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We present a new hybrid method for simulating dense fluid systems that exhibit multiscale
behaviour, in particular, systems in which a Navier–Stokes model may not be valid in
parts of the computational domain. We apply molecular dynamics as a local microscopic
refinement for correcting the Navier–Stokes constitutive approximation in the bulk of
the domain, as well as providing a direct measurement of velocity slip at bounding
surfaces. Our hybrid approach differs from existing techniques, such as the heterogeneous
multiscale method (HMM), in some fundamental respects. In our method, the individual
molecular solvers, which provide information to the macro model, are not coupled with the
continuum grid at nodes (i.e. point-wise coupling), instead coupling occurs over distributed
heterogeneous fields (here referred to as field-wise coupling). This affords two major
advantages. Whereas point-wise coupled HMM is limited to regions of flow that are highly
scale-separated in all spatial directions (i.e. where the state of non-equilibrium in the fluid
can be adequately described by a single strain tensor and temperature gradient vector),
our field-wise coupled HMM has no such limitations and so can be applied to flows
with arbitrarily-varying degrees of scale separation (e.g. flow from a large reservoir into
a nano-channel). The second major advantage is that the position of molecular elements
does not need to be collocated with nodes of the continuum grid, which means that the
resolution of the microscopic correction can be adjusted independently of the resolution
of the continuum model. This in turn means the computational cost and accuracy of
the molecular correction can be independently controlled and optimised. The macroscopic
constraints on the individual molecular solvers are artificial body-force distributions, used
in conjunction with standard periodicity. We test our hybrid method on the Poiseuille
flow problem for both Newtonian (Lennard-Jones) and non-Newtonian (FENE) fluids. The
multiscale results are validated with expensive full-scale molecular dynamics simulations
of the same case. Very close agreement is obtained for all cases, with as few as two micro
elements required to accurately capture both the Newtonian and non-Newtonian flowfields.
Our multiscale method converges very quickly (within 3–4 iterations) and is an order of
magnitude more computationally efficient than the full-scale simulation.
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Fig. 1. Schematic of hybrid and multiscale methods in the literature, and our new multiscale approach proposed in this paper: (a) 1D Poiseuille flow
problem; (b) Domain-Decomposition (DD); (c) Heterogeneous Multiscale Method (HMM) with point-wise collocated coupling; and (d) HMM with our
Field-wise Non-collocated Coupling (HMM-FWC). The grey mesh indicates the macro domain, while black filled boxes indicate micro subdomains. A–A′ is
the line of symmetry.

1. Introduction

In an important class of fluid dynamics problems the overall physics is multiscale, in that microscopic processes strongly
dictate the macroscopic behaviour. For example, granular flows in avalanches, shockwaves in high-speed rarefied flows,
rain filtration through soil, etc. The present paper specifically focuses on micro- and nano-scale fluid dynamics, where
atomistic processes occurring over pico- or nano-scales determine the bulk effects occurring over micro- and milli-scales,
both temporally and spatially. The development of future technologies depending on nano- and micro-fluidics requires
methods that resolve the multiscale phenomena accurately and efficiently.

Molecular Dynamics (MD) is now a recognised computational tool for accurately modelling fluid behaviour at atomistic
scales as an ensemble of discrete molecules that obey fundamental laws of physics. In essence, a flow problem could be
entirely described by such a microscopic model. While this is suitable for simulating small systems over short time-scales,
such as water flows through carbon-nanotubes, in nano and micro engineering applications it becomes computationally
intractable to resolve all the important space and time-scales involved.

In such flow problems, the continuum conservation laws can be used as an accurate, though incomplete, model for
the macroscopic flow behaviour. Molecular dynamics can then be employed to replace, or close, equations in parts of the
computational domain where a classical macroscopic constitutive or boundary model does not exist (e.g. liquids next to
surfaces, rheological fluids, chemical reactions, etc). This is the so-called hybrid methodology, in which “the best of both
worlds” in terms of computational cost and accuracy can be achieved by unifying disparate macroscopic and microscopic
solvers in a coupled simulation.

The most common current approach to hybrid methods for dense fluids is domain-decomposition (DD) [1–6]. As the
name implies, the computational domain is divided uniquely into macro and micro parts, providing only an overlapping
region for matching hydrodynamic flux or state properties that act as Dirichlet or Neumann-type boundary conditions at the
hybrid interface. Figs. 1(a) and (b) illustrate the DD method applied to a simple Poiseuille flow problem. Despite providing
a reasonable rationale for modelling near-wall flows, DD schemes have some disadvantages. First, DD can only be used for
flows that have a bulk flow region for which a constitutive model is known and is accurate. Furthermore, while it may
be reasonably straightforward to segment a domain explicitly into micro/macro subdomains if it is a simple 1D system, it
may be more challenging if the hybrid interface has more complex features [7]. Another issue is that of applying acceptable
‘open-system’ or ‘macro–micro’ boundary conditions at the non-periodic MD interface, which is a topic that is not well
developed in the literature. Finally, DD methods do not generally work well for systems that exhibit varying degrees of scale
separation, and can be of comparable computational cost to a full MD simulation of the case [8,9].

A different hybrid methodology that exploits the scale separation between molecular and continuum processes was
proposed by E and co-workers [10,11]. This was dubbed the Heterogeneous Multiscale Method (HMM), and is illustrated in
Fig. 1(c). The central idea of HMM is that continuum governing equations for mass, momentum and energy conservation
are able to predict the overall macroscopic behaviour, with only the missing/unknown fluid-constitutive and boundary
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information (such as shear-stress and slip) being provided by small independent MD elements distributed at the nodes of
the computational mesh. These micro elements can be either bulk nodes or nodes on the boundary wall. Prior to supplying
this information, every MD element is constrained using continuum fluid properties obtained at the nodal point, such as the
strain tensor or the temperature gradient. This point-wise coupling [12] between the computational grid and the individual
molecular elements is valid for scale-separated conditions, where continuum property variations can be assumed to be small
over the scale of the micro element (which has a small but finite size). In such conditions, the HMM approach naturally
decouples processes occurring at different scales and can thus achieve major computational time savings over a full MD
simulation.

