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Abstract

Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals
and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S.
aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted
phenol-soluble modulins (PSMs), which are also known to inhibit biofilm formation. The aim of the present studies was to
determine whether any cell surface-associated S. aureus proteins have an impact on colony spreading. To this end, we
analyzed the spreading capabilities of strains lacking non-essential components of the protein export and sorting
machinery. Interestingly, our analyses reveal that the absence of sortase A (SrtA) causes a hyper-spreading phenotype. SrtA
is responsible for covalent anchoring of various proteins to the staphylococcal cell wall. Accordingly, we show that the
hyper-spreading phenotype of srtA mutant cells is an indirect effect that relates to the sortase substrates FnbpA, FnbpB,
ClfA and ClfB. These surface-exposed staphylococcal proteins are known to promote biofilm formation, and cell-cell
interactions. The hyper-spreading phenotype of srtA mutant staphylococcal cells was subsequently validated in
Staphylococcus epidermidis. We conclude that cell wall-associated factors that promote a sessile lifestyle of S. aureus and
S. epidermidis antagonize the colony spreading motility of these bacteria.
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Introduction

Staphylococcus aureus is an opportunistic human pathogen that is

currently a leading cause of infections throughout the world. This

Gram-positive bacterium can cause a wide variety of both acute

and chronic diseases ranging from superficial skin infections to life-

threatening endocarditis and sepsis [1,2]. The ability of S. aureus to

cause these infections is due to the production of secreted and cell

wall-associated virulence factors that are coordinately expressed.

These factors include proteins that are necessary for host

colonization, invasion, biofilm formation, toxicogenesis, immune

evasion or spreading throughout the host.

To sort proteins to their correct extracytoplasmic locations,

Gram-positive bacteria have several pathways for protein

targeting and transport. S. aureus contains at least six of these

pathways [3]. Most proteins, including virulence factors are

translocated across the cytoplasmic membrane via the Sec

pathway. These proteins are synthesized in the cytoplasm with

an N-terminal Sec-type signal peptide that directs them to the

Sec translocase, which is embedded in the membrane [3–7].

The Sec translocase can only facilitate the membrane passage of

proteins in an unfolded state [8,9]. Upon translocation, type I

signal peptidases cleave the signal peptide to liberate the

proteins from the membrane. Various folding catalysts can then

assist the folding of the translocated proteins into their active

and protease-resistant conformation [3,10–12]. Some proteins

that are translocated via the Sec pathway are retained in the

membrane or cell wall. When a translocated protein lacks a

specific signal for retention in these subcellular compartments, it

is usually secreted into the extracellular milieu [3,13]. Proteins

can be bound to the cell wall either in a non-covalent manner

via specific binding domains, or covalently through the

enzymatic activity of so-called sortases.

Gram-positive bacteria employ sortases to covalently link

exported proteins with a special C-terminal LPxTG motif to the

cell wall. These sortases are membrane-bound transpeptidases that

cleave the peptide bond between the Thr and Gly residues of the

LPxTG motif, and catalyze the formation of an amide bond

between the carboxyl group of the Thr residue and the free amino

end of a pentaglycine cross bridge in peptidoglycan precursors

[14–19]. The sortase A (SrtA) enzyme from S. aureus is a

prototypical member of the sortase family [20–23]. S. aureus

strains lacking the srtA gene are unable to retain and display

LPxTG proteins at the cell surface. As a consequence, srtA mutant

strains are defective in the establishment of acute infections [21].
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There are 19 staphylococcal proteins that carry a C-terminal

LPxTG motif and 2 that carry a C-terminal LPxAG motif

[3,13,24–26]. These include protein A (Spa), two fibronectin-

binding proteins (FnbpA and FnbpB) [27], two clumping factors

(ClfA and ClfB), three cell wall-anchored proteins with large

serine-aspartate repeat domains (SdrC, SdrD and SdrE) [28], a

collagen-binding protein (Can), a plasmin-sensitive protein (Pls)

[29], FmtB [30], and eleven staphylococcal surface (Sas) proteins.

For some of these proteins a direct role in biofilm formation has

been reported. This applies to Spa [31,32], FnbpA and FnbpB

[33–36].

We have previously shown that S. aureus cells can employ

secreted phenol–soluble modulins (PSMs) for their translocation

over wet surfaces. At the same time, certain PSMs are very

effective in preventing biofilm formation [37]. The PSMs thus

seem to have a decisive role in the transitions between sessile and

motile lifestyles of S. aureus. While the role of secreted PSMs in

spreading motility has been established, it was so far not known

whether any cell-associated factors are also involved in this

process. Therefore, the primary aim of the present studies was to

identify cell-associated factors that impact on spreading motility.

