense granular mass by transmission 

electron microscopy and with electron-lucent patches are visible in the neck area 

(Bannister et al., 2000). P. falciparum merozoites have two rhoptries, which are 

implicated in PV formation and parasite-host recognition (Stewart et al., 1986, Sam-

Yellowe et al., 1988, Etzion et al., 1991, Bradley et al., 2005, Nichols et al., 

1983Bannister, 1986 #2705). Many P. falciparum rhoptry proteins have no 

homologues in T. gondii; this perhaps is indicative of key differences between the 

PVs of T. gondii and P. falciparum.  
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DGs are scattered throughout the cytoplasm and evidence suggests that 

they release proteins involved in host cell modification (Mills et al., 2007). DGs were 

first identified in the apicomplexan parasite Sarcocystis tenella, so named as they 

are electron-dense in transmission electron micrographs (Dubremetz & Dissous, 

1980). Extensive work on DGs has been carried out in T. gondii, where a range of 

different functions have been discovered for DG proteins. For example, DG proteins 

GRA1 and GRA2 are involved in biogenesis of the T. gondii PV nanotubular 

network (Mercier et al., 2002). In comparison, relatively little work on DGs has been 

carried out in P. falciparum. In P. falciparum, they are spherical and have a 

diameter of around 100 nm. To date, the only known markers of DGs in 

Plasmodium are the proteins ring-infected erythrocyte surface antigen (RESA) and 

ring infected membrane antigen (RIMA) (Aikawa et al., 1990, Trager et al., 1992). 

RESA is involved in increasing the heat stability and rigidity of the erythrocyte 

(Maier et al., 2008, Silva et al., 2005, Da Silva et al., 1994), while RIMA is observed 

in the plasma membrane of newly invaded ring-stage parasites and is thought to be 

involved in preventing multiple invasions (Trager et al., 1992). Originally, P. 

falciparum subtilisin-like protease 1 (PfSUB1) was thought to localise to DGs 

(Blackman et al., 1998), however more recent immunoelectron microscopic 

(immuno-EM) studies showed that PfSUB1 does not colocalise with RESA, but is 

present in tear drop-shaped organelles named “exonemes” (Yeoh et al., 2007). 

Currently, PfSUB1 is the only known marker of P. falciparum exonemes. Whether 

exonemes are a conserved feature of apicomplexan parasites has yet to be 

determined. Another new subset of DGs called mononemes was also recently 

identified, to which the authors localise rhomboid protease 1 (ROM1) (Singh et al., 

2007). However, the resolution of immunofluorescence assay (IFA) images 

presented by Singh et al is not high enough to permit detailed analysis of the 

location of ROM1. Furthermore, EM evidence for mononemes is lacking. Since this 

study, Srinivasan et al and Brossier et al have provided evidence by EM that in the 

mouse model species P. berghei and T. gondii, ROM1 is almost certainly 

micronemal (Srinivasan et al., 2009, Brossier et al., 2008). Therefore, it is unclear 

whether mononemes exist particularly as, to date, no other proteins have been 

localised to them.  

Other organelles, which are non-secretory, are also found among 

apicomplexan parasites. Some species have a conoid, an complex responsible for 
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sustaining the microtubular cytoskeleton (Morrissette & Sibley, 2002); this is absent 

in Plasmodium spp. Most apicomplexans possess an apicoplast, an ancient non-

photosynthetic plastid thought to have been acquired by secondary endosymbiosis 

(Marechal & Cesbron-Delauw, 2001). The apicoplast appears to be essential and is 

implicated in haem, isoprenoid and neutral lipid synthesis (Marechal & Cesbron-

Delauw, 2001, Seeber & Soldati-Favre, 2010). 

1.1.3. Introducing the Plasmodium genus 

Species of Plasmodium cause malaria in a wide range of vertebrate hosts, from 

snakes and birds to mice and humans. A wealth of information has been obtained 

by the use of animal models of malaria as they offer the possibility of analysing the 

mechanism of disease progression in vivo. P. berghei, P. yoelii and P. chabaudi are 

commonly used mouse malaria species, each of which has different characteristics 

in terms of infectivity and is therefore used for different types of study. Murine 

malaria species can also be genetically manipulated; transfection technology exists 

for P. berghei (de Koning-Ward et al., 2000, Janse et al., 2006), P. yoelii (Mota et 

al., 2001) and P. chabaudi; (Reece & Thompson, 2008). Recently, a mouse model 

of P. falciparum was developed by use of nonmyelodepleted mice which were 

engrafted with human erythrocytes and successfully used to analyse therapeutic 

effects of antimalarials (Jimenez-Diaz et al., 2009), though this has yet to be widely 

used.  

Five species of Plasmodium spp. cause disease in humans: P. falciparum, 

P. vivax, P. malariae, P. ovale and P. knowlesi. In the cases of P. vivax and P. 

ovale, dormant hypnozoites are produced, which remain in the liver until they are 

reactivated, sometimes after many years. Several studies highlight the potential for 

cross-species infections by Plasmodia, which is concerning in terms of malaria 

control as such a reservoir would be very difficult to manage. It was only in 2008 

that it was widely accepted that P. knowlesi can cause widespread human 

infections (Cox-Singh et al., 2008); prior to this it was considered principally a 

monkey malaria parasite, though the first infection in humans were observed some 

time ago (Chin et al., 1965). Recently, there have also been reports of human 

species infecting primates. Hayakawa et al observed the presence of P. malariae in 

chimpanzees, 30 years after they were exported from Africa to Japan (Hayakawa et 

al., 2009). Similarly, P. ovale has been observed in chimpanzees in Africa (Duval et 
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al., 2009). Whether these are random occurrences or a real threat has yet to be 

determined. 

1.1.4. Clinical symptoms and pathology 

Patients with malaria present with a high fever associated with the rupture of 

infected erythrocytes every 48 or 72 hours (depending on the species of 

Plasmodium). This is often accompanied by vomiting, diarrhoea and severe 

anaemia. The severity of infection varies with species and from individual to 

individual, indicating that the interaction of pathogen and host is a vital determinant 

in development of malaria. In severe cases, malaria can cause liver failure and fits, 

resulting in central nervous system and brain complications. These complications 

are associated with cerebral malaria (CM), which occurs when parasites sequester 

in the brain microvasculature, causing blood vessel blockage and sometimes 

resulting in coma (Adams et al., 2002b). CM causes death in 40% of cases and up 

to 20% of CM patients develop neurological sequelae (World Health Organisation, 

2009). Sequestration of parasites can occur in organs such as the kidneys, which 

can lead to organ failure. Primagravidae pregnant women are especially susceptible 

to primary infection and repeated episodes of malaria, possibly due to suppressed 

immunity. If severe anaemia arises in pregnant women, babies can have low 

birthweighs which leads to numerous health problems. Furthermore, patients 

developing severe infections may require frequent blood transfusions, increasing 

their risk of HIV infection as much of the blood used in malaria-endemic areas is 

unscreened. 

1.1.5. Geographic prevalence and epidemiological studies 

Malaria is endemic in 108 countries. In 2008, 243 million cases were reported and 

863,000 deaths, 90% of which occurred in Africa (World Health Organisation, 

2009). Of those deaths, 85% were children under the age of 5 (The All-Party 

Parliamentary Group on Malaria and Neglected Tropical Diseases, 2010). Across 

the world, the risk of malaria varies widely. Residents of sub-Saharan Africa and 

India are at greatest risk as those areas currently have the highest number of 

annual global deaths and transmission rates, while areas such as South America 

and China are considered low risk areas, as are Mexico and countries in the Middle 
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East, which have very few annual cases (World Health Organisation, 2009). The 

global burden is thought to be highly underestimated due to the general difficulties 

of monitoring diseases in developing countries (Cibulskis et al., 2007). Monitoring 

relies on population-based surveys and routine surveys in health facilities. However, 

many people do not use formal health systems, due to living in rural areas or having 

a lack of confidence in diagnostics. At the national level, monitoring of malaria is 

particularly difficult because the transmission intensity and seasons vary across 

geographical areas and from year to year (Cibulskis et al., 2007). Effective malaria 

control requires accurate monitoring to assess the risk of malaria contraction and 

the effectiveness of intervention techniques. 

1.1.6. The socioeconomic burden of malaria 

Malaria is a debilitating disease in terms of health, but it has also had a profound 

influence on socioeconomic development. It is a massive burden on health 

systems, accounting for 40% of public health expenditure worldwide (World Health 

Organisation, 2009). Malaria particularly affects the poor, who cannot afford drugs 

and have limited access to healthcare. Indeed, a decrease in household savings 

due to malaria has been reported (Nur, 1993). As malaria is widespread in 

developing countries which have poor infrastructure and limited means of 

transportation, the cost of seeking care is in itself a problem. Poor economic 

management, political unrest and widespread corruption have played a major role in 

maintaining and exacerbating the poor infrastructure in those countries (Breman, 

2001).  

As malaria particularly affects children, it is responsible for an overall 

reduction in universal education. Studies indicate that children miss on average 

15% of school days per year due to malaria in Kenya (Brooker et al., 2000). It is 

equally concerning that malaria is linked to changes in cognitive ability and 

academic achievement in parasitaemic schoolchildren (Al Serouri et al., 2000). 

Leading on from this, family members are prevented from working because they 

must look after the ill children, resulting in a decrease in productivity.  

Hence, economically, malaria is a major hindrance to the progression of 

countries where it is endemic. From 1965 to 1990, the gross domestic product 

(GDP) of countries in which P. falciparum is prevalent rose annually by 0.4%, 

compared to 2.3% in malaria-free countries (Gallup & Sachs, 2001) (It is important 



 24

to note, however, that malaria is just one factor amongst many that contribute to a 

low rise in GDP; other parasitic, bacterial and viral diseases as well as malnutrition 

have similarly hindered economic development in these countries). There is also a 

lack of foreign investment in malarious zones for fear of workers contracting the 

disease. This concern is not unreasonable; as an example of this, Billiton, a UK 

mining company, built an aluminium smelter in Mozambique and was subsequently 

faced with 7,000 cases of malaria and 13 related deaths among expatriate 

employees (Sachs & Malaney, 2002). A lack of foreign investment has further 

contributed to the slow progression of the economy in malarious areas (Gallup & 

Sachs, 2001). 

1.2. Malaria combat and control strategies 

Malaria was eradicated from Europe and Northern America in the first half of the 

twentieth century: swamps were drained, the insecticide 

dichlorodiphenyltrichloroethane (DDT) was widely used to kill mosquitoes, and 

cases diminished (Kitron & Spielman, 1989). However, a widespread ban of DDT in 

the 1970s, due to its health risks as well as increasing mosquito resistance, left the 

rest of the world marooned as the number of malaria cases continued to increase. 

Thus, malaria remains a global burden. With the long term goal of eliminating 

malaria, several international public and private partnerships and organisations 

including Medicines for Malaria Venture, the Bill and Melinda Gates foundation and 

the Global Fund to Fight Aids, Tuberculosis and Malaria are pushing for research 

into vaccine and drug development as well as vector control. Here, I discuss current 

vector control methods, prevention and treatment strategies. 

1.2.1. Vector control 

In light of the failures of DDT to control malaria vectors, alternative control 

measures are currently being implemented. These include insecticide-treated bed 

nets (ITNs) and indoor residual spraying (IRS) which involves spraying insecticide 

indoors.Of the 108 endemic regions, 68 are currently distributing free ITNs and IRS 

is carried out in 44 countries (World Health Organisation, 2009). Unfortunately, 

though simple preventatives, there are fundamental problems with ITN and IRS 

control measures. For example, regular washing of ITNs results in the loss of 
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insecticide potency, therefore frequent reimpregnation with insecticide is required. 

Holes can easily form in the net and must be repaired for the nets to be effective 

protection. Moreover, some mosquitoes, especially the main malaria vectors in 

South East Asia, feed in the early evening rather than late at night. In cultures 

where groups often remain outside until late at night, ITNs are ineffective. In such 

cases, IRS has been similarly unsuccessful, particularly in Asia where mosquitoes 

tend to be exophilic. More effective control measures taking these concerns into 

consideration must be developed if malaria is to be eradicated. 

1.2.2. Vaccine stumbling blocks 

Vaccine development is a field of extensive research, but to date no vaccine has 

been implemented in a clinical setting. After repeated exposure to malaria, patients 

develop immunity against severe disease (Dubois & Pereira da Silva, 1995), giving 

hope that a vaccine might be achievable. However, there are many obstacles to 

overcome on the way to developing an effective vaccine. 

The first subunit vaccine against malaria, SPf66, was developed in 1987 

(Patarroyo et al., 1987), with promising efficacy results; however, later studies 

deemed it ineffective as efficacy fell to 35% (Valero et al., 1996, Beck et al., 1997). 

The first multistage and multicomponent vaccine, NYVAC-Pf7, was developed in 

the 90s (Tine et al., 1996). Though immune responses and a delay in parasite 

growth were observed in all experimental infections, complete protection only 

occurred in 1 of 35 vaccinated individuals (Ockenhouse et al., 1998). On a more 

optimistic note, the most promising vaccine against P. falciparum to date is RTS,S, 

which has now reached phase 3 clinical trials (Casares et al., 2010), though it is not 

yet in clinical use. RTS,S comprises regions of the  circumsporozoite protein (CSP), 

found on the surface of sporozoites, the form of the parasite which replicates in the 

liver. To specifically target CSP to the liver, CSP is packaged inside a hepatitis B 

virus particle (Stoute et al., 1997). This raises an antibody and cellular response, 

preventing invasion of hepatocytes by sporozoites. This is the first malaria vaccine 

that has reached phase 3 clinical trials, however, it only provides 53 % protection 

(Bejon et al., 2008), highlighting the difficulty in obtaining high efficacy and 

protection rates for a malaria vaccine. 

There are several reasons why development of a high efficacy vaccine is 

such a challenge. In general, the immunological response to malaria is complex and 



 26

poorly understood. The identification of possible protective host immune responses 

is challenging. Due to the number of genes present in the parasite genome (there 

are over 5,000), it is difficult to dissect the immune response to the parasite. Many 

different types of immune cell are activated during infection and it is unclear which 

of these is responsible for clearing the parasite or which is a “side effect” of 

infection. Some consider malaria to be the result of a hyperimmune response to 

infection, as the immune response directly contributes to pathogenesis (reviewed by 

Artavanis-Tsakonas and colleagues (Artavanis-Tsakonas et al., 2003)). What is 

clear is that naturally acquired immunity to malaria involves an antibody-mediated 

response, targeting parasite surface proteins, erythrocyte-binding antigens and 

variant proteins (Bull & Marsh, 2002). Antibodies from naturally immune individuals 

are also capable of opsonising infected erythrocytes for phagocytosis (Groux & 

Gysin, 1990). Cell-mediated immunity on the other hand is poorly understood, 

though a CD4+ T-cell response is essential for protective immunity in a mouse 

model of malaria (Langhorne et al., 1990). Moreover, Plasmodium spp. has evolved 

to evade the human immune system very efficiently. As an obligate intracellular 

parasite, its main advantage is that the parasite is only ever exposed to the immune 

system during stages where it needs to exit and invade new cells. For example, 

during asexual development, the parasite reproduces solely inside erythrocytes until 

it reaches the end of its development, when it exits in order to invade new 

erythrocytes. Newly formed parasites are released, but rapidly reinvade in a matter 

of seconds, thereby effectively minimising exposure to the host. Furthermore, 

during invasion, essential ligands are protected as they are only exposed when they 

are released from the apical organelles. Also, unlike other types of cell, the 

erythrocyte does not express major histocompatability complex molecules on its 

surface (which are used to display internal peptides to the immune system). 

Parasites are therefore able to replicate relatively undetected, hidden away from 

contact with circulating antibodies.  

Another complication is that since the parasite has shown the ability to 

develop drug resistance, it is clear that it is capable of rapid evolutionary change. 

Any vaccine has to take this into account – highly polymorphic proteins, for 

example, are probably poor components of a vaccine as the immune system would 

select for one polymorphism. Secondly, several variant antigen families and highly 

polymorphic proteins are found across the genus. An example of this is erythrocyte 
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membrane protein 1 (PfEMP1), a large 200-350 kDa variable protein encoded by 

the var gene family, of which there are approximately 60 members in P. falciparum. 

PfEMP1 is expressed on the surface of infected erythrocytes, where it is involved in 

cytoadherence (Barnes et al., 1994). During the course of infection, different var 

genes are expressed. The switch in PfEMP1 gene expression is thought to be 

controlled by immune pressure, resulting in recrudescent peaks of infection as the 

parasite alters expression to avoid antibodies (Marsh & Howard, 1986). There is 

evidence that the acquisition of immunity against severe disease correlates with the 

presence of antibodies to PfEMP1 variants (Bull et al., 1998Warimwe, 2009 #2806). 

Currently, new vaccines are being developed. Some of these are composed 

of single, highly immunogenic antigens. Examples of these are important parasite 

surface proteins MSP1 and AMA1 are the foci of many blood stage vaccines 

because blocking these proteins would prevent parasites from invading 

erythrocytes, thereby limiting the amplification of parasites in the bloodstream 

(Lazarou et al., 2009). Alternatively, vaccines targeting liver stages are particularly 

attractive since liver stage development occurs before the onset of symptoms 

caused by erythrocytic development. Recently, 25% protection against experimental 

human infection was obtained using a chimpanzee adenoviral vector encapsulating 

a hybrid form of TRAP, a sporozoite protein (Duncan, 2009). On the other hand, 

studies looking into whole parasite vaccines are looking promising, for example, the 

use of irradiated sporozoites or live, genetically attenuated strains. Early studies by 

Nussenzweig and Kramer showed that immunisation of mice with irradiated 

sporozoites confers partial protection to subsequent challenge (Nussenzweig et al., 

1967Kramer, 1975 #2646), and immunisation of humans with irradiated P. 

falciparum sporozoites results in 92% protection (Hoffman et al., 2002). However, 

there are concerns about the safety of such vaccines in terms of the dose of 

radiation required to sufficiently attenuate the parasites (Silvie et al., 2002). As an 

alternative to irradiation, genetically attenuated parasites are an attractive, 

potentially safe vaccine development strategy and have shown promising results in 

mouse strains and P. falciparum. Vaccination of mice with UIS3 (upregulated in 

sporozoite 3) knockout sporozoite lines results in 100% protection against further 

infections (Mueller et al., 2005). A genetically attenuated P. falciparum strain with 

no abnormalities in the life cycle aside from an arrest in liver stage development 

was also recently generated by knocking out sporozoite proteins P52 and P36 
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(VanBuskirk et al., 2009). This strain confers protective immunity in a mouse model 

with grafted human hepatocytes. The risk, however, with genetically attenuated 

strains is that whether reversion to wild type strains can occur is unknown, hence 

the safety of such strains as vaccines is unclear. 

The Malaria Vaccine Technology Roadmap, a global strategy set up in 

2006, is a list of objectives for the development of a vaccine by 2025. By this date, 

the goal is to have an affordable vaccine with over 80% protection against severe 

disease and malaria-related death, with a minimum of 4 years (preferably lifelong) 

protection. In addition to this, it must be protective after only a few doses, and 

protective against all stages of all strains of malaria parasite. Such requirements are 

ambitious, particularly when considering the biological problems of producing a 

vaccine against such a complex organism. 

1.2.3. Antimalarial drugs and resistance 

In combination with vector control, antimalarial therapeutics are used for 

prophylaxis and treatment. Quinine is still considered to be the best drug for 

treatment of complicated malaria, though it has severe side-effects (Padmaja et al., 

1999). Its synthetic 4-aminoquinoline derivative, chloroquine, is the most widely 

used antimalarial drug because it is currently the cheapest and most effective drug 

available. Antifolate-based therapies, which target folate metabolism in the parasite, 

are also widely used; these include proguanil, sulphadoxine-pyrimethamine and 

dihydrofolate reductase inhibitors. However, the fastest acting antimalarial 

developed to date is artemesinin (and its derivatives) (White, 1997), which is the 

first line treatment for severe cases of malaria. Derived from the sweet wormwood 

plant Quinhaosu, it has been used in Chinese traditional medicine for over 2000 

years. Low yields are however obtained by extraction from the plant source, so the 

drug is relatively expensive meaning that it cannot be widely distributed. Companies 

such as The Artemesinin Enterprise are, on the other hand, exploring alternative 

sources of artemesinin to improve production and lower costs. 

Despite the wide availability of antimalarial treatments, a major hindrance to 

the control of malaria is the emergence of drug-resistant parasite strains, which can 

survive or multiply despite administration of antimalarials (World Health 

Organisation, 1973). The first reports of chloroquine resistance were in Colombia in 

the 1960s (Young & Moore, 1961). P. falciparum and P. vivax strains exhibiting 
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resistance to proguanil were observed in West Africa in 1949 (Seaton & Adams, 

1949, Seaton & Lourie, 1949) and resistance against sulphadoxine-pyrimethimine 

combination drugs was first evident in the 1980s (Hurwitz et al., 1981). On the 

contrary, there have been relatively few reports of quinine resistance (Bjorkman, 

1991). The causes of resistance are numerous. Endemic countries and high 

transmission areas are particularly at risk of drug resistance (Bloland, 2001). 

Counterfeit and substandard drugs are rife in many malarious zones while 

underdosing or use of less active drugs can lead to resistance as in these cases, 

the parasite is not sufficiently cleared from the system (Bloland, 2001). It is 

imperative that indiscriminate and irresponsible use of antimalarial drugs is banned.   

Resistance arises through several different mechanisms, which are poorly 

understood. A well-studied example is chloroquine resistance. Resistance to 

chloroquine has been mapped to, among others, mutations in the chloroquine 

resistance transporter gene, which encodes a food vacuole integral membrane 

protein (Fidock et al., 2000). These mutations were later shown to cause the 

transporter to be “leaky,” allowing free transport of chloroquine out of the food 

vacuole (Martin et al., 2009), thereby preventing chloroquine from accumulating 

inside the parasite.  

In an effort to thwart development of drug resistance, the World Health 

Organisation (WHO) recommends combination drug therapy (World Health 

Organisation, 2009). For resistance to arise simultaneously to two drugs which 

target separate pathways and have different modes of action, mutations in both 

pathways or a mutation that blocks both drugs at the same time would be required, 

which is unlikely to occur. For this reason, the WHO advises the use of artemisinin 

in combination therapy (ACTs) rather than monotherapy. Despite this approach, 

there are worrying reports of failure of ACTs on the Thai-Cambodian border 

(Dondorp et al., 2009), suggesting emergence of local resistance to artemisinin. 

Problems are thought to be caused in part by ACTs taking a longer time to clear 

from the system compared to chloroquine-based therapies. Therefore, parasites are 

exposed to drugs for longer; hence, there is a higher likelihood that resistance will 

develop. Despite the emergence of ACT resistance, combination therapy is widely 

replacing single therapy and has had successes elsewhere with ACT and other 

combination drugs (World Health Organisation, 2009). Better controls for dosing 

and safety control mechanisms are being implemented by the WHO, as well as a 
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clampdown on counterfeits (World Health Organisation, 2009). The mass treatment 

of populations regardless of disease status is also being considered by the WHO 

and British government (World Health Organisation, 2009The All-Party 

Parliamentary Group on Malaria and Neglected Tropical Diseases, 2010 #2475). As 

mentioned earlier, use of ITNs and IRS may result in fewer infections and thereby 

less resistance, if they are widely implemented. In combination with ITNs and IRS, 

new drugs must be developed to provide alternative treatments in patients with 

multidrug-resistant infections. Two recent multidisciplinary efforts to identify new 

lead compounds for antimalarial drug development have marked a global effort to 

combat malaria. Gamo et al and Guigemde et al recently presented promising 

studies on combinatorial compound libraries and identified novel promising lead 

compounds which are specific to Plasmodium spp. and of high potency (Gamo et 

al., 2010, Guiguemde et al., 2010). These newly identified compounds could pave 

the way for a new generation of antimalarial drugs with alternative modes of action. 

Drug resistance has led to an increase in the cost and complexity of development of 

new anti-parasite drugs. Biological targets must be even more carefully considered 

before embarking on drug discovery programs. Resistance remains an important 

threat, further supporting the urgent need for a vaccine, identification of novel drug 

targets and development of new antimalarial therapeutics. 

1.3. The life cycle of the malaria parasite 

Plasmodium spp. have a complex life cycle involving several rounds of invasion of 

different types of cell, in the vector and vertebrate host (Figure 1). Anopheles 

gambiae sensu stricto is the main vector responsible for human malaria parasite 

transmission in sub-Saharan Africa (Kiszewski et al., 2004). Gravid female 

mosquitoes rely on human blood to feed their developing eggs and become infected 

by biting a human carrying malaria parasites. In turn, the mosquitoes transmit 

further infections by depositing invasive, highly motile Plasmodium spp. sporozoites 

into the dermis during a blood meal.  

Once in the skin, sporozoites can remain there for several hours (Yamauchi 

et al., 2007). Some sporozoites use their motility to travel through to the lymph 

organs (Amino et al., 2006), while others glide across epithelial cells to the nearest 

blood vessel and are thereby transferred to the liver. As few as 10 sporozoites, in 

the case of P. vivax, can initiate a productive malaria infection (Ungureanu et al., 
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1976). In the liver, sporozoites are sequestered by binding to heparan sulphate 

proteoglycans (HSPs) on the surface of epithelial cells. HSPs are recognised by two 

sporozoite surface proteins, circumsporozoite protein (CSP) and thrombospondin-

related anonymous protein (TRAP) (Muller et al., 1993, Ancsin & Kisilevsky, 2004). 

Once sequestered, sporozoites must breach the sinusoidal cell layer to gain access 

to hepatocytes. Two secreted proteins called SPECT and SPECT2 are essential for 

this process; parasites deficient in SPECT or SPECT2 cannot traverse the 

sinusoidal cell layer (Ishino et al., 2004Ishino, 2005 #2292). SPECT2 is a perforin-

like protein which probably mediates wounding of sinusoidal cell membranes by 

forming large multimeric pores in the cell membrane. Subsequently, sporozoites 

migrate through several hepatocytes before invading a final hepatocyte. The 

purpose of migration is unclear and is poorly understood, but studies have shown 

that migration results in an increase in secretion of TRAP onto the parasite surface 

(Mota et al., 2002). It is possible that a minimum level of TRAP is required for the 

establishment of hepatocyte infection. Upon invasion, CSP is proteolytically 

processed by a cysteine protease; this is essential for infection of hepatocytes in 

vitro and in vivo (Coppi et al., 2005). Inside the hepatocyte, sporozoites differentiate 

and replicate. Within 6-14 days, the infected hepatocyte has developed into a 

hepatic schizont, filled with thousands of merozoites, the form required for infection 

of erythrocytes. Parasites induce non-apoptotic death of the hepatocyte (Sturm et 

al., 2006) and parasite-filled vesicles called merosomes bud off and are released 

into the sinusoid lumen (Sturm et al., 2006). Release of merozoites from 

merosomes marks the beginning of blood stage development, essential for the 

propagation of parasites in the host. 

Merozoites invade and replicate asexually inside erythrocytes, eventually 

bursting out and reinvading new cells (Figure 2). Initially, the newly-invaded parasite 

forms a ring-like structure in the erythrocyte cytosol (EC), termed a ring-stage 

parasite. After 24 hours, in the case of P. falciparum, this develops into a 

trophozoite, the main metabolically active stage of the parasite in blood stages. 

During this stage, the parasite increases in size and extends into the EC. The 

trophozoite stages are succeeded by the start of nuclear division, which occurs by 

schizogony: the formation of a multinucleated syncytium and subsequent 

cytokinesis. This is the final stage of the asexual cycle. 48 hours after merozoite 

invasion, the infected erythrocyte ruptures, releasing 16 to 32 new merozoites into 
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the blood stream, which go on to repeat the cycle. 

A small percentage of ring-stage parasites are committed to developing into 

gametocytes (Alano, 2007), which are precursor cells required for sexual 

development. Gametocytes are taken up by mosquitoes during a blood meal. Early 

studies by William MacCallum in 1897 indicated that there are two types of gamete 

which are morphologically distinct (Maccallum, 1897); these are male and female 

gametocytes. Upon being taken up by the mosquito, gametocytes are activated to 

form extracellular gametes. Activation is induced by xanthurenic acid and 

temperature change in the mosquito midgut (Billker et al., 1998). The female 

gamete is fertilised by the male gamete, resulting in the formation of a zygote. 

Following this, the zygote develops into a motile ookinete, which invades midgut 

epithelial cells and develops into an oocyst. The parasite divides by sporogony, 

producing sporozoites, which are eventually released and migrate to the mosquito 

salivary glands. The glands are reached by sporozoites traversing the salivary 

gland wall; sporozoites are then transmitted to another human host during a 

subsequent blood meal, thus the life cycle continues.  

1.4. Malariology and genetic manipulation in the post-

genomic era 

Species of Plasmodium have a 23-26 Mb, AT-rich genome which encodes around 

5,500 genes (Gardner et al., 2002, Pollack et al., 1982). The P. falciparum genome 

was sequenced in 2002 (Gardner et al., 2002) and annotation is ongoing (Kalume 

et al., 2005). Completion and annotation of the genomes of a number of other 

Plasmodium species, as well as the human, mouse and Anopheles gambiae 

genomes (Lander et al., 2001, Venter et al., 2001, Church et al., 2009, Holt et al., 

2002, Kalume et al., 2005) has further provided a wealth of information to this field. 

In particular, the genome projects have opened the door for genetic manipulation of 

malaria parasites, especially P. falciparum (Wu et al., 1996, Crabb & Cowman, 

1996). There has been an enormous leap in terms of functional characterisation of 

parasite proteins, meaning that it is possible to analyse any gene, rather than 

studying only highly abundant and/or immunogenic proteins. 

1.5. Transfection of asexual P. falciparum parasites 
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The asexual stages of the P. falciparum life cycle can be cultured in vitro in human 

blood (Bass & Johns, 1912). There is evidence suggesting that in vivo, the 

progression of asexual development is regulated by fluctuations in host melatonin 

levels, which relates to circadian rhythm (Hotta et al., 2000). In culture, 

synchronisation is achieved manually by isolating schizonts by density 

centrifugation on colloidal silica (or other methods) followed by sorbitol treatment, 

which destroys late-stage parasites (Trager & Jensen, 1976Lambros, 1979 #2699). 

It is perhaps difficult to imagine that it has only been 15 years since transfection and 

genetic manipulation of P. falciparum blood stages were made possible (Wu et al., 

1996, Crabb et al., 1997, Crabb & Cowman, 1996), considering the myriad of 

studies which have been published since then, making use of gene knockouts and 

epitope tags as well as other genetic modifications.  

Parasites are able to maintain circular plasmid vectors in the form of large, 

stable concatamers, which results in the need to cycle parasites on and off drug to 

select for integrants (Crabb & Cowman, 1996). Episomal expression is similarly 

difficult because Plasmodium promoters are poorly characterised and plasmid 

segregation is poor (O'Donnell et al., 2002). In addition, genetically modified lines 

are slow to obtain as transfection methods have an estimated efficiency of only 1 x 

10-6 (O'Donnell et al., 2002). This is generally attributed to the physical barriers to 

transfection, in that input DNA must cross the erythrocyte plasma membrane 

(EPM), parasitophorous vacuole membrane (PVM) and parasite plasma membrane, 

before reaching the nuclear envelope and entering the nucleus. In P. berghei, 

increased transfection efficiency is observed with the transfection of schizonts with 

linear constructs; P. falciparum schizonts on the other hand do not survive 

electroporation, therefore ring stage parasites must be transfected. Since 

transfection of rings is less efficient compared to schizonts, circular rather than 

linearised vectors must be used as they are more stable (Iwanaga et al., 2010), 

resulting in long periods of selection to obtain integrants. 

The development of a negative selection system using herpes simplex virus-

derived thymidine kinase (Duraisingh et al., 2002) has greatly improved the 

selection of double homologous recombination integrants (Duraisingh et al., 2003). 

However, use of the drug ganciclovir for negative selection can also kill parasites 

which are thymidine-kinase negative, i.e. where double homologous recombination 

has occurred (Duraisingh et al., 2002). Negative selection using a Saccaromyces 
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cerevisiae cytosine deaminase and uracil phosphoribosyl transferase chimeric gene 

has also been developed (Maier et al., 2006, Maier et al., 2009b), however this 

method has yet to be widely used . A high efficiency transposon-mediated 

integration system was also developed in 2005 (Balu et al., 2005). Transposons can 

be used to epitope tag or fuse GFP to proteins, trap promoters or knock out function 

(Damasceno et al., 2010). However, the transposable element used inserts at the 

sequence TTAA (Balu & Adams, 2006), therefore it is more applicable to 

mutagenesis studies than for the integration of constructs into specific loci.  

1.6. Conditional knockdown and inducible systems in P. 

falciparum 

Since the parasite is haploid during asexual development, it is not possible to obtain 

parasites where genes that are essential to parasite viability have been knocked out 

or modified to be deleterious to growth. For this reason, conditional knockdown 

approaches and inducible systems are being increasingly relied on for the analysis 

of function of such essential genes. However, few conditional knockdown systems 

have been used with any success in P. falciparum. Several publications purport to 

have ablated gene expression using RNA interference (Malhotra et al., 2002, 

Dasaradhi et al., 2005); however the lack of genes encoding key enzymes for RNA-

based silencing of gene expression indicates that it is unlikely to occur in P. 

falciparum (Baum et al., 2009). Therefore, it is likely that the effects observed in the 

aforementioned studies are results of toxicity. It is also possible that silencing 

occurs by an unknown mechanism that is distinct from canonical RNA interference. 

A novel approach to gene regulation using autocatalytic RNA, which uses 

ribozymes to downregulate mRNA, was recently reported (Agop-Nersesian et al., 

2008). Downregulation of ribozyme-regulated genes was achieved in T. gondii, but 

unfortunately was not functional in P. falciparum.  

The tetracycline-inducible (Tet) system, first developed for mammalian 

systems (Gossen & Bujard, 1992, Gossen et al., 1995), was adapted for T. gondii, 

then P. falciparum in 2005 (Meissner et al., 2001, Meissner et al., 2005). Two 

systems exist; one where transcription is turned on by use of the drug tetracycline 

(TetON) or prevented (TetOFF). To date, only TetON systems have been developed for 

T. gondii and P. falciparum. The gene of interest is placed under the control of a 

minimal, truncated promoter which leads to low levels of transcription in the 
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absence of a transactivating protein (TA). Regulation of transcription is achieved by 

expression of a fusion protein between tetracycline repressor protein (TetR), which 

binds tetracycline, and TA which drives high levels of transcription when bound to 

the tetracycline operator. This fusion protein (TetR-TA) is generally expressed 

under a stage-specific promoter. In the presence of tetracycline, the TetR-TA fusion 

protein binds tetracycline and is prevented from binding the tetracycline operator, 

resulting in low levels of expression. In the absence of tetracycline, the TetR-TA 

fusion protein is expressed and binds to the tetracycline operator, leading to high 

levels of expression of the gene of interest.  Though successful conditional 

knockouts have been obtained in T. gondii (Mital et al., 2005, Brossier et al., 2008) 

using this system, it has had less success in P. falciparum (Koussis, unpublished 

data). The major problem with this system is that large vectors are used, which 

encode three gene cassettes. Constructs tend therefore to be unstable in E. coli 

and parasites, being prone to rearrangements.  

Recently, a simple conditional system for the expression of transgenes from 

an episomal construct was devised (Epp et al., 2008). Using a bidirectional 

promoter, levels of a transgene and a selectable marker (blasticidin S deaminase) 

can be regulated by altering the concentration of blasticidin S in the culture medium. 

High concentrations of drug are used to select for parasites carrying large 

concatamers with multiple copies of the transgene, thereby resulting in increased 

protein production (Epp et al., 2008). A major advantage of this is that constructs 

are much smaller and more stable than traditional transfection constructs. This 

method is amenable for conditional regulation of second copies of proteins and 

could potentially be used to complement double crossover knockouts. However, 

whether sufficient levels of protein can be expressed using this system in order to 

rescue the knockout parasites is unknown. Another limitation with this system is that 

levels of protein are only slowly modified over the course of several weeks which is 

not ideal for phenotypic or complementation studies.  

In 2006, a conditional system using a “destabilisation domain” for rapid 

downregulation of target protein levels was developed in mammalian cells 

(Banaszynski et al., 2006), which was subsequently adapted for use in P. 

falciparum and T. gondii (Armstrong & Goldberg, 2007, Herm-Gotz et al., 2007). 

Mutants of the human FK506-binding protein (FKBP), F36V or L106P, have a 

destabilising effect on target proteins when fused to the N- or C-terminus 
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(Banaszynski et al., 2006). Destabilisation is prevented by proteasome inhibitors 

(Banaszynski et al., 2006), therefore it is assumed that fusion proteins are targeted 

to the proteasome for degradation. Rapid downregulation of protein levels is 

achievable in mammalian cells and protection against FKBP-mediated degradation 

is achieved by the addition of a stabilising ligand, which is a rapamycin derivative 

called Shield-1. This method has been adapted for the regulation of FKBP fusion 

proteins in P. falciparum and T. gondii (Armstrong & Goldberg, 2007, Herm-Gotz et 

al., 2007). In P. falciparum, examples include regulation of episomally-expressed 

YFP levels and downregulation of endogenous falcipain-2, P. falciparum calpain 

and calcium (Ca2+)-dependent kinase CDPK5 (Russo et al., 2009b, Armstrong & 

Goldberg, 2007, Dvorin et al., 2010). The system has been exploited in T. gondii 

and has been particularly successful for dominant negative studies (Agop-

Nersesian et al., 2009, Breinich et al., 2009, van Dooren et al., 2009). P. falciparum 

studies wherein dominant-negative FKBP fusions have been used have yet to be 

published. A major limitation of this system, however, is that some proteins are not 

functional as FKBP fusions, as is the case for TgMyoA (Herm-Gotz et al., 2007). It 

may therefore be of interest to establish whether proteins retain their intrinsic 

function in vitro. The degree of degradation also varies widely among proteins 

(Dvorin et al., 2010, Armstrong & Goldberg, 2007, Russo et al., 2009b) and 

parasites. In T. gondii, degradation is very rapid, occurring within 8 h of removal of 

Shield-1, whereas in P. falciparum it is much slower (approximately 24 h) 

(Armstrong & Goldberg, 2007), restricting the applicability of this system in P. 

falciparum. Since these studies, new mutants of FKBP have been obtained, which 

have a greater destabilising effect when fused to the C-terminus of the protein of 

interest (Chu et al., 2008). This may resolve the problem of inefficient degradation 

of FKBP fusion proteins in P. falciparum. 

Other mutants of FKBP, when fused to a protein of interest, induce 

aggregation of fusion protein in the endoplasmic reticulum (ER) when fused to a 

protein of interest. Aggregation can be reversed by addition of another rapamycin 

derivative (Wandless, 2000, Rivera et al., 2000). These conditional aggregation 

domains (CAD) were successfully used to regulate expression of proteins encoded 

by episomal constructs, for trafficking studies on PfSBP1, an exported protein 

(Saridaki et al., 2008). A concern with this approach is toxicity, due to the amount of 

aggregated protein in the ER. This may be more of a problem when attempting to 
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regulate endogenous genes in long term culture. As yet, whether it is possible to 

use this system to regulate endogenous genes in P. falciparum is unknown. Also, 

as with the FKBP system, the drawback here is that fusion of CAD domains may be 

deleterious to protein function, particularly as 2-4 12 kDa domains must be fused to 

the protein for effective aggregation (Rivera et al., 2000).  

1.7. The asexual erythrocytic cycle 

The asexual erythrocytic cycle accounts for all of the symptoms associated with 

malaria: fever, resulting in part from the release of haemozoin into the blood; 

anaemia, a consequence of erythrocyte destruction and dyserythropoesis; and 

splenomegaly, caused by infected erythrocytes being targeted to the spleen for 

destruction. During the asexual cycle, merozoites invade erythrocytes, modify the 

host cell extensively and divide to form daughter merozoites, which eventually exit, 

going on to invade fresh erythrocytes and continue the cycle. 

1.7.1. Invasion of erythrocytes by merozoites 

The merozoite is an ovoid cell, 1.6 μm long and 1 μm wide (Langreth et al., 1978), 

with a highly organised ultrastructure (Figure 3). Merozoites recognise, attach to 

and enter erythrocytes in a very short time frame, as has been shown by live and 

fixed microscopy (Dvorak et al., 1975Glushakova, 2005 #773, Gilson & Crabb, 

2009); following release from schizonts, merozoites can invade in as fast as 3 

seconds (Gilson & Crabb, 2009). This highly efficient process has probably 

emerged to limit the exposure of essential invasion proteins to the immune system. 

Invasion itself occurs in essentially four stages: (i) primary, reversible attachment, 

(ii) reorientation and erythrocyte deformation, and (iii) irreversible attachment and 

tight junction formation, which is succeeded by (iv) formation of the PV. 

1.7.1.1. Primary, reversible attachment 

Fascinating time lapse microscopy by Gilson et al shows that soon after contact 

with the erythrocyte, the parasite is able to “fling and wave” the erythrocyte around 

(Gilson & Crabb, 2009). This primary attachment is short-lasting and reversible 

(Bannister & Dluzewski, 1990), involving key proteins on the merozoite surface. In 

EM studies, the merozoite surface appears as a thick fibrillar coat; its composition is 
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probably crucial as it is the first point of contact with the host cell. The merozoite 

surface is composed of integral and peripheral membrane proteins, generally called 

merozoite surface proteins (MSPs). MSPs are generally either GPI-anchored or 

peripherally associated with GPI-anchored proteins. They are thought to mediate 

weak, transient interactions with host cells during invasion. Antibodies raised 

against several of the MSPs block invasion, which highlights their important function 

in merozoite invasion (for example: (Lazarou et al., 2009, Pirson & Perkins, 1985, 

Woehlbier et al., 2010)). Various MSPs appear to have roles in different events 

during invasion as localisation studies of these proteins indicate that they are not 

evenly distributed on the merozoite surface (Sanders et al., 2005). The GPI-

anchored proteins Pf41, Pf38, Pf12 and Pf92 localise to the merozoite surface 

(Sanders et al., 2005), and Pf92 is refractory to genetic deletion, suggesting that it 

is an important molecule. Pf41, Pf38 and Pf12 all have conserved erythrocyte 

binding domains (Garcia et al., 2009), supporting a role for these proteins in 

erythrocyte invasion. Two large scale proteomic studies have since identified more 

GPI-anchored proteins (Sanders et al., 2006, Gilson et al., 2006) suggesting that 

there might be MSPs that as yet remain uncharacterised. 

Of all the MSPs, Merozoite surface protein-1 (MSP1) is the most intensively 

studied as it is an important vaccine candidate. It covers the entire surface of the 

parasite and is thought to be essential for adhesion to erythrocytes (Holder & 

Freeman, 1982). MSP1 cannot be knocked out in blood stages (O'Donnell et al., 

2000), supporting its important role in this stage of the life cycle. There is evidence 

that MSP1 binds band 3, a major erythrocyte component (Goel et al., 2003), and 

heparin-like molecules which naturally occur on the erythrocyte surface (Boyle et 

al., 2010). For these reasons, it is the best candidate for mediating initial contact to 

the host cell. This notion is supported by the finding that many anti-MSP1 

antibodies are invasion-inhibitory (Siddiqui et al., 1987). A role in merozoite 

development in liver stages was also recently shown (Combe et al., 2009). MSP1 

forms a complex with at least two other proteins, MSP6 and MSP7 (Trucco et al., 

2001, Stafford et al., 1994, Stafford et al., 1996). However, the function of this 

complex in invasion remains unknown.   

1.7.1.2. Reorientation and erythrocyte deformation 

Following attachment, the parasite reorients itself so that the apical organelles are 
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juxtaposed to the erythrocyte surface. Reorientation is likely to be caused by a 

gradient of adhesive proteins, which increase in concentration towards the apical 

end of the merozoite (Lew & Tiffert, 2007). This gradient possibly results from the 

release of adhesion proteins from the micronemes at the apical tip, from which they 

redistribute across the surface from anterior to posterior. As the parasite reorients, 

the RBC appears to undergo rapid and extensive deformation (Dvorak et al., 1975), 

which is postulated to be a result of cytoskeletal rearrangements induced by contact 

with the merozoite (Gilson & Crabb, 2009). This may be related to an influx of Ca2+ 

during invasion (Lew & Tiffert, 2007). Whether membrane transformation is actually 

triggered by Ca2+ influx and whether secretion of apical organelles is involved is 

unknown. Several seconds after deformation, the erythrocyte appears to return to 

its usual biconcave shape (Gilson & Crabb, 2009, Dvorak et al., 1975). Gilson et al 

speculate that secretion of apical organelles may occur at this point, preceding 

erythrocyte penetration (Gilson & Crabb, 2009).  