The HMM has shown its potential in dense fluid simulations by various authors [12–14]. While these hybrid simulations
all follow the original methodology proposed in [13] (as described above), they differ from each other in the way the bulk-
type micro elements are constrained from the local strain-rate (which is a second rank tensor) supplied by the continuum
solution. For example, Ren and E [13] adopt a concept similar to the Lees and Edwards shear boundary condition [15] to
impose a two-dimensional strain-rate. In principle each MD box is set to deform dynamically every MD time-step, based
on the local macroscopic velocity field. A disadvantage of this deformation method is that the MD box may become too
skewed, and the authors circumvent this by expensive MD reinitialisation steps. Yasuda and Yamamoto [14] instead apply
a rotational transformation on the strain-rate tensor, to change it from the continuum co-ordinate system to a co-ordinate
system more convenient for MD simulations. In particular, this transformation ensures that the diagonal terms of the new
strain-rate tensor all become zero, which when applied to 2D isotropic problems gives only one non-zero strain-rate term
in the off-diagonal. This means that the one-dimensional Lees and Edwards boundary method can then be conveniently
applied without problems. The shear-stress tensor that is measured from the micro elements is then supplied back to the
macro model after being transformed back to the original co-ordinate system. Asproulis et al. [12] strain the MD box using
the Parrinello–Rahman deformation technique [16] in conjunction with the SLLOD algorithm [17]. This can be applied more
generally to three-dimensional shearing because the local strain-rate is applied directly to the equations of motion of all
molecules.

However, the second type of micro elements in HMM simulations provide the local wall boundary condition informa-
tion, so the MD boxes are prohibited from adopting the same box-deformation methods as bulk micro elements. Instead,
bounding boxes of wall micro elements are kept fixed, and velocity-type boundary conditions only are applied in a ‘con-
trolling region’ next to the non-periodic boundary, in conjunction with periodic boundary conditions in the flow direction.
In essence, there are therefore many similarities of HMM wall micro elements with DD schemes, such as that proposed by
Hadjiconstantinou and Patera [2], i.e. a ‘Maxwell-Demon’ is applied only in the control region and it resamples new molecu-
lar velocities from a Maxwell–Boltzmann distribution at the target continuum temperature and local velocity supplied from
the overlaying continuum solution.

The biggest drawback of the HMM is that it is only suitable for completely scale-separated flow systems, due to the
point-wise macro–micro coupling. For example, in simulations of water, a typical minimum MD element size is �xmicro =
5 nm (to avoid wrap-around effects). For the HMM method to be worthwhile and not be more expensive than full MD, the
continuum grid spacing (�xmacro) must then be at least greater than 5 nm, which represents a very severe restriction on the
minimum scale of hydrodynamic variable variation that can be resolved with HMM in nano/micro-flows. Such a restriction
precludes the use of HMM for technological applications that exhibit a mixed degree of scale separation, for example, where
regions of the domain have characteristic scales much larger than the minimum MD scale (and where large savings can be
made) and other regions have characteristic scales comparable to or smaller than the MD subdomains (e.g. a carbon nano
tube connecting two reservoirs for filtration applications [18]).

Another significant drawback in HMM of the micro elements and macro nodes being collocated (i.e. there being a micro
element at every continuum node) is that the micro and macro resolution are intrinsically linked. If the number of micro
MD simulations are to be reduced, the macro resolution must be reduced, and vice versa. This may seem like a reasonable
trade-off, given that generally in computational methods greater resolution comes with a computational penalty. However,
in many cases this macro–micro link is unnecessarily restrictive and limiting. This is because, generally, micro MD elements
provide the missing information to the macro model relating to stresses and heat-flux. But such quantities typically vary
more slowly than the macro hydrodynamic variables of velocity, temperature and density, and thus will not necessarily
require the same resolution. Consider the Navier–Stokes–Fourier constitutive relations: temperature and velocity variations
are of a higher spatial-derivative order than the related heat flux and stress, respectively (e.g. in classical Poiseuille flow, the
velocity profile is parabolic while the stress variation is linear). Although the Navier–Stokes–Fourier constitutive relations
are not expected to hold fully at the nano scale, it is likely that the same tendency will exist. This means that, in general,
lower resolution is required for the component of the simulation that is providing information to correct stress and heat
flux (the micro elements) than is required of the component of the simulation resolving hydrodynamic variables (the macro
grid).

The approach we present in this paper is a major modification to standard HMM to circumvent the limitations described
above (i.e. to improve efficiency and increase the range of applicability). This modification is in the form of a Field-Wise
Coupling (FWC) of the macro grid and micro elements (in shorthand we refer to this method as HMM-FWC). The micro
elements in our method represent fields correlating directly with identically sized continuum-flow subregions, and they can
be positioned independently of the continuum grid; see Fig. 1(d). This enables application to flows with mixed degrees of
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scale separation (where hydrodynamic variables can vary substantially over the dimensions of a micro element) and allows
the position of the micro elements to be optimised independently of the macro grid.

The remainder of this paper is structured as follows. In Section 2 we describe the new multiscale method in detail,
providing a step-by-step account of the algorithm. In Section 3 we test the method on a simple and canonical flow problem
for Newtonian and non-Newtonian fluids. In Section 4 we draw conclusions and discuss opportunities for further work.

2. A Heterogeneous Multiscale Method with Field-Wise Coupling (HMM-FWC)

As in conventional HMM, we adopt the fundamental notion that a continuum-fluid conservation model is applicable in
the entire flow domain. However, instead of using MD to replace constitutive and boundary field data in the continuum
model, we solve the macro description using a modified Navier–Stokes formulation; locally constrained micro simulations
enter the hybrid formulation to provide constitutive and boundary-slip corrections only where needed.

