
Action OrientedFact Based
What does it do?

• Assess current state of
evolutionary development

• Identify issues for research
and practice

• Develop methods and
tools to help improve
evolutionary development
performance

Who should use it?

• Program
managers/planners

• SPOs

• Acquisition policy makers

• Researchers

What are the benefits?

• Insight to avoid potential
system problems

• Tools for better strategic
decision-making

• Identify areas for
investment, action,
education, and training

• Early engagement with SAF/ACE on
evolutionary acquisition pathfinders

• Building on successful research to
develop innovative new ways to
model system evolution

• Applying knowledge from research
base to inform action on Lean Now!

What Progress Have We Made So Far With Evolutionary Development?

The Evolutionary
Acquisition Enterprise

Q1
03

Q2
03

Q3
03

Q4
03

Q1
04

Q2
04

Q3
04

Q4
04

Engage
with

SAF/ACE
on

Pathfinder
study

Global
Hawk Lean

Now!
event

Plenary
Breakout
Session

Theses
complete

Multiple theses:

–Ferdowsi (2003)

–Derleth (2003)

–Spaulding (2003)

–Roberts(2003)

–Tondrealt (2003)

–Shah (2004)

–Additional relevant and related theses from
past LAI research

Tool/process development

–MATECON with multiple spirals and options

• Global Hawk Lean Now! event

– Help streamline recurring engineering
processes to enable spiral program strategy

• Evolving toolset

– MATECON

• Small diameter bomb, space-based radar
models demonstrate evolving capability

– LAI Enterprise lean tools and Lean Now!
lessons potentially helpful in diagnosing
enabling infrastructure and interface issues

Key Finding:

• Programs leading in implementation of
evolutionary acquisition are largely using
variants of well-known program strategies
(e.g., block upgrades, P3I)

Key Finding:

• Current strategies generally mean
increased concurrence, more steps to
be executed for an evolved capability

Key Finding:

• Research on front end processes shows that
choosing the right system architecture can
lead to superior evolutionary performance

– Tool/method evolving to aid planners/system
architects

Key Finding:

• Modular and open
architectures are helpful,
but real limitations
emerge in
interdependencies in
systems of systems

Highest Priority Requirements

System
Design

Detailed
Design 1

Medium Priority Requirements

Lowest Priority Requirements

Currently possible
to implement

Highest Priority Requirements

Medium Priority Requirements

Lowest Priority Requirements

Detailed
Design 2

Newly possible
to implementDeliver Increment 1

Deliver Increment 2

Reach budget or
schedule limit

Continued…

Comparison of Program Size and Iteration

0

5

10

15

20

25

Program Size

N
o

.
o

f
P

la
n

n
ed

 I
te

ra
ti

o
n

s

larger
program size

More
Spirals
in Plan

Comparison of Interdepencies and Ease of
Changes

External Interdependencies

E
a
se

 o
f

C
h

a
n

g
e
s

Medium
Medium/High
High

Easier to
make
changes

Level of
Modularity

More external
interdependencies

Know performance
Know cost drivers

Challenge rqmts
that drive cost /
add little value

Waivers (challenge
requirements that
prevent meeting

production schedule)

“Over constrained”
system requirements

lead to
“Over constrained”

allocated requirements

Make it work Make it Manufacturable Make it Affordable

Knowledge of subsystem
cost driving performance requirements

Uncertainty of achieving system &
subsystem performance

All products
start here

Some programs leverage previous program(s) to “start” at a more
mature spiral or cycle

Model 2 starts at a more mature phase so it doesn’t have the problem
of high performance uncertainty and low cost knowledge at the start

Affordability-focused Model

 Performance priority

+ High uncertainty of achieving system & subsystem performance

+ Low knowledge of subsystem cost driving performance requirements

= Over constrained performance requirements at system & subsystem levels

Know performance
Know cost drivers

Challenge requirements
that drive cost /
add little value

Waivers (challenge
requirements that
prevent meeting

production schedule)

“Over constrained”
system requirements

lead to
“Over constrained”

allocated requirements

Make it work Make it Manufacturable Make it AffordableSystem Architecture

Over-constrained
performance
requirements

leads to

high performance/
high cost architecture
& over-constrained

allocated requirements

not subject to challenge
until system performance

generally established
Knowledge of system &

subsystem cost driving performance requirements

Uncertainty of achieving system &
subsystem performance

Performance-focused Model

Value/priority on affordability vs.
performance

Does early spiral performance shortfall
lead to graceful degradation?

How probable is a performance shortfall
in an early spiral?

Affordability

Graceful
degradation

Model 2
Low Cost Concept
Grow Performance

Iterations Planned

Yes

Hard failure

Performance

M
od

el
 1

M
ak

e
it

W
or

k
M

ak
e

it
M

an
uf

ac
tu

ra
bl

e
M

ak
e

it
A

ffo
rd

ab
le

No

Low

High

Decision Guidance for Program Strategy

Deciding
Between
Different
Evolutionary
Development
Objectives

#1

#2
#3

#4 #5

his would be beneficial to MATE because it would significantly reduce calculation time, thus
allowing more complex modeling and enumeration of larger tradespaces.

#3

#4

#5

A

B

C

Identify
Architectures

That Evolve
Robustly

2 3 4 5 6 7 8 9 10 11
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
Number of Transition Possibilities: 2002 to 2005 (decreasing altitude)

Life cycle Cost ($B)

U
t
i
l
i
t
y

1
2
3
4
5
6
7
8
9

Architecture 15
(Root)

Number of Transition Possibilities

Life cycle Cost ($B)

U
til

ity

2002 2003 2004 2005 2006 2007 2008 2009 2010
0

50

100

150

200

250

300

350

400

450

Time (year)

A
r
c
h
i
t
e
c
t
u
r
e

I
D

N
u
m
b
e
r

Evolutionary Strategy Decision Tree from Architecture 15 Root

Decision Node 2

(2010)

Decision Node 1

(2005)

Time (year)

A
rc

hi
te

ct
ur

e
ID

 N
um

be
r

Evolutionary Strategy Decision Tree from Architecture 15 Root

Use Analytical Tools to
Identify Architecture

Investment Strategies
and Windows

• Planning
– High concurrency in programs meant managers were

working on one increment while planning for the next

• Contracting
– More increments meant more contracts
– Contracts were not as flexible as the programs

• Engineering
– Concurrency often meant that testing for one phase was

going on at the same time as engineering for another --
engineers were no longer available to address testing finds

• Logistics
– Multiple configurations of the same system
– Upgrading existing systems to new standards was not

always easy

• Testing
– Increased testing loads associated with multiple increments
– Increments are tested as if they were completely new

systems

PD and enabling infrastructures are recurring
components of evolutionary programs

• Iteration and concurrency can require stakeholders to
work harder and faster
– Need enterprise lean to eliminate waste
– Need advanced decision-making tools to work

smarter

• Product design and architecture issues are more
important
– COTS no simple solution
– Modular system architecture helps, but interfaces

in systems of systems can still dominate

Cost

Time

A
rc

hi
te

ct
ur

e
N

o.

U
til

ity

U
til

ity

U
til

ity

Cost

Cost

Bigger Programs