1.7.1.3. Irreversible attachment and tight junction formation 

The weak interactions mediated by the MSPs precede the stronger, irreversible 

interactions which occur after merozoite reorientation. These interactions are 

mediated by proteins stored in micronemes and rhoptries. Secretion of these 

organelles may occur in response to reorientation of the parasite, which is thought 

to cause fluctuations in potassium and Ca2+ levels (Singh et al., 2010). Prime 

candidates for mediating these stronger attachments are the PfRH and Duffy 

binding-like proteins (DBLs). The DBLs are characterised by a cysteine-rich 

domain, originally identified as an essential P. vivax receptor for Duffy antigen on 

the surface of erythrocytes (Wertheimer & Barnwell, 1989, Fang et al., 1991). The 

DBL domain is conserved in many Plasmodium species; DBLs are the major sialic 

acid-binding ligands expressed by the parasite. Sialic acid is an important invasion 

receptor on the erythrocyte surface; early studies using neuraminidase-treated 

erythrocytes demonstrated a reduction in invasion of those cells (Miller et al., 1977, 

Mitchell et al., 1986). An essential DBL, EBA-175, was identified as an erythrocyte 

binding component in parasite culture supernatant (Camus & Hadley, 1985). EBA-

175 binds a key erythrocyte component, glycophorin A (Orlandi et al., 1992); 

invasion efficiency is dramatically reduced in erythrocytes deficient in glycophorin A 

(Miller et al., 1977). Similarly, EBA-140 is an important receptor for glycophorin C 
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and its function is conserved despite it being highly polymorphic (Maier et al., 2003, 

Maier et al., 2009a). 

The PfRH proteins, on the other hand, are important for host cell recognition 

and use of alternative invasion pathways. P. vivax, which only invades reticulocytes, 

relies on two apically located reticulocyte-binding proteins for the selection of 

erythrocytes (Galinski et al., 1992). Homologues of these proteins, the PfRH 

proteins, were later studied in P. falciparum. PfRH1 is essential for sialic acid-

dependent invasion (Rayner et al., 2001), while knock outs of PfRH2a and PfRH2b 

in the sialic acid-dependent strain W2Mef results in a switch to sialic acid-

independent invasion (Desimone et al., 2009). These findings suggest that the 

PfRH proteins are important for sialic acid binding. The ability to use of multiple 

invasion pathways is presumably a mechanism for immune response evasion and 

coping with polymorphisms in erythrocyte receptors.  

As the aforementioned proteins form an irreversible interaction with the 

erythrocyte surface, a ring of close contact called the “tight junction” forms between 

the parasite and erythrocyte membranes; this was initially observed by EM studies 

(Aikawa et al., 1978). The junction moves rearward as the parasite is propelled into 

the erythrocyte, driven by an actin-myosin motor complex (Baum et al., 2006). 

AMA1 is an essential, highly abundant micronemal protein which is crucial for this 

complex. The functional conservation of AMA1 across the Plasmodium genus and 

Apicomplexa phylum indicates an important role for this molecule in cell entry 

(Triglia et al., 2000, Baum et al., 2006, Hehl et al., 2000). Around the time of 

invasion, AMA1 is secreted onto the surface of merozoites, where it is anchored by 

a transmembrane domain (Triglia et al., 2000) and associates with rhoptry neck 

proteins (RONs) to form an essential part of the tight junction (Richard et al., 2010, 

Collins et al., 2009). Studies using an invasion-inhibitory antibody suggest that if 

AMA1 is prevented from binding the RONs, parasite invasion is inhibited (Collins et 

al., 2009). Richard et al propose that AMA1-RON association occurs before rhoptry 

secretion and is important for the release of proteins from this organelle (Richard et 

al., 2010). 

EM studies on P. knowlesi show that, as the parasite enters the red blood 

cell, the fuzzy merozoite coat is shed (Aikawa et al., 1978). Shedding of MSP1 was 

observed in 1991 (Blackman et al., 1991) and it was later discovered that a Ca2+-

dependent membrane bound “sheddase” was accountable (Blackman & Holder, 
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1992). A similar MSP1 processing pattern occurs in P. knowlesi (Blackman et al., 

1996), suggesting that the function and importance of MSP1 shedding is conserved 

across the genus. The sheddase was identified by Harris et al in 2005 as a 

micronemal subtilisin-like protease called PfSUB2 (Harris et al., 2005). PfSUB2 

removes ligands thought to be crucial for invasion interactions, also including 

AMA1, which it sheds from the merozoite surface (Harris et al., 2005). Rhomboid 

protease ROM4 also sheds AMA1 during invasion (Baker et al., 2006). The function 

of shedding by either of these enzymes is unclear, but it may be important for the 

disruption of strong interactions between the erythrocyte and the parasite, to allow 

the merozoite to continue entering the erythrocyte. It could also be important in 

terms of immunopathology by releasing many highly immunogenic proteins into the 

extracellular milieu. 

1.7.1.4. Formation of the PV 

As the parasite enters the erythrocyte, rhoptries secrete proteins which form the PV 

(Stewart et al., 1986, Sam-Yellowe et al., 1988, Etzion et al., 1991, Bradley et al., 

2005). It is well established that material from the rhoptries is released during 

invasion and later expansion of the PV (Nichols et al., 1983, Bannister et al., 1986). 

The PV is a non-fusogenic vacuole which provides a hospitable environment for the 

parasite to reproduce. The membrane is particularly important for transport of 

nutrients, and the export of proteins into the EC. By labelling of erythrocyte 

membranes with fluorescent lipophilic probes and following their fate by 

fluorescence microscopy, Ward et al revealed that host cell lipids are incorporated 

into the PVM during invasion, but not erythrocyte surface proteins (Ward et al., 

1993). Furthermore, rhoptry components are present in the newly-formed 

membrane (Sam-Yellowe et al., 1988). Completion of invasion is marked by the 

sealing of the erythrocyte membrane around the merozoite.  

1.7.2. Development after invasion: trophozoite stages 

Soon after invasion, the merozoite loses its apical organelles (Aikawa et al., 1978), 

and proteins which modify the host cell are thought to be secreted from DGs (Torii 

et al., 1989, Culvenor et al., 1991). In the trophozoite stages, the parasite enlarges 

in size and DNA replication begins. Haemoglobin, a rich source of amino acids for 
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protein production, is imported from the erythrocyte host and is trafficked to a food 

vacuole (FV) in the developing parasite. There, it is hydrolysed by specialised 

enzymes which break down the haemoglobin into large fragments, and then short 

peptides and haem (reviewed in (Francis et al., 1997)). Early studies using purified 

FVs showed that haemoglobin digestion is an ordered process, initiated by aspartic 

proteases (Goldberg et al., 1990, Gluzman et al., 1994). As haem is a toxic by-

product, it is neutralised by hydrolysis to haemozoin (Fitch & Kanjananggulpan, 

1987). As well as being a source of nutrition for the parasite, degradation of 

haemoglobin may be important for maintaining osmotic stability inside the 

erythrocyte (Lew et al., 2004). During development, parasites undergo major 

ultrastructural changes. DG secretion occurs just before finger-like projections of 

the PVM begin to extend into the host cell cytosol (Torii et al., 1989), forming the 

tubovesicular network (TVN), Maurer’s clefts and knobs. Since the erythrocyte has 

no organelles, the TVN is considered to be the parasite equivalent of the trans-

Golgi network in mammalian cells. The function of the Maurer’s clefts is unclear, but 

several variant antigens localise to them, including STEVOR and rifin proteins 

(Petter et al., 2007). This suggests that the Maurer’s clefts play a role in trafficking 

and export of variant antigens, thereby implicating them in immune evasion. Knobs 

are protrusions of the erythrocyte membrane; since they are mostly composed of 

cytoadherence ligand PfEMP1, it is possible that they are involved in anchoring the 

parasite during cytoadherence (which is mediated by PfEMP1). Recently, evidence 

has come to light suggesting that Maurer’s clefts are in fact secretory organelles 

which concentrate proteins before trafficking to the erythrocyte (Bhattacharjee et al., 

2008). 

In order to carry out these important changes to the erythrocyte, many 

parasite proteins are exported to the erythrocyte (Marti et al., 2004)(Hiller et al., 

2004, Maier et al., 2008). Several exported proteins are involved in antigen 

presentation or cytoadherence; others are involved in cytoskeletal remodelling and 

formation of the Maurer’s clefts (Petter et al., 2007, Maier et al., 2008). Export is 

essential for survival and virulence. PfEMP1, for example, is important for antigenic 

switching and cytoadherence (Pouvelle et al., 2000); other proteins, such as RESA, 

described earlier, have a role in altering the structural integrity of the erythrocyte. 

Exported proteins must travel through the parasite and across the PVM to reach the 

host cell. The default pathway for proteins with signal peptides is the PV (Adisa et 
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al., 2003), but for export into the erythrocyte, an extra N-terminal targeting element 

termed the Plasmodium export element (PEXEL) is required (van Ooij et al., 2008, 

Marti et al., 2004). 400 proteins in the P. falciparum predicted proteome contain 

PEXEL sequences and are therefore hypothesised to be exported to the erythrocyte 

(Marti et al., 2004). The PEXEL motif is removed in the ER by an aspartyl protease, 

Plasmepsin V (Boddey et al., 2009, Russo et al., 2009a). Proteins are exported 

through the PVM by a complex of proteins which form the export “machine” (de 

Koning-Ward et al., 2009). EXP2, a transmembrane protein, forms the core of this 

complex and may be the pore through which proteins are fed, though this has yet to 

be determined. The heat shock protein HSP101 is implicated in driving ATP-

dependent unfolding which is known to be essential for proteins to cross the PVM 

(Gehde et al., 2008, de Koning-Ward et al., 2009). It is, however, likely that proteins 

are exported to the host cell by other non-PEXEL mechanisms, since the parasite 

also exports PEXEL-negative proteins to the erythrocyte (Spielmann et al., 2006b).  

1.7.3. Schizogony: formation of 16-32 merozoites 

By late schizogony, the nucleus has divided 4 times and up to 32 merozoites are 

observed per schizont. In late stage schizonts, merozoites are visible as distinct 

entities, where they have budded from the residual body of the schizont, which 

contains the haemozoin-packed FV. At this stage, the haemoglobin inside the 

erythrocyte is almost completely degraded and begins to form a compact, dense 

mass (Jamjoom, 1988). Surrounding the merozoites is the PV, which is filled with 

several different proteins, including serine repeat antigens (SERA), thought to be 

important for release of merozoites, and S-antigens, highly polymorphic and heat 

stable proteins (Delplace et al., 1988, Coppel et al., 1988, Mattei et al., 1988). 

Finally, the PVM and EM rupture and merozoites are released in a poorly 

understood process called “egress.” 

1.7.3.1. Merozoite egress 

Egress involves a complex, protease- and kinase-regulated pathway, which has yet 

to be unravelled. It is an essential step in the life cycle, whereby parasites are 

released into the blood stream, ready to invade new erythrocytes. This process is 

characterised by several phenomena, which have been observed in intricate 
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videomicrosopy and EM studies. 

1.7.3.1.1. Evidence from live imaging and ultrastructural 

studies 

P. falciparum merozoites become mobile immediately before egress (Glushakova et 

al., 2005, Gilson & Crabb, 2009); P. knowlesi merozoites behave similarly (Dvorak 

et al., 1975). This activation of motility could be due to an influx of intracellular Ca2+ 

as occurs in T. gondii (Arrizabalaga & Boothroyd, 2004, Endo et al., 1982, Caldas et 

al., 2010) (though merozoites have not been shown to exhibit gliding motility as is 

observed in T. gondii tachyzoites). This may be a response to degradation of the 

erythrocyte cytoskeleton, or rhoptry release, as concentric membranes extruding 

from merozoite rhoptries were observed in late schizonts by electron microscopy 

(EM) (Bannister et al., 1986). It is possible that the increased movement is related 

to the breakdown of the PVM, a process which is essential for egress (Langreth et 

al., 1978).  

During egress, T. gondii parasites appear to push their way out of the host 

cell (Endo et al., 1982). In P. falciparum there is evidence that a membranous bleb 

forms on the surface of the infected erythrocyte just before egress (Glushakova et 

al., 2005, Gilson & Crabb, 2009), which could be merozoites attempting to 

physically escape the host cell in a similar manner. This phenomenon was also 

observed in P. knowlesi (Dvorak et al., 1975). Following this, an increase in 

intracellular pressure is thought to occur just before rupture, as schizonts seem to 

become slightly enlarged (Dvorak et al., 1975, Glushakova et al., 2005, Gilson & 

Crabb, 2009). Finally, parasites appear to form a pre-rupture “flower” form, before 

rupturing in an explosive fashion, dispersing merozoites and the residual body 

(Glushakova et al., 2005). 

1.7.3.1.2. Schizonts become porated prior to egress  

It has been known for several years that the T. gondii host cell plasma membrane 

and PVM become permeabilised preceding egress, allowing antibodies access to 

the host cytoplasm and parasite plasma membrane (Black et al., 2000), which has 

been attributed to a perforin-like protein TgPLP1 (Kafsack et al., 2008) Recent 

evidence suggests that late P. falciparum schizonts also appear to be porated just 
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before egress (Glushakova et al., 2010). In this study, by incubating parasites with 

phalloidin (a fluorescent actin-binding molecule), labelling of intracellular structures 

was observed in late schizonts, but not in immature schizonts or trophozoites. This 

apparent “poration” was blocked by the use of poloxamine, a non-ionic surfactant 

previously shown to seal radiopermeabilised biological membranes (Hannig et al., 

1999). The molecules responsible for poration are unknown, and the purpose of 

such an event is unclear. The authors speculate that it could be mediated by a 

perforin-like parasite protein called PfPPLP2, but this remains to be investigated. 

1.7.3.1.3. Signalling cascades during egress 

Egress is controlled (at least in part) by signalling molecules and phosphorylation-

dependent signalling cascades. Conditional knockdown of the Ca2+-dependent 

protein kinase CDPK5 results in a blockage in egress;  parasites are still viable 

when mechanically released from schizonts (Dvorin et al., 2010), implying that 

CDPK5 is involved in the final stages of egress, just before merozoite release. 

Another kinase, CDPK1, is also implicated in egress, since treatment of parasites 

with a specific CDPK1 inhibitor blocks rupture (Kato et al., 2008). As these data 

imply that kinases are important during egress, it is perhaps reasonable to assume 

that phosphatases will be involved in the same pathway, conceivably as negative 

regulators. The phosphatase inhibitor okadaic acid prevents invasion (Dluzewski & 

Garcia, 1996), impling that phosphatases are involved in asexual stages. 

Furthermore, there is evidence that protein phosphatase 1 (PP1) plays a role in P. 

falciparum egress as when parasites are treated with a PP1 inhibitor, egress is 

prevented (Blisnick et al., 2006). The authors attribute this effect to 

hyperphosphorylation of PfSBP1, a Maurer’s cleft protein; however, there could be 

other PP1 substrates that were not identified in this study, which require 

dephosphorylation during egress. The importance of phosphatases in merozoite 

egress remains poorly understood. 

Several signalling molecules are used by apicomplexan parasites, some of 

which are important for invasion and egress. In T. gondii, there is direct evidence for 

a role of Ca2+ in egress as treatment of parasites with the Ca2+ ionophore A23187 

induces premature egress (Caldas et al., 2010, Endo et al., 1982), while egress is 

prevented by chelation of intracellular Ca2+ (Mondragon & Frixione, 1996). In P. 

falciparum, few studies have investigated the importance of Ca2+ in egress, though 
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several proteins involved in egress require Ca2+ as a cofactor (such as CDPK5 

mentioned above). An example of is calpain, a Ca2+-dependent erythrocyte 

protease which is essential for egress (Chandramohanadas et al., 2009). As the 

erythrocyte has no Ca2+ stores, it is possible that Ca2+ is released from the parasite 

and activates calpain. Other signalling molecules are involved in parasite egress, 

such as abscisic acid, a plant-like hormone, which is a regulator of cyclic ADP 

ribose (cADPR) levels. Abscisic acid regulates cAPDR production in T. gondii and is 

involved in development and egress  (Nagamune et al., 2008). Whether a similar 

molecule is involved in P. falciparum egress is unknown. Cyclic guanosine 

monophosphate (cGMP) appears to be involved in the final stages of schizogony; 

Taylor et al identified a cGMP-dependent protein kinase (PKG) which is essential in 

blood stages (Taylor et al., 2009). Treatment with a PKG inhibitor, compound 1, 

results in a block in schizont rupture (which does not occur when transgenic 

parasites with a gatekeeper mutation are treated with compound 1). Interestingly, in 

contrast to CDPK5 knockdown parasites, compound 1-treated merozoites were not 

viable when schizonts were mechanically ruptured (Dvorin et al., 2010), suggesting 

that PKG acts upstream of CDPK5. This, and whether PKG acts directly on CDPK5, 

has yet to be confirmed.  

1.7.3.1.4. Breakdown of the PVM and EPM 

For parasites to escape the schizont, this requires rupture of both the PVM and 

EPM. Evidence for egress via a non-explosive fusion of the PVM and EPM was 

presented by Winograd et al using live video microscopy; merozoites were released 

through a single site in the erythrocyte membrane (Winograd et al., 1999). This 

model is supported by early EM studies of schizont egress where it appears that a 

residual membrane is left behind (Dvorak et al., 1975), now known as the residual 

body. Contrary to this, in a study by Glushakova et al, fluorescence and differential 

interference contrast microscopy was used to analyse live schizonts (Glushakova et 

al., 2005). Analysis of membranes remaining after egress ruled out a membrane 

fusion event, since parasite- and erythrocyte-derived membranes were segregated. 

Treatment with positive-curvature amphiphiles, which inhibit rupture of cell 

membranes, did not prevent this process, again indicating that membrane fusion 

probably does not occur during egress.  

Ultrastructural evidence indicates that in late schizonts, the PVM is absent 
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(Langreth et al., 1978) and PV-localised proteins appear to flow into the erythrocyte 

cytosol before merozoites are released (Wickham et al., 2003). Using fluorescent 

proteins targeted to the PV and EC, Wickham et al provided the first evidence that 

egress is a 2-step mechanism involving breakdown of both of these membranes. 

The order in which the PVM and EPM rupture has been a subject of much debate. 

Soni and colleagues treated parasites with cysteine protease inhibitor E64 (which 

prevents egress) and used IFA to determine whether the PVM or EPM ruptures first 

(Soni et al., 2005). In this study, staining of very late E64-treated schizonts revealed 

clusters of PVM-associated merozoites, which did not co-localise with erythrocyte 

band 3, thus suggesting that the EPM had already ruptured and the PVM remained. 

Analysis of similar E64-induced merozoite clusters by confocal laser microscopy 

indicated that EXP1, a PVM protein, localises to the periphery of these clusters 

(Gelhaus et al., 2005), confirming Soni and colleagues’ findings. Gelhaus et al also 

showed that the fluorescent cysteine protease inhibitor bADA blocks egress by 

inhibition of EPM rupture, not PVM rupture, as confirmed by IFA using anti-EXP2 (a 

PVM marker) and anti-glycophorin (an EPM marker) antibodies.  

On the contrary, other studies indicate that the PVM probably ruptures first, 

followed by rupture of the EPM. Salmon and colleagues treated schizonts with E64 

and observed an inhibition of PVM rupture, not EPM, supporting the notion that the 

PVM must rupture before the EPM (Salmon et al., 2001). It is possible that the 

discrepancies relating to the effect of E64 between the aforementioned studies and 

Salmon et al relate to the timing of treatment. Salmon et al found that E64 only 

blocks rupture when applied to immature schizonts (Li et al., 2002), not late stages 

(Salmon et al., 2001), suggesting that the cysteine protease target is active in early 

egress-related events. Glushakova et al later categorically showed by live 

videomicroscopy and EM studies that E64 acts during the last few minutes before 

egress, and blocks EPM rupture, not PVM rupture, in a reversible manner 

(Glushakova et al., 2008). Recent studies indicate that host-derived cysteine 

protease calpain-1 is essential for egress (Chandramohanadas et al., 2009); 

calpain-1 could be the target of E64. Combining these data, it is highly likely that 

PVM rupture precedes EPM rupture in a 2-step process, which is mediated by one 

or more cysteine proteases. It is possible that two cysteine proteases are involved 

in egress, one in PVM breakdown, which must act early on in egress, and one in 

EPM breakdown, such as the papain-like SERAs and calpain. To date, only calpain 
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has been proven to have a role in merozoite egress (Chandramohanadas et al., 

2009). 

1.8.  Proteases have diverse functions 

Proteases are enzymes, which catalyse the cleavage of peptide bonds by 

hydrolysis, the addition of a water molecule. Catalysis is mediated by nucleophilic 

attack of the carbonyl carbon of a peptide by a crucial residue in the active site of 

the enzyme. Hydrolytic enzymes tend to have catalytic triads or dyads, where two 

or three key amino acid residues interact to catalyse cleavage. Proteases are 

grouped into 6 main mechanistic types, depending on the active site residue 

required for catalytic activity: serine, glutamic acid, cysteine, aspartic, metallo- or 

threonine protease (Rawlings & Barrett, 1993, Rawlings et al., 2010). Within a 

group, enzymes tend to have conserved catalytic triads but they may vary in other 

active site or peripheral residues. Proteases are found across all kingdoms of life, 

with functions ranging from the degradation of proteins into their constituent 

components to the specific processing of proteins at conserved motifs. 

Some proteases degrade proteins non-specifically into short peptides and 

amino acids. This is important for the turnover of proteins that have fulfilled their 

function. The proteasome, a large multisubunit protease complex degrades 80 to 

90% of cellular proteins; it is also necessary for supplying internal peptides to major 

histocompatibility complexes, which display internal peptide antigens to circulating 

immune cells (Rock et al., 1994). Other examples of degradative proteases include 

those present in the mammalian gut, such as chymotrypsin or elastase, which 

degrade ingested proteins so that nutrients can be absorbed by gut endothelial 

cells. Similarly, some bacteria secrete digestive enzymes into the extracellular 

environment to degrade proteins and thereby facilitate the uptake of nutrients. 

While some proteases cleave with no discernible specificity, other proteases 

process their substrates in a highly specific manner at conserved sequences, with a 

defined function. Residues within cleavage sites are named according to Schechter 

and Berger nomenclature (Schechter & Berger, 1967), whereby cleavage occurs 

between subsites P1 and P1'; subsites either side of the scissile bond are termed 

P2, P3, P4 or P2', P3', P4', etc. Prohormone convertases remove a regulatory 

prodomain from hormone precursors at a specific sequence (Julius et al., 1984); 

another example is the regulation of extracellular matrix components by secretion of 



 49

proteases, including those which degrade collagen, into the extracellular milieu. 

Collagenases cleave collagen at specific sequences, in order to maintain structural 

integrity but allowing for flexibility (Alberts, 2002).  

Proteolysis may be required for protein “activation.” Most proteases are 

synthesised as zymogens, inactive precursors, which require proteolysis in order to 

be able to catalyse biological reactions. Examples of this are caspases, mediators 

of programmed cell death, which are present in the cell as proenzymes and some 

are activated by other caspases upon pro-apoptotic signalling (Alberts, 2002). 

Caspases disrupt the apoptotic cell by cleaving nuclear laminins, degrading DNase 

inhibitors and cytosolic proteins. Premature activation of caspases would result in 

uncontrolled cell death, therefore they are synthesised as inactive precursors and 

only activated in response to proapoptotic signalling. Similarly, some degradative 

proteases such as chymotrypsin are produced as inactive precursors, to prevent 

degradation of the cells in which the enzyme is synthesised. Chymotrypsin is firstly 

cleaved by trypsin and then self-activates. For some proteases, their activity is 

regulated by a change in pH, or exposure to a new environment including new 

chemicals or presence of other proteases. Others, such as caspase 9, are activated 

by dimerisation (Renatus et al., 2001). 

Proteolysis can also expose binding sites for protein-protein interactions or 

induce structural changes resulting in an alteration of function. HIV protease 

specifically processes viral components so that they can reassemble into infectious 

virions, an essential process for HIV to infect subsequent cells (Kohl et al., 1988). 

Proteases are important in the NFκB signalling pathway, where in response to a 

signal, the inhibitor iNFκB is degraded. This exposes a nuclear localisation signal, 

and NFκB is transported to the nucleus to fulfil its function as a transcription factor 

(Alberts, 2002). 

1.8.1. The role of proteases in the Plasmodium spp. life cycle 

Several major proteolytic and post-translational modifications have been 

documented in schizont stages (Holder & Freeman, 1982, Delplace et al., 1987, 

Perkins, 1988, Foth et al., 2008). Proteases involved in the Plasmodium spp. life 

cycle have long been seen as potential drug and vaccine targets for malaria due to 

the inhibitory effect of broad-spectrum protease inhibitors on invasion of 

erythrocytes (Banyal et al., 1981, Hadley et al., 1983). There are 92 predicted 
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proteases in the P. falciparum genome (Wu et al., 2003), many of which have 

unknown functions in the malarial life cycle. The role of some of these proteins is 

summarised in Table 1.  

1.8.1.1. Protease inhibitors block different stages of the parasite 

life cycle 

It is evident from a wide range of protease inhibitor studies that proteases are 

involved in many stages of the Plasmodium spp. life cycle. Treatment of 

trophozoites with leupeptin and chymotrypsin leads to an accumulation of 

undigested haemoglobin in the FV and prevents further parasite development 

(Dluzewski et al., 1986), suggesting that haemoglobin digestion is vital to the 

progression of the asexual cycle. Proteasome inhibitors also prevent P. falciparum 

development, which is attributed to a family of threonine proteases encoded by the 

genome (Gantt et al., 1998, Wu et al., 2003). 

As mentioned, earlier, merozoite egress in blood stages involves a 

proteolytic cascade. Treatment of asexual parasites with cysteine and serine 

protease inhibitors results in blockage of egress (Glushakova et al., 2005, Salmon 

et al., 2001, Soni et al., 2005, Dluzewski et al., 1986, Hadley et al., 1983, 

Glushakova et al., 2008). Protease inhibitors also selectively inhibit PVM and EPM 

rupture, as described in 1.7.3.1.4. Interesting data examining release of merozoites 

from liver stage schizonts shows that destruction of PVM of liver schizonts and 

subsequent release of merosomes is prevented by treatment with E64 (Sturm et al., 

2006), suggesting that cysteine proteases are involved in both of these processes. 

It is now evident that gametocyte egress from erythrocytes involves similar 

mechanisms and is prevented by several broad specificity protease inhibitors 

(Gabriele Pradel, unpublished data). Furthermore, incubation of gametocytes with 

E64 results in an almost complete block in oocyst production (Eksi et al., 2007), 

suggesting that proteases are involved in sexual development within the mosquito.  

Turning to invasion, proteases are implicated in this process as in the 

presence of protease inhibitors, invasion is abrogated. Early studies on P. knowlesi 

indicated that treatment with a broad range of protease inhibitors prevents invasion 

of erythrocytes; these include chymostatin and leupeptin (reversible serine and 

cysteine protease inhibitors), N-α-ρ-tosyl-L-lysine chloromethyl ketone (TLCK, an 

irreversible inhibitor of trypsin-like serine proteases) and L-1-tosylamide-2-
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phenylethylchloromethyl ketone (TPCK, an irreversible inhibitor of chymotrypsin-like 

serine proteases) (Banyal et al., 1981, Hadley et al., 1983, Dejkriengkraikhul & 

Wilairat, 1983) . The same studies showed that incubation with pepstatin and 

elastatinal (aspartic and serine protease inhibitors respectively) causes a 50% 

reduction in invasion, suggesting that an aspartyl protease and serine protease are, 

in part, involved in invasion; furthermore, the metalloprotease inhibitor 

phosphoramidon reduces invasion by 30%. Intriguingly, in these studies, 

pretreatment of erythrocytes with these inhibitors did not block invasion, implying 

that the proteolytic activity essential for invasion is parasite-derived. On the other 

hand, when chymostatin or leupeptin are introduced into permeabilised and 

resealed erythrocytes, invasion is prevented (Dluzewski et al., 1986), which is 

suggestive of an erythrocyte cysteine or serine protease being involved this 

process. 

1.8.2. Metalloproteases: poorly understood in P. falciparum 

Metalloproteases require metal ion cofactors for catalytic activity. The two major 

groups are endo- or exopeptidases. Treatment of parasites with metal chelation 

compounds reduces invasion but not egress, suggesting that metalloproteases are 

involved in invasion (Kitjaroentham et al., 2006). The molecular identity of such 

proteases remains unknown. The P. falciparum genome encodes 20 genes for 

metalloproteases (Wu et al., 2003), some of which have been characterised at the 

molecular level. In particular, falcilysin, a member of the M16 family of 

metalloproteases (characterised by a requirement for a zinc cofactor for catalysis), 

is an intriguing protease as it is localised to the FV as well as vesicular structures 

within the parasite plasma membrane (Murata & Goldberg, 2003, Eggleson et al., 

1999). Falcilysin carries out haemoglobin digestion and cleaves transit peptides for 

targeting of proteins to the apicoplast in two distinct subcompartments of the 

parasite (Ponpuak et al., 2007).  

1.8.3. Aspartic proteases in P. falciparum 

1.8.3.1. The Plasmepsin family of aspartic proteases 

Several aspartic proteases are expressed by the malaria parasite, the most well 

characterised being the plasmepsin (PM) family. The family comprises ten 
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enzymes. PM VI, VII and VIII are expressed in the exoerythrocytic stages (Banerjee 

et al., 2002). Four of the ten PM colocalise with haemozoin (Banerjee et al., 2002) 

and are thought to be haemoglobinases. These include PM I, II, IV and 

histoaspartic protease (HAP), which have been studied most thoroughly. PM I, II, IV 

and HAP have a conserved domain structure consisting of an N-terminal pro-region 

containing a transmembrane domain and a mature catalytic domain (Banerjee et 

al., 2002). After trafficking to the FV, they are released from the membrane by non-

aspartic proteolysis (Banerjee et al., 2003). More recently, proteolytic maturation 

has been attributed to parasite cysteine protease called falcipains (see section 

1.8.4.1)(Drew et al., 2008). PM I and II are thought to initiate haemoglobin digestion 

by cleaving it in the highly conserved hinge region, causing unravelling of the 

protein inside the FV (Gluzman et al., 1994, Goldberg et al., 1991). Omara-Opyene 

and colleagues published a study describing the systematic deletion of PM I, II, IV 

and HAP in asexual blood stages, resulting in reduced growth in PMI and PMIV 

knockout parasites (Omara-Opyene et al., 2004). Double knockouts of PMI and 

PMII or PMII and HAP were also successfully obtained (Bonilla et al., 2007b). 

Simultaneous deletion of all four PMs resulted in slowed development and 

malformation of the FV (Bonilla et al., 2007a). Together, these studies indicate that 

the FV PMs are not essential for blood stage development, but are very important 

for formation of the FV. 

Other PMs are unlikely to be involved in haemoglobin digestion as they do 

not localise to the FV. PM V resides in the ER (Klemba & Goldberg, 2005) and was 

recently shown to cleave PEXEL motifs on proteins destined for export to the EC 

(Boddey et al., 2009, Russo et al., 2009a). It is an essential protease (Boddey et al., 

2009) and considering its unique function is an attractive enzyme for drug 

development. On the other hand, PM IX and X are expressed during schizogony 

(Le Roch et al., 2004, Florens et al., 2002); it is therefore possible that they are 

involved in egress or invasion. Furthermore, PM II may be involved in egress as 

well as haemoglobin digestion as it is able to degrade erythrocytic spectrin, band 

4.1 and actin in vitro (Le Bonniec et al., 1999). Conversely, PMs are conserved in T. 

gondii, where PM I appears to have a likely role in cell division (Shea et al., 2007), 

raising the possibility that P. falciparum PMs have functions which have yet to be 

identified.  
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1.8.3.2. Malarial signal peptidases: potential antimalarial drug 

targets?  

N-terminal signal peptides are used by eukaryotic cells to direct proteins to the 

secretory transport system. These signal sequences are proteolytically removed by 

signal peptidases which reside in the ER. There are two subtypes of signal 

peptidase, which have either an aspartic acid or serine residue in the active site; 

two serine-type signal peptidases are encoded by the P. falciparum genome (Wu et 

al., 2003). Treatment of infected human and mouse hepatocytes with a general 

signal peptidase inhibitor results in a blockage in parasite development (Parvanova 

et al., 2009); additionally, incubation of asexual stage parasites with the mammalian 

signal peptidase inhibitors (Z-LL)2-ketone and L-685,458 hinders parasite growth 

(Li et al., 2009). These inhibitor studies suggest that signal peptidases are important 

for blood stage development; furthermore, PfSPP, an aspartyl-type signal 

peptidase, was shown by repeated attempts at genetic disruption to be essential for 

blood stage development (Li et al., 2009). Signal peptidases are potentially 

important antimalarial drug targets as they are important for many different protein 

functions. 

1.8.4. Cysteine proteases are important for asexual stages 

1.8.4.1. Falcipains: haemoglobinases and more 

Falcipains are malarial papain-like cysteine proteases, several of which localise to 

the FV. In P. falciparum, there are 4 falcipain enzymes: falcipain 1, falcipain 2, 

falcipain 2' and falcipain 3. Falcipain 1 is encoded on chromosome 1, while the 

other three genes are present in a 12 kb region on chromosome 14 (Rosenthal, 

2004). Falcipains 2 and 2’ share 99% identity in their catalytic regions, and have 

very similar biochemistry (Singh et al., 2006). Knockout of falcipain-2 results in a 

swollen FV (Sijwali & Rosenthal, 2004), which can be rescued by a conditional 

expression of a second copy (Armstrong & Goldberg, 2007), indicating that 

falcipain-2 is likely to be involved in haemoglobin digestion. Falcipain 2-knockout 

parasites have no growth defect, but are more sensitive to protease inhibitors 

(Sijwali et al., 2006). Surprisingly, despite this falcipain 2’ is not upregulated in 

falcipain 2 knockout parasites, ruling out a compensatory mechanism by falcipain 2’ 
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(Sijwali & Rosenthal, 2004). Instead, falcipain 3 appears to be upregulated, which is 

essential for blood stage development (Sijwali et al., 2006). Though falcipain 3 is 

able to hydrolyse haemoglobin in vitro (Sijwali et al., 2001), in contrast to the other 

falcipains, falcipain 3 is upregulated later in the life cycle, implying that its major 

function is not as a haemoglobinase. Its main function remains unknown, but to 

date it has not been knocked out, suggesting that whatever the function might be, it 

is important for blood stage development. The function of falcipain 2 is also unclear, 

as it cleaves erythrocytic ankyrin and band 4.1 in vitro and there is evidence that it 

is responsible for the processing of those proteins in late blood stages (Dua et al., 

2001, Hanspal et al., 2002). This suggests that falcipain 2 may be involved in 

egress or remodelling of the host cell during late schizogony. 

Falcipain 1 was originally thought to be involved in invasion by use of an 

activity-based probe YA29 (Greenbaum et al., 2002). However, later studies 

showed that it is not essential in blood stages, and YA29 inhibited invasion in the 

absence of falcipain 1 (Sijwali et al., 2004). Upregulation of other falcipains to 

compensate for loss of falcipain 1 was not ruled out by this study. The role of the 

other falcipains in invasion and egress remains unclear, therefore further 

investigation is required. 

1.8.4.2. Calpain proteases are important for parasite 

development 

Calpain is a Ca2+-dependent, multifunctional cysteine protease with roles in 

cytoskeletal remodelling and the cell cycle. In 1991, Olaya et al showed that 

addition of calpain inhibitors to culture medium of P. falciparum results in a 

substantial decrease in erythrocyte invasion (Olaya & Wasserman, 1991). Leading 

on from this, a conditional knockdown of P. falciparum calpain, which is essential in 

blood stages, was shown to result in a defect in pre-S-phase development with no 

effect on invasion efficiency (Russo et al., 2009b). Erythrocytes also harbour a 

calpain called calpain-1; egress is prevented in calpain-1-depleted human 

erythrocytes and invasion is dramatically reduced (Chandramohanadas et al., 

2009). 

1.8.4.3. The elusive serine repeat antigens (SERA) are 

implicated in egress 
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The SERA family is a family of papain-like proteins which are highly conserved 

across Plasmodium species yet are absent in other apicomplexan parasites 

(Rosenthal, 2004). The P. falciparum genome encodes 9 SERA genes, all of which 

are located on chromosome 2 apart from SERA9 (McCoubrie et al., 2007). The 

SERAs appear to have evolved from genetic duplication events, resulting in two 

groups of genes; one encodes papain-like proteins with a conserved cysteine 

residue in the putative active site, and the other where the cysteine is mutated to a 

serine residue (Hodder et al., 2003). This is mirrored in the P. berghei genome, 

though there are only 5 SERA genes (Putrianti et al., 2009). The identification of 

cysteine- and serine-type SERAs has prompted speculation that the cysteine-type 

SERAs are true papain-like proteases, and the serine-type have evolved to have a 

different function. One possibility is a role in transesterification; replacement of the 

catalytic cysteine of cathepsin L (a papain-like enzyme) with a serine residue results 

in loss of proteolytic function but gain of silica-condensing activity (Fairhead et al., 

2008).  

Several studies indicate that the SERAs may all localise to the PV. SERA5 

localises to the PV in late P. falciparum schizonts (Knapp et al., 1989, Delplace et 

al., 1988). To date, the subcellular locations of the other SERAs remain unclear. 

Early IFA studies claim that SERA3, SERA4 and SERA6 are located in the PV (Aoki 

et al., 2002), though the resolution of these images is insufficient to enable 

determination of the exact location of these proteins, this study also lacks EM 

evidence for PV localisation. Early EM evidence for PV localisation of SERA6 was 

published by Knapp et al however, the antibody used appears to have high 

background, therefore it is difficult to decipher a specific signal for SERA6 (Knapp et 

al., 1991). It is, however, likely that they do localise to this compartment because 

they all have predicted secretory signal peptides (Yeoh et al., 2007, Knapp et al., 

1991). PfSERA4, PfSERA5 and PfSERA6 are all proteolytically processed prior to 

egress of blood stage schizonts. PfSERA5, the best characterised SERA, is 

cleaved into 3 fragments of 47 kDa, 56 kDa, and 17 kDa (Li et al., 2002, Delplace et 

al., 1988). In the final stages of egress, the 56 kDa fragment is further processed to 

50 kDa, an event which is inhibited by leupeptin (Delplace et al., 1987, Delplace et 

al., 1988, Debrabant & Delplace, 1989). PfSERA4 and PfSERA6 are probably 

similarly processed (Miller et al., 2002, Yeoh et al., 2007). There is also evidence 

that PbSERA3 (homologue of PfSERA6) is cleaved in P. berghei liver stages 
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(Schmidt-Christensen et al., 2008). In 2007, Yeoh and colleagues showed that 

PfSUB1 is directly responsible for the processing of PfSERA4, PfSERA5 and 

PfSERA6 (Yeoh et al., 2007). The same study indicates that inhibition of PfSUB1 

with a specific compound blocks egress. p50 and p56 are commonly thought to be 

the functional forms of all SERAs due to homology with papain. Structural studies 

show that the papain-like domain and p56 are similar in 3D structure to papain, 

though there are some structural anomalies (Hodder et al., 2003, Hodder et al., 

2009). In 2003, Hodder and colleagues published a report suggesting that 

recombinant SERA5 has chymotrypsin-like activity (Hodder et al., 2003); though 

this could not be confirmed by our group (Stallmach, unpublished data). As yet any 

enzymatic function of any SERA family members has yet to be firmly established. 

PfSERA5 appears to be refractory to genetic deletion in in vitro culture of P. 

falciparum (Miller et al., 2002, McCoubrie et al., 2007), but a recent study in P. 

berghei convincingly showed complete genetic ablation of PbSERA1 and 

PbSERA2, homologues of PfSERA4 and PfSERA5 respectively (Putrianti et al., 

2009), with no obvious phenotype in all life cycle stages. This suggests that 

PfSERA4 and PfSERA5 may also be non-essential genes, in turn suggesting that 

PfSERA6, homologous to PbSERA3, may be the only essential SERA in P. 

falciparum asexual blood stages. It is, however, difficult to know which of these 

proteins are actually orthologous in function as complementation studies have yet to 

be attempted. These findings do not exclude a role for the SERAs in the 

immunopathology of malaria.  

There is evidence that the SERAs play an important role in invasion and 

egress in asexual stages. Antibodies against SERA5 are invasion-inhibitory (Pang 

et al., 1999), which could be related to evidence that the N- and C-termini bind of 

SERA5 to merozoites (Li et al., 2002, Puentes et al., 2000). Knockout of P. berghei 

SERA8 (ECP-1, egress cysteine protease 1), results in prevention of egress from 

oocysts (Aly & Matuschewski, 2005). When the SERA8-knockout oocysts were 

mechanically disrupted, sporozoites remained motile and infectious. In summary, 

the SERAs are expressed during schizogony and have a suitable subcellular 

location to be involved in egress, and they are proteolytically processed by PfSUB1, 

which is essential for egress (see section 1.9.5). 

1.9. Serine proteases are found throughout nature and have 
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diverse functions 

Serine proteases are widespread throughout nature and are very diverse in 

function. There are four main clans of serine protease, grouped according to 

structural homology. The two largest are the chymotrypsin- and subtilisin-like 

proteases, which have very similar catalytic triads but can be distinguished by their 

very different protein scaffolds, illustrating that these clans are an example of 

divergent evolution. The chymotrypsin-like clan comprises the well-studied digestive 

proteases chymotrypsin, trypsin and elastase. Though similar in structure, they 

have very different substrate specificities. Chymotrypsin cleaves peptides after a 

bulky, hydrophobic residue; while trypsin requires a positively charged amino acid 

residue and elastase a small neutral residue. Rhomboids are unusual serine 

proteases, capable of intramembrane proteolysis i.e. cleavage of proteins within a 

phospholipid bilayer. Initially discovered as playing a role in embryogenesis in 

Drosophila melanogaster (Urban et al., 2001), rhomboids have now been identified 

in nearly every organism sequenced to date. Rhomboids have a preference for 

small residues at subsite P1 and a proline at P1', among other sequence 

requirements (Strisovsky et al., 2009); but the most important requirement for 

proteolysis is that the cleavage site lies in the transmembrane domain of the 

substrate. Another type of serine protease, caseinolytic proteases (Clp), tend to 

associate into proteasome-like multimeric complexes with ATPases (Chandu & 

Nandi, 2004) and are involved in ATP-dependent degradation of intracellular 

proteins. They tend to cleave sequences between methionine or leucine and 

alanine, and tend to require magnesium for catalysis. 

1.9.1. The importance of serine proteases in P. falciparum 

The genome encodes 16 serine proteases (Wu et al., 2003), including Clp 

proteases, rhomboid intramembrane proteases and subtilisin-like proteases. 

Surprisingly, genes encoding chymotrypsin-like enzymes are lacking from the 

genome. Serine protease activity is known to be important for P. falciparum blood 

stage development, as treatment of parasites with broad specificity serine protease 

inhibitors blocks parasite development (Banyal et al., 1981, Dejkriengkraikhul & 

Wilairat, 1983, Hadley et al., 1983, Dluzewski et al., 1986, Delplace et al., 1988, 

Arastu-Kapur et al., 2008). Five genes encoding Clp-like enzymes are found in the 
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P. falciparum genome (Wu et al., 2003). Of these, only one has been characterised 

at the molecular level. PfClpP was localised to the nucleus, where the authors 

suggest it is involved in degradation of transcription factors (Lin et al., 2009). The P. 

falciparum genome encodes nine genes for rhomboid-like proteins (Dowse & 

Soldati, 2005) and that of T. gondii also has 6 genes encoding rhomboid-like 

proteins (Brossier et al., 2008). Like P. falciparum, T. gondii secretes proteins from 

the micronemes onto its surface during invasion. Several secreted micronemal 

proteins (MICs) are subjected to proteolysis during invasion, and this is mostly 

mediated by rhomboids on the tachyzoite surface. Conditional downregulation of 

TgROM4 in T. gondii results in parasites that are unable to form a tight junction and 

have retarded surface protein shedding (Buguliskis et al., 2010). In P. falciparum, 

PfROM4 has been shown to cleave AMA1 in vitro (Baker et al., 2006), in a manner 

similar to rhomboid cleavage of T. gondii MICs (Triglia et al., 2009). PfROM1 acts 

similarly to TgROM4 and PfROM4 by shedding EBA-175 during invasion (Baker et 

al., 2006). 

1.9.2. Subtilisin-like proteases share a common catalytic 
mechanism  

Subtilisin-like proteases were originally identified in prokaryotes but were later 

shown to be present in viruses and eukaryotes. There are over 200 subtilisins, 

which are subdivided into 6 families by sequence homology: subtilisin, thermitase, 

proteinase K, lantibiotic peptidase, kexin and pyrolysin (Siezen & Leunissen, 1997). 

All of these enzymes require Ca2+ for stability and activity. Subtilisin E, the classical 

subtilisin, was isolated from Bacillus subtilis. Bacterial subtilisins generally have 

wide specificity and are degradative, secreted enzymes. Mammalian subtilisins, on 

the other hand, are mostly highly specific in their activity, and are responsible for 

maturation of their substrates. One example is furin, also known as a prohormone 

convertase. Furin specifically cleaves its substrates, such as proalbumin, at a 

dibasic processing site with the consensus sequence Arg-X-(Arg/Lys)–Arg (Molloy 

et al., 1992). Several pathogens are dependent on furin or furin-like proteases for 

entry into or exit from host cells, e.g. some HIV or Bacillus anthracis proteins must 

be proteolytically activated by furin (Molloy et al., 1992). 