For the current work we assume steady, incompressible and isothermal conditions, although the method is extensible to
general flows. The governing three-dimensional macro-conservation equations for mass and momentum equations are:

∇ · U = 0, (1)

ρU · ∇U + ∇p = μ∇2U + F + ∇ · Ψ, (2)

where U = (u, v, w) is the fluid velocity, ρ is the mass density, p is the pressure, F is a body force per unit volume, μ is
an assumed constant viscosity coefficient, and Ψ is a tensor field containing a correction to the Navier–Stokes constitutive
model:

Ψ = T − 2μe, (3)

where T is the deviatoric stress tensor and e = 1
2 (∇U + ∇UT ). The basic strategy of our multiscale method is to calculate

an interpolated stress-correction field Ψ over the entire domain from evaluation of Eq. (3) at the distributed MD micro
elements. From this, U and p are then found from a solution to Eqs. (1) and (2).

The primary characteristic of our method distinguishing it from HMM [13] is that coupling does not occur at every
continuum node, but is applied over fields rather than points (compare Figs. 1(c) and (d)). As discussed in the previous
section, the assumption underpinning point-wise coupling in HMM is not valid when the hydrodynamic variation occurs at
the same spatial scale as the micro elements. In such cases, a direct physical correlation between macro and micro space
is needed, requiring a flowfield of arbitrary complexity (e.g. a strain-rate field) to be simulated within each micro element.
The imposition of this field on a micro element is not possible using techniques developed in the HMM literature, and so
we propose a new constraint procedure that is consistent for both bulk and wall micro elements (explained in Sections 2.3
and 2.4 below).

For the dual purpose of providing a detailed worked example, and also to prove the concept for a canonical flow,
application of our method to an isothermal 1D Poiseuille flow geometry is described below. However, our underlying method
is general, and may be extended to higher dimensions and other flow applications. We address the issues associated with
advancing the method to two and three dimensions in the Conclusions section.

2.1. Overview of the algorithm

Our multiscale method is an iterative scheme that combines solutions from macro and micro solvers until a converged
global solution is reached. The flow diagram of each sub-process in one multiscale iteration is illustrated in Fig. 2, and
briefly described as follows:

1. Macro solution (see Section 2.2) A solution to the continuum equations (1) and (2) is obtained for U and p over the
entire domain, with a stress-correction field Ψ taken from the previous iteration. Initially, Ψ = 0.

2. Macro-to-micro projections (see Section 2.3) The macro solution is projected onto all micro subdomains. These projected
flowfields serve as target conditions for the individual MD simulations to recreate. Each micro subdomain is divided
into a ‘core’ region and a ‘constrained’ region. In the core region, the velocity field projection is a one-to-one mapping
from the macro solution. In the constrained regions, however, the macro solution is modified so as to be compatible
with the periodic boundary conditions of the MD elements; as such, it is only data obtained in the core regions that is
physically accurate.

3. Micro constraints (see Section 2.4) In order to generate the modified flow fields in the constrained regions of the MD
subdomains (as obtained in Step 2), body-force distributions are used. The form and magnitude of the forces is cal-
culated from the stress-corrected Navier–Stokes equations (1), (2), with the correction fields obtained in the previous
iteration.

4. Micro solutions (see Section 2.5) Molecular dynamics simulations are started with the micro constraints (body-force
distributions) calculated in Step 3 applied. Simulations are stopped after a predetermined period.1

1 Each micro element simulation at every iteration consists of two parts: the first part of the simulation allows the fluid to relax to the applied force
distribution, and the second part allows enough samples in the steady-state to obtain reasonably accurate (low noise) measurements. At every iteration the
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Fig. 2. Flow diagram of the iterative scheme.

5. Micro-to-macro compression (see Section 2.6) Field measurements of U and T are obtained from each micro element, and
a least-squares polynomial fit is performed to extract continuous data.

6. Stress-correction (see Section 2.7) The stress correction field Ψ is calculated from each micro element using Eq. (3) and
interpolated over the entire macro domain, to be used in Step 1 of the next iteration. Other stress-correction fields are
calculated for the constrained regions of the micro subdomains, for use in Step 3 of the next iteration.

In the following sections we explain these six steps in detail, for the worked example of Poiseuille flow.

2.2. Macro solution (Step 1)

For the Poiseuille flow configuration of Fig. 1(a), the continuity equation (1) is automatically satisfied and the stress-
corrected x-momentum equation (2) simplifies to:

0 = μ
d2u

dy2
+ Fx + dΦ

dy
, (4)

where x is a coordinate in the streamwise direction, y is a coordinate across the channel, Fx is a body force driving the
flow (which is constant for Poiseuille flow), and Φ (= Ψxy) is a shear component of the stress-correction tensor:

Φ = τxy − μ
du

dy
, (5)

MD simulations start from the relaxed state of the previous iteration: there is no need for the flow to develop from rest at every time-step, except at the
very first iteration.
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Fig. 3. Domain partitioning of a Poiseuille flow problem into (A) bulk and (B) wall periodic micro elements. Grey and white regions indicate constraint and
core regions respectively, while black dotted lines indicate periodic boundary conditions. A–A′ is the line of symmetry; only one side of the channel is
modelled by micro elements for this case.

where τxy is the true shear-stress. Eq. (4) with Eq. (5) has no constitutive approximation and therefore holds for both
molecular and continuum modelling treatments of the Poiseuille problem. In fact, the coupled equations are applicable even
when the viscosity is not known exactly; an estimate for μ will suffice, since the stress-correction term Φ accommodates
for any inaccuracies in the Navier–Stokes constitutive relation.

A solution to Eq. (4) can be obtained for the Poiseuille flow case by integrating twice in the y-direction, over half the
channel height H , giving a semi-analytical expression for the velocity profile u(y):

u(y) = uB − Fx y2

2μ
+ y

μ

(
Fx H + 1

2H

2H∫
0

Φ(y)dy

)
− 1

μ

y∫
0

Φ(y)dy. (6)

There are two unknowns in this expression: the stress correction field Φ(y), and the slip velocity uB . Initially both these
are zero, but in subsequent iterations these properties are evaluated from the MD micro elements. We explain how these
properties are measured and computed in Section 2.6 below. For more complex problems, where an analytical expression
for fluid properties is not possible, the macro solution could be obtained using standard computational fluid dynamics (CFD),
such as the finite volume method.

Note, in the molecular simulations, the body force per unit volume Fx is converted to an actual force using: fx = Fx/ρn ,
where ρn is the number density.