As a first approach to find out whether any cell surface-associated

proteins may be involved in spreading, we investigated spreading

motility of mutant strains lacking non-essential components of the

protein export and sorting machinery. Interestingly, this revealed

that srtA mutant cells are more efficient spreaders than the

corresponding parental strains. Further analyses showed that this

relates to the spreading-limiting roles of the sortase substrates

FnbpA, FnbpB, ClfA and ClfB.

Results and Discussion

The requirement for non-essential protein secretion machinery

components in colony spreading by S. aureus was assessed by testing

the secretion mutants listed in Table S1 for their ability to spread

on TSA soft agar plates. Of all tested strains, only the srtA mutant

showed a significant change in spreading. Intriguingly, this strain

displayed an enhanced colony spreading phenotype as is shown in

Figure 1. This spreading phenotype of the srtA mutant was

completely reversed to the wild-type phenotype by ectopic

expression of srtA from the plasmid srtA-pCN51 (Fig. 1).

The srtA mutant strains are unable to link LPxTG proteins

covalently to the cell wall and, because of this, they are attenuated

in virulence. This suggested that the effect of the srtA mutation on

spreading would also be an indirect consequence of the absence of

cell wall coupling of one or more LPxTG proteins. Many LPxTG

proteins belong to the MSCRAMMs (microbial surface compo-

nents recognizing adhesive matrix molecules) and promote

bacterial attachment to the extracellular matrix of host tissues.

Some of these MSCRAMMs, such as FnbpA and FnbpB, have

been implicated in biofilm formation and other MSCRAMMs,

such as ClfA and ClfB, have been implicated in cell-cell

interactions. Since spreading motility on the one hand and biofilm

formation or cell aggregation on the other hand are processes with

opposite effects, we investigated whether the individual deletion of

the fnbpA, fnbpB, clfA or clfB genes would result in enhanced

spreading. None of these single mutant strains had a major impact

on colony spreading, although the fnbpA, fnbpB and clfB mutant

cells did cover slightly, but statistically significantly larger areas

than the corresponding parental strain or clfA mutant cells (Fig. 2;

Table S2). Since this suggested that the absence of only one of

these proteins might not be sufficient for an increased spreading

phenotype, double, triple and quadruple mutant strains were

constructed that lacked fnbpA, fnpbB, clfA and/or clfB. As shown in

Figure 2, the mutant lacking all four of these genes showed the

most strongly enhanced spreading phenotype that was comparable

to the phenotype of the srtA single mutant strain (for statistical

evaluation, see Table S2). As shown with the double or triple

mutant strains, the four individual mutations had additive effects

in enhancing colony spreading. Thus, the two fibronectin-binding

proteins FnbpA and FnbpB and the two clumping factors ClfA

and ClfB counteract spreading. While we cannot exclude the

possibility that other LPxTG proteins also counteract spreading,

the observed effect of the quadruple fnbpA fnbpB clfA clfB mutation

is fully sufficient to explain the hyper-spreading phenotype of the

srtA mutant. It should be noted that FnbpA, FnbpB, ClfA and ClfB

do not block colony spreading as evidenced by the spreading of the

parental strains used in the present studies as well as a range of

clinical isolates that readily spread on soft agar [38]. Thus, it seems

that in the absence of FnbpA, FnbpB, ClfA and ClfB the cells are

less tightly associated with each other and, consequently, they can

cover larger areas on soft agar plates by means of their spreading

motility.

The FnbpA, FnbpB, ClfA and ClfB proteins can promote

adhesion of S. aureus cells to a variety of molecules and surfaces and

they have been implicated in cell-cell adhesion. In relation to our

present findings, it is interesting to note that the fnpbB gene is less

common in highly virulent S. aureus isolates, and that the presence

of fnbpB is associated with reduced transmission of staphylococcal

skin infections in a rabbit model [39,40]. This seems to suggest

that spreading activity and transmission of S. aureus could perhaps

be linked. Furthermore, FnbpA is a highly variable surface

protein. The fnbpA gene has a mosaic structure, which indicates

that this gene is evolving not only through point mutations, but

also through recombination events [41]. ClfA mediates attach-

ment to plasma clots, to platelets and to plastic biomaterial used

for medical implants. Lastly, ClfB promotes cell clumping in the

presence of fibrinogen. However, ClfB is not only able to bind to

fibrinogen itself, but also to proteins present in the envelope of

squamous cells and to desquamated nasal epithelial cells

[26,42,43]. Interestingly, the production of FnbpA, FnbpB, ClfA

and ClfB in different S. aureus strains seems to be highly variable

[38,44,45]. This may at least partly explain our previous

observation that the spreading abilities of different S. aureus clinical

isolates are highly variable [38,44]. This view is further supported

by the observation that strain Newman, which produces truncated

forms of FnbpA and FnbpB, is a very efficient spreader (Fig. 2).