It is to the protein engineering field that molecular biologists owe their vast 

knowledge of subtilisins, since subtilisin-like proteases have been widely exploited 
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in industry (mostly as additives to biological washing powders) and have been 

extensively manipulated in protein engineering applications. Since the 1980s, 

subtilisin E, subtilisin BPN’ and savinase have used as model enzymes for protein 

engineering studies. In fact, to date over half of the amino acids of subtilisin BPN’ 

have been mutated (reviewed in (Bryan, 2000)). From these extensive studies, it 

became clear that all subtilisins use a conserved mechanism for catalysis of peptide 

bond cleavage. The active site consists of a catalytic triad of aspartic acid, histidine 

and serine residues, which use a charge relay for catalysis. The significance of the 

catalytic residues was dissected in 1988 by replacement of each residue in Bacillus 

amyloliquefaciens subtilisin with an alanine residue (Carter & Wells, 1988); mutation 

of the serine and histidine active site residues were found to have the greatest 

effect on catalysis. Interestingly, mutation of the catalytic serine to a cysteine 

residue in subtilisin Novo results in loss of proteolytic activity but gain of 

esterification activity (Philipp et al., 1979). The hydroxyl group of the serine acts as 

a nucleophile, attacking the carbonyl carbon of the peptide bond. The carboxyl 

group of the aspartic acid residue forms a hydrogen bond with one of the nitrogens 

in the histidine imidazole ring, making it electronegative. The other nitrogen in the 

imidazole ring is then able to accept hydrogen from the serine hydroxyl group in 

order to coordinate attack of the peptide bond. Additionally, glycine and serine 

residues contribute to the stability of the reaction by creating an oxyanion hole, 

where glycine and serine donate hydrogens for hydrogen bonding. Chymotrypsin-

like enzymes, despite having a different scaffold, perform enzymatic catalysis in an 

identical manner. 

1.9.3. Subtilisins across the Apicomplexa phylum 

Subtilisins have been identified in several Apicomplexa species. The T. gondii 

genome encodes 12 subtilisin-like serine proteases, only some of which have been 

functionally characterised. Of these, T. gondii subtilisin-like protease 1 (TgSUB1) is 

GPI-anchored and micronemal and is cleaved upon release of micronemes into 

small fragments (Miller et al., 2001). It was recently shown that T. gondii SUB1 

removes adhesive complexes of secreted microneme proteins from the tachyzoite 

surface (Lagal et al., 2010). N. caninum SUB1 is also found in micronemes (Louie 

et al., 2002); C. parvum SUB1 is also located at the apical end of the parasite 

(Wanyiri et al., 2009), though to which organelles it localises is as yet unknown. 
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Since treatment of parasites with serine and subtilisin protease inhibitors blocks 

parasite infection in vitro (Feng et al., 2007), it is likely that C. parvum SUB1 is 

involved in invasion of host cells. B. divergens SUB1 also appears to be important 

for merozoite invasion as invasion is prevented in the presence of anti-SUB1 

antibodies (Montero et al., 2006). These studies suggest that subtilisins have a 

conserved role in apicomplexan asexual stages, in proteolysis during host cell 

invasion.  

1.9.4. P. falciparum subtilisin-like serine proteases 

The P. falciparum genome encodes 3 subtilisin-like serine proteases: PfSUB1, 

PfSUB2 and PfSUB3 (Blackman et al., 1998, Hackett et al., 1999, Aurrecoechea et 

al., 2009). The catalytic domains of all three are most closely related to bacterial 

subtilisin family A or pyrolysin-like family F subclass (Withers-Martinez et al., 2004, 

Siezen & Leunissen, 1997). The pfsub1 and pfsub2 genes are refractory to genetic 

disruption in blood stages (Yeoh et al., 2007, Hackett et al., 1999), and the gene 

encoding PfSUB3 can be knocked out in blood stages with no obvious phenotype, 

indicating that it does not play an essential role in vitro during this part of the life 

cycle (O’Donnell and Blackman, unpublished data). Little is known about PfSUB3 

other than that it is expressed, and is not restricted to expression during erythrocytic 

stages (Bozdech et al., 2003, Le Roch et al., 2004). PfSUB2 was mentioned earlier, 

as the micronemal sheddase responsible for removal of merozoite surface ligands 

during invasion (Harris et al., 2005). Its P. berghei homologue is also essential for 

invasion (Uzureau et al., 2004). It is significantly larger in size than PfSUB3 and 

PfSUB1 due to the presence of a transmembrane region and cytoplasmic domain 

(Harris et al., 2005).  

1.9.5. PfSUB1 expression, localisation and processing 

Blackman et al identified PfSUB1 in 1998 using a PCR screen for subtilisin-like 

proteases in P. falciparum cDNA, using oligonucleotides based on conserved 

regions across the subtilisin family (Blackman et al., 1998). Sequencing of the 

resulting PCR product revealed it to have significant homology to subtilisin-like 

serine proteases. TgSUB1 is the closest apicomplexan relative to PfSUB1 in terms 

of amino acid similarity (51% identity), and interestingly was first identified by use of 
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cross-reactive anti-PfSUB1 antibodies (Miller et al, 2001). However, TgSUB1 and 

PfSUB1 are not orthologues; TgSUB1 shares more similarity with PfSUB2 as they 

are both micronemal (Miller et al., 2001Barale, 1999 #2428) and important for 

shedding of parasite invasion ligands (Harris et al., 2005Lagal, 2010 #2813).  

PfSUB1 is encoded by a single-copy gene, pfsub1, and is synthesised as a 

78 kDa pre-pro-protein (Blackman et al., 1998). The signal peptide is removed 

during secretory transport through the endoplasmic reticulum, and the prodomain 

by autocatalytic cleavage after folding is complete. As with most subtilisins, the 

prodomain acts as an intramolecular chaperone, evident from the fact that attempts 

to express recombinant PfSUB1 without it results in unfolded PfSUB1 (Withers-

Martinez et al., 1999). Again, like other subtilisins, the prodomain of PfSUB1 is also 

a nanomolar inhibitor of the mature PfSUB1 protease (Jean et al., 2003); indeed, it 

has higher inhibitory potency than the best small molecule inhibitor of PfSUB1 

known to date (Janse & Waters, 2007).  

In vivo, removal of the PfSUB1 prodomain by autocatalytic cleavage at the 

internal sequence 215LVASD↓NIDIS224 releases a 54 kDa active protein (Figure 

4)(Sajid et al., 2000). It is unknown when the prodomain and PfSUB1 dissociate. 

PfSUB1 is then further processed to a 47 kDa species (Figure 4), as a result of a 

further Ca2+-dependent cleavage event at 247EVEND↓AEDYD256. The importance of 

this cleavage event is unclear as both p54 and p47 have catalytic activity when 

expressed in vitro (Sajid et al., 2000). Conversion of p54 to p47 may be regulated 

by dipeptidyl peptidase 3 (DPAP3), since chemical inhibition of this enzyme, 

prevents production of p47 (Arastu-Kapur et al., 2008) though how this occurs 

remains unclear. This study does not account for a previous observation that p54 to 

p47 conversion occurs during insect cell expression in vitro (Sajid et al., 2000), 

indicating that processing could be sporadic or an intrinsic activity of PfSUB1.  

1.9.6. The function of PfSUB1 in P. falciparum 

Several studies have highlighted the importance of PfSUB1 in asexual stages. 

Using antibodies raised against E. coli-derived recombinant PfSUB1, the parasite 

protein was localised to merozoite exonemes in late schizonts (Figure 5) (Blackman 

et al., 1998, Yeoh et al., 2007). IFA studies and analysis of the processing of its 

substrates indicates that PfSUB1 is released into the PV just prior to egress (Figure 

5) (Yeoh et al., 2007). Attempts at knocking out PfSUB1 have failed, suggesting 
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that it is essential for maintenance of the asexual blood stage life cycle. Since 

pfsub1 is thought to be an essential gene, it could be important for drug discovery. 

Yeoh et al demonstrated that treatment of asexual parasites with a PfSUB1-specific 

inhibitor, MRT12113, results in arrest of exit and hindered invasion, implying that 

PfSUB1 is important for parasite release and priming merozoites for invasion (Yeoh 

et al., 2007, Koussis et al., 2009). Furthermore, merozoites released from schizonts 

in the presence of this compound are not invasion-competent (Koussis et al., 2009). 

This work represents one of the first indications that there is a link between invasion 

and egress in P. falciparum, that in the final stages of egress the parasites are 

being prepared for the next task. A higher concentration of MRT12113 is required to 

block egress compared to invasion, suggesting that PfSUB1 is more important for 

egress (Koussis et al., 2009, Yeoh et al., 2007). PfSUB1 is, therefore, thought to be 

a key player in erythrocyte exit by merozoites.  

Preceding merozoite release, PfSUB1 is responsible for the proteolytic 

maturation of a small repertoire of substrates within the PV (Yeoh et al., 2007). This 

includes SERA5, the most abundant P. falciparum protein. PfSUB1 also processes 

MSP1, MSP6, MSP7 (Koussis et al., 2009). Proteolytic maturation of MSP1 and 

SERA5 is also prevented when compound 1 is used (Dvorin et al., 2010), 

suggesting that the regulation of exoneme secretion and the release of PfSUB1 into 

the PV is PKG-dependent. PfSUB1 is thought to be involved in a proteolytic 

pathway which leads to egress. Little is known about the timing of its activity, 

though it is speculated that it is active in the PV just prior to breakdown of the PVM. 

This is because SERA5 is processed just prior to egress (Delplace et al., 1988) and 

PfSUB1 is observed being released from schizonts in the process of egress (Yeoh 

et al., 2007). Thorough analysis of its function in merozoite egress and parasite 

survival is necessary before PfSUB1 can be considered as a therapeutic target. 

PfSUB1 can be expressed in a soluble, recombinant form in Sf9 insect cells 

and (Withers-Martinez et al., 2002). The availability of recombinant enzyme has 

permitted analysis of its activity and identification of novel substrates. 

Characterisation of PfSUB1 specificity via examination of validated and peptide 

substrates has given an insight into the selective nature of PfSUB1 (Koussis et al., 

2009, Blackman et al., 2002). For example, there is a tendency for polar residues in 

the P' positions and a requirement for glycine or alanine at the P2 position.  
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1.10. Egress via pore-forming proteins 

Intracellular pathogens use a wide array of mechanisms to get out of their host 

cells. Notably, Leishmania spp. and T. gondii both use a pore-forming protein to 

escape the PV and host cell (Almeida-Campos & Horta, 2000, Kafsack et al., 2008). 

It is possible that P. falciparum, which expresses 5 perforin-like proteins, also 

egresses by use of a pore-forming protein. Pore-forming proteins (PFPs) have a 

diverse range of functions in many different organisms. Some form ion channels or 

transport channels, others are important in attack by pathogenic organisms. Several 

organisms express pore-forming toxins which enable destruction of host cells in 

order for the pathogens to exit the host.  

1.10.1. MACPF are conserved across all kingdoms of life 

MACPFs (membrane attack complex/ perforin domain containing proteins) are 

soluble proteins which form a membrane pore complex in response to a 

physiological change, such as increased concentration of Ca2+ ions or proteolytic 

maturation. MACPFs are found in virtually every organism, from plants to mammals 

to protozoa. Perforin is a 67 kDa MACPF domain-containing protein in storage 

granules of cytotoxic T-lymphocytes and natural killer cells, and is released during 

immune responses into the extracellular milieu. There, high levels of extracellular 

Ca2+ ions are thought to induce oligomerisation of perforin molecules into around 15 

nm polyperforin pores, resulting in activation of apoptosis. In mammals, perforin is 

key to cytotoxic immunity e.g. against bacterial infection (Kagi et al., 1994a, Kagi et 

al., 1994b). Several members of the complement protein family have MACPF 

domains. Complement proteins are secreted into the extracellular milieu and are 

involved in a protein cascade which destroys antibody-labelled cells such as 

bacteria. Complement factors C6 to C9 all have MACPF domains. The complement 

pathway terminates with assembly of a so-called membrane attack complex (MAC) 

consisting of factors C6 to C9, which form a 10 nm pore in the lipid bilayer. The 

pore allows flooding of the cell with extracellular fluids, thereby inducing lysis by 

increased osmotic pressure. C9 oligomerisation is inhibited by the protein CD59, 

which is thought to directly target the amphipathic helices important for membrane 

insertion (Huang et al., 2006). 

In 2007, the structure of perfringolysin, a cholesterol-dependent cytolysin 
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(CDC) expressed by Clostridium perfringens, revealed that the MACPF domain is 

used in defence as well as attack (Rossjohn et al., 1997). This protein, however, 

appears to be non-lytic and its mechanism of activity remains unknown. Since then, 

other cholesterol-dependent cytolysins have been identified in intracellular 

pathogens, implicating MACPFs in membrane destruction from the interior as well 

as exterior in the immune system. Domain IV of CDCs is important for recognition of 

target surfaces for pore insertion (Rossjohn et al., 1997). All CDCs analysed to date 

have C-terminal immunoglobulin-like folds implicated in protein or lipid binding. 

Perfringolysin O C-terminus also has a cholesterol-binding domain essential for 

membrane binding (Shimada et al., 2002). Leishmania amazonensis expresses 

leishporin, a cholesterol-independent cytolysin, which is lytic to erythrocytes and 

nucleated cells (Noronha et al., 1996, Castro-Gomes et al., 2009).  

Not all MACPF-domain containing proteins have a lytic function. Astrotactin, 

a mammalial glial cell MACPF is important for neural cell migration (Adams et al., 

2002a). Some of the complement factors which harbour MACPF domains do not 

contain the amphipathic helices required for membrane insertion including 

complement C6. Other MACPFs include Drosophila torso-like protein, and apextrin 

from Heliocidaris erythrogramma. Both of these proteins are important in 

development of Drosophila and the sea anemone; to date, no lytic function has 

been demonstrated for these proteins. Pore-forming toxins are also used by 

pathogens for delivery of proteins into the host cytoplasm. For example, Bacillus 

anthracis uses the PFP protective antigen to transport lethal factor and oedema 

factor toxins, a Ca2+-dependent adenylate cyclase and a metalloprotease 

respectively (Leppla, 1982). 

1.10.2. Important features of the MACPF domain 

The MACPF domain is a 20-30 kDa domain, mainly alpha-helical in structure, which 

harbours two key amphipathic helices implicated in membrane insertion by 

conversion to beta strands (Rosado et al., 2007). A classical cysteine motif is 

conserved among MACPFs, as each domain forms several disulphide bonds. Some 

MACPFs, including human perforin-1, also have conserved Arg213 and Glu343 

residues which are important for intermolecular interactions leading to pore 

assembly (Baran et al., 2009). Flanking the MACPF domain are variable N- and C-

terminal domains implicated in receptor binding. Perforin, for example, has a C-
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terminal C2 Ca2+-binding domain which is responsible for perforin oligomerisation 

(Voskoboinik et al., 2005), and an EGF-like domain which lies N-terminal to the C2 

domain. Complement factors have N-terminal L2 lipid-binding motifs as well as C-

terminal thrombospondin-like repeats and EGF-like domains; all of these are 

thought to be important for pore formation at the end of the complement cascade 

(Musingarimi et al., 2002).(Scibek et al., 2002).  

1.10.3. Activation of MACPF pores 

How MACPF-containing proteins assemble into pores is unclear; assembly most 

likely occurs by a variety of different mechanisms. Most bacterial pore-forming 

toxins are activated by host proteases, which induce oligomerisation and an 

“insertion-competent” pre-pore state (Bravo et al., 2007). Membrane insertion is 

then triggered by a decrease in pH. L. amazonensis Leishporin is thought to be 

activated by a cytosolic serine protease (Almeida-Campos & Horta, 2000). Vibrio 

cholerae similarly secretes a haemolytic toxin, which is activated by several 

different proteases, including haemagglutinin/protease, a major secreted protease 

of V. cholerae (Nagamune et al., 1996). Bacillus thuringiensis infects lepidopteran 

insects, where it lyses midgut epithelial cells by secretion of Cry3 toxins (Rausell et 

al., 2004). Cry3 toxins are processed at the N-terminus by a range of different host 

proteases; the cleavage is thought to result in exposure of a hydrophobic patch 

essential for binding of the toxin to target membranes. The activation of trialysin, a 

pore-forming protein in hematophagous insects, is also prevented by use of serine 

protease inhibitors (Allary et al., 2002). Similarly, B. anthracis protective antigen is 

proteolytically activated by furin-like proteases in order to facilitate its binding to 

other anthrax toxins (Singh et al., 1989, Klimpel et al., 1992, Molloy et al., 1992). 

Proteolysis results in protective antigen being able to associate with either lethal or 

oedema factor, resulting in the formation of ion-selective pores.  

1.10.4. Perforin-like proteins (PLPs) expressed in 
apicomplexan parasites 

Several PLPs harbouring MACPF domains are conserved across the Apicomplexa 

phylum. The Babesia and Theileria spp. genomes encode 6 PLPs, though of these 

only one Babesia spp. PLP and three Theileria spp. PLPs are expressed at the 
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mRNA level (Kafsack & Carruthers, 2010). Eimeria spp. encodes two PLPs, and 

Neospora spp. three. No PLPs have been identified in Cryptosporidium spp. The T. 

gondii genome encodes two PLPs, though only one appears to be expressed at the 

protein level in tachyzoites (Kafsack et al., 2008). Genetic ablation of T. gondii 

perforin-like protein 1 (TgPLP1) revealed an essential role in egress from host cells 

through pore-mediated disruption of the PVM and possibly the host PM. Though the 

TgPLP1 gene can be deleted, parasite egress is severely delayed in its absence. A 

5-fold reduction in virulence was also observed in mice (Kafsack et al., 2008). 

Secretion of TgPLP1 was furthermore shown to be Ca2+-dependent. Interestingly, 

TgPLP1 is N-terminally processed by TgSUB1 (Lagal et al., 2010). Whether this is 

important for its function has yet to be determined, but it does suggest interplay 

between proteases and pore-forming proteins in the Apicomplexa. 

Interestingly, in silico studies on apicomplexan PLPs indicate that there are 

several key features, which distance these proteins from their mammalian 

homologues. MACPF-domain containing proteins tend to have a signature motif 

Y/W-G-T/S-H-F/Y-X6-G-G which is highly conserved (Slade et al., 2008). Across the 

Apicomplexa, this motif is W-X2-F/L-F/I-X2-F/Y-G-T-H-X7-G-G (Kafsack & 

Carruthers, 2010). Humans with perforin deficiency, where a disease called type 2 

familial haemophagocytic lymphohistiocystosis develops, have a 50% tendency to 

have missense mutations in the MACPF signature motif (Baran et al., 2009), 

suggesting that this motif is crucial for function. Furthermore, though the C-terminal 

sequences of apicomplexan PLPs differ in length and sequence, they have a 

conserved repetitive pleated β-sheet motif (Kafsack & Carruthers, 2010). The N-

termini of the apicomplexan PLPs are not conserved, nor do they show any 

homology to known proteins; therefore the PLP N-termini may be important for the 

unique function of each PLP.   

1.10.5. Plasmodium spp. perforin-like proteins (PPLPs) 

Five genes encoding PPLPs are conserved in all species of Plasmodium spp., 

information about which is summarised in Table 2. The nomenclature of PPLPs 

(PPLP1-PPLP5) applies to all homologues across the Plasmodium genus, the P. 

falciparum PPLPs are termed PfPPLPs. Strikingly, none of them have the 

conserved Arg213 or Glu343 residues mentioned earlier (Baran et al., 2009), 

suggesting a difference in pore-forming mechanism compared to canonical 
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perforins. The closest P. falciparum relative of TgPLP1 is PfPPLP1, known as 

SPECT2 (Kafsack & Carruthers, 2010). SPECT2 is a micronemal protein secreted 

from sporozoites into the extracellular milieu, responsible for wounding of sinusoidal 

cells in order to allow sporozoite passage through the cell layer, preceding 

hepatocyte infection (Ishino et al., 2005). SPECT2 knockout parasites cannot 

traverse the sinusoidal layer and are thereby prevented from establishing a liver 

stage infection. P. berghei PPLP3 and PPLP5 were additionally found to be 

important for ookinete invasion of the mosquito midgut (Kadota et al., 2004, Ishino 

et al., 2005). Since similar phenotypes were observed for PPLP3 and PPLP5 

knockouts, the authors suggest that they have complementary functions and may 

interact to form a pore structure. However, no further evidence has been obtained 

to support these theories. 

The functions of PPLP2 and PPLP4 remain unknown. Unpublished studies 

indicate that these genes are essential in P. berghei blood stages; PPLP2 was 

refractory to three attempts at genetic deletion (Ecker, Personal communication), 

PPLP4 knockout parasites could not be cloned, suggesting that PPLP4 has a 

crucial role in parasite survival (Ecker et al., 2008). Though PPLP2 and PPLP4 

appear to be important in blood stages, at least in a mouse model, the precise role 

of these proteins during the erythrocytic cycle remains to be revealed. 

1.11. Thesis aims 

The main aims of this project were to analyse the function of PfSUB1 and two 

perforin-like proteins PPLP2 and PPLP4 in the asexual stages of P. falciparum. This 

relied on in vitro biochemical analyses and in vivo studies of cultured P. falciparum 

parasites. 

• Conditional knockdown of PfSUB1 

Analysis of PfSUB1 was carried out using three different techniques. Firstly, as it is 

an essential protease, I attempted to generate a conditional knockdown line in order 

to elucidate the function of PfSUB1 in vivo. The FKBP destabilisation domain 

system, recently applied to P. falciparum and T. gondii (Armstrong & Goldberg, 

2007, Herm-Gotz et al., 2007), was used. A PfSUB1-FKBP fusion was expressed in 

a heterologous expression system which confirmed that it is catalytically active. A 

non-clonal P. falciparum line, where FKBP was integrated into the pfsub1 locus was 

obtained. As an alternative approach to conditional regulation of PfSUB1 activity, 
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the PfSUB1 prodomain, known to be a potent inhibitor of recombinant PfSUB1, was 

used to inhibit the protease in vivo. Using the FKBP system again, the prodomain 

(p31) was used a molecular switch for PfSUB1. The advantage to this compared to 

the previous approach is that the endogenous PfSUB1 was not be modified. In vitro 

testing of recombinant FKBP-prodomain (FKBP-p31) against recombinant PfSUB1 

confirmed that the prodomain retained its inhibitory capacity when fused to FKBP. 

Following in vitro studies, the FKBP-p31 was expressed on an episome in P. 

falciparum with the aim of inhibiting PfSUB1 activity in vivo. 

• Identification of novel PfSUB1 substrates 
Second, I attempted to identify novel PfSUB1 substrates using a protease 

specificity modelling program PoPS (Boyd et al., 2004, Boyd et al., 2005) and by 

applying stringencies according to characteristics of known PfSUB1 substrates. 

Several putative substrates were identified. This provided the foundations for a 

collaborative large scale proteomics analysis of PfSUB1 substrates, by use of 

recombinant enzyme and schizont lysate. Specific putative substrates were then 

analysed by western blot and compared to physiological processing. Peptides 

based on cleavage sites predicted by bioinformatics were incubated with PfSUB1 

and analysed by reversed phase high pressure liquid chromatography, to ascertain 

whether they are true PfSUB1 cleavage sites. 

• Analysis of the spatiotemporal activity of PfSUB1 
Third, the spatiotemporal activity of PfSUB1 was analysed. This involved in vitro 

expression and validation of a PfSUB1-sensitive fluorescent reporter containing a 

well-characterised PfSUB1 cleavage site present in SERA5. The reporter was 

shown to be PfSUB1-sensitive and to exhibit fluorescence resonance energy 

transfer (FRET). Following this, parasites were transfected with an episomal vector 

for expression of this reporter in the PV.  
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Figure 1. The complexities of the malaria life cycle 

With the bite of an infected mosquito, 1-10 sporozoites are injected into the human 

host (A). The majority of sporozoites travel to the liver, and subsequently invade 

and replicate inside hepatocytes (B). 48 hours later, the sporozoite has divided by 

schizogony, resulting in production of tens of thousands of merozoites. When 

released from the hepatocyte, merozoites invade and replicate asexually inside 

erythrocytes (C). This leads to a gradual rise in parasitaemia, resulting in the onset 

of malarial symptoms. During erythrocytic development, a small percentage of 

parasites develop into gametocytes (D). These cells are important for sexual 

development, which occurs inside the mosquito. Male and female gametocytes are 

taken up by the mosquito during a blood meal, and develop into gametes inside the 

mosquito midgut (E). Fusion of the gametes results in a zygote, which develops into 

an ookinete (E). The ookinete is able to invade the midgut epithelium and develops 

by sporogony, forming an oocyst, filled with sporozoites (F). Once mature, the 

oocyst ruptures, releasing sporozoites into the midgut, which migrate to the salivary 

gland in preparation for another blood meal. 
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Figure 2. The asexual erythrocytic cycle of Plasmodium spp. 

Merozoites bind to and invade erythrocytes, where they reproduce inside a PV. The 

ring stage develops into a trophozoite, where DNA replication and growth occurs. 

Finally, the trophozoite differentiates into a multinucleated syncytium called a 

schizont. Division by schizogony results in the formation of 16-32 merozoites. In a 

process called egress, merozoites are released and continue the cycle. Importantly, 

egress and invasion is protease inhibitor-sensitive. 
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Figure 3. The ultrastructure of a P. falciparum merozoite.  

Merozoites, the specialised zoite of the malaria blood stage cycle, have highly 

specialised organelles for invading erythrocytes. 2-3 microtubules are present in P. 

falciparum merozoites. Several types of secretory organelle are present, including 

rhoptries and micronemes, essential for invasion; dense granules, involved in host 

cell modification, exonemes, which store subtilisin-like protease PfSUB1. The apical 

tip of the parasite is capped with polar rings, composed of microtubules. The 

pellicular cisternae, which lie underneath the plasma membrane of the merozoite, 

anchor to the polar rings. The merozoite also has an apicoplast organelle, which is 

essential to parasite survival and important in metabolism. The merozoite surface is 

covered with coat proteins including merozoite surface protein (MSP) 1, 6 and 7. 
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Table 1. Proteases in the P. falciparum genome 

The P. falciparum genome encodes 92 proteases (Wu et al., 2003), many of which 

have unknown functions in the malarial life cycle. This table summarises information 

about some of the proteases encoded by the parasite genome. These encompass 

the metallo-, aspartic, cysteine and serine protease families, and illustrate the 

diverse nature of malarial proteases. 
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Protease 
type 

Family Name Expressed 
in asexual 
stages? 

Location Function Essential? 

(blood stages) 

References 

Metallo M16 metallo-

protease 

Falcilysin Yes FV Haemoglobin 

digestion and 

cleavage of 

apicoplast transit 

peptides 

- (Ponpuak et al., 

2007, Murata & 

Goldberg, 2003) 

PMI Yes FV Haemoglobin 

digestion 

No (Omara-Opyene et 

al., 2004) 

PMII Yes FV Haemoglobin 

digestion 

No (Omara-Opyene et 

al., 2004) 

HAP Yes FV Haemoglobin 

digestion 

No (Omara-Opyene et 

al., 2004) 

PMIV Yes FV Haemoglobin 

digestion 

No (Omara-Opyene et 

al., 2004) 

PMV Yes ER PEXELase Yes (Klemba & Goldberg, 

2005, Boddey et al., 

2009, Russo et al., 

2009a) 

PMVI No - - - (Le Roch et al., 2004, 

Florens et al., 2002) 

PMVII No - - - (Le Roch et al., 2004, 

Florens et al., 2002) 

Aspartic Plasmepsin 

 

PMVIII No - - - (Le Roch et al., 2004, 
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Florens et al., 2002) 

PMIX Yes EC Invasion/egress? - (Le Roch et al., 2004, 

Florens et al., 2002) 

PMX Yes EC Invasion/egress? - (Le Roch et al., 2004, 

Florens et al., 2002) 

Signal 

peptidase  

SPP Yes ER Cleavage of N-

terminal signal 

peptides 

Yes? (Li et al., 2009) 

Falcipain 1 Yes FV Haemoglobin 

digestion and 

invasion? 

No (Greenbaum et al., 

2002, Sijwali et al., 

2004) 

Falcipain 2 Yes FV Haemoglobin 

digestion and 

egress? 

No (Sijwali & Rosenthal, 

2004, Sijwali et al., 

2006, Dua et al., 

2001, Hanspal et al., 

2002) 

Falcipain 2’ Yes FV Haemoglobin 

digestion 

No (Sijwali et al., 2004) 

Falcipain 

Falcipain 3 Yes FV Haemoglobin 

digestion and 

egress? 

Yes (Sijwali et al., 2001, 

Sijwali et al., 2004) 

Calpain PfCalpain 1 Yes Parasite Transition into 

pre-S-phase 

development 

Yes (Russo et al., 2009b) 

Calpain Erythrocyte 

calpain 1 

Yes EC Invasion and 

egress 

Yes (Chandramohanadas 

et al., 2009) 

Cysteine 

SERA SERA1, 2, ? PV? Egress? No (Aoki et al., 2002) 



 78

3, 7 

SERA4 Yes PV? Egress? No (Aoki et al., 2002, 

Yeoh et al., 2007) 

SERA5 Yes PV Egress? Yes (Miller et al., 2002, 

McCoubrie et al., 

2007, Delplace et al., 

1987, Delplace et al., 

1988, Debrabant & 

Delplace, 1989, Li et 

al., 2002, Aoki et al., 

2002, Yeoh et al., 

2007) 

SERA6 Yes PV? Egress? Yes (Aoki et al., 2002, 

Schmidt-Christensen 

et al., 2008, Yeoh et 

al., 2007) 

SERA8 No   Yes (in oocysts) (Aly & Matuschewski, 

2005) 

Clp ClpP Yes Nucleus Degradation of 

transcription 

factors 

 (Lin et al., 2009) Serine 

Rhomboid ROM4 Yes Parasite 

surface 

Parasite 

replication and 

shedding of 

AMA1 

Yes (Baker et al., 2006). 
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ROM1 Yes Mononeme Shedding of 

EBA175 

Yes (Singh et al., 2007) 

SUB1 Yes Exoneme Processing of 

PV and MSP 

proteins 

Yes (Blackman et al., 

1998, Hackett et al., 

1999, Aurrecoechea 

et al., 2009) 

SUB2 Yes Microneme Merozoite 

sheddase 

Yes (Blackman et al., 

1998, Hackett et al., 

1999, Aurrecoechea 

et al., 2009) 

Subtilisin-like 

SUB3 Yes - - No (Blackman et al., 

1998, Hackett et al., 

1999, Aurrecoechea 

et al., 2009) 
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Figure 4. Synthesis and processing of mature PfSUB1.  

A. PfSUB1 is synthesised as a pre-pro-protein with a classical signal peptide, 

regulatory prodomain and a catalytic domain. B. During secretory transport, the 83 

kDa precursor is proteolytically processed at the N-terminus to remove the signal 

peptide. It then undergoes autocatalytic cleavage at the site LVSAD219NIDIS to 

release the prodomain (p31) and the active 54 kDa catalytic domain (p54). During 

late schizogony, p54 undergoes further processing by an unknown protease at the 

N-terminal site EVEND251AEDYD, resulting in a 47 kDa fragment (p47). 
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Figure 5. Release of PfSUB1 into the PV preceding egress.  

In late schizogony, PfSUB1 is trafficked to dense granule-like organelles called (A). 

Just before schizont rupture, exonemes are thought to discharge their contents into 

the PV (B), where PfSUB1 (blue spots) comes into contact with its substrates, 

including SERA5 and merozoite surface proteins. This precedes breakdown of the 

PVM and EPM during egress (C). 
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Table 2. Plasmodium spp. PPLPs 

Five genes encoding PPLPs are conserved across the Plasmodium genus. The 

nomenclature from P. yoelii is used for PPLP homologues in other Plasmodium 

species. P. berghei has two copies of PPLP3. PPLP1 is important for sporozoite 

traversal of the sinusoidal cell layer, while PPLP3 and PPLP5 appear to affect 

ookinete invasion of the mosquito midgut, perhaps synergistically. Of these 

proteins, three are dispensable for blood stage growth in P. yoelii and P. berghei. 

The other two, PPLP2 and PPLP4, cannot be knocked out in P. berghei blood 

stages. T. gondii PLP1, of which the closest Plasmodial relative is PPLP1, is 

important for T. gondii egress from its host cell. 
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Name P. falciparum P. yoelii P. berghei Other 
names 

Gene disrupted  

(P. berghei) 

Function 

PPLP1 PFD0430c PY00454 PB000252.01.0 SPECT2 Yes Sporozoite breaching of 

the liver sinusoidal cell 

layer prior to 

hepatocyte infection 

(Ishino et al., 2005) 

PPLP2 PFL0805w PY00181 PB000619.01.0 - No (Ecker, Personal 

communication) 

 Unknown 

PPLP3 PFI1145w PY05180 PB301406.00.0, 

PB000936.01.0 

MOAP Yes Ookinete invasion of 

the mosquito midgut 

(Kadota et al., 2004) 

PPLP4 PF08_0050 PY03076 PB000100.01.0 - No (Ecker et al., 2008)  Unknown 

PPLP5 PF08_0052 PY03943 PB000511.01.0 - Yes Ookinete invasion of 

the mosquito midgut 

(Ecker et al., 2007) 

TgPLP1 - - - - Yes (tachyzoite) T. gondii egress 

(Kafsack et al., 2008) 
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2. Methods 

2.1. Bioinformatic approaches 

2.1.1. Sequence analysis tools 

ProtParam was used to compute physicochemical parameters of proteins 

(expasy.org/tools/protparam.html). SignalP (www.cbs.dtu.dk/services/SignalP/) was 

used to predict classical signal peptides. Nucleotide and protein alignments were 

generated using ClustalW (www.ebi.ac.uk/Tools/clustalw2/index.html). To predict 

transmembrane domains, the online tool TMPred was used 

(www.ch.embnet.org/software/TMPRED_form.html). Secondary structure 

predictions were performed using JPred (www.compbio.dundee.ac.uk/~www-

jpred/). NCBI Basic Local Alignment Search Tool (BLAST) 

(www.ncbi.nlm.nih.gov/blast/Blast.cgi) was used to identify similarity to other 

proteins or DNA sequences. Interpro was used to identify regions of significant 

homology to known domains (www.ebi.ac.uk/interpro/). To assign putative functions 

to proteins of unknown function, BLAST and Interpro predictions were used. 

PlasmoDB was the source of information for Plasmodium spp. genes and proteins 

(plasmodb.org/plasmo/). 

2.1.2. In silico identification of PfSUB1 substrates  

A PfSUB1 specificity model was created in the online application Prediction of 

Protease Specificity (PoPS) (pops.csse.monash.edu.au/pops.html) (Boyd et al., 

2004, Boyd et al., 2005), by combining information from previous analysis of 

PfSUB1 specificity using peptide substrates and known PfSUB1 cleavage sites in 

validated substrates (Withers-Martinez et al., 2002, Sajid et al., 2000, Koussis et al., 

2009, Yeoh et al., 2007). The entire P. falciparum predicted proteome was 

downloaded from PlasmoDB (www.plasmoDB.org)(Wellcome Trust Sanger 

Institute, EuPathDB) in FASTA format and uploaded into PoPS, then analysed 

using the PfSUB1 specificity model. The resulting list of proteins containing 

predicted PfSUB1 cleavage sites was then delimited according to the following 

stringencies: presence of a classical signal peptide or anchor (SignalP), known or 

predicted subcellular location, known or predicted function (Interpro), timing of 

expression (mRNA or protein)(Le Roch et al., 2004, Hall et al., 2005, Florens et al., 
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2002), size (ProtParam) and number of predicted transmembrane domains 

(TMPred). 

2.2. Molecular biology techniques 

2.2.1. E. coli strains and transformation  

Subcloning EfficiencyTM DH5α™ and MAX Efficiency® DH5α™ (InvitrogenTM) 

competent E. coli were used for propagation of DNA and subcloning in conjunction 

with calcium chloride. BL21-DE3 Gold competent E. coli (Stratagene) or SHuffleTM 

competent E. coli (New England Biolabs (NEB)) were used for protein expression. 

Transformations were carried out according to manufacturer’s instructions. For 

plasmids carrying an ampicillin resistance gene, cells were mixed with plasmid DNA 

and incubated for 5 min on ice. For plasmids carrying a kanamycin resistance gene, 

cells were mixed with plasmid DNA and incubated on ice for 30 min, before heat 

shocking at 37°C or 42°C for 30 seconds and incubating with Luria-Bertani media 

(LB) (Bertani, 1951) for 1 hour at 37°C. Cells were then plated out onto agar plates 

containing the appropriate antibiotics. 

2.2.2. Preparation of plasmid DNA 

DNA for cloning, sequencing or transfection was purified using a Miniprep or 

Maxiprep kit (Qiagen), according to manufacturer’s instructions. DNA yields were 

estimated by electrophoresis on a 0.7% agarose gel, and comparison to the 

quantitative DNA ladder, SmartLadder (Eurogentec) or quantified using a Nanodrop 

spectrophotometer (Thermo Scientific). 

2.2.3. Nucleotide sequencing 

DNA sequencing was carried out by Beckman Coulter Genomics. 

2.2.4. DNA-modifying enzymes 

Restriction endonucleases were purchased from Roche and NEB, and digests were 

carried out according to the manufacturer’s instructions. For purification of DNA 

fragments after digestion, either the QIAquick® PCR purification kit (Qiagen) or the 

QIAquick® gel extraction kit (Qiagen) was used. Klenow enzyme (Roche) or T4 
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DNA polymerase (NEB) were used to generate blunt ends. Antarctic phosphatase 

(NEB) was used to remove 5' phosphate groups from DNA fragments. DNA 

fragments were ligated using the Rapid DNA ligation kit (Roche).  

2.2.5. Polymerase chain reaction (PCR) 

Platinum® Taq High fidelity DNA polymerase (InvitrogenTM) or Pfu Turbo® 

(Stratagene) were used to amplify gene fragments for vector construction, as 

instructed by the manufacturers. For reactions where proofreading was not 

required, Thermoprime Taq DNA polymerase (Thermo Scientific) was used. 

Reactions were carried out in a ThermoHybaid Omn-E PCR machine. QIAquick® 

PCR purification kit (Qiagen) was used to purify DNA from PCR reactions 

2.2.6. Primers 

Oligonucleotide primers were synthesised by Eurogentec or Sigma-Aldrich®. 

Primers were diluted to a 100 μM stock in double distilled water (ddH2O) and stored 

at -20°C. For PCR reactions, a 10 μM stock was used. All oligonucleotides used for 

plasmid construction, diagnostic PCR analysis and reverse transcription PCR are 

listed in Table 3. 

2.3. Vector construction 

All vectors used in this work are listed in Table 4. 

2.3.1. Constructs for recombinant protein expression 

2.3.1.1. Construction of pIB-SUB1-FKBP 

pIB-SUB1-FKBP was designed for the expression of a recodonised PfSUB1 gene 

with a C-terminal FKBP domain in Sf9 insect cells. To construct this vector, an 

intermediate construct, pBlueScriptKS+PfSUB1-FKBP (pBSKS+SUB1-FKBP) was 

first made by fusing DNA encoding the synthetic pfsub1 gene (SUB1synth) from 

pBSKS+SUB1synth (a kind gift from Kostas Koussis, NIMR) to the DNA sequence 

encoding FKBP (Figure 6). The FKBP sequence was obtained from pHH1-SUB2-

FKBP (a kind gift from Matthew Child, NIMR). The sequence encoding SUB1-FKBP 

was removed from pBSKS+SUB1-FKBP by digestion with Spe I, blunting and 
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subsequent digestion with Hind III. pIB-SUB1 (a kind gift from Kostas Koussis, 

NIMR) was cut with EcoR I, blunted using Klenow fragment, and cut with Hind III. 

SUB1-FKBP was then ligated into pIB-SUB1, forming pIB-SUB1-FKBP (Figure 7). 

2.3.1.2. Construction of pET30-Xa/LiC-FKBP-p31 

pET30-Xa/LiC-p31 was previously used to express recombinant p31 in E. coli (Jean 

et al., 2003). This vector was modified by cloning in DNA sequence encoding FKBP 

upstream of the sequence encoding p31. The resulting vector (pET30-Xa/LiC-

FKBP-p31) was used to express recombinant FKBP-p31 in the same system. 

pET30-Xa/LiC-FKBP-p31 was cloned by amplifying FKBP by PCR from 

pDONR221-FKBP (a kind gift from Daniel Goldberg, Washington University of St 

Louis) (Armstrong & Goldberg, 2007) using primers 3F and 3R (Table 3). The 

resulting PCR product was digested with Kpn I and Nde I and ligated into pET30-

Xa/LiC-p31 (Figure 8), forming pET30-Xa/LiC-FKBP-p31. 

2.3.1.3. Construction of pRSFRET-SERA5 

A construct designed for the expression of recombinant 6xHis-tagged PfSUB1-

sensitive FRET reporter protein (rFRET-SERA5) was cloned by replacement of 

DNA encoding an elastase-sensitive linker in pRSFRET-ELA (a kind gift from 

Richard Bayliss, Institute of Cancer Research), with DNA encoding a PfSUB1-

sensitive linker in the form of the SERA5 site 1 cleavage site. Forward and reverse 

complementary DNA fragments encoding the linker (oligonucleotides 

EIKAETEDDD_F and EIKAETEDDD_R, see Table 3) were diluted to 1 pmol/ μl in 

ddH2O and annealed by mixing at a 1:1 molar ratio, heating to 95°C for 20 min and 

slowly cooling to 21°C. This insert was ligated into Bgl II and EcoR I sites of 

pRSFRET-ELA, resulting in the construct pRSFRET-SERA5(Figure 9). 

2.3.1.4. Construction of pGEX6.1-L1-His, pGEX6.1-L2-His, 

pGEX6.1-L3-His, pGEX6.1-L4-His, pGEX6.1-501-His, 

pGEX6.1-502-His, pGEX6.1-503-His, pGEX6.1-504-His 

Constructs for the expression of N-terminal GST and C-terminal hexahistidine 

(6xHis) tagged PPLP2 and PPLP4 domains in E. coli were generated by amplifying 

protein-coding regions of pfpplp2 and pfpplp4 genes by PCR from P. falciparum 
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DNA and cloning these fragments into pGEX6.1 (GE Healthcare). The primer pairs 

used for amplification are specified in Figure 10 and their sequences in Table 3. 

Primers included 5' BamH I restriction sites and 3' sequence encoding 6xHis tags 

with Xho I restriction sites. PCR products and pGEX6.1 were digested with these 

enzymes and ligated (Figure 10). 

2.3.2. Constructs for transfection of P. falciparum  

All constructs used in this study for transfection of P. falciparum include a human 

dihydrofolate reductase (hDHFR) cassette, which confers resistance to WR99210, 

and a 3' untranslated region (3' UTR) from P. berghei dihydrofolate reductase 

thymidylate synthase (DHFR-TS). 

2.3.2.1. Construction of pHH1-PfSUB1-FKBP 

A construct designed to integrate an FKBP destabilisation domain into the 3' end of 

the coding sequence of pfsub1 was cloned by insertion of FKBP-encoding DNA into 

pHH1-SUB1-HA3 (Figure 11). FKBP was amplified from pDONR3P3-FKBP (a kind 

gift from Dan Goldberg, Washington University in St Louis) using primers 30F and 

30R which included Xho I and Nco I sites (Table 3). The PCR product was digested 

with Xho I and Nco I and ligated into pHH1-SUB1-HA3.  

2.3.2.2. Construction of pHH4-p31  

A construct for the overexpression of p31 in the PV using the AMA1 promoter and 

signal peptide sequence of EBA-175 was generated by cloning sequence encoding 

p31 into pHH4-AMA1-EBA175SS-GFP (a kind gift from Ellen Knüpfer) to generate 

pHH4-p31. DNA encoding p31 was amplified from pET30Xa/LIC-p31 (Jean et al., 

2003) using primers 28F and 23R (Table 3). The resulting PCR product was purified 

and ligated into Zero PCR Blunt vector (InvitrogenTM), then cloned into pHH4-

AMA1-EBA175SS-GFP using Xma I and Sal I sites (Figure 12). 

2.3.2.3. Construction of pHH4-FKBP-p31 

A construct for the regulatable expression of p31 by fusion to FKBP in late 

schizonts was generated by cloning into pHH4-AMA1-EBA175SS-GFP. FKBP-p31 

sequence was amplified from pET30Xa/LIC-FKBP-p31 using primers 28F and 20R 
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(Table 3). Subsequently, the PCR product was ligated into Zero PCR Blunt vector 

(InvitrogenTM), then cloned into pHH4-AMA1-EBA175SS-GFP using Xma I and Sal 

I sites (Figure 13). 

2.3.2.4. Construction of pHH4-FRET-SERA5  

 A construct for the episomal expression of FRET-SERA5 in P. falciparum was 

generated by replacement of DNA coding for GFP in pHH4-AMA1pro-EBA175SS-

GFP with sequence encoding FRET-SERA5. FRET-SERA5 was amplified from 

pRS-FRET-SERA5 by PCR (using primers 21F and 21R, Table 3). The PCR 

product was purified and ligated into Zero PCR Blunt vector (InvitrogenTM) prior to 

sequencing. PCR Blunt was cut with Xma I and Spe I and DNA was inserted into 

pHH4-AMA1pro-EBA175SS-GFP ligated into pHH4-AMA1pro-EBA175SS-

GFP.yielding the construct pHH4-FRET-SERA5 (Figure 14). 