2.3. Macro–micro projection (Step 2)

The aim of the field-wise coupling approach is for the individual micro elements (see Fig. 3) to reproduce the same
flowfield that occurs over the corresponding region in the continuum domain. To this end, the estimated macroscopic
velocity field u(y), which is obtained from the stress-corrected momentum Eq. (4), is projected onto the domain of each
micro element. This projection is indicated by the red dashed line in Fig. 4(b). This projection is then modified in the
‘constrained’ regions, in order to be consistent with the periodic boundary conditions2 of the MD solver (see solid blue line
in Fig. 4b). In these constrained regions, where the velocity profile has been artificially modified, body forces are applied
(calculated in the next step, Section 2.4) in order to reproduce the modified velocity profile. No artificial body-forcing is
applied in the core regions.

The flow velocity projection (denoted by the superscript ∗) in the core region of the ith micro element (u∗
i ) is obtained

directly from the macro solution, i.e.

u∗
i = u

(
y′

i

)
for 0 < y′

i < hcore, (7)

where y′
i is a new local co-ordinate system used to identify the core region, as indicated in Fig. 4. The height of the core

region is denoted by hcore.

2 Constrained MD simulations using periodic boundary conditions are generally simpler to implement in existing MD codes.
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Fig. 4. Illustration of (a) a bulk micro element, (b) the projection of the macro velocity solution in the constrained region u∗
i and (c) the consistent force

constraint in the constrained region f ∗
x,i derived from the velocity projection. In figures (b) and (c) solid lines indicate periodic-projections, while dotted

lines indicate unmodified macro fields.

In the constrained region the velocity projection is modified with the intention of bridging the velocities at the two sides
of the core region with a continuous velocity field (as well as continuous first and second derivative velocity fields) that
pass through the top and bottom periodic boundaries.

To preserve continuity over the two interfaces of velocity and its first and second derivative, a sixth order polynomial is
used:

u∗
i

(
y′′

i

) =
6∑

k=1

ak,i y′′(M−k)
i for 0 < y′′

i < hcs, (8)

where y′′
i is a different local co-ordinate system used to identify the constrained region (see Fig. 4), hcs is the height of

the constrained region, and ak,i are the polynomial coefficients which are uniquely determined through the following six
boundary conditions:

u∗
i = u,

du∗
i

dy′′
i

= du

dy
, and

d2u∗
i

dy′′ 2
i

= d2u

dy2
, at both y′′

i = 0 and y′′
i = hcs. (9)

For the micro elements touching the walls of the Poiseuille flow problem, there are issues of non-periodicity. All that is
then required to be able to use periodic boundary conditions is for the wall micro element to be a symmetrical flow domain
with the line of symmetry running through the constrained region or wall, as shown in Fig. 5(a). The velocity projection for
the wall micro element, both for the core and constrained regions, are identical to those in the bulk micro elements and
can be similarly calculated using Eqs. (7) and (8), as illustrated in Fig. 5(b).

2.4. Micro constraints (Step 3)

The modified flowfield of the constrained regions can be generated using an artificial body force f ∗
x , as shown in Figs. 4(c)

and 5(c) for bulk and wall micro elements respectively. To calculate this force distribution we substitute the target velocity
field (8) into the flux-corrected Navier–Stokes Eq. (4):

f ∗
x,i = − 1

ρn

dΦcs,i

dy′′ − μ

ρn

d2u∗
i

dy′′ 2
, for 0 < y′′

i < hcs, (10)

where Φcs,i is the stress correction field in the constrained region of the ith subdomain and is calculated in the previous
iteration (Step 6, Section 2.7). Note, in the initial iteration Φcs = 0.

In the core regions of the micro subdomains, molecular dynamics is performed without any additional artificial forcing
imposed. As such, the forcing in the core region takes that of the Poiseuille driving force only, i.e.

fx = Fx

ρn
for 0 < y′

i < hcore. (11)
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Fig. 5. Illustration of (a) a wall micro element, (b) the projection of the macro velocity solution in the constrained region u∗
i and (c) the consistent force

constraint in the constrained region f ∗
x,i derived from the velocity projection. In figures (b) and (c), solid lines indicate periodic-projections, while dotted

lines indicate unmodified macro fields.

2.5. Micro solution (Step 4)

All our micro elements are simulated using the open source non-equilibrium Molecular Dynamics code, mdFoam [7,19,
20], which is implemented within OpenFOAM’s C++ libraries [21]. Detached micro elements located in the bulk of the flow
domain (bulk elements, see Fig. 3) each consist of a fully-periodic domain that is filled solely with fluid molecules at the
target density and temperature defined by the problem. The micro element next to the channel bounding surface (wall
elements, see Fig. 3) also include wall–material molecules, which are modelled as rigid atoms with parameters chosen from
[22] to generate a reasonable slip behaviour.

For the duration of the simulation, all fluid molecules in each micro element evolve according to Newton’s equations of
motion:

d

dt
rk = vk, (12)

mk
d

dt
vk = f′k + fext

k , (13)

where k = (1, . . . , N) is a particular molecule in the system of N molecules, mk is the molecule mass, rk = (xk, yk, zk) is its
position, and vk = (uk, vk, wk) is its velocity. The total intermolecular force f′k in Eq. (13) is computed from pair forces with
neighbouring molecules by:

f′k =
N∑

j=1( �=k)

−∇U (rkj), (14)

where U (rkj) is the interaction potential between fluid–fluid or solid–fluid interactions. For simplicity we simulate
monatomic liquid argon using the 12-6 Lennard-Jones (LJ) potential (although water or other molecules can also be simu-
lated straightforwardly, as we demonstrate in Section 3.2 for a polymeric fluid):

U L J (rkj) = 4ε

[(
σ

rkj

)12

−
(

σ

rkj

)6]
, (15)

where ε = 1.6568 × 10−21 J and σ = 0.34 nm are the potential’s characteristic energy and length scales, and rkj = |rk − r j |
is the separation of two arbitrary molecules ( j,k) within a cut-off radius, rcut = 1.36 nm. The equations of motion are
numerically discretised in space and time using a time-step �t that is 5.4 fs for the LJ simulations in Section 3.1, and 2.2 fs
for the FENE chain simulations in Section 3.2.