These truncated FnbPs are no longer anchored to the cell surface

but secreted, which leads to a loss of their function [46]. In fact the

high spreading activity of strain Newman is comparable to that of

the srtA mutant or the fnbpA fnbpB clfA clfB quadruple mutant

derivative of strain SH1000 (Fig. 2). Notably, the mutations in

fnbpA and fnbpB may not be sufficient to explain the increased

spreading of strain Newman, but our previous studies suggest that

this strain also produces very low levels of ClfB, if any [44]. This

may contribute to the hyper-spreading phenotype of strain

Newman. Consistent with these considerations, a srtA deletion

increased the spreading capacity of strain Newman only slightly

(Figure 2; Table S2). This could be due to impaired cell wall-

binding of ClfA and perhaps also low-levels of ClfB. However, we

cannot completely exclude the possibility that impaired cell wall-

binding of other LPxTG proteins, such as Protein A, might add to

the hyper-spreading phenotype of the srtA mutant of strain

Newman.

Depending on the strain and growth condition, the fnbpA and

fnbpB genes are negatively regulated by the Agr system [47–49].

On the other hand, the Agr system positively regulates the

synthesis of PSMs that are critical for spreading motility [38]. The

Sortase Substrates Inhibit Spreading of S. aureus
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differential Agr-regulated production of FnbpAB and the PSMs is

thus fully compatible with our present findings that FnbpAB

counteract spreading. Though the clfA and clfB genes are not

regulated by Agr, but by SarA, they are highly expressed during

the early exponential growth phase and barely during the late

exponential or stationary growth phases [47,50,51]. The produc-

tion of ClfA and ClfB thus correlates positively with that of

FnbpAB and negatively with PSM production, which is also fully

consistent with the presently observed negative role of ClfA and

ClfB in spreading.

Figure 1. Hyper-spreading phenotype of srtA mutant S. aureus strains. From an overnight culture, an aliquot of 2 ml was spotted in the
middle of a TSA plate, which was then incubated overnight at 37uC. The analyses include the laboratory strains S. aureus SH1000 and NCTC8325 (both
labeled WT), as well as their srtA mutant derivatives (labeled srtA) and srtA mutants complemented with a plasmid pCN51-borne copy of S. aureus srtA
(labeled srtA-pCN51). The spreading areas of the investigated mutant and parental strains were determined by ImageJ. The graphs show the areas
covered in arbitrary units (AU) and respective standard deviations.
doi:10.1371/journal.pone.0044646.g001
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Lastly, to investigate whether surface-attached proteins also set a

limit to spreading motility in other staphylococci, we turned to

Staphylococcus epidermidis. This bacterium is renowned for its high

capacity to form biofilms on medical implants [52]. Nevertheless,

S. epidermidis does produce phenol-soluble modulins [53,54], which

should provide it with an intrinsic capacity for spreading motility.

As shown in Figure 3, wild-type cells of S. epidermidis strain 1457

did indeed spread on soft agar plates, albeit to a lesser extent than

cells of S. aureus SH1000. As predicted on the basis of our

experiments with S. aureus, the srtA mutant of S. epidermidis

displayed a massively increased spreading over soft agar plates

(Fig. 3). Furthermore, this hyper-spreading phenotype of the

S. epidermidis srtA mutant was completely reversed to the low-level

spreading of the parental strain upon ectopic expression of the

S. epidermidis srtA gene from plasmid srtASe-pCN51 (Fig. 3). We

therefore conclude that, also in S. epidermidis, the sortase-mediated

cell wall anchoring of proteins sets a limit to spreading motility.

Thus, this seems to be a conserved feature of staphylococcal

spreading motility, which is fully consistent with the previously

shown role of covalently anchored cell wall proteins in the

formation of biofilms.