2.3.2.5. Construction of pHH1-PPLP2HA3, pHH1-

PPLP2STOPHA3, pHH1-PPLP4HA3 and pHH1-

PPLP4STOPHA3 

Constructs designed to integrate by single crossover into the pfpplp2 and pfpplp4 

genes were constructed by cloning targeting regions of pfpplp2 and pfpplp4 into 

pHH1-SUB1-HA3 (Figure 15) (Yeoh et al., 2007). Regions of pfpplp2 or pfpplp4 

were amplified by PCR from P. falciparum genomic DNA. The primer pairs used 

were 46F and 46R (pHH1-PPLP2HA3), 45F and 45R (pHH1-PPLP4HA3), 46F and 

52R (pHH1-PPLP2STOPHA3), 45F and 53R (pHH1-PPLP4STOPHA3, 58F and 

58R (pHH1-PPLP2Δ) and 59F and 59R (pHH1-PPLP4Δ) (Table 3). Primers 

included restriction enzyme sites for cloning, therefore PCR products were digested 

with either Hpa I and Xho I (pHH1-PPLP2HA3 or pHH1-PPLP2STOPHA3), or Bgl II 

and Xho I (pHH1-PPLP4HA3 or pHH1-PPLP4STOPHA3) and cloned into pHH1-

SUB1-HA3, which was pre-cut with the same enzymes (Figure 15). 

2.3.2.6. Construction of pHTK-PPLP2 and pHTK-PPLP4 

Constructs designed to delete pfpplp2 and pfpplp4 by double homologous 

recombination using the thymidine kinase negative selection system (Duraisingh et 

al., 2002) was generated by cloning in regions flanking pfpplp2 and pfpplp4 protein 
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coding sequence (Figure 16). Regions of pfpplp2 or pfpplp4 were amplified by PCR 

from P. falciparum  genomic DNA, using primers 56F and 56R for the amplification 

of pHTK-PPLP2 flank 1 and 57CF and 57R for flank 2; pHTK-PPLP4 flanking 

regions were amplified using primers 54F and 54R for flank 1 and 55F and 55R for 

flank 2 (Table 3). Flank 1 regions were cloned into Sac II and Bgl II of pHTK and 

clones were sequenced. Flank 2 regions were then cloned into EcoR I and Avr II in 

correct clones, after which they were sequenced. This generated pHTK-PPLP2 and 

pHTK-PPLP4. 

2.4. Immunochemical and biochemical methods 

2.4.1. N-terminal sequencing 

N-terminal sequencing analysis was carried out by the Protein and Nucleic Acid 

Chemistry Facility (University of Cambridge) according to their instructions. 

2.4.2. Antibodies 

Antibodies and the dilutions used in this thesis are summarised in Table 5. For use 

in Western blot, antibodies were diluted in PBS containing 1% bovine serine 

albumin (BSA) and 0.02% NaN3. Horseradish peroxidase (HRP) conjugated 

secondary antibodies were used.  

2.4.3. Immunofluorescence assays (IFA) 

Thin films of parasites were air-dried, fixed in ice-cold dry acetone for 30 seconds, 

and then washed in PBS with Triton X-100. Slides were blocked overnight at 4˚C 

with PBS containing 3% BSA. Samples were circled using an Immunopen 

(Calbiochem). Incubations and washes were carried out in the dark. Smears were 

incubated with primary antibody for 30 min at 37˚C, washed in PBS, and then 

incubated with secondary fluorescence-labelled antibody for another 30 min at 

37˚C, before washing again in PBS. Samples were stained with 4,6-diamidino-2-

phenylindol (DAPI) for 10 seconds for visualisation of parasite nuclei, and washed 

in PBS. One drop of glycerol was added to each circle, and a coverslip placed over 

the slide and fixed in place using nail polish. Samples were viewed using a Zeiss 

Axioplan 2 imaging system. 
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2.4.4. Sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS-PAGE) 

SDS-PAGE was performed according to standard methods (Sambrook J., 1989). 

Resolving gel (8-5% 30:1 acrylamide/ bisacrylamide, 0.1% SDS, 375 mM tris-HCl, 

pH 8.8) and stacking gel (5% acrylamide, 0.1% SDS, 200 mM tris-HCl, pH 6.8) 

solutions were polymerised using 0.04-0.1% N,N,N’,N’-tetramethyl-1-,2-

diaminomethane and 0.1% ammonium persulphate. Novex® Sharp Pre-stained 

protein standard (InvitrogenTM) or Low Molecular Weight Marker (Pharmacia) was 

used. 2x SDS sample buffer was used for all SDS-PAGE experiments. Non-

reducing sample buffer contained 1.51% Tris-HCl, 20% glycerol, 4.6% SDS, 1×10-

2% bromophenol blue. Reducing sample buffer was made up just before use by the 

addition of α-dithiothreitol (DTT) to a final concentration of 100 mM. 

2.4.5. Fixing and staining SDS-PAGE gels 

SDS-PAGE gels were fixed and stained with Coomassie brilliant blue (0.1% (w/v) 

Coomassie Brilliant Blue R, 4500 ml methanol, 4500 ml ddH2O, 900 ml acetic acid) 

for 10 min and destained by use of multiple washes in 5% (w/v) methanol, 10% 

(w/v) acetic acid. 

2.4.6. Western blot 

Proteins were separated by SDS-PAGE and were transferred to Hybond-C Extra 

nitrocellulose (Amersham Biosciences) overnight in an AppletonWood Wet blotter in 

transfer buffer (25 mM Tris-HCl, 192 mM glycine, 20% (v/ v) methanol). 

Nitrocellulose blots were blocked for 30 min in 5% (w/ v) milk powder (Premier 

International Foods) in PBS (137 mM NaCl, 3 mM KCl, 8 mM Na2PO4, 1.5 mM 

KH2PO4, pH 7.2) containing 0.05% (w/ v) Tween-20 (PBST) and washed 3 x 5 min 

with PBST. Blots were incubated with primary antibodies for 1 hour, washed for 3 x 

5 min with PBST and incubated with secondary antibodies in PBST for 1 hour at 

room temperature, then further washed for 3 x 20 min with PBST. 1 ml Enhanced 

Chemiluminescent solution (Pierce) was incubated with blots for 5 min preceding 

exposure to BioMaxTM MR X-ray Film (Kodak®). 

2.5. Expression of recombinant proteins 
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2.5.1. Production of recombinant proteins in Spodoptera 

frugiperda Sf9 insect cells  

2.5.1.1. Transient expression of recombinant PfSUB1 (rPfSUB1) 

and recombinant PfSUB1-FKBP (rPfSUB1-FKBP) 

Sf9 cells were grown to 80-90% confluency, and 1-3 x 105 cells were plated in 

growth medium and incubated at 27˚C overnight. 100 μl medium was pipetted into a 

tube, and 3 μl GeneJuice transfection reagent (Merck4Biosciences) added 

dropwise, before mixing and incubation for 5 min at room temperature. 1 μg plasmid 

DNA (pMIB-SUB1 or pMIB-SUB1-FKBP, encoding rPfSUB1 and rSUB1-FKBP) was 

added, mixed and incubated at room temperature for 15 min. The medium from the 

cells was aspirated and replaced by the transfection mixture, which was added 

dropwise. The plate was rocked to ensure even distribution and incubated at room 

temperature for 1 hour. Tunicamycin (Sigma) was added to a concentration of 62.5 

ng/ ml and 1 μM or 1.5 μM Shield-1 (Cheminpharma) was added. Transfected cells 

were incubated for 72 hours before the culture supernatants were harvested and 

analysed by Western blot. 

2.5.1.2. Large scale production and purification of recombinant 

PfSUB1 (rPfSUB1) 

rPfSUB1 was expressed in Sf9 cells using the Bacuolovirus system (Invitrogen) and 

purified as described previously (Withers-Martinez et al., 2002).  

NB: rPfSUB1 was not quantified in terms of protein concentration as it was not 

sufficiently pure following purification. 

2.5.2.  Expression of recombinant proteins in E. coli 

Protease-deficient BL21 (DE3) Gold E. coli (Stratagene) were transformed 

according to section 2.2.1. 20 ml LB containing antibiotic was inoculated with one 

bacterial colony and incubated overnight at 37˚C. 500 ml LB containing antibiotic 

was inoculated with 10 ml overnight culture and grown to an optical density of 0.6 

(at 600 nm). Protein expression was induced at 37˚C for 4 hours using 1 mM 

Isopropyl β-D-1-thiogalactopyranoside (IPTG). For increased solubility of insoluble 

proteins, SHuffle™ cells were used which were cultured at 30°C and protein 
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expression was induced with 1 mM IPTG at 16˚C overnight.  

2.5.2.1. Production and purification of recombinant PfSUB1 

prodomain (rp31) 

rp31 was expressed in E. coli and purified as previously described (Jean et 

al., 2003). 

2.5.2.2. Production and purification of rFKBP-p31 

Induced bacterial pellets were lysed in Bugbuster (Novagen) according to 

manufacturer’s instructions. The supernatant of the resulting bacterial lysate was 

mixed with 25x EDTA-free protease inhibitor cocktail (Roche Diagnostics) and 

purified by anion exchange followed by gel filtration. The supernatant was sterile 

filtered using a 0.22 μm filter system (Corning) and applied to a Hi Trap Q-

Sepharose 5 ml column (GE Healthcare) using a peristaltic pump running at 6 

ml/min. The column was washed with 150 mM NaCl 200 mM Tris-HCl pH 8.2. 

rFKBP-p31 was eluted using a Fast Protein Liquid Chromatography (FPLC) pump 

(GE Healthcare) on a 100 ml gradient of 150 mM NaCl to 500 mM NaCl, running at 

1 ml /min and taking 2.5ml fractions. Fractions containing the major protein peak 

(identified by Western blot using anti-FKBP antibodies (Affinity Bioreagents) were 

pooled and concentrated in an Amicon Ultra centrifugal device with a 10 kDa cut-off 

(Millipore). Concentrated fractions were applied to a Superdex 200 pg column (GE 

Healthcare) connected to an FPLC pump (GE Healthcare). Fractions containing the 

major protein peak (detected by Western blot using anti-FKBP antibodies) were 

pooled and concentrated in an Amicon Ultra centrifugal device with a 10 kDa cut-off 

(Millipore). 

2.5.2.3. Production and purification of recombinant FRET-ELA 

(rFRET-ELA) and FRET-SERA5 (rFRET-SERA5) 

Induced bacterial pellets were lysed in 2 ml Bugbuster® (Novagen) according to the 

manufacturer’s instructions. Bacterial lysate was incubated with LiquiChip Nickel-

NTA beads (Qiagen) at room temperature for 1 min, centrifuged at 13,000 rpm for 1 

min, and the supernatant discarded. The beads were washed 4 times by repeated 

resuspension in 20 mM tris-HCl, 100 mM NaCl, 20 mM imidazole, 0.05% triton X-
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100. rFRET-ELA and rFRET-SERA5 were eluted by incubating with 20 mM Tris-

HCl, 100 mM NaCl, 150 mM Imidazole, 0.05% Triton X-100 and centrifuging at 

13,000 rpm for 1 min. 

2.5.2.4. Production and purification of GST fusion proteins 

500 ml induced SHuffle™ E. coli culture was pelleted by centrifugation and lysed 

using Bugbuster (Novagen). Inclusion bodies were resuspended in 30 ml sodium 

chloride tris-EDTA (STE) buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 1mM 

EDTA) and DTT was added to a final concentration of 5 mM. Lysis was achieved by 

the addition of 1.5% N-laurylsarcosine and sonicated for 1 second pulses for 1 min 

with a Vibracell sonicating microprobe (Sonics & Materials). The lysate was clarified 

by centrifugation at 10,000 x g for 5 min at 4°C and adjusted to 4% Triton X-100 

preceding incubation at 4°C with shaking for 15 min. Recombinant GST fusion 

proteins were purified from lysates using S-linked glutathione agarose 

(GSHA)(Sigma). Lysate was incubated with GSHA for 15 min at 4°C on a rotating 

wheel. The GSHA was washed 5 times with ice cold PBS by repeated centrifugation 

at low speed. Protein was eluted with 1 M reduced glutathione in PBS. 

2.6. Peptide assays 

2.6.1. Peptides 

All peptides used during this study were N-terminally acetylated. Peptides were 

synthesised by Biomatik and HPLC-purified, and provided at at least 95% purity. 

Peptides were dissolved at a concentration of 100 mM in dimethyl sulphoxide 

(DMSO) and stored at -20°C. 

2.6.2. Peptide cleavage assays 

Peptide stocks were diluted to 5 mM in 25 mM HEPES pH 7.4, 12 mM CaCl2, 25 

mM CHAPS in a volume of 100 μl. This was split into two tubes, each containing 50 

μl diluted peptide. To one tube, 5 μl recombinant PfSUB1 was added. Both tubes 

were incubated at 37°C for 2 hours. Cleavage of peptides was assessed using 

gradient elution reversed phase high pressure liquid chromatography (RP-HPLC). 

20 μl samples of digested or undigested peptides were fractionated on a Vydac C18 

column and eluted at 1 ml/ min on a 0-45% (v/ v) gradient of acetonitrile in 0.1% 
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trifluoroacetic acid over 35 min. Digested peptides were identified by electrospray 

mass spectrometry (ESI-MS) as previously described (Blackman et al., 2002, 

Withers-Martinez et al., 2002). 

2.6.3. FRET reporter assays 

2.6.3.1.  In vitro cleavage assay 

rFRET-ELA and rFRET-SERA5 were diluted 1:10 in 20 mM tris pH 8.2, 100 mM 

NaCl and 0.05% triton X-100. 1 μl PfSUB1 was added to 40 μl of FRET reporter, 

and incubated at 37˚C for 2 hours. Enzyme activity in each sample was inhibited by 

addition of 10 μl 2x reducing SDS sample buffer and incubated at 95 ˚C for 5 min. 

Samples were analysed by SDS-PAGE and Coomassie staining. 

2.6.3.2. Observation of FRET by fluorimetry 

rFRET-ELA and rFRET-SERA5 were diluted 1:40 in 20 mM tris-HCl pH 8.2, 100 

mM NaCl and 0.05% triton X-100. 100 μl FRET reporter was added per well of a 96-

well plate (NUNC) and 1 μl rPfSUB1 or 1 μl rPfSUB1 and 1 μl rp31 added 

immediately before assaying in a fluorescence spectrophotometer (Varian). 

Readings were made at 1 min intervals with the following settings: excitation: 435 

nm and 475 nm, slit width: 5.0 nm; and emission: 485 nm and 528 nm, slit width: 

2.5 nm. 

2.7. Assaying PfSUB1 activity by fluorimetry 

PfSUB1 activity was assessed using a rhodamine-labelled peptide substrate 

SERAst1F-6R, which has the sequence Ac-CIKAETEDDC-OH 

(tetramethylrhodamine substitution at both cysteine side-chains using 6-

iodoacetamidotetramethylrhodamine) as previously described (Blackman et al., 

2002), in the presence of purified rp31 or rFKBP-p31. Purified rPfSUB1 was diluted 

1:30 in cold sterile-filtered digestion buffer (50 mM tris-HCl pH 8.2, 12 mM CaCl2, 

0.05% v/v NP40) just prior to use. An additional well was set up with 50 μl buffer 

only. This was mixed well, and 50 μl added per well of a white FluoroNunc 96-well 

plate (NUNC). 0.5 μl rp31 and partially purified rFKBP-p31 were added to test wells. 

SERAst1F-6R was diluted from a 40 μM DMSO stock solution 1:100 in digestion 

buffer, and 50 μl was added to each well. The contents of each well was mixed by 
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pipetting, and then transferred to a fluorescence spectrophotometer (Varian). The 

kinetics programme was started, and set up to blank on the well containing no 

protease. Readings were made at 5-15 min intervals with the following settings: 

excitation: 552 nm, slit width: 5.0 nm; and emission: 580 nm, slit width: 2.5 nm. 

2.8.  Identification of novel PfSUB1 substrates  

2.8.1. Identification of membrane-associated PfSUB1 substrates  

Schizonts were purified, treated with a cocktail of protease inhibitors (Table 6) and 

saponin lysed as described previously (Koussis et al., 2009). Schizonts were stored 

at -80°C until used. 150 μl schizonts (2 x 109) were thawed into 1.2 ml ice-cold 25 

mM HEPES pH 7.4 12 mM CaCl2 with supplementary protease inhibitors (10 μM  

E64, 1 μM pepstatin A, 10 μg/ ml leupeptin and 10 μg/ ml antipain). The schizonts 

were washed twice by centrifugation and resuspended in 400 μl 25 mM HEPES pH 

7.4 12 mM CaCl2 and divided into two aliquots. To one aliquot, 30 μl rPfSUB1 was 

added (sample PT+), and to the other 20 μl rp31 was added (sample PT-). Both 

samples were incubated at 37°C for 2 h. Subsequently, samples were solubilised in 

1.6 ml 8 M urea, 25 mM CHAPS, 20 mM DTT in 10 mM tris HCl pH 8.2 and mixed 

at room temperature for 45 min. The samples were clarified by centrifugation and 

filtering (Nanosep MF GHP, 0.45 μm, PALL Life Sciences). Immediately before RP-

HPLC analysis, samples were acidified by the addition of 3.2 μl trifluoroacetic acid 

to a final concentration of 0.2% v/v. Alternatively, for analysis by western blot, after 

incubation at 37°C, proteins were solubilised in SDS loading buffer and subjected to 

SDS-PAGE. 

2.8.2. Identification of non-membrane-associated PfSUB1 
substrates 

Approximately 4 x 109 purified schizonts were snap frozen (without protease 

inhibitor treatment) and thawed in 1.6 ml ice cold 25 mM HEPES pH 7.4 12 mM 

CaCl2 containing the same inhibitors as described above. Lysed parasites were 

clarified by centrifugation and the supernatant retained. Two equal aliquots were 

made, to which 30 μl rPfSUB1 or 60 μl rp31 was added (ST+ and ST-, respectively). 

These samples were incubated for 1 h at 37°C and acidified as above. Alternatively, 

for analysis by western blot, after incubation at 37°C, proteins were solubilised in 
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SDS loading buffer and subjected to SDS-PAGE. 

2.8.3. RP-HPLC resolution of treated schizont lysates 

Samples treated as described in 2.8.1 and 2.8.2 were resolved by RP-HPLC using 

a Vydac 4.6 mm x 150 mm 214TP C4 column at a flow rate of 1 ml/ min on a 0-18 

% v/v acetonitrile (in 0.1% v/v TFA) gradient running for 20 min, then 18-63% 

acetonitrile for a further 40 minutes. 65 1 ml eluate fractions were collected per run, 

which were then dried in a SpeedVac and resuspended in 40 μl reducing SDS-

PAGE sample buffer. SDS-PAGE was performed as described in 2.4.4 on an 8-

16% linear gradient gel (Invitrogen). The gel was stained with InstantBlue 

(Generon). Gel slices were prepared for analysis using a Janus liquid handling 

system (PerkinElmer) by placing the excised protein gel slices in wells of a 96-well 

microtitre plate (NUNC) and destaining with 50% v/v acetonitrile and 50 mM 

ammonium bicarbonate, before reducing with 10 mM DTT and alkylating with 55 

mM iodoacetamide. Proteins were then digested overnight at 37°C with 6 ng/ μl 

trypsin enzyme (Promega), resulting in peptides which were extracted using 1% v/v 

formic acid and 2% acetonitrile. Peptides were analysed using nano-scale capillary 

LC/MS/MS using a nanoAcquity UPLC (Waters) flowing at 300 nl / ml. Peptides 

were trapped using a C18 Symmetry Precolumn (5 μm, 180 μm x 20 mm, Waters) 

before separation on a C18 BEH130 analytical UPLC column (1.7 μm 75 μm x 250 

mm, Waters) and elution on a gradient of acetonitrile. The outlet of the analytical 

column contained a Triversa nanomate microfluidic chip for mass spectrometric 

analysis (Advion), from which information was obtained using an orthogonal 

acceleration quadrupole time of flight mass spectrometer (SYNAPT-HDMS, 

Waters). Automatic MS/ MS was acquired on the eight most intense, multiply-

charged precursor ions (in the m/z range 400-1500), and MS/MS data were 

acquired for the m/z range 50-1995. LC/MS/MS data were compared to the UniProt 

KB (release 15.5) protein database using the Mascot search engine programme 

(Matrix Science). 

2.9.  Culture and transfection of P. falciparum 

2.9.1. Maintenance and synchronisation 

P. falciparum parasites of the clone 3D7 were used for all experiments. Parasites 
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were cultured in plastic tissue culture flasks (Nunc™) at 2-4% haematocrit in RPMI 

with Albumax medium (InvitrogenTM GIBCO®), supplemented with 10% L-

glutamine in human blood (Trager & Jensen, 1976). Thin blood smears were fixed 

with 100% methanol, and stained with 10% Giemsa stain (VWR International) for 10 

min. Parasite stage was determined by light microscopy. Mature stage parasites 

were isolated on a 70% (v/v) Percoll (Amersham Pharmacia) density gradient as 

described (Dluzewski et al., 1984, Rivadeneira et al., 1983). Further synchronisation 

using 5% D-sorbitol was performed as previously described (Lambros & 

Vanderberg, 1979, Trager & Jensen, 1976). 

2.9.2. Preparation of merozoites, schizonts and culture 
supernatant for Western blots 

Schizonts were purified as described in 2.9.1 and frozen at -80°C until use. For 

isolation of merozoites, late schizonts were incubated at 37°C for 3-5 hours without 

erythrocytes until all schizonts had ruptured. Merozoites were collected by 

centrifugation at 2000 rpm for 3 min. For preparation of culture supernatant 

samples, late schizonts were incubated with RPMI without Albumax for 3-5 hours, 

and the culture supernatant was collected by centrifugation at 2000 rpm for 3 min. 

One tablet of 25 x EDTA-free protease inhibitors was added to culture supernatant 

prior to concentration using a concentrated in an Amicon Ultra centrifugal device 

with a 10 kDa molecular weight cut-off. 

2.9.3. Extraction of genomic DNA 

DNA from transfected or non-transfected parasites was obtained by lysis of pelleted 

5% trophozoites in 0.15% saponin (BDH Laboratory Supplies) in PBS and 

extraction using a DNeasy Blood & Tissue Kit (Qiagen). 

2.9.4. Reverse transcription PCR (RT-PCR) 

RNA was extracted from asynchronous parasites (where schizonts and trophozoites 

were overrepresented and rings were underrepresented) using RNeasy® (Qiagen) 

and QIAshredder® (Qiagen) kits according to the manufacturer’s instructions. RNA 

quality was assessed by analysing on a 1% agarose gel made with RNase-free 

ddH2O (Sigma) and concentration was determined using a Nanodrop 
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spectrophotometer (Thermo Scientific). DNA was removed by treatment with Turbo 

DNase (Ambion, Inc) and RT-PCR was performed using specific primers (Table 3), 

using Reverse Transcription System (Promega) according to the manufacturer’s 

instructions. 

2.9.5. Transfection of P. falciparum 

100 μg ethanol-precipitated plasmid DNA was resuspended in 30 μl sterile Tris-

EDTA buffer and 170 μl incomplete cytomix (120 mM KCl, 0.15 mM CaCl2, 2 mM 

EDTA, 5 mM MgCl2, 10 mM K2HPO4/KH2PO4, 25 mM N-[2-hydroxyethyl]piperaxine-

N’-[2-ethanesulfonic acid] pH7.6) (Wu et al., 1995, Wu et al., 1996). 200 μl 10-20% 

ring-stage parasites were added and mixed, then transferred to a 2 mm cuvette 

(Biorad)(Crabb et al., 1997, Crabb & Cowman, 1996, Fidock & Wellems, 1997). 

Parasites were electroporated at 310 V, 950 uF with ∞ resistance using an 

Electrocell Manipulator® 600 (BTX). Transfected parasites were transferred to small 

plastic tissue culture flasks (Nunc™) containing 200 μl human red blood cells and 

10 ml RPMI with Albumax. After 24 hours, the media was aspirated and replaced 

with 10 ml RPMI containing Albumax and either 2.5 nM or 10 nM WR 99210 

(Jacobus Pharmaceuticals). The culture media was subsequently exchanged every 

day for 4 days to remove cell debris which accumulates during electroporation and 

then twice a week until parasites were detected by Giemsa smear. Parasites were 

generally detectable in blood smears 2-3 weeks post transfection. After this, 

parasite stocks (at around 5 % ring parasitaemia) were frozen in liquid nitrogen and 

genomic DNA was prepared for parasites containing integration vectors. For 

parasites transfected with episomal vectors, drug selection was maintained 

throughout culturing. For parasites transfected with integration vectors, integrants 

were selected by drug cycling. Drug was removed from the media and parasites 

cultured in its absence for 3-4 weeks, after which the drug was added back and the 

media changed daily for 2 days. Once parasitaemia was re-established, parasites 

were frozen in liquid nitrogen and genomic DNA was prepared. The above process 

was repeated until integration was established. Integration was confirmed by 

integration PCR and southern hybridisation. 

2.9.6. Plasmid rescue 
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5-10 μl genomic DNA extracted from transfected P. falciparum parasites was 

transformed into E. coli DH5α. Colonies were picked and incubated in LB containing 

appropriate antibiotic overnight at 37°C, before Miniprep DNA preparation using a 

QIAquick® Spin Miniprep Kit (Qiagen). 

2.9.7. Southern hybridisation 

2.9.7.1. DNA preparation 

DNA extracted from parasites (see 2.9.3) was digested with restriction enzymes to 

provide suitable sised DNA fragments for analysis. Digested DNA was separated on 

a 0.7% agarose gel (Biorad laboratories) containing 1:20,000 dilution of SYBR® 

Safe DNA gel stain (Invitrogen). DNA was nicked in order to increase transfer 

efficiency by exposure to UV on a transilluminator (UVP – Bio Doc-It). The gel was 

incubated at room temperature with gentle agitation for 1 hour in denaturing buffer 

(0.5 M NaOH, 0.75 M NaCl), rinsed in ddH2O and incubated for 1 hour in 

neutralizing buffer (0.5 M Tris-HCl, pH 7.4, 0.75 M NaCl). The DNA was transferred 

onto a Hybond N+ membrane (Amersham Biosciences) over night by capillary 

action transfer (Sambrook J., 1989). 

2.9.7.2. Hybridisation 

The membrane was incubated with hybridisation buffer (6x saline-sodium citrate 

buffer (SSC) (1x SSC is 150 mM NaCl, 15 mM Sodium citrate pH 7) 5x Denhardt’s 

solution (0.1% BSA, 0.1% Ficoll, 0.1% polyvinylpyrrolidone), 0.5% SDS, 0.01 mg 

ml-1 sonicated salmon sperm DNA (Stratagene) for 20 min at 62°C. The DNA probe 

was amplified from genomic DNA from untransfected P. falciparum by PCR using 

specific primers (Table 3) and purified using QIAQuick® PCR purification kit 

(Qiagen). The probe was labelled with α-[32P] adenosine triphosphate (Amersham 

Biosciences) by random priming (Feinberg & Vogelstein, 1983) using a Prime-It® 

Random Prime Labelling kit (Stratagene) according to manufacturer’s instructions. 

Purification of the probe and removal of unincorporated nucleotides was achieved 

using ProbeQuantTM G-50 Micro Columns according to the manufacturer’s 

instructions (Amersham Biosciences). The labelled probe was added to the 

hybridisation buffer and incubated with the membrane overnight at 62°C. The probe 

was poured off and the membrane washed three times in 2 x SSC for 20 min at 
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62°C. The southern blot was visualised by exposure to BioMaxTM MR film 

(Kodak®) at -80°C.   

2.9.8. Integration PCR 

To assess whether constructs had integrated into P. falciparum, PCR was 

performed (as described in 2.2.5) using extracted genomic DNA (see 2.9.3).  
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Table 3. List of oligonucleotides used in this thesis 

Oligonucleotides used for vector construction (A), RT-PCR (B), production of 

probes for Southern blot analysis (C) and integration PCR (D) are listed here. 

Primers annealing to the sense strands of DNA are labelled F and primers 

annealing to the antisense strands are labelled R.  
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A Vector construction 
Primer name Sequence (5' to 3') 

3F CAAAAAAGCAGGCCATATGGGAGTGCAGG 

3R GTACAAGAAAGCTGGGGTACCTTCTTCCGG 

20R CCAGAGGAGAGTACTAGTCTTAATCAGC 

21F GGAGACCCGGGATGGGCAGCAGC 

21R CCAGACTCGAGGGTACTAGTGTCAGCG 

28F GGCTCCGGTATTGAGCCCGGGAAGGAGG 

23R CCAGAGGAGAGTCGACGCCTTAATCAGC 

30F CGTTTCTCGTTCAACTTTCTTGTACAAACTCGAGTTCGG 

30R CGCGGCGCGCCGGCCCCATGGTCATTCC 

32F GCACTAGCTCAAAATATGGGATCCTTAAATTATGC 

32R CATTATCTATTCCGTACAACTCGAGGTGGTGGTGGTGGTGGTGATTATTA

TAAAATAATAAAGCC 

33F CGTTATTTCAAGAGGATCCCATTAATGTAGATGG 

33R CGATCCAGATTTAAAGATCTCGAGGTGGTGGTGGTGGTGGTGATATGGGT

TATTCC 

34F GCCGAATTTAAGAATGCTGGATCCAAATTAAAAGTAC 

34R CCAAATAATTGTAATCCATACTCGAGGTGGTGGTGGTGGTGGTGTAATCC

ATAAAATATTAAAGC 

35F GGTACACATGTTGCATATGAAGGATCCTTAGGTGG 

35R CCTAAATATATTTCATATGCCTCGAGGTGGTGGTGGTGGTGGTGTGTACC 

45F CGTTTACGACAGATCTGAGAAATTAAAAACTAATAAAAGTAAGGACCCC 

45R CATATGACATTTTTCCTCGAGTTTATATGTAAACTTTCTATTCGTGTTCC

C 

46F GCTGGTCCACCACCTGGGTTAACAACATGTCCTATAGG 

46R CGTATTAACTTACTCGAGTTCCACCAAATTGTTTGCCCCGTGGG 

49F GTGGATCCAATCATAAAAATGATGATAATCATATG 

49R GTGTTCTGGTATAACCTCGAGCTTCATCGAC 

50F CCGGATCCTATATTCATGATGATACTATACAAAATG 

50R GGTATTATATGAAAACACTCGAGATATTTGGATTG 

51F GGAGATATACCCCGGGGGAGTGC 

52R CGTATTAACTTACTCGAGTTACACCAAATTGTTTGCCCCGTGGG 

53R CATATGACATTTTTCCTCGAGTTTATATGTAAACTTTCTATTCGTGTTCC

C 
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54F CGTATGTTACCGCGGTATCTATATAGGTTCG 

54R GCTTTTATATGACTAGTACGCTGAAAATGG 

55F GGACAATATGAATTCAGAAATTCGGGG 

55R CCGTTTTTACTTGTCCTAGGTTATTATCG 

56F GGTCAATGATGAAAAAGACCGCGGAAATAACCTGG 

56R CCTCTTCCTTATGGTTACTAGTAATTCCTTCC 

57CF CCACCTGATCGATTAACATGTCCTATAGG 

57R GGGATCGACCCTAGGCAATGATTGC 

58F GGTAATCCTGAAGGAGATCTTACATTGAACG 

58R CCACCTAAATATATTTCCTCGAGAACATGTGTACC 

59F CGTATGTTACTTGTTTAGATCTATAGGTTCG 

59R CGATCCAGATTTCTCGAGATTTAAATATGGG 

EIKAETEDDD_F GATCTGAAATTAAAGCTGAAACTGAAGATGACGATG 

EIKAETEDDD_R AATTCATCGTCATCTTCAGTTTCAGCTTTAATTTCA 

 

B Southern blot probes 
Primer name Sequence (5' to 3') 
61F GGTAAATATCATTTCAATGATGAATTTCG 

61R CCTGAATTATTTACAAAATTAGCACC 

 

C RT-PCR primers 
Primer name Sequence (5' to 3') 
PfPPLP1_F CGTGGTCTTTATATTGTTGTATTTATATG 

PfPPLP1_R CAATTAATGAATCAGCCTCTCCTAAAGG 

PfPPLP2_F GTATAAGGGAACGCATGGCACAAATTTTGC 

PfPPLP2_R CCTGTCATACATTCTTCTTCTTATGCCCCTTCC 

PfPPLP3_F GGTTATGATTTTATATTTGGGAACCCAATAGGTGACCC 

PfPPLP3_R GTGACACTCTTCCCACATTTTTCACTTTTGCG 

PfPPLP4_F GAAATATTCAGCAAATATTTGGGAAAAGGC 

PfPPLP4_R CATGGTATTAAATGACATACCACCAAAATGGG 

PfPPLP5_F CAATGTAACGCCTAAATGTAAAAACGGCG 

PfPPLP5_R CCGAAGGAATATAATCAATTGCGAAACCTGC 

 
D Integration PCRs 
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Primer name Sequence (5' to 3') 
35F GGTACACATGTTGCATATGAAGGATCCTTAGGTGG 

67R CCCATGGCATAGTCCGGGACGTC 

68F GGTCATATGAATAAAGGAAGGGGC 

69F CGTAACAATTTTACACTATGTGC 

33F CGTTATTTCAAGAGGATCCCATTAATGTAGATGG 

70F CGTAATAATGTTTTGTCATGTCCC 

70R CGTATTAACTTACAATCATTCCACC 

71F CCATCTTAAACTATTTGTGACAAGG 

71R GGTTAACAAAGAAGAAGCTCAGAG 
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Table 4. List of constructs used in this thesis 

Constructs used for are listed here with their key features and purposes.
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Name Features Purpose Source 

pBSKS+SUB1synth-FKBP SUB1 synthetic gene fused 

to FKBP 

Intermediate construct for cloning of 

pIB-SUB1synth-FKBP 

This work 

pDONR221-FKBP FKBP domain for N-

terminal tagging 

InvitrogenTM gateway system for 

generation of FKBP constructs. Used 

for amplification of FKBP for pET-30-

Xa/LIC-FKBPSUB1pro vector 

construction 

Daniel Goldberg 

(Armstrong & Goldberg, 

2007) 

pIB-SUB1-synth PfSUB1 sequence 

recodonised for yeast 

expression 

Expression of recombinant PfSUB1 in 

Sf9 insect cells 

Kostas Koussis (NIMR, 

UK) 

pIBSUB1FKBP PfSUB1 sequence 

recodonised for yeast 

expression 

C-terminal FKBP domain 

Expression of recombinant PfSUB1-

FKBP in Sf9 insect cells 

This work 

pET-30-Xa/LIC-p31 Gene encoding the PfSUB1 

propeptide with N-terminal 

6xHis and S-tag 

Expression of recombinant p31 in E. 

coli 

Mike Blackman, NIMR 

(Jean et al., 2003) 

pET-30-Xa/LIC-FKBP-p31 Gene encoding FKBP fused 

to p31 

Expression of recombinant FKBP-

tagged p31 in E. coli 

This work 

pRS-FRET-SERA5 N-terminal 6xHis tag 

SERA5 site 1 linker 

Express ion of recombinant 6xHis-

tagged FRET reporter with a SERA5 

site 1 linker in E. coli 

This work 
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pRS-FRET-ELA N-terminal 6xHis tag 

Elastase-sensitive linker 

Expression of recombinant 6xHis-

tagged FRET reporter with an elastase-

sensitive linker in E. coli 

Richard Bayliss (CRUK, 

UK) 

pGEX6.1-L1-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP2 domain (amino acids 576-788) 

in E. coli 

This work 

pGEX6.1-L2-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP2 domain (amino acids 576-661) 

in E. coli 

This work 

pGEX6.1-L3-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP2 domain (amino acids 669-788) 

in E. coli 

This work 

pGEX6.1-L4-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP2 domain (amino acids 447-521) 

in E. coli 

This work 

pGEX6.1-501-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP4 domain (amino acids 150-372) 

in E. coli 

This work 

pGEX6.1-502-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP4 domain (amino acids 150-254) 

in E. coli 

This work 

pGEX6.1-503-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP4 domain (amino acids 269-372) 

in E. coli 

This work 

pGEX6.1-504-His N-terminal GST tag 

C-terminal 6xHis tag 

Expression of a GST and 6xHis-tagged 

PPLP4 domain (amino acids 571-621) 

in E. coli 

This work 
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pHH1-SUB1-FKBP 3' targeting region from 

pfsub1 

Integration of FKBP into the 3' locus of 

pfsub1 gene in P. falciparum 

This work 

pHTK-PPLP2 Thymidine kinase gene for 

negative selection 

Double homologous recombination for 

attempting to disrupt the pplp2 gene in 

P. falciparum 

This work 

pHTK-PPLP4 Thymidine kinase gene for 

negative selection 

Double homologous recombination for 

attempting to disrupt the pplp4 gene in 

P. falciparum 

This work 

pHH1-PPLP2HA3 3' targeting region from 

pplp2 

Single homologous recombination for 

integration of an HA3 tag into the pplp2 

locus in P. falciparum 

This work 

pHH1-PPLP4HA3 3' targeting region from 

pplp4 

Single homologous recombination for 

integration of an HA3 tag into the pplp4 

locus in P. falciparum  

This work 

pHH1-PPLP2STOPHA3 3' targeting region from 

pplp2 

Single homologous recombination for 

integration of the P. berghei DHFR-TS 

3' UTR into the pplp2 locus in P. 

falciparum  

This work 

pHH1-PPLP4STOPHA3 3' targeting region from 

pplp4 

Single homologous recombination for 

integration of the P. berghei DHFR-TS 

3' UTR into the pplp4 locus in P. 

falciparum  

This work 

pHH1-PPLP2Δ 5' targeting region from 

pfpplp2 

Single homologous recombination for 

integration of a truncated pfpplp2 gene 

into the pfpplp2 locus in P. falciparum  

This work 
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pHH1-PPLP4Δ 5’ targeting region from 

pfpplp2 

Single homologous recombination for 

integration of a truncated pfpplp4 gene 

into the pfpplp4 locus in P. falciparum  

This work 

pHH4-p31 AMA1 promoter 

EBA175 signal peptide 

p31 sequence 

Episomal expression of p31 in P. 

falciparum 

This work 

pHH4-FKBP-p31 AMA1 promoter 

EBA175 signal peptide 

FBKP-tagged p31 

sequence 

Episomal expression of regulatable 

PfSUB1 prodomain in P. falciparum  

This work 

pHH4-GFP AMA1 promoter 

EBA175 signal peptide 

GFP 

Episomal expression of the GFP in P. 

falciparum 

Ellen Knuepfer (NIMR, 

UK) 

pHH4-FRET-SERA5 AMA1 promoter 

EBA175 signal peptide 

FRET-SERA5 

Episomal expression of FRET-SERA5 

in P. falciparum 

This work 
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Figure 6. Construction of pBSKS+SUB1synth-FKBP 

pIB-PfSUB1synth-FKBP was designed for the expression of rPfSUB1-FKBP in Sf9 

cells. To construct this vector, the intermediate construct pBSKS+-Xho I-

SUB1synth-FKBP was generated. To remove the Xho I site, pBSKS+ was digested 

with Xho I, blunted and religated (1), resulting in the construct pBSKS+-Xho I. 

pBSKS+-Xho I was digested with Pst I and Spe I (2). pBSKS+SUB1synth was 

digested with Pst I and Spe I (3) to remove SUB1synth, which was ligated into 

pBSKS+-Xho I (4), generating pBSKS+-Xho I SUB1synth. pBSKS+-Xho I was 

digested with Xho I (present in the SUB1synth sequence) (5). To obtain sequence 

encoding FKBP, pHH1-SUB1-FKBP was digested with Xho I (6). FKBP sequence 

was ligated into pBSKS+-Xho I SUB1synth (7), which generated 

pBSKS+SUB1synthFKBP. The orientation of FKBP was determined by restriction 

analysis with Nde I and Bsg I. This diagram is not drawn to scale. 
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Figure 7. Construction of pIB-SUB1-FKBP 

To construct pIB-SUB1-FKBP for expression of recombinant SUB1-FKBP in Sf9 

cells, the pBSKS+SUB1synth-FKBP (described in Figure 6) was digested with Spe 

I, blunted and digested with Hind III to obtain the fragment SUB1synth-FKBP (1). 

pIB-SUB1synth was digested with Spe I, blunted and digested with Hind III (2), and 

SUB1synth-FKBP was ligated into the backbone (3), generating pIB-SUB1-FKBP. 

This diagram is not drawn to scale. 
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Figure 8. Construction of pET30-Xa/LiC-FKBP-p31 

pET30-Xa/LiC-FKBP-p31 was designed for expression of FKBP-rp31 in E. coli. 

pET30-Xa/LiC-FKBP-p31 was made in several steps, by inserting DNA encoding 

FKBP into the 5' end of the sequence encoding p31 and replacing sequence 

encoding S- and 6xHis purification tags (tag). pET30-Xa/LiC-p31 was digested with 

Kpn I and Nde I (1). FKBP was amplified from pDONR221-FKBP by PCR using 

primers 3F and 3R which contained Kpn I and Nde I restriction sites, which it was 

then digested with (2). FKBP was ligated into pET30-Xa/LiC-p31 to generate 

pET30-Xa/LiC-FKBP-p31 (3). This diagram is not drawn to scale. 
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Figure 9. Construction of pRSFRET-SERA5 

pRSFRET-SERA5 was cloned by replacing the sequence encoding EISYEACGRRI 

with that encoding EIKAETEDDD. Oligonucleotides EIKAETEDDD_F and 

EIKAETEDDD_R were annealed, forming Bgl II and EcoR I sites at the 5' and 3' 

ends respectively (1). pRSFRET-ELA was digested with Bgl II and EcoR I (2). The 

new linker sequence was ligated into pRSFRET-ELA, which resulted in pRSFRET-

SERA5 (3). This diagram is not drawn to scale. 



 120



 121

Figure 10. Construction of pGEX6.1 vectors for expression of PfPPLP2 and 

PfPPLP4 domains 

Eight constructs were made for the expression of different recombinant PfPPLP2 

and PfPPLP4 proteins, which are N-terminal GST fusion proteins with C-terminal 

6xHis tags (His).pGEX6.1 was digested with BamH I and Xho I (1). Several regions 

of pfpplp2 and pfpplp4 were amplified by PCR using primers which inserted 5' 

BamH I sites and 3' sequence encoding 6xHis tags followed by 3' Xho I sites (2). 