The term fext
k in Eq. (13) is a locally-applied external force derived from the constraint step (Step 3, Section 2.4). In this

fluid problem, fext(y) = f ∗
x,i(y)n̂x is a force distribution applied in the constrained region according to the macro–micro con-

straint (10), and fext = fxn̂x is the macro force applied in the core region according to Eq. (11), where n̂x is the unit vector
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in the streamwise x-direction. In order to maintain isothermal conditions, the heat introduced by the induced shearing is
removed using a velocity unbiased Berendsen thermostat [23] in bins of 0.68 nm thickness in the y-direction.

The size of the constrained region is picked for convenience to be the same as that of the core region. This produces
strain-rates in both regions that are of similar magnitude, and thus places similar requirements on the thermostat. Almost
certainly this region could be shrunk for greater computational savings with no penalty in accuracy. However, if the region
is chosen to be excessively small (e.g. ∼1 molecular diameter), an extremely large rate of strain is applied locally, which in
turn will generate an amount of heat that would be extremely difficult to remove homogeneously using the thermostat.

2.6. Micro compression (Step 5)

After all micro elements reach a relaxed steady-state, measurements are obtained using a cumulative averaging technique
to reduce noise. Each micro element is divided into spatially-oriented bins in the y-direction in order to resolve the velocity
and shear-stress profiles. Velocity in each bin is measured using the Cumulative Averaging Method (CAM) [24], while the
stress tensor field is measured using the Irving–Kirkwood relationship [25]. A least-squares polynomial fit to the data is
performed, which helps reduce noise further. The fit produces a continuous function that avoids stability issues arising from
supplying highly fluctuating data to the macro solver. A least-squares fit is applied to an Nth order polynomial for the
velocity profile in the core region, and an Mth order polynomial for the velocity profile in the constrained region:

〈ui,core〉 =
N∑

k=1

bk,i y′(N−k)
i , for 0 � y′

i � hcore, (16)

and

〈ui,cs〉 =
M∑

k=1

ck,i y′′(M−k)
i , for 0 � y′′

i � hcs, (17)

where bk,i and ck,i are the coefficients of the polynomials used in the core micro region and constrained region respectively.
An estimate of the new slip velocity uB for input to the macro solution (6) is taken directly from the compressed wall
micro-element solution (16), at y′

i = 0.
Shear-stress least-squares fits in the core and constrained regions are similar to Eqs. (16) and (17), but with one polyno-

mial degree less, i.e.

〈τi,core〉 =
N−1∑
k=1

dk,i y′(N−1−k)
i , for 0 � y′

i � hcore, (18)

and

〈τi,cs〉 =
M−1∑
k=1

ek,i y′′(M−1−k)
i , for 0 � y′′

i � hcs. (19)

Values for N and M are taken to be 3 and 6, respectively, for all our hybrid simulations.

2.7. Stress correction (Step 6)

The stress correction fields in both the core Φi,core(y′) and the constrained Φi,cs(y′′) regions can be calculated using
Eq. (5) for each micro domain, i.e.

Φi = 〈τxy〉 − μ
d〈u〉
dy

, (20)

where angle bracket terms on the right hand side are obtained from Eqs. (16)–(19).
The final step is to interpolate the flux correction field from the core region of all micro elements onto the entire macro

domain, i.e. over what we refer to as the ‘macro gaps’, as shown in Fig. 6. To do this we use a Q th-order polynomial:

Φi,gap
(

y′′′) =
Q∑

k=1

gk,i y′′′(Q −k)
i , for 0 � y′′′

i � hi,gap, (21)

where gk,i are the coefficients of the polynomial, hi,gap is the distance between the core regions of two adjacent micro
elements, and y′′′

i is a gap co-ordinate system as shown in Fig. 6. The order of the polynomial affects the overall noise
characteristics of the algorithm, and the optimal choice depends on the case being simulated, as will be discussed later. The
new stress correction field is then a continuous function Φ(y) that is used in the macro solution of the next iteration (i.e.
in Eq. (6)).
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Fig. 6. Illustration of macro gaps (dark regions) over which the stress correction is interpolated.

2.8. Iteration and convergence

Updated continuum solutions u(y) are obtained at each iteration of the algorithm, until convergence ul−1 → ul , where l
is the iteration index. Here we use a simple convergence expression based on solutions of u of the following form:

ζ = 1

N P

N P∑
j

∣∣∣∣u(y j)
l − u(y j)

l−1

u(y j)
l

∣∣∣∣� ζtol, (22)

where N P are the number of macro nodes and ζtol is a pre-specified tolerance parameter.

3. Results

3.1. Validation test for a Newtonian fluid

The HMM-FWC algorithm is now tested on the Poiseuille flow of a Lennard-Jones fluid, such that the choice of state point
and maximum strain-rate gives a Newtonian response. The capability of our method is shown by intentionally choosing
the viscosity that is input to the macro solution to be ∼40% smaller than the actual viscosity at the target density and
temperature of the problem. We show how our method corrects for this mismatch of viscosity (i.e. the micro solution
corrects the macro solution) indirectly through the stress-correction field.

The Poiseuille channel height, L = 162 nm, is chosen small enough in this test case so that results from our hybrid
simulation can be compared and validated against a full MD simulation (which is very computationally expensive). Com-
putational savings of the hybrid method over full MD will be far greater for larger and more realistic nano and micro flow
problems.

The description of the fluid (state, potentials, thermostat) and bounding wall (packing, lattice-structure, potential) need
to be the same for both full MD and hybrid simulations for a fair comparison of accuracy to be made. The potential
properties for the liquid–liquid and wall–liquid interactions are taken from Ref. [22], with the intention to generate slip
at the solid–liquid interface. The values for these are, σl−l = 3.4 × 10−10 m, εl−l = 1.65678 × 10−21 J and σw−l = 2.55 ×
10−10 m, εw−l = 0.33 × 10−21 J in Eq. (15). The solid wall is chosen to be a simple cubic lattice-structure, with number
density 5.5 × ρn , where ρn = 1437 m−3 is the fluid number density. The mass of liquid atoms is ml = 6.6904 × 10−26 kg.
In the full MD description, there are 103,593 liquid molecules and 9464 wall molecules. The macro force fx = 4.872 fN and
Berendsen thermostat at T = 292.8 K are applied to the equations of motion of all molecules until a steady-state solution
is reached (after ∼300 ns of problem time). The steady-state full velocity profile is then averaged over 2 ns.