Materials and Methods

Bacterial Strains and Growth Conditions
The bacterial strains and plasmids that were used in the present

studies are listed in Table S1. All Escherichia coli strains were grown

in Luria-Bertani broth (LB) at 37uC under shaking conditions.

S. aureus and S. epidermidis strains were grown in tryptic soy broth

(TSB) at 37uC under vigorous shaking. Where necessary,

ampicillin 100 mg/ml (for E. coli) or erythromycin 5 mg/ml (for

S. aureus and S. epidermidis) were added to the growth medium.

Construction of S. aureus and S. epidermidis Mutant
Strains

The S. aureus and S. epidermidis mutants lacking secretion

machinery genes (Table S1) were constructed using the temper-

ature-sensitive plasmid pMAD [55] and previously described

procedures [56]. All primers used are listed in Table S3. To delete

particular genes, primer pairs with the designations F1/R1 and

F2/R2 were used for PCR amplification of the respective

upstream and downstream regions (each ,500 bp). Primers R1

and F2 contain an overlap of 24 nucleotides, which served to fuse

the amplified ‘front’ and ‘back’ flanking regions by PCR. The

fused flanking regions were cloned in pMAD, and the resulting

plasmids were used to delete the genes between these flanking

regions from the S. aureus or S. epidermidis genome. To this end, the

pMAD plasmids carrying the flanking regions were used to

transform S. aureus strain RN4220 via electroporation. Next, these

plasmids were isolated from the RN4220 strain and used to

transform electrocompetent cells of S. aureus SH1000, NCTC8325

and Newman, or S. epidermidis 1457. Upon chromosomal plasmid

insertion and excision, white colonies on plates with 80 mg/ml 5-

bromo-4-chloro-3-indolyl-b-D-galactopyranoside were screened

for the correct gene deletion by colony PCR using primers F1

and R2. To delete the clfA or clfB genes from the S. aureus SH1000

genome, the respective allelic replacements with antibiotic

resistance markers were transferred from the original strains

provided by T.J. Foster to the SH1000 strain by transduction with

phage w85 [57,58].

Complementation of the srtA Mutation
For complementation studies, the srtA genes of S. aureus and

S. epidermidis were cloned in plasmid pCN51. Expression of a

cloned gene in this plasmid is controlled by a cadmium-inducible

promoter. The primers used for the amplification of the srtA genes

are listed in Table S3 and the restriction sites used for cloning in

pCN51 are shown in italics. The resulting plasmids srtA-pCN51

and srtASe-pCN51 were used to transform electrocompetent S.

aureus RN4220 cells, and the transformed cells were plated on TSA

plates containing erythromycin. The restriction-modified plasmids

were isolated from S. aureus RN4220 and then used to transform

electrocompetent S. aureus SH1000 DsrtA, S. aureus NCTC8325

DsrtA, or S. epidermidis 1457 DsrtA.

Colony Spreading Assay
The colony spreading assay was performed as described by

Kaito et al [59], with minor modifications. Briefly, TSB broth

Figure 2. The influence of fnbpA, fnbpB, clfA and clfB mutations on colony spreading of S. aureus. Spreading motility of S. aureus SH1000-
derived fnbpA, fnbpB, clfA and/or clfB mutant strains or the S. aureus Newman srtA mutant strain was assayed as described for Figure 1.
doi:10.1371/journal.pone.0044646.g002
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supplemented with 0.24% agar was used to prepare TSA soft agar

plates. Each plate (10 ml) was dried for approximately 10 min in a

laminar flow cabinet for optimal colony spreading conditions.

From a TSB overnight culture of the strain to be tested for

spreading, an aliquot of 2 ml was spotted in the centre of a TSA

plate and the plates were then dried for an additional 5 min.

Lastly, upon overnight incubation of the plates at 37uC, the

spreading zones were examined and pictures were taken. To

induce srtA expression from pCN51, soft agar plates were

supplemented with 0.25 mM CdSO4. All spreading assays were

repeated at least five times.

Supporting Information

Table S1 Bacterial strains and plasmids used in the
present studies.
(DOCX)

Table S2 Statistical analysis of colony spreading by the
different mutant strains. The spreading areas of the

investigated mutant and parental strains were determined by

ImageJ. The Table show the areas covered in arbitrary units (AU).

P-values were determined by the non-parametric Mann–Whitney

U test.

(DOCX)

Table S3 Primers used in the present studies. Overlap-

ping nucleotides are shown in bold; restriction sites in primers are

underlined. aThese primers have an overlap with the kanamycin

resistance cassette from pDG783.

(DOCX)
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