The resulting PCR fragments were digested with BamH I and Xho I. Ligation of the 

digested pfpplp2 and pfpplp4 PCR products into pGEX6.1 yielded eight constructs 

encoding GST- and His-tagged PfPPLP domains (3). This diagram is not drawn to 

scale. 
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A 

Insert Amino acids to be 
expressed 

Primers 

L1 576-788 34F/34R 

L2 576-661 34F/35R 

L3 669-788 35F/34R 

L4 447-521 49F/49R 

501 150-372 32F/32R 

502 150-254 32F/33R 

503 269-372 33F/32R 

504 571-621 50F/50R 
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B 
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Figure 11. Construction of pHH1-PfSUB1-FKBP 

pHH1-PfSUB1-FKBP was designed to integrate a HA3 tag into the 3' end of the 

PfSUB1 coding sequence by single homologous recombination. pHH1-PfSUB1-

FKBP was cloned by replacement of the sequence encoding the HA3 tag with DNA 

encoding FKBP. pHH1-PfSUB1-HA3 was digested with Xho I and Nco I (1). FKBP 

was amplified from pDONR3P3-FKBP and digested with Xho I and Nco I (2). FKBP 

was ligated into pHH1-PfSUB-HA3 to form pHH1-PfSUB1-FKBP (3). This diagram 

is not drawn to scale. 
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Figure 12. Construction of pHH4-p31 

pHH4-p31 was constructed with the aim of expressing p31 in late schizonts in the 

PV. For this purpose, the AMA1 promoter (AMA1pro) was used to drive expression 

of p31 late in the cycle, and the EBA175 signal peptide (EBA175SS) was used to 

target p31 to the PV. pHH4-p31 was constructed by replacement of DNA encoding 

GFP in pHH4-AMA1pro-EBA175-SS-GFP with sequence encoding p31. DNA 

encoding p31 was amplified from pET30 Xa/LiC-p31 using primers including Xma I 

and Sal I sites (1) and cloned into pPCRBlunt-p31 for sequencing (2). pPCRBlunt-

p31 was digested with Xma I and Sal I (3) and pHH4-AMA1pro-EBA175-SS-GFP 

was digested with the same enzymes (4). To generate pHH4-p31, these two 

fragments were ligated (5). This diagram is not drawn to scale. 
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Figure 13. Construction of pHH4-FKBP-p31 

pHH4-FKBP-p31 was designed for episomal expression of regulatable rp31,  in late 

schizonts in the PV. For this reason, the AMA1 promoter (AMA1pro) was used to 

drive expression in late schizonts, and the EBA175 signal peptide (EBA175-SS) 

was used to target FKBP-p31 to the PV. To generate pHH4-FKBP-rp31, sequence 

encoding GFP was replaced with DNA encoding FKBP-p31. FKBP-p31 was 

amplified from pET30 Xa/LiC-FKBP-p31 using primers which included Xma I and 

Sal I restriction sites (1). The resulting PCR product was cloned into pPCRBlunt for 

sequencing (2). FKBP-p31 sequence was removed by digestion with Xma I and Sal 

I (3). pHH4-AMA1pro-EBA175-SS-GFP was digested with Xma I and Sal I to 

remove sequence encoding GFP (4) which was replaced with FKBP-prodomain by 

ligation (5). This diagram is not drawn to scale. 
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Figure 14. Construction of pHH4-FRET-SERA5 

pHH4-FRET-SERA5 was constructed by replacing GFP in pHH4-AMA1pro-

EBA175-SS-GFP with sequence encoding FRET-SERA5. Sequence encoding 

FRET-SERA5 from pRS-FRET-SERA5 was amplified by PCR (1) and cloned into 

pPCRBlunt, generating pPCRBlunt-FRET-SERA5 (2). pPCRBlunt-FRET-SERA5 

was digested with Xma I and Spe I (3), pHH4-AMA1pro-EBA175-SS-GFP was 

digested with Xma I and Spe I (4). FRET-SERA5 sequence was ligated into pHH4-

AMA1pro-EBA175-SS-GFP (5), resulting in pHH4-FRET-SERA5. This diagram is 

not drawn to scale. 
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Figure 15. Construction of pHH1-PPLP2HA3, pHH1-PPLP2STOPHA3, pHH1-

PPLP2Δ, pHH1-PPLP4HA3, pHH1-PPLP4STOPHA3 and pHH1-PPLP2Δ 

pHH1-PPLP2HA3, pHH1-PPLP2STOPHA3, pHH1-PPLP4HA3 and pHH1-

PPLP4STOPHA3 were all based on the pHH1 vector previously used to integrate a 

HA3 tag into the 3' end of the pfsub1 coding sequence by single crossover 

integration (Yeoh et al., 2007). pHH1-PPLP2Δ and pHH1-PPLP4Δ were used to 

attempt to functionally knock out PfPPLP2 and PfPPLP4 function by truncating the 

genes encoding these proteins, based on the original pHH1 single homologous 

integration vector. The backbone of these constructs is pHH1-SUB1-HA3 which 

was previously used to integrate sequence encoding HA3 into the 3' end of the 

coding region of pfsub1. pHH1-SUB1-HA3 was digested with Hpa I or Bgl II and 

Xho I (1). Cloning of all of the vectors firstly involved PCR amplification of targeting 

regions of pfpplp2 and pfpplp4 using primers which incorporated Hpa I and Xho I 

(for vectors targeting pfpplp2) or Bgl II and Xho I (for vectors targeting pfpplp4), with 

which these regions were then digested (2). To generate pHH1-PPLP2STOPHA3, 

pHH1-PPLP2Δ, pHH1-PPLP4STOPHA3 and pHH1-PPLP4Δ, reverse primers 

included TAA stop codons (STOP). Digested pfpplp2 or pfpplp4 targeting 

sequences were ligated into the backbone (3), generating 6 constructs (A., B., C.). 

This diagram is not drawn to scale. 
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Figure 16. Construction of pHTK-PPLP2 and pHTK-PPLP4 

pHTK-PPLP2 and pHTK-PPLP4 were used to attempt to disrupt the pfpplp2 and 

pfpplp4 genetic loci by double homologous recombination, using the thymidine 

kinase vector system. The vectors comprise two regions of DNA (flank 1 and flank 

2) which flank the protein coding sequences of pfpplp2 and pfpplp4. Between these 

two regions is the human dihydrofolate reductase (hDHFR) cassette which confers 

resistance to WR 99210; if double homologous recombination at the two flanking 

regions occurs, the hDHFR cassette would replace the protein coding sequences of 

pfppl2 and pfpplp4. For negative selection, the vector contains a gene encoding 

thymidine kinase, which causes parasites to be susceptible to Ganciclovir, thereby 

causing double homologous integration to be favoured as through this, the 

thymidine kinase gene is removed. To clone pHTK-PPLP2 and pHTK-PPLP4 

constructs, flank 1 sequences were amplified by PCR from genomic DNA using 

primers containing Sac II and Bgl II and digested with those enzymes (1). pHTK 

was digested with Sac II and Bgl II (2) and flank 1 was ligated into pHTK (3), 

generating pHTK-flank 1. Flank 2 sequence was amplified from genomic DNA using 

primers containing EcoR I and Avr II sites, and the PCR product was digested with 

those enzymes (4). pHTK-flank 1 was digested with EcoR I and Avr II (5) and flank 

2 was ligated into pHTK (6), resulting in pHTK-PPLP2 and pHTK-PPLP4. This 

diagram is not drawn to scale. 
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Table 5. Antibodies used in this work. 

Antibodies used in this work are listed here with the species in which the antibodies 

were raised, whether they are polyclonal or monoclonal and their source. 
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Antibody Polyclonal/ 
Monoclonal 

Species Working 
concentration 

Source 

α-PfSUB1GST Polyclonal Rabbit 1/1000 Mike Blackman (NIMR) 

α-FKBP12 Polyclonal Rabbit 1/1000 Affinity Bioreagents 

α-PPLP2 Polyclonal Mouse 1/100 This work 

α-PPLP4 Polyclonal Mouse 1/100 This work 

α-RAP1 2.29 Monoclonal Mouse 1/1000 Jana McBride (University 

of Edinburgh) 

α-RhopH3 Polyclonal Rabbit 1/100 Irene Ling 

(NIMR) 

α-MSRP2 Polyclonal Mouse 1/1000 Madhu Kaddekoppola 

(NIMR) 

α-AMA1 Monoclonal Mouse 1/1000 Christine Collins (NIMR) 

α-MSP1 X509 Monoclonal Mouse 1/10000 Mike Blackman (NIMR) 

α-SERA5 

24C6.1F1 

Polyclonal Rabbit 1/1000 Robert Stallmach (NIMR) 

α-PfSUB1 

prodomain 

4B4.1F6.B10 

Monoclonal Mouse 1/1000 Malcolm Strath (NIMR) 

α-GFP Monoclonal Mouse 1/500 Roche 

α-Rabbit HRP Polyclonal Goat 1/10000 Sigma 

α-Mouse HRP Polyclonal Goat 1/10000 Sigma 
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Table 6. Protease inhibitors used in PfSUB1 processing assays 

Protease inhibitors used for PfSUB1 processing assays described in section 2.8 are 

listed here with the concentrations at which they were used.  
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Inhibitor Target Protease Class Concentration 
AEBSF Irreversible serine inhibitor 1 mM  

Antipain Reversible cysteine/serine inhibitor 10 μg mL-1  

DCI Irreversible serine inhibitor 10 μM  

E64 Irreversible cysteine inhibitor 10 μM  

EDTA Calcium chelator 5 mM  

EGTA Calcium chelator 5 mM 

Leupeptin Reversible cysteine/serine inhibitor 10 μg mL-1  

Pepstatin Reversible aspartic inhibitor 1 μM  

pHMB Irreversible serine inhibitor 1 mM  

PMSF Irreversible serine inhibitor 1 mM  

TLCK Irreversible serine inhibitor (trypsin-like serine 

proteases) 

10 μM  

TPCK Irreversible serine inhibitor (chymotrypsin-like 

serine proteases) 

10 μM  
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3. Results chapter 1: conditional knockdown of PfSUB1 

3.1. Introduction 

Previous work has shown that the pfsub1 gene cannot be knocked out in asexual 

blood stages, suggesting that it is essential (Yeoh et al., 2007). To date, therefore, 

most studies analysing the function of PfSUB1 have relied on recombinant, purified 

enzyme (Withers-Martinez et al., 2002) for in vitro experiments and a PfSUB1 

inhibitor for use in vivo to inhibit invasion or egress, which is of low potency and 

therefore must be used at high concentrations, which increases the likelihood of off-

target effects (Koussis et al., 2009, Yeoh et al., 2007). To dissect the role of 

PfSUB1 in vivo, a conditional knockdown system would therefore be a very useful 

tool. Previous attempts by members of our laboratory to conditionally regulate 

PfSUB1 using the tetracycline regulatory system were not successful due to 

problems with plasmid rearrangements and the failure to regulate PfSUB1 

expression levels (Koussis, unpublished data).  

Recently, a conditional regulatory system based on fusion of “destabilisation 

domains” to proteins of interest to control protein levels was adapted for use in T. 

gondii and P. falciparum (Herm-Gotz et al., 2007, Armstrong & Goldberg, 2007). 

The destabilisation domains used are mutants of FK-506 binding protein 12 (FKBP), 

which when fused to the protein of interest cause proteasome-dependent 

degradation of the protein (Figure 17). This can be reversed by the addition of a 

stabilising ligand called Shield-1, which binds to FKBP and prevents its degradation. 

In P. falciparum, this system has been used successfully to regulate both 

endogenous and episomally expressed proteins (Dvorin et al., 2010, Armstrong & 

Goldberg, 2007). 

Here, I attempted to conditionally knock down PfSUB1 using two 

complementary approaches (Figure 17) which exploit the FKBP system. The first 

approach, approach A, involved the regulation of endogenous PfSUB1 protein 

levels by generation of a PfSUB1-FKBP fusion parasite line, while approach B 

attempted to inhibit PfSUB1 activity in vivo using a regulatable FKBP-tagged 

PfSUB1 prodomain expressed from an episomal construct. 

3.2. Results 
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3.2.1. Approach A: Conditional regulation of endogenous 
PfSUB1 levels 

The first approach aimed to regulate endogenous PfSUB1 levels directly by fusing 

FKBP to the C-terminus of endogenous PfSUB1. This was performed using single-

crossover homologous integration to fuse the sequence encoding FKBP to the 3' 

end of the coding sequence in the pfsub1 gene (Figure 17). N-terminal fusions are 

more efficiently degraded in the absence of Shield-1 than C-terminal fusions 

(Armstrong & Goldberg, 2007), so this would have been preferred as the best way 

to produce a regulatable PfSUB1 derivative. However, the prodomain of PfSUB1 is 

thought to be released from the protein soon after translation; therefore, if FKBP 

was fused to the N-terminus of PfSUB1, it is likely that it would be rapidly removed. 

Furthermore, if it were possible to fuse FKBP to the N-terminus, integration would 

involve N-terminal modification of the pfsub1 locus. This would require a long 

targeting region, which would be unlikely to integrate at the extreme N-terminus, 

particularly if it had a negative effect on PfSUB1 activity.  

3.2.1.1. A fusion of FKBP and PfSUB1 is catalytically active 

when expressed in Sf9 insect cells 

Histidine or triple haemagglutinin epitope (HA3) tags can be fused to the C-terminus 

of PfSUB1 without interfering with catalytic activity (Yeoh et al., 2007, Withers-

Martinez et al., 2002). However, these tags are relatively small modifications, and 

constructs designed to integrate a GFP tag (27 kDa) into the 3' end of the coding 

sequence of pfsub1 have failed to integrate into the P. falciparum genome (Yeoh et 

al., 2007). This suggests that the C-terminal region of PfSUB1 is important for its 

activity. Thus whether a C-terminal fusion of FKBP, which is 12 kDa in sise, would 

interfere with PfSUB1 activity was unknown. It was therefore important to 

demonstrate that such a fusion did not abolish the intrinsic catalytic activity of 

PfSUB1 before attempting to modify the endogenous pfsub1 gene in P. falciparum. 

PfSUB1 can be expressed and purified in an active, recombinant form (rPfSUB1) in 

a heterologous expression system using Sf9 insect cells (Withers-Martinez et al., 

2002), so this was an ideal system in which to test whether fusion to FKBP 

interferes with rPfSUB1 activity. Insect cells were transiently transfected with the 

plasmid pMIB-PfSUB1-FKBP for the expression and secretion of a C-terminal FKBP 
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fusion of recombinant PfSUB1 (rPfSUB1-FKBP) into the insect cell culture 

supernatant. rPfSUB1 does not undergo autocatalytic processing when 

glycosylated, therefore tunicamycin was used in the insect cell cultures to inhibit N-

glycosylation (Withers-Martinez et al., 2002). Culture supernatants were analysed 

48 h after transfection by Western blot using anti-PfSUB1 antibodies (Figure 18). 

rPfSUB1-FKBP was detected as a 120 kDa precursor which is converted to a 65 

kDa fragment in the presence of tunicamycin. This size shift indicates that rPfSUB1-

FKBP is able to undergo autocatalytic processing, in turn suggesting that the fusion 

protein is catalytically active. As a control, insect cells were transfected with plasmid 

pMIB-PfSUB1 in order to express unmodified recombinant PfSUB1 (rPfSUB1), 

which was secreted as the expected 50 kDa band in the presence of tunicamycin. 

The 15 kDa size difference between processed rPfSUB1 and rPfSUB1-FKBP is 

attributed to the presence of the FKBP domain at the C-terminus of rPfSUB1-FKBP. 

From this experiment, it was concluded that FKBP does not interfere with PfSUB1 

catalytic activity when fused to the C-terminus of the protease. 

3.2.1.2. Integration of FKBP into the 3' end of the pfsub1 coding 

region 

Following on from these encouraging in vitro studies, it was decided to attempt to 

modify the endogenous pfsub1 gene in a similar manner. In previous work, to 

introduce a HA3 tag into the pfsub1 gene, a targeting vector pHH1-SUB1-HA3 was 

used which comprised a fusion between native and recodonised pfsub1 sequence 

to force integration upstream of mutations in the synthetic sequence (Yeoh et al., 

2007). Here, with the aim of introducing FKBP into the 3' end of the protein coding 

sequence of the pfsub1 gene, a similar vector was used, whereby the HA3 tag in 

pHH1-SUB1-HA3 was replaced with FKBP, pHH1-SUB1-FKBP. Parasites were 

transfected with this construct and cycled on and off drug to select against parasites 

harbouring non-integrated input plasmids (see section 1.5). During transfection, 

drug cycling, routine growth and synchronisation, parasites were cultured in 

medium containing 0.5 μM Shield-1. After 4 drug-cycles, the non-clonal parasites 

were analysed by Southern blot. Non-integrated episome was detected at the 

expected size of 7 kb (Figure 19). A band at 5.5 kb was observed in cycles 2 and 4. 

This is close to the expected size of the integrant locus (4.8 kb), but is slightly 

larger. This band could therefore either represent integrant or rearranged episome. 
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The ratio of this band to wild type band intensities did not diminish by cycle 4 and 

the episome band intensity also did not decrease, indicating that cycling had not 

enriched for parasites with the 5.5 kb band. It is possible that FKBP might interfere 

with PfSUB1 activity because both the wild type and episome populations are 

maintained. Cloning was embarked upon, but due to problems with erythrocyte lysis 

it could not be completed due to time constraints. In the absence of a clonal line, 

the non-clonal parasites were analysed to determine whether PfSUB1-FKBP is 

expressed at the protein level. Parasites from cycle 1 (in which there was no 

indication that integration of the plasmid had taken place) and cycle 4 were 

synchronised and cultured for an entire erythrocytic growth cycle (48 h) in the 

presence of absence of Shield-1. Purified schizonts from these cultures were then 

analysed by Western blot using anti-PfSUB1 antibodies (Figure 20). A signal was 

detected in all samples at the same size as PfSUB1 in an untransfected control 

sample of purified late schizonts. A faint band was observed in cycle 1, cycle 4 and 

wild type parasites at around 80 kDa which is likely to correspond to immature 

PfSUB1. From this, it was concluded that PfSUB1-FKBP was not expressed at 

detectable levels. 

3.2.2. Approach B: Conditional inhibition of PfSUB1 using p31 

Subtilisin prodomains are generally potent and highly selective inhibitors of their 

cognate proteases (Fugere et al., 2002, Li et al., 1995). Studies on the prodomain 

of PfSUB1 (p31) have shown that, in accord with the above, it is a potent inhibitor of 

both recombinant and parasite-derived PfSUB1 (Jean et al., 2003), but does not 

inhibit other subtilisin-like serine proteases including BPN’ and subtilisin Carlsberg 

(Jean et al., 2003). As a second approach to PfSUB1 knockdown, I attempted to 

exploit the high potency and selectivity of p31 by using it as an endogenous 

inhibitor of PfSUB1 activity in the parasite. Since our current model suggests that 

PfSUB1 exerts its physiological activity in the PV, it was decided to attempt to target 

an FKBP-tagged p31 to the PV. Regulating the stability of the PfSUB1-FKBP fusion 

with Shield-1 would thus act as a molecular switch for PfSUB1 activity (Figure 17), 

inhibiting PfSUB1 only in the presence of Shield-1. This approach was considered 

to have the advantage that the endogenous pfsub1 gene would not be modified. It 

also avoids continuous culture of parasites in the presence of Shield-1, which is a 

concern as toxicity has been observed when culturing long-term with this compound 
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(Tobin A., Leicester University, unpublished data).  

Structural studies of prodomain-subtilisin complexes have shown that the C-

terminus of the bound prodomain lies in the active site of the cognate enzymes 

(Bryan et al., 1995). For this reason, it was decided that the C-terminus of p31 could 

not be tagged using FKBP as it would likely interfere with the inhibitory activity of 

p31. On the other hand, N-terminal fusion to a hexahistidine tag (6xHis) and S-tag 

has little effect on the binding of recombinant p31 (rp31) to mature PfSUB1 (Jean et 

al., 2003). Therefore, FKBP was fused to the N-terminus of p31. 

3.2.2.1. rFKBP-p31 inhibits rPfSUB1 in vitro  

To confirm that p31 retains its inhibitory capacity when fused to FKBP, initial 

experiments focused on expressing an FKBP-p31 fusion protein in a recombinant 

form, which was then tested against rPfSUB1 in vitro to assess its inhibitory activity. 

The FKBP-p31 fusion protein (rFKBP-p31) was expressed in E. coli and purified by 

ion exchange and gel filtration. rFKBP-p31 was recognised by both anti-prodomain 

and anti-FKBP12 antibodies by Western blot (Figure 21). rFKBP-p31 was not 

quantified because it was not pure following purification. The inhibitory effect of 

rFKBP-p31 was assessed using a fluorogenic peptide substrate based on the 

PfSUB1 cleavage site 1 in SERA5 (Blackman et al., 2002, Yeoh et al., 2007). 

rFKBP-p31 and wild type rp31 (Jean et al., 2003) were incubated with rPfSUB1, 

and the activity of rPfSUB1 was measured by spectrofluorimetry (Figure 22). 

Encouragingly, these results indicated that the rFKBP-p31 is inhibitory to rPfSUB1 

activity. 

3.2.2.2. Overexpression of p31 in P. falciparum is not tolerated 

Having demonstrated that N-terminal fusion of FKBP to rp31 does not ablate its 

inhibitory activity, attempts to regulate PfSUB1 activity in vivo using the modified 

p31 were embarked upon. Before attempting to express regulatable p31, it was 

decided to ascertain whether overexpression of p31 in the PV is tolerated by the 

parasite. If overexpression of p31 were tolerated, it would not be possible to use 

p31 to conditionally regulate PfSUB1 activity. Since p31 is a potent inhibitor of 

rPfSUB1 in vitro, it was thought to be likely that expression of p31 would not be 

tolerated in parasites. GFP has been previously targeted to the PV during late 
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schizogony using a construct (pHH4-GFP) containing the ama1 promoter, which 

drives strong, late stage expression, and the EBA175 signal peptide (Knuepfer, 

unpublished data). For our purposes, a similar vector (pHH4-p31) was used 

wherein GFP was replaced with p31 (Figure 23); parasites were transfected with 

pHH4-p31 and pHH4-GFP as a control. Upon selection in the presence of 

WR99210, drug-resistant parasites were expanded from the transfected cultures, 

initially suggesting that the construct was not deleterious to parasite growth, as was 

expected. However, upon further examination of the construct by plasmid rescue 

and diagnostic restriction digestion of the DNA, it was evident that the pHH4-p31 

plasmid had rearranged, resulting in loss of a segment of the AMA1 promoter 

(Figure 23). This had occurred in four parasite lines, which were transfected at 

different times. Different rearrangements were observed in different transfected 

lines, but all were modifications to the AMA1 promoter. In contrast, no 

rearrangements were observed in pHH4-GFP plasmid rescued from parasites 

transfected with that construct (Figure 23). Since plasmid rearrangement was not 

observed with this control construct, rearrangement is likely to be related to 

expression of p31 in the PV. From this, it was concluded that drug treatment had 

selected for parasites carrying rearranged pHH4-p31. The reason for this is 

unknown, but since the promoter is affected, it is likely that p31 is not expressed or 

that expression levels of p31 are low enough to have little effect on parasite 

development. These experiments imply that overexpression of p31 in the PV is 

deleterious to P. falciparum, presumably by inhibiting PfSUB1 or that it is toxic in 

another way. This was an important finding as it suggests that if PfSUB1 is inhibited 

during egress, parasites do not survive. It also, essentially, validates the use of p31 

as a regulatable inhibitor of PfSUB1 in vivo. 

3.2.2.3. Expression of regulatable p31 in P. falciparum 

These exciting results led us to attempt to obtain regulated expression of p31 in the 

PV. Parasites were transfected with a similar construct expressing an FKBP-p31 

(pHH4-FKBP-p31). As previously, this was under control of the ama1 promoter and 

directed to parasite secretory system by means of an EBA175 secretory signal 

peptide. Following drug selection, schizonts from the transfected culture were 

cultured with or without Shield-1 for 48 h, and then treated with the detergent 

saponin, which lyses the PVM and EPM, allowing the separation of membrane-
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associated and soluble PV and erythrocyte cytosolic proteins. The resulting parasite 

lysates were analysed by Western blot using anti-p31 monoclonal antibodies 

(Figure 24). The transgene-derived FKBP-p31 was expected to be present in the 

soluble fraction since it was expected to be trafficked to the PV. Unexpectedly, no 

signal was detected in parasites, indicating that the FKBP-p31 was not expressed in 

the presence of Shield-1 (or expressed at undetectable levels). Since it was 

possible that the transfection construct had rearranged in a similar manner to 

pHH4-p31, plasmid rescue was performed and the DNA analysed by diagnostic 

restriction digests. Digestion with Cla I and Xma I, which flank the AMA1 promoter 

region, showed that the promoter had not undergone detectable rearrangements 

since no difference between transfected and rescued plasmids was observed 

(Figure 25). Digestion with EcoR I, Cla I and Nhe I also resulted in fragments of the 

expected sizes indicating that the backbone had not rearranged. It was concluded 

that drug treatment had not selected for parasites carrying rearranged parasites, as 

observed with pHH4-p31 (Figure 23). These experiments imply that pHH4-FKBP-

p31 is tolerated by parasites but that it is not expressed at detectable levels. 

3.3. Discussion 

The role of PfSUB1 in vivo is only partly understood. The aim of this project was to 

obtain a conditional knockdown of PfSUB1 in order to address some of the many 

questions we have about this enzyme. Inhibitor studies suggest that PfSUB1 is 

essential for egress and invasion (Yeoh et al., 2007), but it is important to confirm 

these results with a genetic approach because it is possible that the inhibitor used 

has unknown off-target effects, as it is of low potency and therefore must be used at 

high concentrations. By conditionally knocking down PfSUB1, this would provide a 

means of analysing the essential role of this protein in asexual stages.  

In this chapter, conditional knockdown was attempted by two strategies, 

which both used the FKBP destabilisation domain system, involving either direct 

downregulation of the gene product or inhibition of PfSUB1 activity using its own 

prodomain. Both of these approaches rely on FKBP fusion proteins being degraded, 

a process which appears to be proteasome-specific (Banaszynski et al., 2006). 

Whether soluble proteins secreted into the PV can be efficiently regulated using the 

FKBP system is unknown, though there is evidence that proteins which enter the 

secretory system can be regulated, as is the case for falcipain 2 (Armstrong & 
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Goldberg, 2007). Very little is known about how protein levels are regulated outside 

of the parasite, for example in the PV, making the likelihood of downregulation of 

soluble PfSUB1-FKBP and FKBP-p31 questionable. However, an FKBP fusion of 

PfSUB 2, which is released from micronemes during invasion, appears to be 

degraded in the absence of Shield-1 (Matthew Child and Mike Blackman, NIMR, 

unpublished) giving hope that PfSUB1-FKBP might be regulatable. Furthermore, 

downregulation of CDPK5 using FKBP is thought to occur before the enzyme 

reaches its membrane-associated location (which is likely to be cytosolic) (Dvorin et 

al., 2010). A similar scenario could occur with PfSUB1, which is targeted to the 

exonemes and thought to be present as membrane-associated aggregates before it 

is released into the PV (Kostas Koussis and Mike Blackman, NIMR, unpublished). 

However, the success of the FKBP system in P. falciparum and T. gondii appears to 

vary from protein to protein (Armstrong & Goldberg, 2007, Russo et al., 2009b, 

Herm-Gotz et al., 2007), therefore, despite these concerns, the project was 

attempted. 

To validate the first approach to PfSUB1 knockdown whereby FKBP was 

fused directly to endogenous PfSUB1, PfSUB1-FKBP was expressed in insect cells. 

This showed that FKBP does not interfere with the autocatalytic processing of 

PfSUB1 when fused to the C-terminus. It was concluded from this that PfSUB1-

FKBP is catalytically active. To next analyse the function of PfSUB1 in vivo, 

attempts were made to fuse FKBP to PfSUB1 by homologous recombination to the 

pfsub1 gene. Southern blot revealed a population of parasites appearing after 

multiple cycles wherein either integration of the vector had occurred or the targeting 

vector had rearranged. It was not possible to distinguish these two events in this 

Southern blot. In the future, whether integration or plasmid rearrangement has 

occurred will be determined by analysing the vector by plasmid rescue and 

diagnostic digests and Southern blots. Analysis of non-clonal parasites with an anti-

PfSUB1 antibody also suggested that PfSUB1-FKBP is expressed at very low levels 

or not at all. This could be due to a possible rearrangement of the targeting 

construct, leading to no integration and therefore no expression of PfSUB1-FKBP. 

Alternatively, there may be poor expression levels of PfSUB1-FKBP. It is possible 

that in the samples analysed, only a small percentage of the parasites are mutants - 

perhaps, by the time parasites had been cultured and synchronised to prepare 

material for Western blot analysis, episome-carrying wild type parasites may have 
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outgrown the integrant population. One explanation for this is that FKBP may 

somehow interfere with PfSUB1 activity and integration of pHH1-SUB1-FKBP is not 

a desirable modification of PfSUB1, resulting in parasites that have a delayed blood 

stage cycle. Therefore synchronisation would select for parasites which are more 

advanced than pHH1-SUB1-FKBP integrants. It was assumed that rPfSUB1-FKBP 

expressed in insect cells is fully catalytically active but this was not tested 

quantitatively. To evaluate the effect of fusion on enzymatic activity, rPfSUB1-FKBP 

would need to be expressed at high levels, purified, and analysed kinetically in 

comparison to wild type rPfSUB1. It is also possible that fusion to FKBP may affect 

important non-catalytic properties of PfSUB1, such as interaction with its 

macromolecular substrates in the PV and at the merozoite surface. On the other 

hand, failure to detect PfSUB1-FKBP may also be due to clipping of FKBP from the 

C-terminus of PfSUB1 by another enzyme or during secretory transport. To analyse 

these transgenic parasites in further detail, the parasites now need to be cloned so 

that a single population can be analysed. 

The aim of the second approach to PfSUB1 knockdown was based on the 

known highly specific inhibitory properties of the p31. A recombinant FKBP-p31 

fusion protein was first shown to be PfSUB1-inhibitory in vitro. Importantly, 

overexpression of p31 in the PV was not tolerated by parasites, strongly suggesting 

that p31 can be deleterious to the parasite when targeted to the PV. This validates 

the approach, since if p31 were tolerated by parasites, it could not be used for 

conditional knockdown of PfSUB1 activity. Therefore, these findings indicate that 

p31 could be used for conditional inhibition of PfSUB1 activity in vivo. Following 

this, a line carrying a construct for the expression of FKBP-regulatable p31 in the 

PV was generated. However, upon analysis by Western blot of drug-selected 

parasites, no expression of FKBP-p31 was detected. The reason for the failure to 

detect FKBP-p31 is unclear, but presumably reflects very low levels of expression 

from the episome. It is important to note that while anti-p31 antibodies recognise 

rp31 (Malcolm Strath and Mike Blackman, unpublished), whether they recognise 

parasite-derived p31 is unknown since they have never been used to 

unambiguously detect the free prodomain in the parasite. The pHH4-FKBP-p31 

construct was designed to express the FKBP-p31 at high levels, driven by the 

AMA1 promoter (which is a strong, late-stage promoter). The negative Western blot 

data suggest that either the FKBP-p31 is not expressed or the antibodies cannot 
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detect it. The lack of expression could perhaps be confirmed using an anti-FKBP12 

antibody, however it was found that this antibody only reliably detected purified 

recombinant proteins (data not shown). Aside from problems with antibody 

sensitivity, if the parasites are not expressing FKBP-p31, there are several 

explanations for this. It is possible that degradation of the FKBP-p31 is very efficient 

and requires higher concentrations of Shield-1 for stabilisation than are commonly 

used (in this study 0.5 μM was used, which was sufficient to stabilise YFP in a 

previous study (Armstrong & Goldberg, 2007). Future experiments could analyse 

the effect of higher concentrations of Shield-1. On the other hand, FKBP-p31 may 

be being degraded in the secretory transport system and it may have an intrinsic 

signal for degradation after removal from PfSUB1 catalytic domain. However, the 

fact that the non-regulatable p31 construct is not tolerated argues against this. 

Plasmid rearrangements could also cause a lack of expression. Plasmid rescues 

from pHH4-FKBP-pro transfected parasites indicated that no major rearrangements 

had occurred, however subtle rearrangements which are difficult to visualise by 

diagnostic digestion could have taken place. These could be identified by DNA 

sequencing. Alternatively, if the plasmid is intact, low expression levels may result 

from low copy number. Increasing the concentration of blasticidin in the culture 

medium with parasites transfected with episomal constructs with blasticidin-

selectable markers has been shown to select for higher copy number (Mamoun et 

al., 1999, Epp et al., 2008). There is no evidence that the same effect occurs with 

WR99210, however this could be determined experimentally and might provide a 

solution to low copy number. Alternatively, the construct could be integrated into a 

redundant genomic locus, thereby avoiding problems with copy number.  

If a conditional knockdown line is obtained in the future, several further 

experiments will be carried out to pursue the questions under investigation here. 

These will include analysis of conditional knockdown parasites using proteomics to 

analyse the global processing of proteins during egress with and without PfSUB1, 

which might result in the identification of new PfSUB1 substrates. The current 

model is that inhibition of PfSUB1 prevents schizonts from rupturing. This may be 

because breakdown of the PVM is blocked, though this has not been confirmed 

experimentally. To examine this, EM studies could be carried out on conditional 

knockdown parasites to determine whether the PVM remains intact upon schizont 

maturation in the absence of PfSUB1. Furthermore, since the merozoite surface is 
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modified by PfSUB1, this will be similarly analysed by EM and might reveal 

detectable differences in surface structure in the presence or absence of PfSUB1. 

Parasites could also thereby be analysed for unexpected subcellular deformities 

resulting from PfSUB1 knockdown, in the event that PfSUB1 is involved in currently 

unknown pathways. In addition to these questions, a conditional knockdown line will 

be used to analyse PfSUB1 function in more detail. Since deleterious mutations 

cannot be integrated into the endogenous locus, episomal expression of mutated 

pfsub1 genes could be used to attempt to complement PfSUB1 knockdown. These 

could include catalytic triad or active site mutations to alter the specificity of 

PfSUB1, or changes in the promoter region to analyse how PfSUB1 is trafficked to 

exonemes. Also, PfSUB1 cannot be used to complement P. berghei SUB1 

(PbSUB1), as was attempted by double crossover integration into P. berghei 

(Sharon Yeoh, Mike Blackman and Rita Tewari, NIMR, unpublished data). Why 

PfSUB1 cannot complement PbSUB1 is unclear; this could be addressed using the 

conditional knockdown line, by attempting to complement PfSUB1 knockdown with 

PbSUB1 or other orthologues. If obtained in the future, the two conditional 

knockdown lines described in 3.2.1 and 3.2.2 could be analysed side by side as 

there should be no phenotypic differences between the parasites in which PfSUB1 

is downregulated by destabilisation mediated by fusion to FKBP, or inhibited by 

overexpression of p31 in the PV. In all cases, growth assays, invasion and egress 

assays will be used to establish phenotypic differences where PfSUB1 is knocked 

down. Live imaging will be used to assess whether parasites can invade and egress 

in the absence of PfSUB1. It would also be interesting to culture PfSUB1-FKBP 

parasites in the absence of Shield-1, to see whether parasites are able to revert to 

being Shield-1 independent as Dvorin and colleagues found with CDPK5-FKBP 

knockdown parasites (Dvorin et al., 2010). Further experiments could also include 

mechanical disruption of SUB1-FKBP schizonts to determine whether merozoites in 

which PfSUB1 is knocked down are invasion-competent. As PfSUB1 processes 

important proteins on the merozoite surface, and is thereby thought to “prime” 

merozoites for invasion, knockdown parasites are likely to be non-invasive. 

The importance of PfSUB1 in egress and invasion is unclear. PfSUB1 is 

responsible for the proteolytic maturation of several merozoite surface and PV 

proteins; though whether any of these processes are the reason why PfSUB1 is 

essential to parasite survival is unknown. In conclusion, a conditional knockdown of 
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PfSUB1 would be hugely informative to analyse the function of this protein in vivo. 

The experiments presented here show that p31 and PfSUB1 retain their intrinsic 

activities when expressed in heterologous systems as FKBP fusion proteins. 

However, translating these studies into to cultured P. falciparum parasites has been 

and remains a difficult challenge that must be overcome to analyse the function of 

this important protease in the asexual blood stages of P. falciparum. 
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Figure 17. Conditional knockdown of PfSUB1 using the FKBP destabilisation 

domain system 

A. The FKBP destabilisation domain system relies on fusion of FKBP (DD) to the 

protein of interest, which results in the protein being degraded in the absence of 

stabilising small-molecule ligand Shield-1. In the presence of Shield-1, proteins are 

stabilised and are not degraded. Attempts to conditionally regulate PfSUB1 in vivo 

comprised two different approaches. B. In the first approach, PfSUB1 would be 

directly regulated by a C-terminal fusion of the endogenous protein to FKBP 

(PfSUB1-FKBP parasites). PfSUB1-FKBP parasites were expected to have a wild 

type egress phenotype in the presence of Shield-1, but be unable to egress in its 

absence. C. In the second strategy, parasites expressing an episomal copy of the 

p31 fused N-terminally to FKBP were generated (FKBP-p31 parasites). These were 

expected to have a defect in egress in the presence of Shield-1, and appear wild 

type in its absence. 
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Figure 18. PfSUB1-FKBP expressed in Sf9 insect cells is catalytically active 

Sf9 insect cells were transiently transfected with pMIB-PfSUB1-FKBP and pMIB-

PfSUB1, in the presence (TN+) or absence (TN-) of tunicamycin. 1 or 1.5 μM 

Shield-1 were used to stabilise expression. In the absence of tunicamycin, anti-

FKBP12 antibodies (Affinity Bioreagents) recognise a 120 kDa full length precursor. 

In the absence of tunicamycin, PfSUB1-FKBP is again observed as a 120 kDa full 

length (presumably N-glycosylated) precursor. In the presence of tunicamycin and 

two different concentrations of Shield-1, full conversion to a smaller 70 kDa protein 

is observed, presumably due to autocatalytic removal of p31. Under the same 

conditions, wild type PfSUB1 (rPfSUB1) is observed as a processed 50 kDa band. 
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Figure 19. FKBP may be integrated into the pfsub1 locus in P. falciparum 

A. Plasmid pHH1-PfSUB1-FKBP contains 345 bp of synthetic recodonised 

sequence (synthetic) encoding the C-terminal 115 residues of PfSUB1 fused in 

frame to sequence encoding FKBP. This was fused in-frame to 598 bp of upstream 

native pfsub1 sequence (native), to form the targeting sequence (target), 

homologous to a target region in the pfsub1 locus. The predicted structure of the 

pfsub1 genomic locus using the restriction enzyme Acc I following integration of 

pHH1-PfSUB1-FKBP is shown. B. Southern blot of genomic DNA extracted from 

the parental 3D7 strain and non-cloned transfected pHH1-PfSUB1-FKBP parasites 

from drug cycle 1 (c=1), cycle 2 (c=2) and cycle 4 (c=4), digested with Acc I. The 

blot was probed with a [32P]-labelled 800 bp pfsub1 fragment (probe). DNA from 

untransfected 3D7 P. falciparum was used as a control (3D7). A band at the 

predicted size of 2.1 kb for the wild type locus is observed in all digests. Episome is 

detected in all cycles as a 7 kb band. A 5.5 kb band is observed in c=2 and c=4 

DNA  which is absent from the 3D7 parental line and differs from the episome band, 

which is either indicative of plasmid rearrangement or of integration of the plasmid 

into the pfsub1 locus, since the expected size for integration is 4.8 kb. 
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Figure 20. PfSUB1-FKBP is not detected in a non-clonal line of parasites 

transfected with pHH1-SUB1-FKBP 

pHH1-SUB1-FKBP-transfected parasites from drug cycle 1 (c=1) and cycle 4 (c=4) 

were synchronised and cultured in the presence (+) or absence (-) of Shield-1 for 

one cycle. Schizonts were isolated and solubilised directly into SDS sample buffer, 

and separated by SDS-PAGE alongside untransfected P. falciparum 3D7 schizonts 

(3D7) and recombinant PfSUB1 (rPfSUB1). These samples were probed by 

Western blot using anti-PfSUB1 antibodies. PfSUB1 is detected in all lanes at the 

same sizes as in the 3D7 control sample. A faint band at 80 kDa is present in some 

of the PfSUB1-FKBP schizonts (arrowed) which is likely to be unprocessed PfSUB1 

precursor.  
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Figure 21. Expression and purification of rFKBP-p31 

rFKBP-p31 was expressed in E. coli and purified by anion exchange and gel 

filtration, then subjected to SDS-PAGE and Coomassie staining along with rp31 (A). 

rFKBP-p31 was not completely pure and therefore it was not quantified in terms of 

protein concentration. rFKBP-p31 was detected using anti-FKBP12 (B) or anti-p31 

antibodies (C). Both antibodies recognise a 42 kDa band in the FKBP-p31 tracks, 

plus a 110 kDa band which is probably an SDS-resistant aggregate of rp31. 
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Figure 22 Inhibition of recombinant PfSUB1 with recombinant FKBP-p31  

Recombinant PfSUB1 was incubated with a rhodamine-labelled SERA5 site 1 

peptide in PfSUB1 digestion buffer, and the increase in fluorescence intensity 

measured by spectrofluorimetry. After 25 minutes, purified rFKBP-p31 or rp31 was 

added to each well and measurements were continued. As controls, two wells were 

set up where no p31 was added (positive control), or no PfSUB1 (negative control). 

Upon addition of p31 or FKBP-p31, no further increase in activity is observed. 
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Figure 23. Constitutive expression of p31 in P. falciparum is not tolerated: plasmid 

rescue attempts show selection for drug-resistant parasites harbouring plasmid with 

a rearranged promoter 

A Parasites were transfected with one of each of 3 plasmids designed for 

transgenic expression of either unmodified p31 (pHH4-p31), GFP (pHH4-GFP) or 

FKBP-p31 (pHH4-FKBP-p31). Expression was driven by the AMA1 promoter and in 

each case the protein was N-terminally fused to the secretory signal peptide of 

EBA175, which has previously been used to target proteins to the PV (Ellen 

Knuepfer and Tony Holder, NIMR, unpublished). Parasites carrying these plasmids 

were selected by use of the human dihydrofolate reductase cassette (hDHFR) 

which confers resistance to WR 99210. Unique restriction enzyme sites are shown 

in these schematics and the expected sizes from digestion with these enzymes. 

These schematics are not drawn to scale. B. Clones from plasmid rescues (PR) 

from parasites transfected with pHH4-pro and pHH4-GFP were analysed by 

restriction digest using Cla I and Xma I to screen for rearrangements in these 

constructs. pHH4-p31 DNA samples were extracted from 4 independent 

transfections (PR1-4). Digests were compared to digests of Maxiprep DNA (MP) 

used for transfections. Digestion of DNA extracted from parasites transfected with 

pHH4-GFP indicated that the promoter was intact and ran at the same size as MP 

DNA. Digestion of PR from pHH4-p31 parasites using Cla I and Xma I resulted in 

smaller promoter fragments compared to MP DNA. These fragments are not the 

same size in all PRs. 
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Figure 24. Expression of transgenic FKBP-p31 is not detected in parasites 

transfected with plasmid pHH4-FKBP-p31 

pHH4-FKBP-p31-transfected parasites expanded under drug selection were 

synchronised and cultured for one cycle in the presence or absence of 0.5 μM 

Shield-1. Schizonts were isolated on a Percoll gradient, then lysed with saponin and 

centrifuged to separate soluble RBC, exported or PV proteins (S) and membrane-

associated proteins or parasite soluble proteins (P). In panel A, samples were 

probed with anti-p31 monoclonal antibody 4B4.1F6.B10. rFKBP-p31 was used as a 

positive control. No signal was observed in these samples. B. To confirm that late 

schizonts expressing AMA1 had been purified, the same samples were probed with 

anti-AMA1 antibody CRC3 R2. 
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Figure 25. Diagnostic digests of rescued FKBP-p31 plasmids indicate that the 

plasmid has not rearranged 

Plasmid rescue from parasites transfected with pHH4-FKBP-p31 yielded 4 plasmid 

clones (PR1, PR2, PR3, PR4). These were digested with either Cla I and Xma I 

(CX) or Cla I, Nhe I and EcoR I (CNE) and compared to digestion patterns of the 

pHH4-FKBP-p31 input transfection DNA (MP). Expected sizes are indicated in 

Figure 23. Compared to the digestion pattern observed with pHH4-FKBP-p31 MP, 

PR1-4 are similar. There is an additional band at 6 kb in the MP sample, which is 

likely to be supercoiled DNA. 
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4. Results chapter 2: spatiotemporal analysis of PfSUB1 
activity 

4.1. Introduction 

PfSUB1 is thought to be active in the PV just prior to or during egress but the timing 

of its activity is poorly understood. Egress occurs over a period of just minutes 

(Dvorak et al., 1975, Glushakova et al., 2005, Gilson & Crabb, 2009), therefore 

determining at which point in the egress process PfSUB1 becomes active is a 

considerable challenge. This is because it is difficult to synchronise parasites with a 

tight enough window to be able to discriminate between pre-egress and later stages 

by Western blot or IFA. Such studies are further complicated by the lack of 

complete understanding of egress itself. Analysing live cells by live microscopy 

would avoid some of these problems as a single schizont could be monitored over 

time. This would be aided by the use of a visible reporter of PfSUB1 activity which 

could be used in live cells e.g. a PfSUB1 substrate which is designed to report 

when PfSUB1 is active. This would enable the visualisation of PfSUB1 activity by 

live fluorescence microscopy combined with simultaneous brightfield microscopy to 

monitor when egress occurs. 

Förster resonance energy transfer (FRET) effect is the non-radiative transfer 

of energy from a donor to an acceptor fluorophore (e.g. cyan and yellow fluorescent 

proteins (CFP, YFP)). Typically, for FRET to occur, the two fluorophores must have 

overlapping absorption and emission spectra and be spatially adjacent, within 80-

100Å of one another. The efficiency of the transfer is dependent on the relative 

orientation of the donor and acceptor dipole moments, the spectral overlap of the 

donor and acceptor, and the distance between the fluorophores (Förster, 1948). 

FRET is used for a variety of applications including examining protein-protein 

interactions or conformational changes within proteins and, importantly, to monitor 

protease activity, and have been widely applied in live cells. Protease activity can 

be monitored by using FRET partners that are linked using flexible polypeptides 

containing protease-specific cleavage sites; thus protease activity is indicated by a 

decrease in acceptor fluorophore emission (a loss of FRET) (Figure 26). The first 

protease-sensitive FRET reporter was developed by Mitra et al, who demonstrated 

that blue and red fluorescent proteins connected by a Factor Xa-sensitive linker 
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could be used to detect Factor Xa activity in vitro (Mitra et al., 1996). Since then, 

protease-sensitive FRET reporters have been expressed in various cell types for 

real time experiments in vivo, monitoring protease activity spatially and temporally 

using live fluorescence microscopy. Examples of this include studies on caspase 3 

activity during apoptosis using a caspase 3-sensitive FRET reporter in HeLa cells 

(Luo et al., 2001, Rehm et al., 2002, Takemoto et al., 2003) and in live Drosophila 

melanogaster salivary glands (Takemoto et al., 2007). Similarly, analysis of β-

secretase activity was mediated using a FRET reporter anchored to the cell surface 

(Lu et al., 2007).  