The hybrid setup of the channel is shown in Fig. 7 and consists of the corrected Navier–Stokes description, Eq. (6), with
an under-estimated viscosity μest = 0.137 × 10−3 kg/ms, that is solved numerically over 4801 grid nodes on one side of
a symmetric nano-channel. The macro spacing is �xmacro = 17 × 10−12 m. Three separate hybrid simulations with varying
numbers of micro elements (Π = 1,2,3) are run for the same case. For all these MD micro simulations we choose the
dimensions hcore = hcs = 6.8 nm and �x = �z = 5.44 nm, where the latter is exactly four times the Lennard-Jones cut-off.
The wall description in the micro elements is identical to that in the full MD simulation, including the number of molecules
and the potentials. There are 12,823 and 8645 liquid molecules in the wall and bulk micro elements respectively. The gaps
between micro elements for the three cases are displayed in Fig. 7. For this case, a value of Q = 2 is sufficient for the
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Fig. 7. Overview of the Poiseuille flow channel case using three different hybrid simulations (a, b, c) with varying number of micro elements (Π = 1,2,3)
and locations. Insets on the right are the bulk and wall micro element MD simulations — dashed lines indicate periodicity, and lightened regions indicate
the constrained regions.

Fig. 8. Predictions of the half-channel velocity profile for three hybrid Poiseuille flow simulations: (a) Π = 1, (b) Π = 2, and (c) Π = 3, at iteration
l = 3. The multiscale results (©) are compared to the steady full MD simulation (—) and the Navier–Stokes solution with zero slip and initial viscosity μest

(N.S.*, �).

interpolant polynomial in Eq. (21) because the flow is Newtonian in the whole computational domain, so we expect a linear
stress-correction. A higher polynomial order can also be used, but this increases noise-related oscillations in the overall
result. A tolerance value of ζtol = 0.01 was chosen for this test case to determine convergence, and this was obtained in all
three hybrid simulations after only 3 iterations.

The converged results for velocity profiles from the hybrid simulations are presented in Fig. 8. Velocity profiles from
all three hybrid cases match very well with the steady-state velocity profile measured from the full MD simulation. Also
plotted in the figures are the velocity profiles predicted by the no-slip Navier–Stokes solution (with the initial estimated
viscosity μest). We confirm from these results that the 40% lower viscosity that is chosen as an initial guess does not affect
the final hybrid solution.

We present the stress correction field Φ(y) (as described in Section 2.7) from these multiscale simulations in Fig. 9. In
this example, a non-zero Φ is generated entirely due to the estimated viscosity being inaccurate. Comparison with a full
MD simulation for Φ is not possible because stress correction applies only to our multiscale method. However, in order
to provide an indirect calculation we input the stress 〈τxy〉F and velocity 〈u〉F measurements obtained from the full-scale
simulation inside Eq. (20) to obtain Φ . In all three hybrid cases there is good agreement with the full MD estimate of
Φ , and the fields are approximately linear. The linear profile is expected, given that the simple LJ fluid we chose in this
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Fig. 9. Hybrid predictions of the half-channel stress-correction field Φ(y) for Π = 1 (�), Π = 2 (�), and Π = 3 (©) at iteration l = 3. Comparison are
made with calculations taken from the full MD simulation (—) using Eq. (20).

Fig. 10. Accuracy and convergence results for hybrid simulations with Π = 1 (�), Π = 2 (�), and Π = 3 (©) micro elements, against iteration number l.
Comparisons are made with the full MD simulation (—). (a) Convergence of velocity, computed using Eq. (22). (b) R.M.S. error, computed using Eq. (23).
(c) Local mean velocity error between hybrid and full MD profiles, computed using ξ = 1/Np

∑
N p

ξ(y), where ξ(y) = [uF (y) − uH (y)]/uF (y) × 100%.
(d) Slip velocity. (e) Centreline velocity. (f) Corrected bulk viscosity μcorr , calculated from Eq. (25).

example remains Newtonian. Fluctuations in the calculation of Φ in the hybrid simulations stem from the noise inherent in
the micro MD simulations.

In Fig. 10 we present an overview of the most important accuracy and convergence results of our hybrid simulations. No
major instabilities in the hybrid algorithm were observed when simulations were run beyond the converged iteration l = 3.
Fig. 10(a) shows the convergence parameter ζ , which is calculated from the velocity profiles at two successive iterations
using Eq. (22); after the third iteration, all three cases lie below the pre-specified tolerance value ζtol = 0.01. In Fig. 10(b)
we present a measure of accuracy for the overall velocity profile for all three hybrid simulations when compared to the
full-scale simulation, using a root-mean-square (R.M.S.) estimate at each iteration step:

R.M.S. error =

√√√√√ 1

Np

N p∑
j

[
uF ( j) − uH ( j)

]2
, (23)
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where uF , uH are the full MD and hybrid velocity solutions respectively, and Np are the number of macro nodes. The
predicted R.M.S. errors are very close to zero for all cases. Similarly in Fig. 10(c) we present the percentage errors and
show that these are less than 1% for Π = 2,3 and less than 2% for Π = 1. There are only marginal differences between
the three hybrid cases, and so we can be confident that the solution of the Poiseuille flow of a Newtonian fluid could be
obtained using just one wall micro element (Π = 1), with additional elements not improving the accuracy of the prediction
substantially. Note that in conventional HMM (using point-wise coupling) the minimum number of subdomains is equal to
the number of grid points in the macro domain (here, it would be over 4000).

The slip velocity uB in Eq. (6) and the velocity in the midpoint of the channel are presented in Figs. 10(d) and (e)
respectively. Again, there is excellent agreement between the full-scale MD simulation and the hybrid results for all three
cases.

To verify that we get an accurate prediction of viscosity from the hybrid simulation, we assume that the stress correction
has the same form as the Navier–Stokes relationship, i.e.,

Φ = μ̃
du

dy
, (24)

where μ̃ is the missing contribution of viscosity. Eq. (24) can be numerically integrated to calculate a corrected viscosity:

μcorr = μ̃ + μest, (25)

which is then plotted against the viscosity measured in the full MD simulation in Fig. 10(f). Again, there is good agreement
in the viscosity prediction μcorr between our hybrid approach and the full MD solution.

3.2. Validation test for a non-Newtonian fluid

There are many applications in the polymer processing industry where accurate predictions of flows of various
rheologically-complex fluids, such as polymer solutions and polymer melts, are important [12,26]. One of the main chal-
lenges associated with modelling these fluids is that even if the non-linear relationship between shear-stress and strain-rate
is known, we are still left with a system of partial differential equations that is often too complex to solve numerically [26].
An alternative to continuum fluid modelling is therefore to adopt a model of the fluid’s molecular constituents, and solve
the flow using non-equilibrium MD simulations [26,27].

In this section we demonstrate the capability of our multiscale method for a polymer fluid. The method is properly tested
by choosing operational strains in a regime where the relationship with shear-stress is highly non-linear, thus imposing a
non-linear variation of viscosity throughout the entire computational domain.

The test fluid in this case consists of a pseudoplastic polymer that is modelled artificially in MD using dumb-bell chains
of NB connected ‘beads’ (that replace the notion of atoms) [26]. Every bead in the chain is connected to another via a
finitely extensible non-linear elastic (FENE) potential, which is expressed as:

UFENE(rkj) =
{

−0.5kr2
0 ln[1 − (

rkj
r0

)2] if rkj < r0,

∞ if rkj � r0,
(26)

where k = 0.43 kg s−2 is the FENE spring constant and r0 = 5.1 Å is the finite extensibility of a pair of connected beads.
These properties are chosen from Refs. [12,28] in order to minimise bond cross-overs. Here we choose a fluid with NB = 10
beads per chain, at a bead density of ρn = 1447 m−3 and temperature T = 292.8 K. A Lennard-Jones potential (15) is also
applied in a similar way as before between all neighbouring beads within the cut-off distance.

The same Poiseuille flow case as in Section 3.1 is used here to test our multiscale method for non-Newtonian flows.
Properties of the setup remain the same as before, except when explicitly stated. The dimensions �x = �z = 6.8 nm are
made larger for both the full MD and hybrid cases in order to allow enough distance for one chain not to interact with
itself across the periodic boundaries if fully extended (∼4.6 nm). As a result, the number of molecules in the full MD was
increased to 166,274 (with 2592 wall molecules), 22,666 molecules in the wall micro element, and 13,526 molecules in
every bulk micro element. The macro force was also increased to fx = 24.36 fN in order to operate the fluid in a non-linear
stress-strain regime, as discussed above. To control the level of slip at the wall we have reduced the wall density to that of
the fluid, and modified the wall–liquid LJ parameters to σw−l = 3.4 × 10−10 m, εw−l = 0.995 × 10−21 J, as suggested in [22].

The full MD case is set up by first initialising the channel height with the target number of beads corresponding to
the target density, followed by a short simulation until all chains are grown to the correct bead-length. The gravity-type
forcing, i.e. fx = 24.36 fN is then applied until a steady-state is reached (after ∼130 ns of problem time), followed by a
short simulation period for measurement (lasting ∼1 ns).

For the multiscale approach, we run three hybrid simulations, as before, for Π = 1,2,3 micro elements. The estimated
viscosity input to the macro solution, μest = 0.683 × 10−3 kg/ms, is taken at very small strain-rates (see Fig. 12(b)), and
is initially uniform throughout the domain. Our multiscale method corrects for this approximation through the stress cor-
rection field Φ , from which a more accurate variation of effective viscosity can then be calculated. The variation of Φ is
expected to be non-linear, so the polynomials in the macro gaps are of degree Q = 4, as defined through Eq. (21).
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Fig. 11. Results for the non-Newtonian multiscale simulations for Π = 1 (�), Π = 2 (�), and Π = 3 (©) micro elements: (a) cross-channel velocity profile;
(b) R.M.S. errors vs iteration; (c) stress correction field; (d) effective viscosity field.

All our hybrid simulations converge in 3–4 iterations, to a tolerance of ζtol = 0.02. The channel velocity profiles are
presented in Fig. 11(a), while the overall error plots are displayed in Fig. 11(b). Excellent agreement is found between
the full-scale MD simulation and the hybrid simulations for Π = 2 and Π = 3 micro elements (less than 1% difference).
However, less good agreement is found for the hybrid case with just one wall micro element (Π = 1), which oscillates
between 2–7% of the full MD result; inaccuracies are caused by the lack of micro resolution in the bulk, whereas near-wall
predictions (such as slip and stress) match just as well as in the higher Π cases. This can also be observed in the overall
stress-correction field Φ in Fig. 11(c), which, unlike before, now varies non-linearly. Note that there is no actual stress
correction in the full MD simulation, but as before we estimate it using the equivalent of Eq. (20) with the shear-stress
〈τxy〉F and velocity 〈u〉F profiles measured from the full MD simulation.