To date, protease-sensitive FRET reporters have not been used in P. 

falciparum. The aim of the work described in this chapter was to use PfSUB1-

sensitive FRET to monitor PfSUB1 spatiotemporal activity in P. falciparum in real 

time. The PfSUB1-sensitive reporter was targeted to the PV in late schizonts, so 

that when PfSUB1 is released into the PV during the final stages of egress, it would 

come into contact with the FRET reporter. Cleavage of the reporter by PfSUB1 was 

anticipated to result in a change in YFP to CFP emission (Figure 26). The feasibility 

of PfSUB1-sensitive FRET was tested in vitro using recombinant enzyme and a 

recombinant FRET reporter, before embarking on studies in cultured P. falciparum 

parasites. 

4.2. Results 

4.2.1. A recombinant PfSUB1-sensitive FRET reporter is cleaved 
by PfSUB1 in vitro 

To determine whether a PfSUB1-sensitive FRET reporter could be used to detect 

PfSUB1 activity, the system was first validated in vitro using recombinant enzyme 

and reporter. Two reporters were used, both comprising YFP and CFP connected 

via an 11-residue linker containing a protease cleavage site, with an N-terminal 

hexahistidine tag (6xHis) attached to YFP for purification purposes. One reporter 

(FRET-ELA) contained an elastase (a serine protease) cleavage site 

(EISYEACGRRI), which PfSUB1 was expected not to cleave; this therefore acted 

as the negative control. The other reporter (FRET-SERA5) contained a linker that 

included the SERA5 site 1 cleavage site (EIKAETEDDDF), previously shown to be 

an efficiently-cleaved PfSUB1 substrate (Yeoh et al., 2007, Koussis et al., 2009). To 
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generate a construct for the expression of recombinant FRET-SERA5 (rFRET-

SERA5), the plasmid pRSFRET-ELA, which encodes recombinant FRET-ELA 

(rFRET-ELA), was modified, replacing  sequence encoding the elastase cleavage 

site with sequence encoding the SERA5 site 1 site, to make the construct 

pRSFRET-SERA5. Cloning of this construct was extremely challenging, probably 

because YFP and CFP are almost identical in DNA sequence. Several strategies 

were explored to produce pRSFRET-SERA5. First, site-directed mutagenesis was 

performed to mutate the linker sequence. However, this resulted in truncated gene 

products when attempting to express proteins from this construct in E. coli. Second, 

the CFP gene was amplified by PCR using primers encoding the new linker region, 

but this resulted in truncated DNA sequences (despite many attempts at PCR 

optimisation). Finally, the construct was made by ligating long oligonucleotides 

encoding the linker region into the vector; extensive screening was carried out to 

identify correct clones.  

Once the construct had been made, both reporters were expressed in E. coli 

and purified using nickel-histidine chelation. The resulting purified proteins are 

shown in Figure 27; comparable amounts of both proteins are present in these 

samples. The sensitivity of the reporters to PfSUB1 was assessed by incubating 

equal amounts of FRET-ELA and FRET-SERA5 with recombinant PfSUB1 

(rPfSUB1) and analysing by SDS-PAGE and spectrofluorimetry. Firstly, the 

reporters were incubated with rPfSUB1, or rPfSUB1 plus recombinant PfSUB1 

prodomain (rp31; a highly potent inhibitor of PfSUB1), or buffer alone for 2 hours at 

37°C, and then separated by SDS-PAGE. Coomassie staining revealed that rFRET-

SERA5 was cleaved by rPfSUB1 whilst the rFRET-ELA was not, as was expected 

(Figure 27). Cleavage was inhibited in the presence of rp31, indicating that 

cleavage was specific to rPfSUB1. Next, to determine whether cleavage results in a 

decrease in FRET effect over time, the experiment was repeated and the 

fluorescence intensity of the reporters was measured in a spectrofluorimeter by 

exciting at 435 nm (the peak excitation wavelength of CFP) and detecting emission 

at 485 nm (the peak emission wavelength of CFP) or 528 nm (the peak emission 

wavelength of YFP). This confirmed that the reporters both exhibit FRET, and that 

cleavage of rFRET-SERA5 resulted in a loss of FRET as expected (Figure 28). This 

loss of FRET did not occur in the presence of rp31, confirming that the effect is due 

to cleavage by rPfSUB1. These data provide evidence that FRET-SERA5 can act 
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as a reporter for PfSUB1 activity.  

In order to determine whether rFRET-SERA5 had been cleaved at the 

predicted site, larger amounts of the reporter were incubated with rPfSUB1 to 

generate the two cleavage products, with the aim of determining the N-terminal 

sequence of the monomeric CFP. For this reason, CFP had to be separated from 

the YFP. The 6xHis at the N-terminus of YFP was therefore used to deplete 6xHis-

tagged YFP by incubating the mixture with NiNTA agarose beads (Figure 29). The 

unbound cleavage product containing CFP (which has no purification tags) was 

concentrated and subjected to N-terminal sequencing. This confirmed its N-terminal 

sequence as TEDDDF, indicating that the reporter was indeed cleaved within the 

SERA5 site 1 linker at the predicted EIKAE↓TEDDDF bond (Figure 29). These 

encouraging results confirmed that the FRET-SERA5 reporter is specifically cleaved 

by PfSUB1 at the expected site. 

4.2.2. Expression of a PfSUB1-sensitive FRET reporter in P. 

falciparum 

Following on from these promising results, attempts were made to generate a 

parasite line expressing FRET-SERA5, with the ultimate aim of monitoring PfSUB1 

activity in vivo by live fluorescence microscopy. Construct pHH4FRET-SERA5 was 

designed to obtain expression of FRET-SERA5 driven by the AMA1 promoter 

(which drives strong, late expression of AMA1 in schizonts). FRET-SERA5 was 

targeted to the PV using the secretory signal peptide of the microneme protein 

EBA-175, which has previously been used in combination with the AMA1 promoter 

to direct GFP to the PV (Ellen Knuepfer and Tony Holder, NIMR, unpublished data). 

The construct was transfected into P. falciparum and parasites harbouring the 

plasmid selected under drug pressure. To confirm that FRET-SERA5 was 

expressed in the P. falciparum line and in the soluble fraction (which would be 

consistent with localisation to the PV), pHH4FRET-SERA5 parasites were 

synchronised and lysed using saponin to separate the membrane-associated and 

parasite proteins (pellet) from the soluble EC and PV proteins (supernatant). 

Analysis of these samples by Western blot using anti-GFP antibodies detected a 60 

kDa band in the pellet and 60 kDa and 30 kDa bands in the pellet and supernatant 

(Figure 30). These sizes correlate with full length and cleaved reporter respectively, 

suggesting that FRET-SERA5 is expressed as a soluble protein and may be 
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cleaved by PfSUB1. Unfortunately, these samples degraded during storage at -

20°C and further experiments could not be carried out with them. Attempts to 

resynchronise parasites and repeat the experiment resulted in the failure to detect 

any signal with anti-GFP antibodies, suggesting that the parasites had stopped 

expressing FRET-SERA5. Parasites were therefore transfected again and a second 

transfectant line was established. Western blot analysis of schizont extracts from 

this line, however, (Figure 30) detected a 60 kDa band which is the same size as 

full length rFRET-SERA5. However, no signal at the same size as recombinant CFP 

was detected, perhaps due to the low levels of FRET-SERA5 in the supernatant or 

the absence of cleavage. Samples were reprobed using anti-SERA5 antibodies 

which indicated that lysis of the parasites was incomplete (SERA5 is a PV protein 

which should only be detected in the supernatant of the samples if lysis is 

complete). However, this does not explain the difficulty in detecting the reporter by 

Western blot as it would therefore be expected to be detectable in the saponin 

pellet. Since expression of FRET-SERA5 from pHH4-FRET-SERA5 is driven by the 

AMA1 promoter, expression of AMA1 could be used to confirm that parasites of a 

stage where the AMA1 promoter is active, i.e. late schizonts, were present in these 

samples. AMA1 is membrane-associated and would therefore not be expected to 

be present in the saponin supernatant. To this end, the saponin pellets and 

supernatants were probed with anti-AMA1 antibodies, which detected AMA1 in the 

membrane-associated fraction (Figure 30). Hence, this confirms that the parasite 

preparations used to produce the extracts contained late schizonts. FRET-SERA5 

could not be detected by live fluorescence imaging or by IFA using anti-GFP 

antibodies, in either of the parasite lines examined. These data suggest that a 

PfSUB1-sensitive reporter can be expressed in P. falciparum, but that low 

expression levels are a challenge to be overcome in future work. 

4.3. Discussion 

The aim of this project was to follow PfSUB1 activity in the parasite in real time. To 

this end, the feasibility of PfSUB1-sensitive FRET was examined in vitro, and the 

same reporter was expressed episomally in P. falciparum. A recombinant FRET 

reporter exhibiting PfSUB1-sensitivity was successfully developed to detect PfSUB1 

activity in vitro. The finding that a PfSUB1-sensitive reporter could be engineered in 

vitro is in itself is very interesting – the reporter could be exploited further in vitro. 
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Since it is a fluorescent, proteinaceous PfSUB1 substrate, it offers advantages over 

synthetic peptides in that it more closely represents a real PfSUB1 substrate. This 

reporter could be further used to characterise PfSUB1 activity by, for example, 

inserting randomised linker regions and assaying cleavage by spectrofluorimetry, as 

has been carried out with a hepatitis cysteine protease 3C(pro)-sensitive reporter 

(Huitema & Eltis, 2010). The recombinant reporter could also be used to identify 

inhibitors of PfSUB1 using spectrofluorimetric assays. 

Despite the promising results obtained in in vitro studies, the project 

stumbled at expression of the PfSUB1-sensitive FRET reporter in P. falciparum. 

Establishing and maintaining high levels of FRET-SERA5 expression was a major 

difficulty. The reason for this is unclear. Several studies have reported expression of 

GFP in P. falciparum (examples include (Klemba et al., 2004a, Treeck et al., 2009, 

Tonkin et al., 2004)), so expression of a fusion between two fluorescent proteins 

was not expected to be problematic. In the first instance, no signal was observed by 

live fluorescence microscopy nor by live-cell IFA, suggesting that the reporter was 

not expressed at very high levels. It was also difficult to detect FRET-SERA5 by 

Western blot. Poor expression levels may be due to the fact that the AMA1 

promoter drives expression in a short time window, therefore there is insufficient 

time for the reporter to accumulate at high levels in the PV before schizont rupture. 

For unknown reasons, the promoter may also be unable to drive high expression 

levels of this protein. In future work the AMA1 promoter could perhaps be replaced 

with a constitutive promoter, which may drive higher expression levels. However, 

the risk of this is that excessive levels of FRET reporter might be toxic to parasites. 

Transgenic parasites appeared to lose expression of FRET-SERA5 after continued 

culture, which suggests that expression of the reporter was somehow deleterious to 

the parasite; therefore, using a constitutive promoter might result in similar 

problems. Alternatively, low expression levels could be caused by the selection of 

parasites carrying episomes with low copy numbers. This could perhaps be 

resolved by inclusion of the rep20 segregation sequence into the plasmid 

(O'Donnell et al., 2002). This might enable better plasmid segregation, so that more 

parasites are carrying more episomal copies per cell, thereby leading to higher 

levels of expression. Alternatively, the reporter could be integrated into a redundant 

genomic locus and a clonal line established, so that expression is maintained. 

Future work may involve transfection of cultured P. knowlesi parasites with pHH4-
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FRET-SERA5, with the aim of integrating the construct into the genome 

(collaboration with Robert Moon, NIMR). P. knowlesi is very amenable to genetic 

manipulation; linear constructs can be transfected which results in a higher 

transfection efficiency and more rapid homologous recombination compared to that 

of cultured P. falciparum parasites (van der Wel et al., 1997, Kocken et al., 2002, 

Wel et al., 2004). P. knowlesi parasites are also larger in size than P. falciparum, 

therefore there are larger PV-filled spaces in between parasites, which might be 

easier to analyse by microscopy compared to P. falciparum. However, it has not 

been confirmed that P. knowlesi SUB1 (PkSUB1) cleaves the SERA proteins, and if 

it does, it is unknown whether it will cleave the P. falciparum SERA5 linker 

sequence in the reporter. One way to evaluate this would be to test the sensitivity of 

rFRET-SERA5 to PkSUB1 in vitro using recombinant PkSUB1 (if this can be 

expressed in vitro). Homology modelling indicates that the architecture of the 

PkSUB1 active site groove is very similar to that of PfSUB1 (Chrislaine Withers-

Martinez and Mike Blackman, NIMR, unpublished), so it is possible that rFRET-

SERA5 is PkSUB1-sensitive.  

Once a parasite line expressing the FRET reporter is established, the 

system will need to be validated in several steps. Firstly, it will be important to show 

that FRET-SERA5 is indeed targeted to the lumen of the PV. This could be 

confirmed by differential streptolysin O (which ruptures the EPM and not the PVM) 

and saponin fractionation; here, saponin fractionation confirmed that FRET-SERA5 

is in the soluble fraction of the PV or RBC but streptolysin O treatment could 

exclude that FRET-SERA5 is exported to the RBC. Colocalisation of the FRET 

reporter by IFA with a well-established PV marker such as SERA5 would confirm 

this. Secondly, a time course following cleavage of the reporter by Western blot and 

IFA during egress would confirm that, if a loss of FRET is observed during egress 

by live microscopy, this could be correlated with the reporter being cleaved. It will 

also be important to show that the reporter is being specifically cleaved by PfSUB1. 

This could be demonstrated by two complementary methods. Firstly, purified 

schizonts could be incubated with rPfSUB1 in vitro, using an assay which was 

previously used to identify PfSUB1 substrates (Koussis et al., 2009). Briefly, a 

schizont lysate is obtained and incubated with recombinant PfSUB1, then subjected 

to analysis by Western blot using anti-GFP antibodies to monitor cleavage. 

Secondly, it will be important to confirm that FRET-SERA5, if cleaved during 
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egress, is cleaved by PfSUB1. FRET reporters tend to be highly resistant to non-

specific proteolysis (Bokman & Ward, 1981, Felber et al., 2004); GFP can be 

expressed in P. falciparum without being degraded, therefore the likelihood of 

FRET-SERA5 being cleaved by another protease is low. However, the FRET linker 

region is highly flexible, which might make it susceptible to proteolysis by enzymes 

other than PfSUB1; therefore non-specific proteolysis would need to be confirmed. 

To this end, the two fragments of the reporter could be pulled down using anti-GFP 

antibodies and the C-terminal portion could then be purified by depleting His-YFP 

(as was carried out with recombinant protein in this chapter). Subsequently, N-

terminal sequencing could be used to confirm whether the linker was cleaved at the 

correct position. This, again, would rely on high levels of FRET-SERA5 expression 

in parasites. 

If these validation studies provide encouraging results, live imaging and IFA 

time courses could be carried out to analyse when PfSUB1 is active in the PV 

during the course of the egress pathway. Future experiments could look at the 

influence of protease inhibitors or other egress-inhibitory compounds on PfSUB1 

activity to determine when it is active in relation to other proteases or events in 

egress. For example, E64, leupeptin and antipain block egress, but not PfSUB1 

activity (Withers-Martinez et al., 2002, Hadley et al., 1983, Dluzewski et al., 1986, 

Glushakova et al., 2008, Glushakova et al., 2005), but whether PfSUB1 is active in 

the PV of parasites treated with these inhibitors is unclear. Treatment of parasites 

expressing FRET-SERA5 with the aforementioned inhibitors would indicate whether 

PfSUB1 is regulated by these inhibitors. Another interesting compound to use for 

treatment of FRET-SERA5 parasites would be compound 1, which inhibits the 

GMP-dependent protein kinase, PKG (Taylor et al., 2009), and prevents processing 

of SERA5 and MSP1 (Dvorin et al., 2010). It would be of interest to determine 

whether PfSUB1 is active in compound 1-treated parasites because mechanical 

disruption of compound-1 treated parasites are not viable (Taylor et al., 2009), 

which could be related to PfSUB1 being inactive. Furthermore, current data from 

our lab (Christine Collins and Mike Blackman, NIMR, unpublished) suggests that 

PKG may be responsible for the release of PfSUB1 from exonemes, which could 

explain the potent inhibition of egress observed in the presence of compound 1. 

The PfSUB1-sensitive FRET system could be applied to observe whether PfSUB1 

is indeed released and active in the PV in the presence of compound 1. 
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The studies presented here show that it is possible to generate a PfSUB1-

sensitive FRET reporter which is cleaved in vitro, and may be cleaved by PfSUB1 in 

vivo. A future challenge will be to establish high enough expression levels to be 

able to visualise PfSUB1 activity in live parasites. If successful, this system could 

facilitate very interesting studies on the spatiotemporal activity of PfSUB1 prior to 

and during egress.  
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Figure 26. PfSUB1-sensitive Fluorescence Resonance Energy Transfer 

A. FRET is the non-radiative transfer of energy between two fluorophores with 

overlapping absorption and emission spectra. The donor fluorophore e.g. CFP, is 

excited by energy at a peak wavelength of 435 nm and emits energy at a maximum 

wavelength of 485 nm wavelength. This wavelength is able to excite the acceptor 

fluorophore, which emits at a peak wavelength of 528 nm. The transfer of energy 

between the fluorophores resulting in emission from the acceptor is termed the 

“FRET effect.” In a PfSUB1-sensitive FRET reporter, the two fluorophores are kept 

in close contact via a PfSUB1-sensitive linker. Cleavage by PfSUB1 releases two 

free fluorophores, CFP and YFP. When these are excited at 435 nm, emission at 

485 nm occurs but not at 528 nm as the acceptor is no longer excited. B. Schematic 

depicting PfSUB1-sensitive FRET being used to monitor PfSUB1 spatiotemporal 

activity in vivo in cultured P. falciparum. The PfSUB1-sensitive reporter is 

expressed in the PV in late schizonts. When PfSUB1 is released from exonemes 

into the PV, a change from YFP (yellow) to CFP (cyan) signal is expected as the 

reporter is cleaved by PfSUB1. 
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Figure 27. Purified recombinant FRET-SERA5 is cleaved by rPfSUB1 

A. rFRET-SERA5 and rFRET-ELA were expressed in E. coli and purified by nickel-

histidine chelation chromatography. Eluted proteins were separated by SDS-PAGE; 

5 μl or 10 μl of each sample was run so that the relative amounts of each reporter 

could be compared, showing that similar amounts of protein are present in each 

preparation. B. The recombinant proteins were incubated for 2 hours at 37°C with 

buffer only (-), with rPfSUB1 (+) or with rPfSUB1 plus the PfSUB1 prodomain, rp31 

(++). rp31 is present as a prominent band in ++ samples and is indicated. Only 

rFRET-SERA5 was cleaved in the presence of PfSUB1, and this was blocked by 

the presence of rp31. The full length reporters are indicated, as are the monomers 

of YFP and CFP which are released after cleavage (which migrate as a closely-

spaced doublet on SDS PAGE). 
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Figure 28. rFRET-SERA5 exhibits FRET, which is abolished upon cleavage by 

PfSUB1 

rFRET-SERA5 and rFRET-ELA were incubated with buffer, with rPfSUB1 or with 

rPfSUB1 plus rp31, and analysed by spectrofluorimetry. Samples were excited at 

435 nm. Emitted fluorescence (in arbitrary units; a.u.) was measured at 485 nm 

(CFP) and 528 nm (YFP) simultaneously. A reduction in YFP emission (indicating a 

loss of FRET) was only observed when rFRET-SERA5 was incubated with 

rPfSUB1, confirming that the FRET effect is lost in the presence of rPfSUB1.  
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Figure 29. rFRET-SERA5 is cleaved at the expected site by rPfSUB1 

To determine the site of PfSUB1 cleavage, rFRET-SERA5 was incubated with 

rPfSUB1 and the cleaved CFP portion was purified by repeatedly incubating 

protease-treated rFRET-SERA5 with NiNTA agarose beads and centrifuging to 

deplete His-YFP. A sample of the protein mixture before depletion was taken 

(START) and after each step samples of unbound proteins (UB) were taken, and 

the NiNTA agarose beads (B) were solubilised in SDS buffer. Samples from each 

step (e.g. UB1, B1) were probed by Western blot using anti-His antibodies (Sigma). 

In the left hand panel, 20 μl each protein sample was run on SDS-PAGE; in the 

middle panel, 5 μl protein sample was analysed. A lower loading volume allowed 

differences in signal intensity between the UB and B samples to be detected more 

accurately. The corresponding decrease in sensitivity of the assay for detecting 

contaminant His-YFP was not significant as CFP was required to be only partially 

pure for N-terminal sequencing. Consecutive rounds of depletion with NiNTA 

agarose beads resulted in purified CFP (right hand panel) which did not react 

strongly with anti-histidine antibodies (Panel B, UB5). The purified CFP was N-

terminally sequenced by Edman degradation (performed at PNAC, University of 

Cambridge), which indicated that its N-terminal sequence was TEDDDF. It was 

concluded that the reporter is cleaved by rPfSUB1 at EIKAE↓TEDDDF (B). 
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Figure 30. FRET-SERA5 is expressed in a soluble form in P. falciparum  

Schizonts from parasites harbouring pHH4-FRET-SERA5 were purified and treated 

with saponin to separate soluble PV and soluble RBC proteins, and PVM, EPM and 

soluble parasite cytosolic proteins. Resulting pellet (P) and supernatant (S) samples 

were separated by SDS-PAGE and probed using anti-GFP monoclonal antibodies 

(Roche) (A). A band at 62 kDa was detected in the pellet and three bands at 65 

kDa, 60 kDa and 30 kDa were present in the supernatant. Since the upper 65 kDa 

band is absent from the pellet sample, this could be a contaminant. The 62 kDa and 

60 kDa bands are likely therefore to correlate to full length reporter with and without 

the secretory signal peptide respectively. The 30 kDa band thus probably relates to 

cleaved CFP and YFP (monomeric). Full length and monomeric reporter are 

indicated with arrows. Schizonts from a second transfected line were purified and 

saponin lysed again, probed with anti-GFP antibodies alongside full length rFRET-

SERA5 and purified cleaved recombinant CFP (rCFP) (B). A weak signal in parasite 

supernatant (S) at 60 kDa was observed, which presumably is full length FRET 

reporter. The same samples as used in panel B were reprobed with anti-SERA5 

antibodies (C) or anti-AMA1 antibodies (CRC3-R2) (D); SERA5 is a PV protein, 

therefore probing with these antibodies reveals that saponin lysis was incomplete 

as SERA5 should be present in only the supernatant (S), not the pellet (P). AMA1 

was used as an indicator of late schizogony and should not be released by saponin 

lysis as it is membrane-associated. That AMA1 is detected confirms that late 

schizonts were present in these samples. 



 188



 189

5. Results chapter 3: identification of novel PfSUB1 
substrates 

5.1. Introduction 

During or just prior to egress, PfSUB1 is responsible for the proteolytic maturation 

of a number of PV-resident substrates, including the putative papain-like proteases 

SERA4, SERA5, and SERA6, and the merozoite surface proteins MSP1, MSP6 and 

MSP7 (Koussis et al., 2009, Yeoh et al., 2007). PfSUB1 processes SERA5 at two 

positions called site 1 and site 2, and SERA4 and SERA6 are probably processed 

in the same manner (Yeoh et al., 2007). PfSUB1 also cleaves SERA5 at a third, 

allele-specific site near the N-terminus (Li et al., 2002). Alignment of all eight P. 

falciparum SERA family proteins expressed during the asexual blood stages of the 

parasite life cycle indicates that the sequences flanking cleavage sites 1 and 2 are 

conserved across the family (Yeoh et al., 2007). PfSUB1 processes MSP1 at three 

positions and MSP6 and MSP7 at one (Koussis et al., 2009). The identification of 

conserved sites in SERA family members and the presence of cleavage sites in 

multiple MSP proteins suggests that PfSUB1 may cleave other MSP or SERA 

proteins. It is also possible that PfSUB1 processes other proteins on the merozoite 

surface or in the PV during egress. Therefore, the objective of this part of the 

project was to ask the question: does PfSUB1 have other substrates in addition to 

these?  

To address this question, we took advantage of findings from previous 

studies where PfSUB1 specificity was characterised using purified recombinant 

PfSUB1 (rPfSUB1) and synthetic peptides. Analysis of the autocatalytic cleavage 

site within PfSUB1 (Withers-Martinez et al., 2002, Sajid et al., 2000), of synthetic 

peptide substrates (Withers-Martinez et al., 2002) and of the SERA5 and MSP 

cleavage sequences, led to the assembly of the putative PfSUB1 consensus 

recognition sequence Ile/Leu/Val/Thr/Phe-Xaa-Gly/Ala-Paa(not Leu)↓Xaa (where 

Xaa is any amino acid residue and Paa tends to be a polar residue) (Yeoh et al., 

2007). Further alanine scanning experiments supported this consensus motif 

(Koussis et al., 2009). In addition, there is a general tendency for charged or acidic 

residues in the P' subsites (Figure 31). To date, only Gly or Ala have been observed 

at P2 in validated cleavage sites; homology modelling of PfSUB1 suggests that this 



 190

is due to a restricted S2 pocket (Withers-Martinez et al., 2002). Furthermore, 

cleavage is blocked or greatly reduced by the presence of leucine at P1 (Withers-

Martinez et al., 2002), and Leu is not observed at P1 in validated cleavage sites 

(Figure 31). 

PoPS (Prediction of Protease Specificity) is a computational application, 

which enables modelling of protease specificity and in silico prediction of potential 

protease substrates. This approach has been used in several studies to identify 

novel substrates of caspase 8, dust mite Derp 1 protease and  membrane type 1 

matrix metalloprotease, among others (Golubkov et al., 2005, Furmonaviciene et 

al., 2007, Scott et al., 2008). To predict new PfSUB1 substrates in silico in this 

study, PoPS was used to model PfSUB1 specificity by incorporating the information 

described above. This led to the identification of several new putative PfSUB1 

substrates. An in vitro proteomic approach was then used to experimentally identify 

PfSUB1 substrates. Several hits were investigated in further detail by Western blot 

using specific antibodies, as well as by examining in vitro cleavage of acetylated 

peptides based on predicted PfSUB1 cleavage sites using recombinant PfSUB1. 

Through a combination of the predictive and experimental approaches, it was found 

that two proteins, MSP7-like protein 2 (MSRP2) and RAP1 are likely to be new 

physiological PfSUB1 substrates. 

5.2. Results 

5.2.1. Modelling PfSUB1 specificity 

Generation of a protease substrate specificity model involves permitting or 

excluding residues at each subsite of the cleavage site, based on whether they are 

known to allow or prevent cleavage. Using the information about PfSUB1 specificity 

discussed above, a PoPS PfSUB1 specificity model was assembled. In the first 

step, 15 validated PfSUB1 cleavage sites (from the previously confirmed 

physiological substrates described above) were aligned, and each amino acid 

residue was given a score for each subsite within the cleavage site, related to the 

frequency of the residue across the validated sequences. This is graphically 

represented in a WebLogo image (Figure 32). Scoring in a PoPS protease 

specificity model allows the user to rank cleavage sites in order of how likely they 

are to be cleaved. However, this feature was not used here, because although a 
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higher frequency of a certain residue at a given position could indicate a preference 

for PfSUB1, there is insufficient information about what constitutes a “better” 

PfSUB1 cleavage site. In order to increase the specificity of the model, residues 

which are absent from a certain subsite in the validated cleavage sites, or are 

known to prevent cleavage when at a specific subsite, were blocked based on 

information obtained from the cleavage of acetylated peptides by rPfSUB1 in vitro 

(Koussis et al., 2009, Withers-Martinez et al., 2002, Sajid et al., 2000). 

5.2.2. In silico prediction of P. falciparum PfSUB1 substrates 

The model described in 5.2 was used to computationally scan the entire predicted 

proteome of P. falciparum (5,679 proteins) (available at http://www.PlasmoDB.org), 

resulting in a list of 2,086 proteins with putative PfSUB1 sites (36.9% of the 

predicted proteome). This primary list of potential substrates generated by this step 

was then delimited by several factors common to all previously identified substrates 

(Figure 33). Firstly, the subcellular localisation of each substrate was considered. 

PfSUB1 is thought to mediate its physiological activity upon release into the PV 

(Yeoh et al., 2007), therefore, putative substrates were considered more likely to be 

true substrates if they localise to that compartment. The majority of established PV, 

PVM and MSP proteins have N-terminal secretory signals, and transport to the PV 

is considered the default pathway for proteins with classical signal peptides (Adisa 

et al., 2003). For that reason, each of the 2,086 putative substrates was analysed 

using the algorithm SignalP, which predicts the presence of signal peptides in a 

user-provided protein sequence. Each putative substrate was then included or 

excluded accordingly. This resulted in the elimination of 77% of the primary protein 

set, leaving 480 proteins with predicted secretory signal peptides for further analysis 

(Figure 33).  

In a second filter step, the predicted or known function of the putative 

substrates was used as a selection criterion. Since PfSUB1 is involved in invasion 

and/or egress, we were interested in proteins involved in the same processes. 

Proteins predicted or known to be involved in other pathways and processes such 

as metabolism or protein translation were therefore excluded from the putative 

substrate list. Where no function had been assigned, homology searches were 

carried out using NCBI-BLAST to identify closely related proteins, and conserved 

functional domains were identified using InterPro. Proteins were then assigned a 
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putative function, which was used for selection or elimination. The functional 

distribution of the 480 proteins predicted to be secreted is shown in Figure 34. 

Considering their putative or known functions, many proteins are unlikely to be 

PfSUB1 substrates. Substrates were then included or excluded accordingly. This 

may have resulted in the removal of some true PfSUB1 substrates; however, in 

order to narrow down the list, which probably contained many false positives, it was 

considered essential. Hypothetical proteins with no significant homology to other 

proteins were retained in the filtered set as there was no basis for their exclusion. 

Finally, in a third filter, substrates were only selected if they are at least 

known to be transcribed, if not translated during asexual blood-stage schizogony. 

Again, this was because PfSUB1 is active during schizogony; putative substrates 

must be expressed at the same time as PfSUB1 for PfSUB1-mediated processing 

to be a possibility. Information from several large scale analyses of protein and 

mRNA expression across the life cycle (Le Roch et al., 2004, Florens et al., 2002, 

Hall et al., 2005) was used to determine whether the expression of potential 

substrates coincides with PfSUB1 expression. Hits with a molecular weight of above 

200 kDa were eliminated since all known PfSUB1 substrates are below this sise, 

and these would also be technically difficult to work with if further validation was 

required. Proteins with more than one predicted transmembrane domain (aside 

from predicted signal peptides) were also excluded as all known PfSUB1 substrates 

are soluble (though because some MSPs are GPI-anchored, predicted GPI-

anchored proteins were retained).  

Another option available in PoPS software is to include secondary structure 

predictions of predicted protease cleavage sites. With few exceptions, proteases 

recognise their substrates in an extended β-strand conformation (Tyndall et al., 

2005). Few Plasmodium spp. proteins have been characterised at the structural 

level, but secondary structural features can be predicted in silico. To assess 

whether secondary structure could be incorporated into PfSUB1 substrate 

prediction, the secondary structure of the 20 amino acids around the scissile bond 

of each known PfSUB1 cleavage site was analysed using JPred (a secondary 

structure prediction algorithm). Secondary structure predictions are presented in 

Figure 35. Several cleavage sites, including the MSP7, SERA4 site 2 and SERA6 

site 1 sites, occur in what are predicted to be completely disordered regions. In 

most others, the scissile bond tends to lie in a disordered region but other residues 
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forming part of the putative recognition sequence are within an α-helix or β-strand; 

examples of these are the SUB1 autocatalytic cleavage site, SERA5 site 1, SERA5 

site 2, SERA5 site 3, SERA6 site 2 and SERA4 site 2. Since these data indicate a 

high degree of variation across the established cleavage sites, secondary structure 

predictions were not used for delimitation in the screen for new substrates.  

Application of the three filters described above resulted in a list of 77 “most 

likely” putative PfSUB1 substrates, summarised in Table 7. This corresponds to 

1.4% of predicted P. falciparum proteins. As anticipated, this list included known 

substrates SERA4, SERA5, SERA6 and MSP1, MSP6 and MSP7 (these are not 

included in Table 7), confirming that the use of the model and stringencies selects 

for proteins likely to be PfSUB1 substrates. Several new candidates were identified. 

Of note, twenty-four new putative substrates are hypothetical proteins with no 

known function or homology to other known proteins. Other candidates included 

MSP7-like family proteins MSRP1 and MSRP2, MSP3 (an MSP6-like protein), and 

Pf92 and Pf12, all of which are PV proteins or associated with the merozoite 

surface; S-antigen, an abundant PV protein; the PVM proteins exported protein 1 

(EXP1) and early transcribed membrane proteins (ETRAMPs); rhoptry proteins 

RhopH2, RhopH3, ring-associated membrane antigen (RAMA) and rhoptry-

associated protein (RAP1); several cytoadherence-linked antigens (CLAGs), which 

are known to associate with RhopH2 and RhopH3 (Kaneko et al., 2005); apical 

sushi protein (ASP), an invasion-related microneme protein (O'Keeffe et al., 2005); 

and merozoite thrombospondin-related anonymous protein  (MTRAP), which is also 

important for invasion (Baum et al., 2006). In addition to these proteins, 4 perforin-

like proteins were identified, about which little is known. These are particularly of 

interest as PfSUB1 substrates as they are thought to be involved in membrane 

disruption, which is an important process during egress as the PVM and EPM must 

be breached in order to allow merozoites out of the erythrocyte. Interestingly, 

several of the putative substrates identified using PoPS undergo proteolytic 

maturation in vivo (Table 7). These data present several new putative PfSUB1 

substrates, which could be followed up in further detail to determine whether they 

are cleaved by PfSUB1 in vitro and in vivo. 

5.2.3. In silico prediction of potential erythrocyte PfSUB1 
substrates 
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Above, putative PfSUB1 substrates expressed by P. falciparum were identified. On 

the other hand, whether PfSUB1 is involved in proteolysis of erythrocyte 

components during schizogony is unknown. PfSUB1 is not known to be exported 

into the erythrocyte. However, the contents of the PV are released into the 

erythrocyte compartment after PVM breakdown during egress (Wickham et al., 

2003), so it is predicted that PfSUB1 would have access to erythrocyte components 

during egress and could thereby potentially contribute to EPM destabilisation. To 

investigate whether PfSUB1 could process erythrocyte proteins, the PfSUB1 

specificity model was used to identify putative PfSUB1 cleavage sites in a human 

erythrocyte proteome data set (Kakhniashvili et al., 2004) wherein Kakhniashvili et 

al used ion trap tandem mass spectrometry and liquid chromatography to identify 

182 membrane-associated and soluble cytoplasmic erythrocyte proteins (other, 

more extensive studies have identified larger numbers of erythrocyte proteins; 

however these data could not be accessed in the present study as the accession 

numbers of these proteins appeared to be obsolete.). Using the PoPS model, 

PfSUB1 cleavage sites were identified in 40 human erythrocyte cytoplasmic 

proteins and 47 membrane-associated proteins in this erythrocyte proteome (Table 

8). Unlike the prediction of P. falciparum PfSUB1 substrates hits in the erythrocyte 

proteome could not be further delimited, because it is not known whether PfSUB1 

cleaves erythrocyte components, nor what the function of PfSUB1-mediated 

proteolysis might be in this case. The hits included the cytoskeletal components 

ankyrin, band 3, and α- and β-spectrin, which are of particular interest since these 

proteins associate with one another (Bennett & Stenbuck, 1979) and have an 

important role in the fluidity and structural integrity of the EPM (reviewed in (Bennett 

& Gilligan, 1993)). Proteolytic processing of several of these components is known 

to occur physiologically in infected erythrocytes (Dua et al., 2001, Raphael et al., 

2000, Roggwiller et al., 1996), supporting the notion that their degradation may be 

important for egress. It was concluded from this analysis that several erythrocyte 

proteins have putative PfSUB1 sites, but these must be investigated in further detail 

to determine whether they are physiological substrates of PfSUB1. 

5.2.4. Proteomic identification of novel PfSUB1 substrates 

Following on from these interesting predictions, we attempted to identify novel 

substrates experimentally, by using a modification of an in vitro assay, which was 
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previously developed and used for the identification of MSP1, MSP6 and MSP7 as 

PfSUB1 substrates (Koussis et al., 2009). In this method, endogenous proteolytic 

activity in the parasite material is blocked with a set of protease inhibitors (including 

inhibitors of PfSUB1) and then incubated with exogenously-added rPfSUB1. For our 

purposes, in order to analyse the global effect of rPfSUB1 on a parasite lysate, a 

large scale assay was performed. Importantly, the original protocol used by Koussis 

et al was modified to include incubation of non-PfSUB1-treated samples with rp31 

(which is a nanomolar inhibitor of rPfSUB1 and endogenous PfSUB1 (Jean et al., 

2003)) in order to inhibit any residual PfSUB1 activity not blocked by use of the 

broad-spectrum inhibitors in the initial step. The workflow of this approach is 

described in Figure 36. To analyse membrane-associated proteins, purified 

schizonts were treated with protease inhibitors, then lysed in the detergent saponin, 

which permeabilises the PVM and EPM, thereby releasing soluble EC and PV 

proteins. These proteins and the residual protease inhibitors were then washed 

away by centrifugation, resulting in a preparation containing membrane-associated 

PVM, EPM, and merozoite proteins (PT). Soluble proteins (ST) were released by 

freeze-thawing purified schizonts into PfSUB1 digestion buffer containing protease 

inhibitors, and the supernatant was clarified by centrifugation (a different method 

was used to prepare soluble proteins as it would not have been possible to remove 

excess inhibitors from the protein preparations easily and saponin may interfere 

with rPfSUB1 activity.) PT and ST protein mixtures were then exposed to rPfSUB1 

(PT+/ST+) or rPfSUB1 with rPfSUB1pro (PT-/ST-) and incubated at 37°C. Analysis 

of treated protein preparations by Western blot using anti-MSP1 and anti-SERA5 

antibodies showed conversion of the precursor molecules to smaller fragments, 

which were indistinguishable from physiologically processed proteins (Figure 37). 

Proteins which were cleaved in the presence of rPfSUB1 were then 

identified by liquid chromatography mass spectrometry (LC/MS/MS). Preliminary 

attempts at resolving proteins by direct 1-dimensional SDS-PAGE and Coomassie 

staining prior to tandem mass spectrometry (MS/MS) were unsuccessful (Figure 

37), presumably because the preparation of proteins was highly complex and many 

proteins co-migrated. Therefore, to reduce sample complexity, it was necessary to 

resolve proteins before identification by LC/MS/MS. Gradient elution reversed 

phase high pressure liquid chromatography (RP-HPLC) separates proteins on the 

basis of hydrophobicity. RP-HPLC has the major advantage, compared to other 
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separation techniques such as 2-dimensional electrophoresis, that it enables rapid 

and high resolution of proteins. It also effectively concentrates proteins as they are 

eluted from the column. Silica, the most common particle material in RP-HPLC 

columns, has a high binding capacity, allowing large sample volumes to be loaded; 

silica is also relatively insensitive to the high urea and detergent concentrations 

used here (see Material and Methods). Furthermore, elution is performed using 

volatile liquids, which can easily be removed by freeze-drying. To reduce the 

complexity of our samples, RP-HPLC was used prior to  LC/MS/MS. PT+/PT- 

samples were solubilised in 8 M urea and 25 mM CHAPS before being loaded onto 

the column, while ST+/ST- proteins could be loaded directly without further 

treatment. Collected fractions were then resolved by SDS-PAGE and stained; 

equivalent PT+/PT- and ST+/ST- fractions were resolved in adjacent lanes. Stained 

polypeptide bands, which were modified in rPfSUB1-treated samples compared to 

control samples (Figure 38), were cut out, subjected to in-gel trypsin digestion, and 

digests analysed by LC/MS/MS. Peptides were then matched back to protein 

sequences using the MASCOT search engine (Figure 38 and Table 9).  

Strikingly, many of the proteins which shifted in response to rPfSUB1 

treatment were identified as fragments of SERA4, SERA5 and MSP1, all of which 

are previously-established PfSUB1 substrates. The fact that known substrates were 

identified suggests that our method is valid as these proteins act as internal positive 

controls. In addition, not all proteins were cleaved in the presence of rPfSUB1, 

limiting the possibility of false positives. Using this approach, 26 proteins were 

identified as PfSUB1 substrates (Table 9), some of which were predicted substrates 

(58%) (Table 7, Table 8). Substrates identified by proteomics were also cross-

referenced to the initial predictions generated by PoPS, before subcellular location, 

timing of expression, etc. were taken into account as described in 5.2.2, in the event 

that application of stringencies had resulted in false negatives. This revealed that 

88% of substrates identified by proteomics were initially predicted by PoPS to be 

putative PfSUB1 substrates before consideration of other factors. Novel putative 

substrates identified by the mass-spectrometric analysis included PVM proteins 

such as EXP1, merozoite proteins and erythrocyte structural proteins α- and β-

spectrin. Unexpectedly, Alba, a DNA- and RNA-binding protein was identified. Alba 

has a predicted PfSUB1 cleavage site, but was removed from the PoPS-based 

predictions using the delimitation steps, as it does not have a signal peptide and 
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was not thought likely to be involved in egress or invasion. Similarly, elongation 

initiation factor 1α (EIF1α) appears to be processed in the presence of rPfSUB1, but 

was eliminated from the PoPS-based predictions due to the lack of a signal peptide 

and again, being unlikely to be involved in invasion or egress. Though these 

proteins may be true physiologically relevant substrates, they may also be false 

positives, which are cleaved by PfSUB1 in vitro but would not encounter the 

enzyme in vivo. This analysis provided us with a set of putative PfSUB1 substrates, 

which were processed in the presence of rPfSUB1. Several of these proteins have 

predicted PfSUB1 cleavage sites and some are known to be processed 

physiologically. Others were unexpected findings, which will need to be validated in 

the future. 

5.2.5. Further analysis of putative substrates 

To verify some of the findings in 5.2.4, it was decided to analyse several individual 

proteins in further detail by probing PfSUB1-treated schizont lysates by Western 

blot using specific antibodies against putative substrates. Intact merozoite, intact 

schizonts and culture supernatants were used to compare artificially processed 

protein fractions to physiological processing. Importantly, the PoPS search had not 

only provided predictions of putative PfSUB1 substrates; it also provided us with 

predicted cleavage sites. This permitted prediction of the sizes of protein fragments 

after cleavage by PfSUB1, and provided putative sequences for design of peptide 

substrates to test with rPfSUB1.  The in silico data could thus be used to support or 

rule out PfSUB1 being responsible for a putative processing event. RAP1, MSRP2 

and RhopH3, as well as erythrocytic α- and β-spectrin were chosen for this more 

detailed analysis, as laid out below. 

5.2.5.1. Validation of RAP1 as a PfSUB1 substrate 

RAP1 is an extensively-studied rhoptry protein which is a component of the low 

molecular weight rhoptry complex (Ridley et al., 1990). During schizogony, RAP1 is 

known to be processed at 190IVGA↓DEEA195, generating a 67 kDa protein called 

p67 (Ridley et al., 1991, Howard et al., 1998). The PoPS-based in silico analysis 

predicted RAP1 to be a PfSUB1 substrate (Table 7) and this was confirmed by our 

proteomic study (Table 9). To further investigate these predictions, a RAP1-specific 
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monoclonal antibody, 2.29 (Clark et al., 1987), was used to probe schizont lysates 

prepared for proteomic analyses of membrane-associated proteins (Figure 39). This 

confirmed that RAP1 is indeed processed in the presence of rPfSUB1. Two 

overlapping cleavage sites were predicted by PoPS to be present in RAP1 (Table 

7), 190IVGA↓DEE193 and 189VGAD↓EEA192. N-acetylated decameric peptides based 

on both sites were incubated with or without rPfSUB1 and analysed by RP-HPLC. 

The RP-HPLC elution profiles are shown in (Figure 39). Only the peptide 

GIVGADEEAP, relating to the first predicted cleavage site, was cleaved by 

rPfSUB1. The two cleavage products were collected and analysed by ESI-MS by 

Steve Howell (NIMR, UK). This confirmed that the peptide is cleaved at 

1GIVGA↓DEEAP10; (the downward-pointing arrow indicates the site of cleavage) 

confirming that if PfSUB1 does process RAP1, it would occur at 186IVGA↓DEE193, 

not 189VGAD↓EEA192. This finding is consistent with PfSUB1 being responsible for 

RAP1 processing.  

To assess the conservation of this cleavage site across RAP1 homologues, 

RAP1 sequences from P. vivax, P. knowlesi, P. chabaudi and P. berghei were 

obtained from PlasmoDB and analysed using the PoPS model. Surprisingly, only 

the P. falciparum and P. chabaudi RAP1 sequence possesses a predicted PfSUB1 

cleavage site. Furthermore, alignment of the sequences of the RAP1 homologues 

indicated that the P. falciparum and P. chabaudi sites do not align with one another 

(Figure 40). This suggests that either the PfSUB1 orthologues in these species 

have different substrate specificities and therefore their substrates cannot be 

identified using the PfSUB1 specificity model, or that processing of RAP1 is not an 

important modification of RAP1 (at least in those species). In conclusion, RAP1 

appears to be processed by PfSUB1 in P. falciparum, but the biological significance 

of this cleavage is unclear. 

5.2.5.2. Validation of MSRP2 as a PfSUB1 substrate 

Processing of MSP7 is well-characterised and occurs at a single cleavage site 

(Pachebat et al., 2007, Koussis et al., 2009). MSRP2 is a member of the MSP7-like 

multigene family on chromosome 13 (Mello et al., 2002). All of the MSP7-like family 

genes can be knocked out in blood stages; and only MSRP2 appears to be 

expressed at the protein level in this stage (Kadekoppala et al., 2010). MSRP2 has 
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a predicted PfSUB1 cleavage site (Table 8. ), but was not identified by proteomics 

(Table 9). This is probably because it is a low abundance protein. To further 

investigate the possibility of MSRP2 being a PfSUB1 substrate, schizont lysates 

treated with rPfSUB1 were probed using anti-MSRP2 antibodies (a kind gift from 

Madhu Kadekoppala, NIMR)(Kadekoppala et al., 2010). This indicated that MSRP2 

undergoes processing in the presence of rPfSUB1, being converted to a protein of a 

similar size to that observed in culture supernatant (Figure 41). Similar to the case 

of RAP1, two PfSUB1 cleavage sites were predicted by PoPS in the MSRP2 

sequence; 69IIGQ↓GIF75, 89LKGE↓SED97 (Table 7). To assess whether these 

sequences were sensitive to cleavage by PfSUB1, N-acetylated decamer peptides 

based on these cleavage sites were incubated with PfSUB1 and examined by RP-

HPLC; the resulting RP-HPLC traces are presented in (Figure 41). The more 

hydrophobic peptide DIIGQGIFSL was not cleaved by rPfSUB1, but the second 

peptide was. Analysis of cleaved Ac-SLKGESEDNT by ESI-MS confirmed that the 

peptide is cleaved at 5SLKGE↓SEDNT10 as was predicted in 5.2.2. To determine 

whether PfSUB1-mediated cleavage of MSRP2 is conserved across Plasmodium 

spp., the amino acid sequences of each MSRP2 homologue were scanned using 

the PfSUB1 specificity model. All of the MSRP2 homologues are predicted to be 

PfSUB1 substrates, indicating that processing may a conserved and important 

feature of MSRP2 (Figure 42). 

5.2.5.3. Validation of RhopH3 as a PfSUB1 substrate 

RhopH3, a 110 kDa rhoptry protein, forms a complex with RhopH1 and RhopH2 

(Lustigman et al., 1988). It undergoes processing at the C-terminus in late 

schizogony (Sam-Yellowe et al., 1988). By PoPS analysis, two PfSUB1 processing 

sites were predicted in RhopH3, 793TSAA↓STS799 and 802ISGS↓EGP808 (Table 7). 

Western blot analysis of rPfSUB1-treated schizont lysates with an anti-RhopH3 

antibody indicated that RhopH3 is processed by rPfSUB1 in vitro (Figure 43) 

however RhopH3 in the rPfSUB1-treated sample does not appear to be the same 

size as that in culture supernatant. To analyse whether the predicted processing 

sites could be cleaved by rPfSUB1, two N-acetylated peptides based on the 

predicted PfSUB1 cleavage sites were incubated with rPfSUB1. This revealed that 

they are not cleaved by rPfSUB1 (Figure 43). This is surprising, considering 

RhopH3 appears to be processed in proteolysed samples; however this could be an 
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artefact of rPfSUB1 treatment. Together, these data suggest that RhopH3 is not a 

physiological substrate of PfSUB1. 

5.2.5.4. Validation of erythrocytic α- and β-spectrin as PfSUB1 

substrates 

Erythrocyte components were among the possible substrates identified by 

bioinformatics (Table 8) and proteomics (Table 9). This is of particular interest as 

the parasite must destabilise the host cytoskeleton in order to escape the red blood 

cell, and several erythrocyte components are known to be processed during the 

parasite life cycle (Blackman, 2008, Dua et al., 2001, Hanspal et al., 2002, Le 

Bonniec et al., 1999). In our proteomics approach, α- and β-spectrin were cleaved 

in the presence of rPfSUB1. They also have multiple predicted PfSUB1 processing 

sites (Table 8). The two chains of spectrin form a characteristic doublet on SDS-

PAGE at 260 kDa, as observed in the proteomic analysis (Table 9). To assess the 

possibility of PfSUB1-mediated cleavage of α- and β-spectrin in vitro, erythrocyte 

ghosts were incubated with either rPfSUB1 or rPfSUB1 and rp31 and samples 

taken every 30 minutes subjected to SDS-PAGE and Coomassie blue staining. 

Degradation of α- and β-spectrin by PfSUB1 could not be detected (Figure 44) 

suggesting that PfSUB1 is not directly responsible for the cleavage of these 

proteins. 

5.2.5.5. Perforin-like proteins – a role in PfSUB1-mediated 

egress? 

It was of particular interest that 4 PfPPLPs were predicted by the PoPS model to 

contain potential PfSUB1 cleavage sites, since these proteins are involved in 

membrane destabilisation and some pore-forming proteins require proteolytic 

activation (Uellner et al., 1997, Olson & Gouaux, 2005). Studies of PPLPs in P. 

berghei and P. yoelii have revealed that these proteins have unique functions in 

breaching membranes in multiple stages of the malaria life cycle (Kaiser et al., 

2004, Kadota et al., 2004, Ishino et al., 2005, Ecker et al., 2007). The PoPS 

predictions led to the question of whether PfSUB1 could be involved in 

proteolytically activating PfPPLPs in order to destabilise the PVM. By analogy to T. 

gondii, which uses the micronemal protein TgPLP1 to mediate egress from its host 
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cell by disrupting the PVM (Kafsack et al., 2008), it is possible that Plasmodium 

spp. also uses PPLPs for egress. TgPLP1 may be processed by TgSUB1 

(Carruthers, personal communication), supporting the idea that PfSUB1 might play 

a role in processing PfPPLPs. Five perforin-like proteins are conserved across the 

Plasmodium genus (Kaiser et al., 2004, Kafsack & Carruthers, 2010); here, the P. 

falciparum homologues are referred to as PfPPLP1-PfPPLP5 (their respective 

genes are named pfpplp1, pfpplp2, etc.). Perforin-like proteins contain membrane 

attack/ perforin (MACPF) domains which are important for oligomerisation and 

insertion of pores into membranes. In 5.2.2, putative PfSUB1 cleavage sites 

identified in four of the PfPPLPs, which are mapped in Figure 45 (the reason for a 

lack of a predicted cleavage site in PfPPLP5 could be because it may not be 

expressed in blood stages; therefore it would not come into contact with PfSUB1). 

In PfPPLP1, PfPPLP2 and PfPPLP4, cleavage sites occur outside of the MACPF 

domain. Whether there is a link between PfSUB1 and PfPPLPs or membrane 

destabilisation in vivo is unknown.  

5.2.5.5.1. Five genes encoding PfPPLPs are transcribed 

during asexual stages 

Nothing is known about the function of these proteins in blood stages. Large scale 

transcriptional data suggest that all pfpplps are transcribed in blood stages (Le 

Roch et al., 2004), but this contradicts previous RT-PCR and oligonucleotide 

microarray analysis on cDNA from asexual stage parasites by Kappe et al (Kappe 

et al., 2004). Florens et al provided MS/MS evidence that PfPPLP1 and PfPPLP2 

are expressed at the protein level in blood stages (Florens et al., 2002), and this 

was confirmed by Khan and colleagues (Khan, unpublished work)(available on 

PlasmoDB.org). The aforementioned studies, however, only identified single 

peptides derived from PfPPLP1 and PfPPLP2, suggesting that if they are 

expressed, it is at very low levels.There is conflicting data on transcription of the 

pfpplps during asexual stages (Kaiser et al., 2004, Le Roch et al., 2004).  

With the aim of confirming that pfpplps are transcribed during asexual 

stages, RT-PCR was performed on mRNA extracted from asynchronous P. 

falciparum parasites (predominantly trophozoites and schizonts). RT-PCR products 

of the expected sizes were obtained for all pfpplps (Figure 46). For pfpplp1, the 
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PCR product spans regions containing introns. As expected, a larger product was 

obtained for genomic DNA, and a smaller PCR product was observed the reverse 

transcriptase-treated mRNA sample (+RT), confirming that genomic DNA was 

absent from +RT. In conclusion, these results show that all pfpplps are transcribed 

during asexual stages. 

5.2.5.5.2. Raising antibodies and generation of transgenic 

parasites 

Through studies in P. berghei, it is apparent that P. berghei pplp2 is refractory to 

genetic deletion in asexual stages (Ecker, Personal communication), and while 

disruption of the gene encoding P. berghei PPLP4 was confirmed by PCR, a clonal 

knockout line could not be established (Ecker et al., 2008). These findings suggest 

that both pplp2 and pplp4 are important for blood stage development. Since pplp2 

and pplp4 appear to be important for P. berghei blood stage development, the P. 

falciparum homologues pfpplp2 and pfpplp4 were focussed on. Having confirmed 

that the pfpplps are transcribed, it is of interest to determine whether PfPPLP2 and 

PfPPLP4 are expressed at the protein level in asexual blood stages. MS/MS 

evidence from Florens et al suggests that PfPPLP2 is expressed at the protein level 

in merozoites (Florens et al., 2002) but this has not been confirmed using specific 

antibodies. The same study suggests that PfPPLP4 is expressed in ookinetes, but 

not in asexual stages. It was therefore decided to raise antibodies against PfPPLP2 

and PfPPLP4; this work is ongoing. Since it was unknown whether either of these 

proteins undergoes proteolytic maturation, it was decided to produce antibodies 

against multiple regions of PfPPLP2 and PfPPLP4. These regions are summarised 

in Figure 47. Regions of the MACPF domain were expressed, which is the central 

and presumably functional part of these molecules. Three different recombinant 

proteins based on the MACPF domain of PfPPLP2 and PfPPLP4 were made, as it 

was unclear which of these would be most soluble. Segments of the PfPPLP2 and 

PfPPLP4 coding sequences were therefore amplified from P. falciparum genomic 

DNA and expressed as recombinant GST- and His- fusion proteins. All of these 

proteins were insoluble as GST-fusions. The program Protean was then used to 

identify soluble, highly antigenic regions of PfPPLP2 and PfPPLP4. Based on this, a 

C-terminal domain of PfPPLP2 and an N-terminal domain of PfPPLP4 were 
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expressed. Unfortunately, once again neither of these domains were soluble, 

therefore all of the recombinant proteins made in E. coli were purified from inclusion 

bodies and refolded as described by Frangioni and Neel (Frangioni & Neel, 1993) 

before purification using GSH agarose (GSHA). Attempts to raise antisera to detect 

PfPPLP2 and PfPPLP4 are ongoing. 

As an alternative approach to raising antibodies and to determine the importance of 

these genes, parasites were transfected with several constructs designed to 

integrate into and to modify the pfpplp2 and pfpplp4 genetic loci. The expected 

gene products resulting from successful integration of these constructs are depicted 

in Figure 48. Firstly, constructs were cloned for the purpose of integrating HA3 tags 

into the pfpplp2 and pfpplp4 genetic loci in P. falciparum. Epitope tagging can be 

used as an alternative to raising antibodies against proteins, especially proteins that 

may be poorly immunogenic. Therefore, it was decided that epitope tagging could 

aid detection of PfPPLP2 and PfPPLP4 in parasites. Epitope-tagged lines could be 

used in combination with or to validate antibodies against recombinant domains of 

PfPPLP2 and PfPPLP4. Constructs pHH1-PPLP2-HA3 and pHH1-PPLP4-HA3 

were designed to integrate sequences encoding HA3 epitope tags into the 3' ends 

of the pfpplp2 and pfpplp4 coding regions, by single cross-over homologous 

recombination. The constructs include a targeting region followed by the P. berghei 

dihydrofolate reductase thymidylate kinase (P. berghei DHFR-TS 3' UTR) 3' 

untranslated region (3' UTR). To determine whether pfpplp2 and pfpplp4 genetic 

loci are accessible for genetic modification, parasites were also transfected with 

control constructs containing the same targeting regions but with the inclusion of 

stop codons just upstream of the sequence encoding the HA3 tag. These constructs 

were expected to integrate as they do not alter the gene product, thereby acting as 

an important control to show that the genetic loci are accessible to genetic 

manipulation.  

The homologues of pfpplp2 and pfpplp4 cannot be knocked out in P. berghei 

asexual stages. It is therefore likely that they are also essential in P. falciparum, but 

this has not been addressed. To investigate the importance of PfPPLP2 and 

PfPPLP4 in P. falciparum asexual stages, constructs were designed to truncate the 

pfpplp2 and pfpplp4 genes by single crossover homologous recombination. If the 

MACPF domain is important for the function of these proteins and they are 

essential, the constructs were expected not to integrate. The constructs included an 
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800 bp targeting region from the 5' end of the coding regions of pfpplp2 and pfpplp4 

followed by a stop codon. Integration would essentially truncate both genes in the 

middle of the sequence encoding the MACPF domain of pfpplp2 and pfpplp4 

(constructs pHH1-PPLP2∆ and pHH1-PPLP4∆), generating functional knockouts of 

PfPPLP2 and PfPPLP4 (Figure 48). Considering that pfpplp2 and pfpplp4 cannot be 

knocked out in P. berghei, it was thought to be unlikely that these constructs would 

integrate. 

Since it is unknown whether the truncation constructs would integrate, to 

investigate whether complete deletions of pfpplp2 and pfpplp4 were possible, 

parasites were transfected with vectors to delete the genes by double crossover 

homologous recombination using the thymidine kinase vector system (Duraisingh et 

al., 2002). This involves two targeting regions, at the 5’ (flank 1) and 3' (flank 2) 

ends of the gene, and if double cross-over homologous recombination occurs, the 

gene of interest would be replaced with the human dihydrofolate reductase cassette 

(hDHFR). Parasites are selected using the negative selection drug ganciclovir, 

which is toxic to parasites carrying the thymidine kinase (TK) gene i.e. parasites 

where the construct has not integrated by double cross-over homologous 

recombination retain the TK gene and therefore are sensitive to ganciclovir. 

All of the aforementioned constructs are being used for ongoing experiments 

to attempt to generate transgenic parasites. It is of much interest whether PfPPLPs 

are  expressed, and whether they are involved in PfSUB1-dependent release of 

merozoites. 

5.3. Discussion 

Previous work has shown that PfSUB1 proteolytically modifies several MSP and PV 

proteins during egress. Here, using information about the specificity of PfSUB1 

obtained from previous experimental data, 77 P. falciparum putative PfSUB1 

substrates and 87 erythrocyte putative PfSUB1 substrates were identified in silico. 

By combining these predictions with an in vitro proteomic approach to substrate 

identification, 23 novel putative PfSUB1 substrates were identified experimentally. 

Several of these proteins were analysed in further detail by SDS-PAGE and 

Western blot using available antibodies, and by cleaving peptides based on the 

predicted PfSUB1 sites with rPfSUB1. The results presented here suggest that the 

role of PfSUB1 extends to processing proteins in the rhoptries, PVM and, indirectly, 
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the erythrocyte.  

5.3.1. Predicting PfSUB1 substrates in silico 

Numerous studies have identified putative protease substrates in silico. Most 

computational methods have been applied to granzyme B and caspases since their 

substrate preference is fairly well described. Substrates for these enzymes have 

been identified using several different computational methods (Piippo et al., 2010, 

Wee et al., 2006, Yang, 2005). Recently, a new method was developed which 

incorporates true and false positive peptide sequences as well as secondary or 

tertiary structural features so that the protease model is trained on predefined 

structural features (Barkan et al., 2010). Here, the computational application PoPS 

was used, which uses a position-specific scoring matrix to define protease 

specificity (Boyd et al., 2005, Boyd et al., 2004). Using information about validated 

PfSUB1 substrates, a matrix was assembled and substrates were predicted by 

scanning the P. falciparum predicted proteome and an erythrocyte proteome. The 

model was based on 15 sequences from previously-established substrates; 

therefore the substrates predicted here only include those whose cleavage sites 

share similarity with the previously validated substrates. For example, all SERAs 

known to be processed by PfSUB1 have at least two PfSUB1 cleavage sites, in 

some cases three (Andrea Ruecker, Michael Shea and Mike Blackman, NIMR, 

unpublished data)(Li et al., 2002, Ruecker, unpublished data, Yeoh et al., 2007). 

However, SERA7 only has 1 predicted site using our model, whereas when the 

primary sequence was analysed by Yeoh et al, it was evident that SERA7 has a 

second sequence which is closely related to other PfSUB1 cleavage sites in the 

SERAs (Yeoh et al., 2007). This was not predicted to be a PfSUB1 cleavage site 

since the PoPS model does not permit Phe residues in the P4 subsite (Figure 32), 

as it has not been confirmed that SERA7 is processed by PfSUB1. Therefore, it is 

possible that there are many false negatives from this bioinformatic approach, 

questioning the sensitivity of this model. It was difficult to obtain a balance between 

high specificity and sensitivity; since our knowledge of PfSUB1 specificity is 

incomplete, the model was also promiscuous and this led to a large percentage of 

the P. falciparum proteome being predicted to be PfSUB1 substrates (36.7%). 

Where prediction of PfSUB1 substrates was performed using the P. falciparum 

predicted proteome, several stringencies were applied, taking into account 
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information available about validated PfSUB1 substrates, including timing of 

expression and subcellular location. These characteristics were largely based on 

predictions where experimental evidence was not available; therefore some 

proteins that could be true substrates, such as Alba and EIFα, will inevitably have 

been discarded using these criteria. In the case of erythrocyte proteins, it was not 

possible to use the same stringencies as used for prediction of substrates in the P. 

falciparum proteome; therefore more of these proteins are likely to be false 

positives. Using the PfSUB1 specificity model, 48% of the erythrocyte proteins were 

predicted to be cleaved by PfSUB1. This figure could not be reduced by 

delimitation. Whether PfSUB1 cleaves erythrocyte proteins at all is unknown. Since 

the erythrocyte lacks compartmentalisation, PfSUB1 would probably have access to 

many of these proteins after PVM breakdown. 

The PoPS model could potentially be improved by incorporating non-

cleavable sequences which were discovered by analysing peptides based on 

predicted PfSUB1 sites, of which several are not cleaved by PfSUB1 despite being 

predicted cleavage site sequences (Figure 39, Figure 41, Figure 43). Incorporation 

of these sequences would increase the specificity of the PfSUB1 model by limiting 

the number of false positives. Also, as new substrates are identified in vitro, new 

sites which do not fit the specificity model, such as perhaps SERA7 site 1, could 

also be incorporated into the model to further improve the prediction of substrates.  

5.3.2. Identifying protease substrates by proteomics 

Over the past decade, proteomic techniques have been used increasingly to identify 

protease substrates. These include chemically and enzymatically engineered 

peptide libraries, which have been used to identify amino acid sequence 

preferences (Schilling & Overall, 2008). However, an obvious limitation with 

peptide-based methods is that they do not account for the influence of higher order 

protein structure on cleavage. Alternatively, several methods are used to analyse 

proteolysis of complex protein mixtures. One example is PROTOMAP, which is a 

relatively new technique, where proteolysed and control samples are separated by 

SDS-PAGE and the gel is sliced into bands (Dix et al., 2008). The bands are 

trypsinised and analysed by LC/MS/MS and spectral counting. The major 

advantage of this technique is that an infinite number of samples can be compared. 

However, PROTOMAP is difficult to apply to limited proteolysis in a high 
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background of unmodified proteins since it does not enrich proteolysed proteins and 

there is a preferential selection of high abundance proteins. Furthermore, because 

of this, sample analysis requires long periods of MS/MS or LC/MS/MS instrument 

time for small sample volumes.  

Here, we took advantage of the specific activity of rPfSUB1 to mimic 

physiological processing in a parasite lysate containing (mostly) full-length proteins. 

As with many approaches to the identification of protease substrates in vitro, a 

major difficulty lies in mimicking physiological conditions of protease-mediated 

degradation. Purified rPfSUB1 was used to treat a lysate of schizont proteins, some 

of which would not come into contact with PfSUB1 under normal physiological 

conditions since they are present in different subcellular compartments. Under 

assay conditions, cytosolic proteins, nuclear, host cell proteins are all potentially 

accessible to the added rPfSUB1, leading to potential for false positives. However, 

from the fact that most proteins, when analysed by SDS-PAGE after RP-HPLC 

fractionation, were not modified in rPfSUB1-treated samples (Figure 37), it appears 

that there are probably very few false positives. Furthermore, there is evidence that 

several of the proteins which were identified by proteomics are processed 

physiologically during the asexual life cycle. In addition to this, many of these 

proteins were predicted to be PfSUB1 substrates in our PoPS-based analysis. 

RhopH3 may be a false positive, since the artificially processed protein does not 

appear to migrate at the same size as processed RhopH3 in vivo. However, due to 

a lack of available antibody, this could not be fully confirmed. Furthermore, it is 

possible that peptides based on the putative RhopH3 processing site may not be 

cleaved as they are in the wrong conformation for cleavage, or they are false 

positives from the PoPS-based prediction of PfSUB1 substrates. 

The results indicate that rPfSUB1 processes several proteins, which are 

similar in size to the predicted sizes according to PoPS, and similar in size to 

proteins in untreated 3D7 parasites, however they do not confirm that PfSUB1 is 

responsible (directly or indirectly) for their processing in vivo, nor do they prove that 

PfSUB1 processing is essential for their function. 

5.3.3. New substrates: RAP1 and MSRP2 

Two proteins were chosen for further analysis. RAP1 was identified as a substrate 

by the PoPS-based screen and by proteomics, and MSRP2 by PoPS alone. RAP1 
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has been extensively studied, but the identity of the protease which cleaves p82 to 

p67 (Ridley et al., 1991) has remained unknown until now. Here, rPfSUB1 was 

shown to mediate the conversion of p82 to p67 in vitro. Furthermore, a peptide 

based on the known RAP1 cleavage site was cleaved by rPfSUB1 at the correct 

site. In conclusion, RAP1 appears to be a PfSUB1 substrate. Previous work by 

others has suggested that RAP1 is involved in egress and/or invasion. Parasite 

invasion is inhibited by use of the anti-RAP1 monoclonal antibody 2.29 as well as 

several other RAP1 monoclonal antibodies which bind in the vicinity of the PfSUB1 

cleavage site (Harnyuttanakorn et al., 1992). This suggests that these antibodies 

may inhibit invasion by interfering with PfSUB1 processing. Arguing against an 

important role for RAP1 in invasion or egress, however, is evidence that the rap1 

gene can be truncated in asexual stages (Baldi et al., 2000), implying that RAP1 is 

not essential for blood stage growth. On the other hand, a complete knockout of 

RAP1 is lacking and so it is possible that the N-terminus of RAP1 is essential, not 

the C-terminus. RAP1 may be involved in PV establishment as it is transferred to 

the PV during invasion (Baldi et al., 2000), though this has yet to be confirmed. 

RAP1 forms a complex with RAP2, RAP3 and ring-associated membrane antigen 

(RAMA), an association which is thought to be important for trafficking to the 

rhoptries during rhoptry biogenesis (Richard et al., 2009, Baldi et al., 2000, 

Schofield et al., 1986, Clark et al., 1987, Bushell et al., 1988). RAMA is processed 

upon reaching the rhoptries, which abolishes its association with RAP1 (Richard et 

al., 2009). RAMA also has a predicted PfSUB1 site (Table 7) and was confirmed to 

be cleaved by rPfSUB1 by the proteomic analysis (Table 9). It is possible that 

PfSUB1 processing might be important for RAMA and RAP1 to dissociate upon 

reaching the rhoptries (Richard et al., 2009). RAMA has an N-terminal prodomain 

which is removed in the rhoptries; cleavage occurs between 477L and 478Q 

(Richard et al., 2009). The predicted PfSUB1 cleavage site is very close to this at 

401LQGD↓SDD405 (Table 8. ), but is not identical, making it unlikely that PfSUB1 is 

responsible for this event. 

MSRP2, on the other hand, is likely to be a physiological substrate of 

PfSUB1. MSRP2 is processed physiologically at the time of egress (Kadekoppala et 

al., 2010), and was identified as a PfSUB1 substrate both by the PoPS analysis and 

by the western blot-based experiments. The absence of MSRP2 in the proteomic 

analysis is attributed to it being of low abundance. The importance of PfSUB1-
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mediated MSRP2 processing is unclear. Several merozoite surface proteins are 

processed by PfSUB1 during egress, including MSP7, which is of the same family 

as MSRP2 (Koussis et al., 2009). MSP7 is a membrane-associated protein which 

forms a complex with MSP6 and MSP1 which is found on the surface of merozoites 

(Pachebat et al., 2007, Holder et al., 1985, Stafford et al., 1996, Trucco et al., 2001, 

Kauth et al., 2006, Kauth et al., 2003). Each of these proteins is processed by 

PfSUB1 (Koussis et al., 2009). Unlike MSP7, however, MSRP2 is a soluble PV 

protein and is not detected on the merozoite surface (Kadekoppala et al., 2010). 

Therefore, the importance of MSRP2 processing cannot be directly compared to 

that of MSP7.   

Preliminary experiments were also performed to investigate the role of 

PfPPLPs in PfSUB1-mediated egress. RT-PCR confirmed all five genes encoding 

PfPPLPs are transcribed, a finding which supports data from Hall et al (Hall et al., 

2005) and contradicts that of Kaiser et al (Kaiser et al., 2004). Future analysis 

should include a time course to determine when maximum transcription of these 

genes occurs during the asexual stages of the life cycle. There are ongoing 

attempts to raise antibodies against recombinant domains of PfPPLP2 and 

PfPPLP4 to determine whether these proteins are expressed during asexual 

stages. Antibodies will be very useful tools for analysing the timing of expression 

and localisation of these proteins. It would, furthermore, be possible to carry out 

immuno-EM studies in order to pin down the precise location of these proteins in 

parasites. Aside from localisation studies, the antibodies and epitope tags could 

also be used for pull-down experiments from parasite lysates, to validate the 

antibodies and to identify binding partners of PfPPLP2 and PfPPLP4. Similarly, it 

might be possible to carry out pulse chase experiments to follow protein synthesis 

and potential proteolytic processing. If processing of PfPPLP2 and PfPPLP4 is 

observed a similar assay to that described by Koussis et al (Koussis et al., 2009) 

and in Chapter 2, could be used to determine whether processing is PfSUB1-

mediated. This method involves incubation of rPfSUB1 with protease inhibitor-

treated schizont lysates and assessment of processing using specific antibodies. 

Evidence from work in P. berghei indicates that pplp2 and pplp4 are 

important for blood stages; to determine whether these genes are also important in 

P. falciparum, the genetic loci were targeted using a series of different constructs 

for epitope tagging and disruption; all of these studies are ongoing. Whether 
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PfPPLP2 and PfPPLP4 are involved in PfSUB1-mediated egress remains unknown, 

but the transcription of genes encoding perforin-like proteins suggests, intrugingly, 

that there might be a role for PfPPLPs in asexual stages. 

5.3.4. New functions of PfSUB1 

The identification of PfSUB1 substrates that localise to the rhoptries implies that 

PfSUB1 has access to rhoptry proteins. There are three possible explanations for 

this. Firstly, PfSUB1 could have direct access to rhoptry proteins once it has been 

released into the PV, because once fusion of the apical duct has occurred, the 

rhoptry membrane is probably continuous with the merozoite PM (Bannister et al., 

2000). The rhoptry compartment may therefore become accessible to PV-located 

proteins. Secondly, since nothing is known about exoneme secretion or how 

PfSUB1 reaches the PV, it is possible that exonemes fuse directly to the 

cytoplasmic face of the rhoptries and that PfSUB1 makes its way to the PV via the 

rhoptry compartment. Localisation studies on PfSUB1 argue against this, as they do 

not show localisation in the rhoptries (Yeoh et al., 2007); on the other hand, the 

majority of exonemes may fuse to the PM while a small subset releases its contents 

into the rhoptries, at levels difficult to detect by immuno-EM. Alternatively, rhoptries 

may secrete their contents in the late stages of schizogony (Bannister et al., 1986), 

as occurs with micronemes in P. falciparum and T. gondii (Waters et al., 1990, 

Kafsack et al., 2008). 

The identification of PVM substrates in this study is particularly intriguing. 

During egress, the PVM is ruptured, prior to breakdown of the EPM. Since the 

molecules directly mediating membrane breakdown have yet to be identified, it is of 

particular interest that several PVM proteins possess predicted PfSUB1 cleavage 

sites, and that one in particular, EXP1, was identified in our proteomics search. 

EXP1 is an essential PVM protein with an unknown function (Maier et al., 2008), 

though it appears to form homo-oligomeric complexes which Spielmann et al 

suggest are membrane pores (Spielmann et al., 2006a). Several ETRAMPs, also 

PVM proteins, have predicted PfSUB1 sites but were not detected in the proteomic 

analysis, perhaps as they are low abundance proteins. Like EXP1, they are 

essential in asexual stages and form homo-oligomeric complexes (Spielmann et al., 

2006a). Proteolysis of these proteins by PfSUB1 could render them unstable, 

resulting in membrane collapse. To date, there is no evidence that either EXP1 or 
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ETRAMPs are physiologically processed. However, if PVM rupture occurs 

immediately prior to egress, which occurs very rapidly (Gilson & Crabb, 2009, 

Glushakova et al., 2008, Glushakova et al., 2005), it might be difficult to detect 

smaller fragments of these proteins in late schizonts, though they may be 

detectable in culture supernatant. 

Considering that the EPM also ruptures during egress, the appearance of α- 

and β-spectrin in both the PoPS-based and proteomic searches for substrates is 

particularly interesting. However, a direct role of PfSUB1 in spectrin degradation is 

uncertain, since cleavage of spectrin was not observed when erythrocyte ghosts 

were incubated with rPfSUB1. One explanation for these observations might be that 

PfSUB1 is involved in a proteolytic cascade, whereby it may activate other 

proteases such as members of the putative papain-like protease family, the SERAs. 

If a cascade is activated, it is also likely to take place in our in vitro assay. If 

proteases like the SERAs are present in the schizont lysates as inactive precursors, 

treatment using protease inhibitors and removal of residual inhibitors by 

centrifugation would not block their subsequent activation and proteolytic activity 

following rPfSUB1-treatment. On the other hand, the failure to detect PfSUB1-

mediated digestion of spectrin could simply be difficult to observe in the absence of 

anti-spectrin antibodies. Physiologically, spectrin is cleaved by an erythrocytic 

cysteine protease called calpain 1 (Boivin et al., 1990). Calpain 1 may also be 

involved in remodelling of the erythrocyte cytoskeleton by P. falciparum to enable 

egress to proceed (Chandramohanadas et al., 2009), though whether it cleaves 

spectrin during egress is unknown. It is possible that if PfSUB1 is involved in a 

proteolytic cascade, calpain could be activated indirectly by PfSUB1. Degradation of 

spectrin in cultured P. falciparum has not been reported, but it does occur in a 

murine model of cerebral malaria and may be mediated by calpain as elevated 

levels of erythrocytic calpain are observed in the cerebellum and cerebral cortex 

(Shukla et al., 2006).  

Proteases are thought to play an important role in degradation of the 

erythrocyte during schizogony. Using a biotinylated cysteine protease probe, 

Gelhaus et al showed that cysteine protease activity occurs inside the EC in 

schizonts (Gelhaus et al., 2005). Falcipain 2 is located in the FV, PV and EC, and 

cleaves anykrin and band 4.1 during late stages of egress (Dua et al., 2001, 

Hanspal et al., 2002). Falcipain 2 cleaves band 4.1 within a spectrin-actin binding 
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domain, which is thought to mediate destabilisation of the erythrocyte membrane as 

this is a key structural interaction. There is also evidence that recombinant 

plasmepsin II degrades spectrin, though whether this occurs in vivo is unknown (Le 

Bonniec et al., 1999). PfM18APP, an M18 aminopeptidase expressed in asexual 

stages, binds spectrin and other erythrocyte cytoskeletal components in vitro, which 

may indicate that it has a role in cytoskeletal modification (Lauterbach & Coetzer, 

2008). Degradation of cytoskeletal components could result in membrane 

destabilisation by rendering the erythrocyte unable to contain the densely-packed 

merozoites. 

In terms of proteomics, it would be interesting to carry out further studies 

using these samples. In particular, it would be of interest to identify where these 

proteins are being cleaved. The RP-HPLC purified fractions of rPfSUB1-treated 

schizont lysates could be further analysed by subjecting individual bands to N-

terminal sequencing to confirm whether PfSUB1 is cleaving these proteins at the 

predicted sites. This analysis would also provide cleavage sites of any proteases 

acting downstream of PfSUB1. This could be combined with analysis of proteolytic 

processing during invasion and egress, to ascertain whether these processing 

events also occur physiologically.  

The importance of maturation of any of its substrates by PfSUB1 remains 

unclear. Antibodies which interfere with MSP1 processing result in blockage of 

invasion (Lazarou et al., 2009), which suggests that PfSUB1-mediated processing 

is important. Monoclonal antibody 43E5, which recognises the N-terminus of the 

SERA5 p47 fragment, is invasion-inhibitory (Fox et al., 1997), though whether this 

antibody interrupts SERA5 processing to p47 is unknown. The next step in this 

project is to investigate the importance of PfSUB1-mediated processing, a task that 

is somewhat challenging, considering that several PfSUB1 substrates are essential 

to parasite growth in vitro. Surprisingly, mutagenesis of the PfSERA5 site 2 to 

render it non-cleavable can be achieved without affecting parasite viability in P. 

falciparum (Christine Collins and Sharon Yeoh, NIMR, unpublished data), 

suggesting that blockage of PfSUB1 cleavage of PfSERA5, at least at site 2, is 

tolerated by the parasite. MSRP2 and RAP1 are not essential to the parasite life 

cycle (Baldi et al., 2000, Kadekoppala et al., 2010). By studying the processing of 

these proteins, it might be possible to gain valuable information about the 

importance of PfSUB1-mediated processing.  
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In conclusion, the data presented in this chapter indicate that PfSUB1 is a 

multifunctional enzyme, responsible for the processing of rhoptry, PV, PVM and 

may be indirectly responsible for processing of erythrocyte components. Further 

work must be carried out to ascertain the physiological relevance of these findings.  
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Figure 31. PfSUB1 displays sequence preferences at cleavage site subsites 

Alignment of all validated PfSUB1 cleavage sites indicates that PfSUB1 has trends 

in specificity at subsites within cleavage sites. Residues are labelled according to 

the single letter amino acid code. Sub-sites are described according to Schechter 

and Berger notation of sub-sites surrounding the scissile bond at P1-P1' (Schechter 

& Berger, 1967). P4 residues tend to be hydrophobic and only Gly or Ala are 

present at P2. A polar residue always precedes the scissile bond in the P1 subsite. 

P2'-P5' exhibit an acidic tendency in positions. Adapted from Yeoh et al (Yeoh et 

al., 2007) and expanded. 
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Figure 32. Generation of a PfSUB1 specificity model 

To generate a consensus motif for PfSUB1, 16 cleavage sites from previously-

established PfSUB1 substrates were aligned and converted into a WebLogo 

graphic (A). The graphic represents a 10-mer peptide annotated according to 

Schechter and Berger (Schechter & Berger, 1967). Residues are labelled with the 

single letter amino acid code. The height of the letter at a given position reflects the 

frequency of the residue at that position. These cleavage sites were used to 

assemble a PfSUB1 specificity model for use in PoPS (B). Each amino acid residue 

was given a score for each sub-site within the cleavage site according to its 

frequency at a certain site in the validated sequences. Residues which are not 

present in a certain sub-site in those sequences, or which are known to inhibit 

cleavage, were blocked (#) in order to decrease the sensitivity of the model.   
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Figure 33. Workflow for the prediction of PfSUB1 substrates 

The PoPS PfSUB1 specificity model was used to scan 5,679 P. falciparum 

predicted proteins. Of these proteins, 2,086 harboured putative PfSUB1 cleavage 

sites. To select “most likely” substrates, several delimiting criteria were used. 

PfSUB1 is a secreted protein which is active in the PV, therefore  proteins with N-

terminal secretory signal peptides were selected (n=480). Proteins which are 

expressed at the transcriptional or protein level, with 1 transmembrane domain 

(TM), a molecular mass of less than 200 kDa and a putative function in invasion or 

egress were selected. Hypothetical proteins with no known function were also 

retained. Application of these stringencies resulted in a shortlist of 77 novel putative 

PfSUB1 substrates.  
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Figure 34. Distribution of putative and known functions of predicted PfSUB1 

substrates 

Bar graph showing the distribution of predicted and known functions of predicted 

PfSUB1 substrates (480 secreted proteins). Many of these proteins are involved in 

processes where PfSUB1 is unlikely to play a role, for example transcription and 

translation (11.2%). Nearly 50% of predicted PfSUB1 substrates are hypothetical. In 

particular, proteases and peptidases make up 1.9% of the predicted PfSUB1 

substrate repertoire (proteases make up 1.6% of the P. falciparum predicted 

proteome), while 1.2% of predicted substrates are merozoite surface proteins. 
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Figure 35. The predicted secondary structure of validated PfSUB1 cleavage sites is 

variable. 

Secondary structure predictions for all cleavage sites occurring in the 3D7 cloned 

line of P. falciparum were obtained using JPred. The final secondary structure 

prediction is shown (Jnet). Most cleavage sites occur in disordered regions (-) and 

others occur within predicted α-helices (H) or β-strands (E). 
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SUB1            IKILEEKGALIESDKLVSADNIDISGIKDAIRRGEENIDV 

Jnet            HHHHHH---------------EEEEEHHHHHH-------- 

 

MSP183-30            MLKKEQAVLSSITQPLVAASETTEDGGHSTHTLSQSGETE 

Jnet            ---HHHHHHHHHHHHHHHHHH-HHHH-------------E 

 

MSP130-38         LKEENHIKKLLEEQKQITGTSSTSSPGNTTVNTAQSATHS 

Jnet            H----HHHHHHHH--------------------------- 

 

MSP138-42         PIFGESEDNDEYLDQVVTGEAISVTMDNILSGFENEYDVI  

Jnet            EEE------------EEE--------------------EE 

 

MSP636           KGANGLTGATENITQVVQANSETNKNPTSHSNSTTTSLNN  

Jnet            ----------HHHHHHHH---------------------- 

 

MSP719           PLFQNLGLFGKNVLSKVKAQSETDTQSKNEQEISTQGQEV  

Jnet            -------------------------------------HHH  

 

SERA5 site 1    VCYKYLSEDIVSKFKEIKAETEDDDEDDYTEYKLTESIDN  

Jnet            -------HHHHHHHHH--------------HHHHHHHHHH 

 

SERA5 site 2    EKEDNENNKKLGNNYIIFGQDTAGSGQSGKESNTALESAG 

Jnet            HHHHHHH-------EEEE------------E--------- 

 

SERA5 site 3    LPSNGTTGEQGSSTGTVRGDTEPISDSSSSSSSSSSSSSS  

Jnet            EEEE-----EEEEEEEEE--EEEEE-EE------------ 

 

SERA6 site 1    FKYVSSEMKKKMNEIKVKAQDDFNPNEYKLIESIDNILSK  

Jnet            --------HHHHH------------HHHHHHHHHHHHHHH 

 

SERA6 site 2    ETSQDFESENDYDNAFVHGQSNESDETNKEGKNVHNSVEK 

Jnet            ------EEEEE---------EEEEEEEEEEE--------- 

 

SERA4 site 1    KYVSSNQKELIKKQLKITAQDDEESSEYHLSESIKNLLKN  

Jnet            -----H-HHHHHHHH-------------HHHHHHHHHHHH 

 

SERA4 site 2    TFNSNKEEKSMNKNSYVYGQDTTPVENEAPRSGVQKPTEL 

Jnet            --------------EEEEE--------------------- 
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Table 7. ”Most likely” PfSUB1 substrates 

Application of the stringencies described in section 5.2.2 resulted in the 

identification of 77 proteins with at least one putative PfSUB1 cleavage site, which 

are secreted and expressed at least at the mRNA level in schizogony. Some of 

these proteins have homologues in other Plasmodium spp. species, others do not. 

Cleavage sites span subsites P4-P3' around the scissile bond. There is evidence 

that some of these proteins are processed physiologically.  

a Downward arrow denotes the scissile bond 

b Pb, P. berghei; Pc,  P. chabaudi; Pk, P. knowlesi; Py, P. yoelii; Pv,  P. vivax 
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PlasmoDB 
Accession 
number 

Gene product No. of 
predicted 
cleavage 
sites 

Sequence at cleavage site(s) (P4-P3')a Homologuesb Evidence of processing 

Invasion- or egress-related proteins 
PF10_0345 MSP3 1 ITGN↓DFS None (Pearce et al., 2004) 

PF10_0347 H101 (MSP3-like) 2 IIGD↓DFS, IDGE↓SGT None (Pearce et al., 2005) 

PF10_0348 DBLMSP (MSP3-like) 3 INAN↓DLE, IVGQ↓DVP, LEGN↓SID None (Wickramarachchi et al., 

2009) 

PF10_0355 MSP3-like 2 ITGN↓DSN, IDAN↓NQN None  

PF10_0350 MSP3-like 2 TYGE↓NLN, TEGD↓GSS None  

MAL13P1.174 MSRP2 (MSP7-like) 2 IIGQ↓GIF, LKGE↓SED Pc, Pk, Pv, Py (Kadekoppala et al., 2008) 

PF13_0193 MSRP3 (MSP7-like) 1 VTGQ↓NVD Pb, Pc, Pk, Pv, Py  

MAL13P1.173 MSRP4 (MSP7-like) 2 IKGN↓SEE, IKGQ↓GFF Pc, Pk, Pv, Py  

PF13_0194 MSRP5 (MSP7-like) 3 LSAA↓TND, LRGT↓SQN, TQGS↓ENN None  

MAL13P1.56 M1-aminopeptidase 1 VEGE↓EYT  Pb, Pc, Pk, Pv, Py (Florent et al., 1998, Allary 

et al., 2002) 

PF10_0281 MTRAP 1 IEGD↓NIT Pb, Pc, Pv, Pk (Baker et al., 2006) 

PFD0295c ASP  1 LIAE↓NEA Pb, Pc, Pk, Pv, Py (O'Keeffe et al., 2005) 

MAL7P1.208 RAMA 1 LQGD↓SDD Pb, Pc, Pk, Pv, Py (Topolska et al., 2004, 

Richard et al., 2009) 

PF14_0102 RAP1  1 IVGA↓DEE,  Pb, Pc, Pk, Pv, Py (Howard et al., 1998, 

Ridley et al., 1991) 

PFE0080c RAP2  1 LVGT↓NNN Pb, Pc, Pk, Pv, Py  

PFB0360c SERA1 3 IKAE↓AED, VMAT↓NCF, TRGE↓EDD Pb, Pc, Pk, Pv, Py  

PFB0355c SERA2 2 IWGQ↓ETT, TKGE↓DDA Pb, Pc, Pk, Pv, Py  

PFB0350c SERA3 3 VKAA↓SVD, LYGQ↓EES, TFGQ↓NSN Pb, Pc, Pk, Pv, Py  

PFB0330c SERA7 1 ISAQ↓DEP Pb, Pc, Pk, Pv, Py  

PFI0135c SERA9 3 VHGQ↓SGE, ISGQ↓SSS, TTAD↓AFN Pb, Pc, Pk, Pv, Py  

PFI1445w RhopH2 2 INAD↓DVS, LYGN↓NNN Pb, Pc, Pk, Pv, Py  

PFI0265c RhopH3 2 TSAA↓STS, ISGS↓EGP Pb, Pc, Pk, Pv, Py (Sam-Yellowe et al., 1988) 

PFC0110w CLAG 3.2 2 ITGN↓SVN, TDAD↓DET Pb, Pc, Pk, Pv, Py  

PFC0120w CLAG 3.1 2 ITGN↓SVN, TDAD↓DET Pb, Pc, Pk, Pv, Py  
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MAL7P1.229 CLAG 2 ILGN↓SVN, LNGD↓SNP Pb, Pc, Pk, Pv, Py  

PFB0935w CLAG 1 TSGS↓SME Pb, Pc, Pk, Pv, Py  

PFI1730w CLAG9 2 LNGN↓NNA, LNAD↓GAE Pb, Pc, Pk, Pv, Py  

PF11_0174 DPAP1 3 VYAN↓TAS, LRGQ↓NFS, TCGS↓SQP Pb, Pc, Pk, Pv, Py (Klemba et al., 2004b) 

PF11_0162 Falcipain-3 2 IAAS↓DDF, TTGA↓EEN Pb, Pc, Pk, Pv, Py  

PF10_0159 GBP130 1 ILAE↓GED None (Ravetch et al., 1985) 

Other proteins 
PF14_0281 Plasmepsin IX 1 ILGN↓ATF Pb, Pc, Pk, Pv, Py  

PF14_0075 Plasmepsin IV 1 TDAD↓DLE Pb, Pc, Pk, Pv, Py  

PFF0615c Pf12 6-cysteine protein 2 VIGS↓SMF, INGS↓NGN Pb, Pc, Pk, Pv, Py  

PF13_0338 Pf92 6-cysteine protein 3 VIGT↓NTT, TNAQ↓NLN, TEGT↓AME Pk, Pv  

PF14_0201 Pf113 6-cysteine protein 5 IMGN↓SFD, VNAN↓DDE, IEAS↓ESS, 

TDAE↓AID LQGS↓EQS 

Pb, Pc, Pk, Pv, Py  

PF10_0356 LSA1 1 IKGQ↓DEN Pb, Pc, Pk, Pv, Py  

PFA0280w Pfa35-2  3 VKGQ↓DQF, IKGE↓EEN, LHAQ↓SGD Pb, Pc, Pk, Pv, Py  

PF11_0224 EXP1 1 VTAQ↓DVT Pb, Pc, Pk, Pv, Py  

PFE1590w ETRAMP5  1 VVGN↓SSS Pk, Pv  

PF10_0323 ETRAMP10.2 1 TQGN↓DSF Pk, Pv  

MAL8P1.6 ETRAMP8  1 TLGE↓NYE Pk, Pv  

PFA0675w RESA-like protein 2 VKGD↓AEE, LNGE↓DIT None  

PF11_0509 RESA 1 LDGS↓EDE None  

PFD0430c PPLP1 2 TNAD↓TVT, TAGS↓SSE Pb, Pc, Pk, Pv, Py  

PFL0805w PPLP2 1 THGT↓NFA Pb, Pc, Pk, Pv, Py  

PFI1145w PPLP3 2 IGGT↓TIF, VKGS↓TNT Pb, Pc, Pk, Pv, Py  

PF08_0050 PPLP4 1 TEGN↓TIA Pb, Pc, Pk, Pv, Py  

PFD1215w PHISTa 1 TKAN↓AND None  

MAL13P1.475 PHISTb 1 IFGD↓DSF None  

PFD0095c PHISTb 1 LKGD↓NNN None  

PF10_0025 Pf70 4 TSAD↓NNT, LFAN↓NLT, LLAQNLE, 

LKGS↓SGS 

Pk, Pv  

PF10_0343 S-antigen  1 THGS↓EDE None  

Hypothetical proteins 
PF10_0342 Unknown protein 1 VHGA↓TED None  
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PF11_0069 Unknown protein 1 IKGD↓SMT Pb, Pc, Pk, Pv, Py  

PFC0282w Unknown protein 1 IQGD↓SME Pb, Pc, Pk, Pv, Py  

MAL13P1.107 Unknown protein 2 VEAE↓SIN, IKGN↓NVE Pv  

PFC0571c Unknown protein 1 VKGT↓SSF Pb, Pc, Pk, Pv, Py  

PFA0210c Unknown protein 1 VQAQ↓AQA Pb, Pc, Pk, Pv, Py  

PFF0090w Unknown protein 1 VYAS↓ANA Pk, Pv  

PF14_0693 Unknown protein 1 ISAS↓NND Pb, Pc, Pk, Pv, Py  

PF14_0293 Unknown protein 2 LEGD↓SME, TMAS↓AAS Pb, Pc, Pk, Pv, Py  

PF11_0400 Unknown protein 1 LYGN↓TFN Pb, Pc, Pk, Pv, Py  

MAL13P1.268 Unknown protein 1 LEGE↓TQD Pk, Pv  

PF14_0045 Unknown protein 1 LRGS↓NFN Pk, Pv  

PFE0365c Unknown protein 1 VFGS↓STF Pb, Pc, Pv, Pk  

PFI1463w Unknown protein 1 IFGS↓SCF Pk, Pv, Py  

PF08_0091 Unknown protein 1 IAGS↓AFS Pb, Pc, Pk, Pv, Py  

PFL1015w Unknown protein 1 LNAN↓DEN Pb, Pc, Pv, Pk  

PF08_0081 Unknown protein 1 TDAN↓SNN Pb, Pc, Pk, Pv, Py  

PFA0445w Unknown protein 1 LIGN↓SCN Pb, Pc, Pk, Pv, Py  

PFL2515c Unknown protein 1 LSGE↓SGP Pv  

PFD1130w Unknown protein 1 LKGE↓EDE Pk, Pv  

PFF1465w Unknown protein 1 LEGD↓EDF Pb, Pc, Pv, Pk  

MAL8P1.66 Unknown protein 1 TLGE↓NYE Pb, Pc, Pk, Pv, Py  

PF14_0344 Unknown protein 4 VHAN↓DDA, VDAN↓NNE, LFGE↓NEE, 

LKGA↓GVN 

Pb, Pc, Pk, Pv, Py  

MAL7P1.170 Unknown protein 1 TSGA↓NGN None  

PFL1065c Unknown protein 1 LVGS↓STT Pb, Py, Pv, Pk  
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Table 8. Candidate Human Erythrocytic PfSUB1 Substrates 

A human erythrocyte proteome dataset (Kakhniashvili et al., 2004) was scanned 

using the same PfSUB1 specificity model used to predict substrates in the P. 

falciparum predicted proteome. Of the 182 proteins in this proteome, 48% harbour 

putative PfSUB1 cleavage sites.  
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Figure 36. Workflow for the experimental identification of PfSUB1 substrates 

For analysis of membrane-associated proteins, purified schizonts were incubated 

with a cocktail of protease inhibitors and permeabilised using the detergent saponin. 