To evaluate an ‘effective viscosity’ field μeff for both hybrid and full-scale simulations, we use the Oswald–de Waele
relationship:

τxy = μeff

(
∂u

∂ y

)
. (27)

The full MD viscosity field is evaluated directly from this expression using the stress 〈τxy〉F and velocity 〈u〉F measurements.
For the hybrid simulation, Eq. (27) must first be substituted in the corrected Navier–Stokes Eq. (5) to give:

μeff(y) = μest + Φ

(
∂u

∂ y

)−1

. (28)

Calculations of effective viscosity are plotted in Fig. 11(d). Again, there is good agreement between the full-scale MD
and the hybrid calculations adopting Π = 2,3 micro elements, but poor agreement for the Π = 1 case in the bulk of the
channel. Good agreement is also obtained with the standard power-law relationship:

μeff ≈ K

(
∂u

∂ y

)−a

, (29)

where a is the flow behaviour index (a < 1 for pseudoplastic fluids) and K is the flow consistency index. The values for a
and K are obtained using both bulk and near-wall MD (pure) simulations of the same dumb-bell fluid and thermodynamic
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Fig. 12. Pure MD results for a FENE fluid under various strain-rates (γ̇ = du/dy) next to a bounding wall (�) and in bulk-fluid elements (•): (a) effective
viscosity against strain, and (b) stress against strain. Also plotted in (a) is a power-law fit through the data points using Eq. (29).

state, under various strain-rates. Effective viscosity vs strain-rate and shear-stress vs strain-rate are plotted in Figs. 12(a) and
(b), respectively. In these simulations we obtained fit values for a = 0.275 and K = 5.3 × 10−7 Pa sa .

3.3. Computational savings

We now present the computational savings that our HMM-FWC method has afforded over the full-scale MD simulations
by computing the total processing time P = total number of time-steps × average processing time per time-step, for both
approaches. For the full MD simulation this is simply:

P F = tc,F (ttran,F + tav,F )/�t, (30)

where tc,F is the average clock time per MD time-step, ttran,F is the transient time required for the flow to develop from
rest to steady-state, tav,F is the averaging-time required to reduce noise from molecular measurements and �t is the MD
time-step. For the hybrid method the total processing time is:

P H = I
[
tc,W (ttran,W + tav,W ) + tc,B(ttran,B + tav,B)(Π − 1)

]
/�t, (31)

where subscripts W and B refer to the wall and bulk micro elements respectively, and I is the number of iterations at
which the hybrid algorithm converges (I = 3 in Section 3.1 and I = 4 in Section 3.2). The cumulative averaging times
are the same for all MD cases, so tav,F = tav,W = tav,B = tav (tav ≈ 9 ns in Section 3.1, while tav ≈ 2 ns in Section 3.2). The
transient times are, however, dependent on the size of the MD domains. For example, in the Newtonian case Section 3.1, the
transient time in the hybrid simulation is ttran,W = ttran,B = 2 ns, while the full MD suffers from a very long start-up time
ttran,F ≈ 300 ns.3 Not having to simulate this long transient period is a major computational advantage of our multiscale
approach for studying steady-state flows. In the non-Newtonian case ttran,W = ttran,B = 1 ns, while ttran,F ≈ 130 ns.

The ratio of Eqs. (30) to (31) gives the total computational speed-up factor, c = P F /P H . For the cases in Section 3.1, the
average clock times measured for the wall and bulk micro elements were: tc,W = 0.0326 s and tc,B = 0.015 s respectively,
while the full MD simulation measured a clock time of tc,F = 0.251 s. So this means 74×, 50× and 38× speed-ups for the
hybrid cases with Π = 1, 2 and 3 micro elements respectively. For the cases in Section 3.2, the average clock times were:
tc,W = 0.059 s, tc,B = 0.033 s and tc,F = 0.595 s, which means 100×, 66× and 49× speed-ups for the non-Newtonian cases
with Π = 1, 2 and 3 micro elements, respectively. Clearly our hybrid method is very computationally efficient.

4. Conclusions

We have proposed a new multiscale method that differs from the previous Heterogeneous Multiscale Method (HMM)
[13] by employing a field-wise macro/micro coupling (as opposed to a point-wise coupling at every macroscopic node). This
enables a greater range of scales over which our method can be applied, which is essential for the modelling of practical
nano and micro flow systems. The ability to decouple the positions of the micro elements from the macro grid nodes affords
major computational savings (in both examples presented here, excellent results were obtained with as few as two micro
elements). The field-wise coupling method is implemented using a novel macro/micro constraint procedure that involves

3 This start-up time can be reduced by initialising the system with a velocity profile as close as possible to the final solution, if this is known (for
example, from the predicted hybrid result).
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calculating stress-corrections to the standard Navier–Stokes equations, and projections of flowfields of arbitrary complexity
on bulk- and wall-type micro elements.

We have simulated both Newtonian and non-Newtonian Poiseuille flows, and the multiscale method gives flow predic-
tions in close agreement with full-scale MD simulations of the same cases. The method converged very quickly, within 3–4
iterations, which is an attractive feature for extending it to study quasi-steady transient problems, as described in Ref. [29].
While the Newtonian flow case showed that having just one wall micro element is sufficient to produce accuracies within
1–2% of the full result, we found that in the non-Newtonian case at least one bulk micro element and one wall micro
element were required to capture the significant variation of viscosity produced by a FENE fluid under high strain-rates.
Our multiscale method is approximately 74× and 66× more computationally efficient than full MD simulations of the
Newtonian and non-Newtonian cases, respectively.

The HMM-FWC method presented in this paper can be extended to two- and three-dimensional flow problems. How-
ever, the method becomes more complicated and there are some particular issues that need to be addressed carefully.
In 3D flows, for example, MD micro elements are constructed with a constraining region that surrounds the core region
completely (instead of the top–bottom approach for 1D flows), and the micro constraint forces are a 3D varying field. The
accurate application of this force field is paramount, so a fine 3D mesh is required, which is costly. Similar issues arise for
the macro-to-micro projection step and the micro compression step — high order interpolants are required to provide veloc-
ity projections and fits through measurements of shear-stress and velocity taken from the MD core region. In the projection
step there is also the issue of preserving continuity in the core-constrained region (which is not necessarily straightfor-
ward). Furthermore, in the micro MD simulations there is an exacerbated problem of noise, as smaller bins are required
to capture 3D gradients, which may lead to instabilities in the hybrid algorithm if the measured fields are not sufficiently
averaged. For the one-dimensional examples considered in the present paper, mass is automatically conserved, leaving only
the momentum conservation Eq. (2) to be solved macroscopically. For more general flow problems, a macroscopic continuity
equation must also be solved alongside an equation of state relating density to pressure. The induced pressure variations
would then be coupled to the momentum conservation equation using a distributed force field. The development of the
HMM-FWC method to higher-dimensional flow problems is therefore the subject of future work.
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