The saponin lysate was centrifuged and the released soluble proteins removed by 

washing. For analysis of soluble proteins, parasites were freeze-thawed and the 

supernatant clarified by centrifugation. The resulting pellet of membrane-associated 

proteins or supernatant containing soluble proteins was incubated with or without 

rPfSUB1. Treated samples were analysed by SDS-PAGE and Western blot with 

available antibodies, or further resolved by solubilisation in 8 M urea, 25 mM 

CHAPS and RP-HPLC (membrane-associated proteins) fractionation on a C4 

column. Equivalent rPfSUB1-treated or untreated RP-HPLC fractions were resolved 

side by side on SDS-PAGE preceding tryptic digestion and LC/MS/MS peptide 

mapping of shifted bands. 

  



 233

      



 234

Figure 37. Mimicry of physiological processing by incubation of schizont proteins 

with rPfSUB1 

Treatment of schizont proteins with rPfSUB1 or with rPfSUB1 and rPfSUB1pro for 1 

hour at 37C°, followed by separation by SDS-PAGE indicates that very few proteins 

shift in size in response to rPfSUB1 (indicated with arrows) (A). Near complete 

processing of MSP1 (detected with monoclonal antibody X509) was observed in 

schizont membrane associated protein preparation in the presence of rPfSUB1 

(PT+) (B), which was not observed in the presence of rPfSUB1pro (PT-). A similar 

result was obtained for SERA5 (detected with monoclonal antibody 24C6.1F1) in a 

preparation of rPfSUB1-treated soluble schizont proteins (ST+) (C), where 

processing of the SERA5 precursor p126 to p73 and p56 is almost complete. 

Conversion of SERA5 does not occur in the presence of rPfSUB1pro (ST-). 
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Figure 38. SDS-PAGE resolution of RP-HPLC fractions 

A, B, C. Fractions of PfSUB1+ or PfSUB1- protein preparations were resolved by 

SDS-PAGE and stained with InstantBlue. Bands which visibly shifted in size 

between equivalent PfSUB1+ and PfSUB1- fractions were cut out and subjected to 

trypsinisation preceding LC/MS/MS analysis. See Table 9 for labelling of bands. 
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Table 9. PfSUB1 substrates identified by proteomics 

Analysis of PfSUB1+ and PfSUB1- samples by RP-HPLC and SDS-PAGE followed 

by LC/MS/MS led to the identification of 23 proteins which are processed in the 

presence of rPfSUB1. The ID number relates to bands in Table 9. Substrates were 

cross-referenced to predictions in Table 7 and Table 8. Cross-referencing to the 

non-delimited list of PfSUB1 substrates (PoPS prediction) was carried out if hits had 

been eliminated due to predicted characteristics. Some of these proteins are 

processed physiologically.  
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Figure 39. RAP1 is processed by rPfSUB1 

A. RAP1 undergoes processing from p82 to p67 at 186GIVGA↓DEEAP195; this was 

hypothesised to be mediated by PfSUB1. The small arrow indicates the processing 

site (N.B. diagram is not to scale). B. Incubation of a schizont lysate with rPfSUB1 

for 2 hours at 37°C resulted in conversion of full length RAP1 to a 70 kDa species 

(+), detected by Western blot using anti-RAP1 monoclonal antibodies. Low-level 

background processing at time zero (START) and in a mock-treated sample 

incubated with rp31 (-) was observed. A 70 kDa protein running at the same size as 

the PfSUB1-treated sample was observed in merozoite and schizont lysates. C. 

RP-HPLC traces of two acetylated peptide based on predicted PfSUB1 processing 

sites, incubated with or without rPfSUB1. Cleavage of Ac-GIVGADEEAP resulted in 

two peptides which were identified by ESI-MS while Ac-IVGADEEAPP was not 

cleaved. 
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Figure 40. Conservation of PfSUB1 cleavage sites in RAP1 orthologues 

Amino acid sequences P. knowlesi, P. vivax, P. berghei and P. chabaudi RAP1 

orthologues were scanned using the PoPS PfSUB1 specificity model. Predicted 

PfSUB1 cleavage sites are highlighted. Using this model, only P. chabaudi RAP1 is 

a predicted PfSUB1 substrate. 
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PvRAP1          MITCVSSLLVLFYALYQNVSSGIPINGERKIDNHKEPEEFNPDDINSWMRLDDANFLNTW 60 

PyRAP1          MITCVSSLLVLFYALYQNVSSGIPINGERKIDNHKEPEEFNPDDINSWMRLDDANFLNTW 60 

PfRAP1          MSFYLGSLVIIFHVLFRNVADGINVNGDNNYGKTIINNDFNFDDYNYWTPINKKEFLNSY 60 

PbRAP1          ------------------------------------------------------------ 

PkRAP1          ------------------------------------------------------------ 

PcRAP1          MFTKIVSLFILSRLLLQDCSVAFNVRDSNVIS------SYSHGYNSPSIKNEELGDYNYF 54 

                                                                             

 

PvRAP1          TKNVSDISFVESKASKETG-------SENGDASSTGSGK---------------DSYGDW 98 

PyRAP1          TKNVSDISFVESKASKETG-------SENGDASSTGSGK---------------DSYGDW 98 

PfRAP1          EDKFSSESFLENKSSVDDGNINLTDTSTSNKSSKKGHGRSRVRSASAAAILEEDDSKDDM 120 

PbRAP1          ------------------------------------------------------------ 

PkRAP1          ------------------------------------------------------------ 

PcRAP1          KKMVPKVSFLQEENDGNND----------------------------------------- 73 

                                                                             

 

PvRAP1          NFMTNQNEAGKPGKPKSNSGESNASSSDGKSSASAKSGSKSGSKYGGSSYSDY--SAYDS 156 

PyRAP1          NFMTNQNEAGKPGKPKSNSGESNASSSDGKSSASAKSGSKSGSKYGGSSYSDY--SAYDS 156 

PfRAP1          EFKASPS-VVKTSTPSGTQTSGLKSSSPSSTKSSSPSNVKSASPHGESNSSEE--STTKS 177 

PbRAP1          ------------------------------------------------------------ 

PkRAP1          ------------------------------------------------------------ 

PcRAP1          ------------------KNESDSNAQPNLPETNEPLPADATNQNQDTASNENTENKENP 115 

                                                                             

 

PvRAP1          GSASS-----VGSRE----------------FENEMYEFALQHPMEKLTKEMDILKNDYT 195 

PyRAP1          GSASS-----VGSRE----------------FENEMYEFALQHPMEKLTKEMDILKNDYT 195 

PfRAP1          SKRSASVAGIVGADEEAPPAPKNTLTPLEELYPTNVNLFNYKYSLNNMEENINILKNEGD 237 

PbRAP1          ------------------------------------------------------------ 

PkRAP1          ------------------------------------------------------------ 

PcRAP1          ENK--------------------------------------------------------- 118 

                                                                             

 

PvRAP1          KVKEEEGKILDEEHKEIEEKRKEERLKMLAEGDVEKNKGDEEINFIKHDYTDTRIRGGFT 255 

PyRAP1          KVKEEEGKILDEEHKEIEEKRKEERLKMLAEGDVEKNKGDEEINFIKHDYTDTRIRGGFT 255 

PfRAP1          LVAQKEEFEYDENMEKAKQDKKKALEKIGKESDEEPFMFSENK-FLENQVKERNVAGSFS 296 

PbRAP1          ------------------------------------------------------------ 

PkRAP1          ------------------------------------------------------------ 

PcRAP1          ---ENTENKENIEKKEKKGKKGKEKPKRELKAQGDPDLLKDRDYTLIGENTINSLKHAEE 175 

                                                                             

 

PvRAP1          EFLSNLNPFKKEIKPMKKEISLITYIPDKIVNKEKIMRDLGISHKYEPYQQSILYTCPNS 315 

PyRAP1          EFLSNLNPFKKEIKPMKKEISLITYIPDKIVNKEKIMRDLGISHKYEPYQQSILYTCPNS 315 

PfRAP1          RFFSKLNPFKKDEVIEKTEVSKKTFSGIGFNLTEKEAKVLGVGVTYQEYPETMLYNCPNN 356 

PbRAP1          ------------------------------------MHTLGYDKEFKLAELTTIQSCPND 24 

PkRAP1          ------------------------------------MHTLGYDKEFKLAELTTIQSCPND 24 

PcRAP1          SNDETIEEEETEVKVDENNQPLIKYTPDYTERLKKAMHKLGYDKEFKLAELRKVQSCPND 235 

                                                     : ** .  ::      : .***. 
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PvRAP1          VFFFDSMENLRKELDKNHEKEAITNKILDHNKECLKNFGLFDFELPDNKTKLGNVIGSIG 375 

PyRAP1          VFFFDSMENLRKELDKNHEKEAITNKILDHNKECLKNFGLFDFELPDNKTKLGNVIGSIG 375 

PfRAP1          SNLFDTIESLQGRVIDIKKRESMISTTFEQQKECLKNMGVLDLELNDTQCKFGTCIGSFG 416 

PbRAP1          NFLFDIFPQAIQKFQENDMKY--IQTQGDQYVECIKKHKLVGSDNQDLKLNFGNSVNTFG 82 

PkRAP1          NFLFDIFPQAIQKFQENDMKY--IQTQGDQYVECIKKHKLVGSDNQDLKLNFGNSVNTFG 82 

PcRAP1          NFLFDAYPESIEEFKKNDFRR--MDAIETRFIACLRRHNLIRTNGWDTRLKFGNSVNTFG 293 

                  :**   .   .. . . :    .    :   *::.  :.  :  * : ::*. :.::* 

 

PvRAP1          EYHVRLYEIENDLLKYQPSLDYMTLADDYKLVKNDVNTLENVNFCLLNPKTLEDFLKKKE 435 

PyRAP1          EYHVRLYEIENDLLKYQPSLDYMTLADDYKLVKNDVNTLENVNFCLLNPKTLEDFLKKKE 435 

PfRAP1          EHHLRLYEFENDLLKFHPNIDYLTLADGYKLQKNDIYELSHVNFCLLNPKTLEEFLKKKE 476 

PbRAP1          PYKIPQKMITFDLIRLPSNITPVNLANDYYLSESEFPNLHKLNYCLLHPAKLEKLLKRKD 142 

PkRAP1          PYKIPQKMITFDLIRLPSNITPVNLANDYYLSESEFPNLHKLNYCLLHPAKLEKLLKRKD 142 

PcRAP1          PYALQNDLGVYDLTNLPSKVDYINVVNDYVIPESEFPNLRKLNYCLLNPGKLEKLLKQKN 353 

                 : :       ** .  ..:  :.:.:.* : :.:.  * ::*:***:* .**.:**:*: 

 

PvRAP1          IMELMG-EDPIAYEEKFTKYMEESINCHLESLIYEDLDS-------SQDTKIVLKNVKSK 487 

PyRAP1          IMELMG-EDPIAYEEKFTKYMEESINCHLESLIYEDLDS-------SQDTKIVLKNVKSK 487 

PfRAP1          IKDLMGGDDLIKYKENFDNFMSISITCHIESLIYDDIEA-------SQDIAAVLKIAKSK 529 

PbRAP1          IKSYINNTESGSYDNFFKKAMNESIECHVENTLHMILSKLTLFMFFNVNKPDSKNILKKQ 202 

PkRAP1          IKSYINNTESGSYDNFFKKAMNESIECHVENTLHMILSKLTLFMFFNVNKPDSKNILKKQ 202 

PcRAP1          IKSYITDTDKGSYDEFFKNALNESIRCHIEYLLYELLEQDRFRKYYKQVPVDLEKDLKKK 413 

                * . :   :   *.: * : :. ** **:*  ::  :.        .       :  *.: 

 

PvRAP1          LYLLQNGLTYKSKKLINKLFNEIQKNPEPIFEKLTWIYENMYHLKRDYTFLAFKTVCDKY 547 

PyRAP1          LYLLQNGLTYKSKKLINKLFNEIQKNPEPIFEKLTWIYENMYHLKRDYTFLAFKTVCDKY 547 

PfRAP1          LHVITSGLSYKARKLVYKIYSEIQKNPDELYEKLTWIYDNIYMIKRYYTAYALEGVCS-Y 588 

PbRAP1          LYIIKSGLSYRSRKYVDNAYKKVINNFKDYENKIKLIDSNLENITSYYAAHAFGNLCNTY 262 

PkRAP1          LYIIKSGLSYRSRKYVDNAYKKVINNFKDYENKIKLIDSNLENITSYYAAHAFGNLCNTY 262 

PcRAP1          LYLVKSGLSYRSRRHVDNIFKEIVEDIDYHEQQFRLLEKNMVKITMYYSGYSLGDSCIEY 473 

                *::: .**:*:::: : : :.:: :: .   :::  : .*:  :.  *:  ::   *  * 

 

PvRAP1          VSHN--SIYTSLQGMTSYIIEYTRLYGACFKNITIYNAVISGIHEQMKNLMKLMPRSGLL 605 

PyRAP1          VSHN--SIYTSLQGMTSYIIEYTRLYGACFKNITIYNAVISGIHEQMKNLMKLMPRSGLL 605 

PfRAP1          LEHDKSQMYTELH-IYNKIVDSVRYYSSCFKNVIVYNAIISGIHEKIKHFLKLVPRHNFL 647 

PbRAP1          MEKD--NIYEANAYLYEHIAPSIKIFSSCIKHLTIYNYIISNLLGQVKHLMSYTPRKPIL 320 

PkRAP1          MEKD--NIYEANAYLYEHIAPSIKIFSSCIKHLTIYNYIISNLLGQVKHLMSYTPRKPIL 320 

PcRAP1          FEKD--NIHEAHAYLYDHFAKPIRLFSSCIKNMTIYNNVMSHVHSRMKQLLTHTPRKPIL 531 

                ..::  .::     : . :    : :.:*:*:: :** ::* :  ::*:::.  **  :* 

 

PvRAP1          SDVHFEALLHKENKKITRTDYVLNDYDPSVKAYALTQVERLPMVSVINSFFEAKKKALSK 665 

PyRAP1          SDVHFEALLHKENKKITRTDYVLNDYDPSVKAYALTQVERLPMVSVINSFFEAKKKALSK 665 

PfRAP1          LDYHFNSIFEKEIKPAKKYSTSHIYFDPTVASYAYYNLDRRTMVTIINDYFEAKKKELTV 707 

PbRAP1          KDIHFKALLNKFKKPKCN----ELPYDPTVKSFALGELTREPIHGLIHSYFEYKKKDLLD 376 

PkRAP1          KDIHFKALLNKFKKPKCN----ELPYDPTVKSFALGELTREPIHGLIHSYFEYKKKDLLD 376 

PcRAP1          KEIHFNVLLNKFKKPQNKD---HLPYHPTVKSFALGELTREPIYGFNHAFFEYKKKQVLD 588 

                 : **: ::.*  *   .       :.*:* ::*  :: * .:  . : :** *** :   
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PvRAP1          MLAQMKLDLFTLTNEDLKIPNDKGANSKLTAKLISIYKAEIKKYFKEMRDDYVFLIKARY 725 

PyRAP1          MLAQMKLDLFTLTNEDLKIPNDKGANSKLTAKLISIYKAEIKKYFKEMRDDYVFLIKARY 725 

PfRAP1          IVSRMKTDMLSLQNEESKIPNDKSANSKLATRLMKKFKAEIRDFFKEMRIQYAKLINIRY 767 

PbRAP1          IMQKLKLDIFSLANKDLKFPSADLPDYKLFKDIVNKYKKEIKILFQEMNSEYVKLFKMRI 436 

PkRAP1          IMQKLKLDIFSLANKDLKFPSADLPDYKLFKDIVNKYKKEIKILFQEMNSEYVKLFKMRI 436 

PcRAP1          IMYKIKLDVFSLVRKGKDGLELAPENNELYEQLLNKYKKELRALLQEMNYEYVKLFEMRL 648 

                :: ::* *:::* .:  .  .    : :*   ::. :* *::  ::**. :*. *:: *  

 

PvRAP1          KGHYKKNYLLYKRLE 740 

PyRAP1          KGHYKKNYLLYKRLE 740 

PfRAP1          RSHLKKNYFAFKRLD 782 

PbRAP1          SAFYQKDFFIYDRVF 451 

PkRAP1          SAFYQKDFFIYDRVF 451 

PcRAP1          SAFYQKDLMTYGRLF 663 

                 .. :*: : : *:  
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Figure 41. MSRP2 is processed by rPfSUB1 

A. Antibodies against MSRP2 detect a 20 kDa protein in rPfSUB1-treated schizont 

lysate (+), separated by SDS-PAGE on a 15% polyacrylamide gel. This protein was 

not observed at time zero (START) or in a mock-treated sample incubated with rp31 

(-). A 25 kDa band was also observed in a culture supernatant sample (CS) but not 

observed in merozoite (Mer) or schizont (Sch) lysates. Asterisks indicate non-

specific bands detected by the anti-MSRP2 antibody (Kadekoppala et al., 2010). B. 
RP-HPLC traces of acetylated peptides based on the two predicted PfSUB1 

processing sites, incubated with (lower panel) or without (upper panel) rPfSUB1. 

Ac-SLKGESEDNT was cleaved by rPfSUB1 and the resulting peak was identified 

by ESI-MS as SLKGE (Steve Howell, NIMR). The second, highly hydrophobic 

peptide Ac-DIIGQGIFSL (right upper and lower panels) was not cleaved in the 

presence of rPfSUB1 (lower panel). C. We propose this model for MSRP2 

processing by PfSUB1. MSRP2 undergoes two processing events, resulting in 

conversion of the 35 kDa protein (MSRP235) to a 28 kDa intermediate product 

(MSRP228) observed in trophozoites, and a 25 kDa product (MSRP225) observed in 

late schizonts and culture supernatant (Kadekoppala et al., 2010). Cleavage of 

MSRP2 within the predicted PfSUB1 cleavage site 90SLKGE↓SEDNT99 results in 

conversion of MSRP28 to MSRP25. 
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Figure 42. Conservation of PfSUB1 cleavage sites in MSRP2 orthologues 

The amino acid sequences of the P. knowlesi, P. vivax, P. berghei and P. chabaudi 

MSRP2 orthologues were scanned using the PoPS PfSUB1 specificity model. All 

MSRP2 orthologues are predicted to be PfSUB1 substrates, but as the multiple 

sequence alignment shows (ClustalW), the sites do not align. Predicted PfSUB1 

sites are highlighted. 
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PkMSRP2         MKKSIAIFGSLFVLLSHSIVSSEKVCIQKKKNNLEQDAMHMLMKKLESLYKLSATDNSEV 60 
PvMSRP2         MKKKIVLFGSLFVLLSCSTVSSEKLGIQKKKKNLEQDATHALMKKLESLYKLSATDNSEI 60 

PbMSRP2         MMAYKKLCFLAILALSLKAVSANDYSNNDDNVDDESISDVINIFKNKNHDLYNNPEYISD 60 

PcMSRP2         MAAYKKLYFLAILGLFFKAVSADNFSNNDD---DENMSDVINIFKNKNHDVYNNPNYISD 57 

PfMSRP2         -MKGQAIYFVFVFLYFLNCVGCNSKNNNKR---------TSYNKKKENLKNFDN-IVLDD 49 

                      :    ..    . *..:.   :.               * :.    .     .  

 

PkMSRP2         FVKEIEALKKQIEQLQQHGGVNEGVTLGHALENEA------ANESTKKTIFGVDEDDLDN 114 

PvMSRP2         FNKEIESLKKQIDQLHQHGGENEGESLGHLLESEA------ANESTKKTIFGVDEDDLDN 114 

PbMSRP2         IKKKYQLLKNQIDQMNKYEKGMSSGDIANILEEEY-----DEDSNNDKIVLGMSEDDLDN 115 

PcMSRP2         IKKKFQLLKKQIDQMNKYEKGMTSGDIGNILEEEAEEEEADEEENEDKVAFGMSEEDLDN 117 

PfMSRP2         FYSAFDSQDNYESKLKKNEDDIIGQGIFSLISKKN--------QEKEKSLKGESEDNTKL 101 

                : .  :  .:  .::::      .  :   :..:         .. .*   * .*:: .  

 

PkMSRP2         YDVDFTGQSKGKIKGQSSKYQKKVAGNDEPNVEASGVGTTGTGDSGTESPPGTTGTQNAQ 174 

PvMSRP2         YDGDFTGQSKGKFKGHSFKAQKKVEGNDE---NIGGVPVTGNSASNSQS-TGGSGSQNAS 170 

PbMSRP2         YDDSFWGQSANKLTPVQMGSDANGATLVEAN----------------------------- 146 

PcMSRP2         YDDDFWGQGAKKAVPVPKDDDAAGAAVVEGN----------------------------- 148 

PfMSRP2         QVTKVQGAQVDQAVEPLEKSPEDEN----------------------------------- 126 

                   .. *    :                                                 

 

PkMSRP2         SAENSVSQSTQSTVSSSVSTGESSGSGNTGASSESSQSSSGDGSQKNDEVVPPLQNNGEV 234 

PvMSRP2         PPQGSPSDSAQ---GSQVTN--STGSTVT-LNAPSSSHSTGQ-PQQSAGVSLPTGTAETV 223 

PbMSRP2         ------------------------------VESQASERNQGNGETVRNGQNANDGVQLGS 176 

PcMSRP2         ------------------------------ADPQGSQETDGQGVTQR-----TDGTSLNG 173 

PfMSRP2         ------------------------------------------------------------ 

                                                                             

 

PkMSRP2         TSDAAQSSSQA-APEGPAAPAGQASHAPVPEVKYLDKLYDEVLKGEDGKNGIHIPEFHSK 293 

PvMSRP2         ASNTAQTSPPAGSPGGQAATSGQPESGRVPNVKYLDKLYDEVLKTTDAKDEIHVPPFHSK 283 

PbMSRP2         SGQGNVQNQRSDGIQGGNNEVQAGSESIIEKNAFLGTIFDEILNEQNHNEQVHTTQYHSK 236 

PcMSRP2         ------QTQVAGGTPGAG-TPAAVVPAVPGKTAFLGTVFDEMLKAQDHAKKVHTNEYHSK 226 

PfMSRP2         ------KEIPTLDSPQNGNPTSYTSNLSTPPLKRMDEVFDDVLKHLNKEDKVVTDENKNK 180 

                          :                       :. ::*::*:  :  . :     :.* 

 

PkMSRP2         YNDFRKKYE-LTMNEQEYQMMKKLFDAFFKKGESTN--AVCPLEFFKKVLNNMSLQEEFD 350 

PvMSRP2         YNDFRKKYE-FTMNEREYQIVKNLFDAFFKKDGNPS--PADAVSFFKKMLNDPNVQKEFD 340 

PbMSRP2         YNSLKSECD-FAMNLEEYAIAKKIISSYFKSGTAEN--PIYLYDILIKSLNDEEYKKHFK 293 

PcMSRP2         YNALKGECD-FAMSLEEYEIAKKLISTYFN-GTTEN--PIHLYDILIKAITDEEYKKHFK 282 

PfMSRP2         YNEFKKEFDIFTMNVSEYEIMKNLLITFSKKIDENNQIQTKIENIFNKALKDNKYKEQFK 240 

                ** :: : : ::*.  ** : *::: :: :     .       .:: * :.: . ::.*. 

 

PkMSRP2         NFQHGLYGFAKRHNYLRGEKTTNEKLYHDLLKNIINLLNTIEMK 394 

PvMSRP2         NFVHGLYGFAKRHNYLRGERMTDTKLYDELLKNVVNLLNTIEVK 384 

PbMSRP2         NFIYGVYSFAKKYNYLSESRLEEE--NNNFIASVLKALATVDLK 335 

PcMSRP2         NFIYGIYSFAKKHNYLSTARLAEE--NSQFISNVLNVLATVDLK 324 

PfMSRP2         NFIYGLYSFAKRHNYLIVNKTNDTTLHKDLFENALNLINTI--- 281 

                ** :*:*.***::***   :  :     ::: . :: : *:    
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Figure 43. RhopH3 is processed by rPfSUB1 in vitro, but not in P. falciparum 

A. Antibodies against RhopH3 recognise a 110 kDa protein at time zero (START) 

and a smaller fragment at 80 kDa in PfSUB1-treated sample (+), separated by SDS-

PAGE on a 7.5% polyacrylamide gel. In schizonts, RhopH3 is 110 kDa in sise; in 

culture supernatant a lower band at 90 kDa is present. This does not appear to be 

the same size as is observed in the PfSUB1-treated sample. B. RP-HPLC traces of 

acetylated peptides based on the two predicted PfSUB1 processing sites, incubated 

with (lower panel) or without (upper panel) rPfSUB1. Neither of these peptides were 

cleaved by rPfSUB1. 
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Figure 44. Human erythrocytic α and β-spectrin in erythrocyte ghosts are not 

cleaved by rPfSUB1 

Erythrocyte ghosts were incubated with (+) or without (-) rPfSUB1 for 1 hour. 

Samples were taken every 30 minutes and separated by SDS-PAGE. α- and β-

spectrin are observed as a doublet at around 260 kDa which does not change in 

intensity when incubated with rPfSUB1. Furthermore, there is no evidence of lower 

bands appearing or disappearing, suggesting that rPfSUB1 does not process 

erythrocyte ghost components. 
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Figure 45. PfSUB1 processing sites present in PfPPLPs 

PfPPLP1, PfPPLP2, PfPPLP3 and PfPPLP4 were all predicted to be PfSUB1 

substrates in chapter 2 of this thesis. The putative cleavage sites (arrows) and their 

relative positions in the proteins (subscript) are indicated in this schematic.  Each of 

the proteins has a secretory signal peptide (SP) and a central MACPF domain 

(MACPF). In PfPPLP1, PfPPLP2 and PfPPLP4, the cleavage sites flank the 

MACPF domain. In PfPPLP3, the two cleavage sites are within the MACPF domain. 

PfPPLP5 does not have a predicted PfSUB1 site. 
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Figure 46. All pfpplps are transcribed during asexual development 

RT-PCR using primers (position indicated by arrows) specific for each pfpplp gene 

was performed on mRNA from asynchronous parasites comprised predominantly of 

trophozoites and schizonts (A). Since the region amplified from the pfpplp1 gene 

contains introns, a 1020 bp PCR product was expected from genomic DNA, and a 

smaller 739 bp PCR product when mRNA was analysed as the introns would be 

removed by splicing. RT-PCR products are shown in B. Products were amplified 

from untransfected P. falciparum genomic DNA (G), and reverse transcriptase-

treated mRNA (RT+) or non-treated mRNA (RT-). PCR products at the expected 

sizes were obtained in +RT samples using primers to amplify regions of pfpplp1-5 

cDNA. Primers for the detection of pfpplp1 cDNA detected a 1020 bp product in 

genomic DNA, and several smaller bands. These bands were of less intensity and 

therefore are likely to be non-specific products. This analysis confirms that all 

pfpplps are transcribed during asexual stages. 
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Figure 47. Recombinant expression and purification of PfPPLP2 and PfPPLP4 

domains in E. coli for antibody production. 

Several recombinant domains of PfPPLP2 and PfPPLP4 were expressed in E. coli. 

A shows regions of PfPPLP2 and PfPPLP4 which were expressed and their relative 

predicted molecular weights. Antibodies raised in mice against single recombinant 

domains did not detect a signal in merozoites or schizonts lysates. Pooled 

recombinant domains separated by SDS-PAGE and stained with Coomassie blue 

are shown in B. Free GST, a result of degradation during expression, is indicated 

(arrow). Single recombinant protein bands are indicated (1, 2, 3, 4). Insufficient 

quantities of PfPPLP2 protein 1 could be made in E. coli so this was not included in 

the PfPPLP2 mixture for immunisation. C. Serum from mice immunised with 

PfPPLP2 proteins (anti-PfPPLP2) and PfPPLP4 proteins (anti-PfPPLP4) were used 

to probe a sample of the antigens which were immunised (A), purified merozoites 

(M) and purified schizonts (S). Pre-immune sera was used as a control, however, 

this reacted non-specifically with schizonts. The expected sizes of PfPPLP2 and 

PfPPLP4 are 125 kDa and 75 kDa respectively. PfPPLP2 antibodies appeared to 

recognise the immunogen, however they reacted with the entire blot, suggesting 

that binding was not specific. PfPPLP4 antibodies reacted strongly with the 

immunogen and recognised a 75 kDa band in merozoites and schizonts. A lower 

band was observed at 60 kDa.  
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Figure 48. Modification of pfpplp2 and pfpplp4 genetic loci: constructs and expected 

gene products resulting from successful integration 

Parasites were transfected with constructs to modify the pfpplp2 and pfpplp4 

genetic loci. The wild type pfpplp2 and pfpplp4 genes encode full length proteins 

with N-terminal secretory signal peptides (SP) and central MACPF domains 

(MACPF). The expected gene products resulting from integration of 4 different 

constructs are illustrated; pfpplp2 modifications are shown in the top panel, and 

pfpplp4 modifications in the bottom panel. To integrate HA3 tags into pfpplp2 and 

pfpplp4 by single cross-over homologous recombination, pHH1-PPLP2HA3 and 

pHH1-PPLP4HA3 were constructed. In pHH1-PPLP2STOP and pHH1PPLP4STOP, 

the same targeting sequence as pHH1-PPLP2HA3 and pHH1-PPLP4HA3 was used 

but the HA3 is replaced with a stop codon (STOP); these constructs act as controls 

to show that the pfpplp2 and pfpplp4 loci can be modified using this construct. No 

change is expected at the protein level. pHH1-PPLP2∆ and pHH1-PPLP4∆ are 

designed to integrate a HA3 tag into the middle of the MACPF domain in pfpplp2 

and pfpplp4, resulting in expression of truncated gene products, acting as functional 

knockouts. Finally, pHTK-PPLP2 and pHTK-PPLP4 were designed to delete the 

pfpplp2 and pfpplp4 genes by double cross-over homologous recombination; if 

genetic disruption is successful, PfPPLP2 and PfPPLP4 proteins are not expected 

to be made. 
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6. Discussion: Signalling, proteases and membrane 
disruption 

Egress of P. falciparum merozoites from erythrocytes requires a combination of 

protease activity, signalling events and membrane disruption. The work presented 

in this thesis focuses on the roles of PfSUB1 and PfPPLPs in the asexual 

intraerythrocytic cycle of P. falciparum and provides a basis for further examination 

of the function and importance of these proteins during blood stage development. 

PfSUB1 and PfPPLPs are only a small, but important part of a very complex 

process (Figure 49. E), which has many unanswered questions. 

Egress occurs in several steps, which PfSUB1 and PfPPLPs may be 

involved in. As Plasmodium spp. are obligate intracellular parasites, invasion and 

egress are fundamentally linked because the parasite spends very little time outside 

of the erythrocyte host. Both processes must therefore be highly efficient. The 

merozoite surface is extensively modified in late schizonts, which appears to be an 

important preparatory event for invasion. MSP1, MSP6 and MSP7 are 

proteolytically processed by PfSUB1 and inhibition of this processing results in 

severely reduced invasion efficiency (Koussis et al., 2009). The N- and C-terminal 

domains of SERA5 generated by PfSUB1-mediated proteolysis also bind to the 

merozoite surface (Li et al., 2002). Antibodies against the N-terminus of SERA5 are 

invasion-inhibitory (Pang et al., 1999, Li et al., 2002), suggesting that the N-

terminus is important for invasion. The identification of possible other PfSUB1 

substrates which are present on the merozoite surface and in the rhoptries (Results 

chapter 2: identification of novel PfSUB1 substrates) further suggests that PfSUB1 

plays a major role in priming the merozoite for invasion.  

During egress the PVM is ruptured, preceding EPM breakdown. The PVM 

contains integral and peripheral membrane proteins, which are likely to be important 

for the structural integrity of the vacuole membrane. To date, there is no published 

evidence that PVM proteins are acted upon by proteases during egress. There is 

conflicting data surrounding the effects of broad specificity protease inhibitors on 

PVM and EPM breakdown (as discussed in the introduction). However, one could 

speculate that since there is evidence suggesting that PVM rupture may be 

inhibited by serine and cysteine protease inhibitors (Salmon et al., 2001, Wickham 

et al., 2003, Soni et al., 2005, Gelhaus et al., 2005), breakdown of the membrane is 
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likely to be (directly or indirectly) mediated by proteases. The integral PVM proteins, 

EXP1 and ETRAMPs, are thought to form pores in the PVM (Spielmann et al., 

2006a). EXP1, ETRAMP5, ETRAMP10.2 and ETRAMP8 were identified as possible 

substrates of PfSUB1 by bioinformatics and proteomics (Results chapter 2: 

identification of novel PfSUB1 substrates). If these proteins are crucial for the 

structural integrity of the PVM, proteolysis could result in conformational changes in 

their structures, causing destabilisation of the PVM by disrupting the pores. 

Alternatively, since the SERA proteins are putative papain-like enzymes, their 

proteolytic maturation by PfSUB1 could result in the SERAs acting on PVM 

membrane proteins to mediate membrane rupture. However, whether the SERAs 

are enzymes has yet to be formally demonstrated. Another possibility is that 

PfPPLPs are involved in membrane rupture. PfPPLPs may be secreted from 

micronemes during egress, as occurs in T. gondii (Kafsack et al., 2008). They could 

directly act on the PVM by forming large pores in the membrane, resulting in rupture 

due to osmotic stress, which has previously been implicated in egress (Glushakova 

et al., 2005). PfPPLP-mediated membrane rupture could also be PfSUB1-

dependent, since PfSUB1 cleavage sites were identified in silico in four of the five 

PfPPLPs (Results chapter 2: identification of novel PfSUB1 substrates).  

PVM rupture is followed by EPM rupture, which is the final step of egress, 

resulting in explosive release of merozoites (Glushakova et al., 2005). Rupture of 

the EPM is inhibited by E64 (Glushakova et al., 2008), indicating that it is cysteine 

protease-dependent. There is also evidence for proteolytic maturation of erythrocyte 

components during the asexual life cycle (Le Bonniec et al., 1999, Dua et al., 2001, 

Raphael et al., 2000, Shenai et al., 2000, Hanspal et al., 2002). Erythrocyte calpain, 

falcipain-2, plasmepsin II and PfSUB1 have potential roles in direct or indirect 

modification of the erythrocyte cytoskeleton (Chandramohanadas et al., 2009, Dua 

et al., 2001, Le Bonniec et al., 1999, Hanspal et al., 2002, Hatanaka et al., 1984, 

Boivin et al., 1990)(Results chapter 2: identification of novel PfSUB1 substrates). 

EPM rupture may be cysteine protease–dependent (Glushakova et al., 2008) and 

PfSUB1 probably does not directly cleave spectrin (Results chapter 2: identification 

of novel PfSUB1 substrates). Based on this finding, it would be unlikely that PfSUB1 

is directly responsible for EPM rupture and it may act through downstream 

mediators, such as the SERA proteins. Whether any of the SERAs are able to 

cleave erythrocyte components is unknown and as aforementioned, whether they 
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are enzymes remains unproven. On the other hand, it is possible that erythrocyte 

calpain-1 is the essential mediator of membrane rupture as it is essential for egress 

(Chandramohanadas et al., 2009) and is known to be an important modifier of the 

erythrocyte cytoskeleton (Hatanaka et al., 1984, Boivin et al., 1990). It is possible 

that all of the proteases mentioned above act synergistically on the erythrocyte 

cytoskeleton in order to break up its complex structure. This could lead to 

membrane destabilisation as the membrane would no longer be supported by the 

cytoskeleton. Alternatively, there is evidence that the infected erythrocyte becomes 

porated in late schizonts preceding egress, suggesting a role for pore-forming 

proteins in the final stages of egress (Glushakova et al., 2010). The identity of these 

pore-forming proteins is unknown, but PfPPLPs could be involved by disrupting the 

EPM directly. It is likely that EPM rupture is mediated by a combination of all of 

these factors. 

It is likely that there is interplay between signalling pathways and proteases 

in mediating egress, since treatment of parasites with inhibitors of kinases (Taylor et 

al., 2009), proteases (see Introduction) and poration (Glushakova et al., 2010) all 

result in a block in egress. Knockdown of the Ca2+-dependent kinase CDPK5 results 

in a block in egress (Dvorin et al., 2010). Analysis of CDPK5-deficient schizonts 

indicated that, although egress is blocked, SERA5 and MSP1 are processed 

normally, and when the stalled schizonts were mechanically disrupted, the resulting 

merozoites were viable. This shows that PfSUB1 is active in the absence of 

CDPK5, but that a lack of CDPK5 blocks egress. It is possible that activation of the 

PfSUB1 pathway results in activation of kinases, which then trigger final egress 

events. Whether PfSUB1 is able to active a kinase-signalling pathway is unknown. 

On the other hand, when the cGMP-dependent protein kinase PKG is inhibited, 

merozoites from mechanically disrupted schizonts are not viable (Dvorin et al., 

2010). Together with the CDPK5 findings, these data suggests that PKG acts 

upstream of CDPK5 and PfSUB1. Very recent evidence from our lab (Christine 

Collins and Mike Blackman, NIMR, unpublished) suggests that PKG is involved in 

mediating exoneme release This is the first piece of evidence linking secondary 

messengers, kinases and proteases in egress. Ca2+ is probably also a key signal for 

egress activation. T. gondii egress is stimulated by a rise in intracellular Ca2+ 

(Arrizabalaga & Boothroyd, 2004) and P. falciparum CDPKs and subtilisin-like 

proteases involved in egress are Ca2+-dependent. PfPPLPs could also be activated 
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by a rise in Ca2+ levels, as is the case with human perforin-1 (Voskoboinik et al., 

2005) and as has been proposed for T. gondii (Kafsack et al., 2008). Cascades of 

signalling molecules, enzymes and PfPPLPs are likely to act in combination with 

PfSUB1 in regulating egress. 

In conclusion, many questions remain as to how egress is regulated and 

mediated. What is clear is that egress is a highly organised, tightly regulated 

process essential to parasite survival. Targeting egress for antimalarial drug 

development is as important as ever, as blocking this step would prevent parasites 

from replicating in the human host. Considering the global impact of malaria and the 

worrying rise of antimalarial resistance, it is essential to continue to identify new 

drug targets to fight this devastating disease.  



 268

Figure 49. Egress involves signalling molecules, kinases and phosphatases, 

proteases and possibly PfPPLPs 

Schizont egress involves many different pathways which may intersect. Signalling 

by cGMP and the cGMP-dependent protein kinase PKG results in the discharge of 

exonemes containing PfSUB1 into the rhoptries, where it processes RAP1 and 

possibly RAMA, and also into the PV. In the PV, PfSUB1 modifies merozoite 

surface proteins (MSP) thought to be important for priming the merozoite for 

invasion. PfSUB1 also processes putative papain-like enzymes SERA4, SERA5 

and SERA6 and may cleave other SERA proteins. Evidence in this thesis suggests 

that PfSUB1 may also process PVM proteins EXP1 and ETRAMPs, which is 

possibly required for PVM rupture. Alternatively, activation of the SERAs may lead 

to PVM breakdown. PVM rupture could also be caused by PfPPLPs, which may be 

micronemal and released during egress. PfSUB1 may activate these pore-forming 

proteins to enable them to insert into membranes. To destabilise the erythrocyte 

cytoskeleton, PfSUB1, falcipain-2, calpain and plasmepsin II may be involved in 

proteolysis of cytoskeletal components spectrin, ankyrin and band 4.1. Finally, EPM 

rupture occurs in a cysteine protease-dependent manner, which may be mediated 

by calpain, and may involve PPLPs. Interestingly, schizonts appear to be porated 

just before egress, which could be a result of insertion of PfPPLPs into the EPM. 

Ca2+ levels are likely to be elevated during egress, and Ca2+ is likely to be a key 

activator of egress as PfSUB1 and CDPK5 in particular are Ca2+-dependent 

enzymes, and it is thought that PKG may cause Ca2+ release. Ca2+-dependent 

protein kinase CDPK5 is thought to act downstream of PfSUB1, though its 

substrates have yet to be identified. Protein phosphatase PP1 is also thought to be 

involved in egress, though its substrates are unknown. Blue arrows indicate 

proteolytic activity, black arrows indicate signalling mechanisms. Question marks 

indicate unknowns. 
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