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Abstract

The AdaBoost algorithm was designed to combine many “weak” hypotheses that perform slightly

better than random guessing into a “strong” hypothesis that has very low error. We study the rate at

which AdaBoost iteratively converges to the minimum of the “exponential loss.” Unlike previous

work, our proofs do not require a weak-learning assumption, nor do they require that minimizers

of the exponential loss are finite. Our first result shows that the exponential loss of AdaBoost’s

computed parameter vector will be at most ε more than that of any parameter vector of ℓ1-norm

bounded by B in a number of rounds that is at most a polynomial in B and 1/ε. We also provide

lower bounds showing that a polynomial dependence is necessary. Our second result is that within

C/ε iterations, AdaBoost achieves a value of the exponential loss that is at most ε more than the

best possible value, where C depends on the data set. We show that this dependence of the rate on

ε is optimal up to constant factors, that is, at least Ω(1/ε) rounds are necessary to achieve within ε
of the optimal exponential loss.

Keywords: AdaBoost, optimization, coordinate descent, convergence rate

1. Introduction

The AdaBoost algorithm of Freund and Schapire (1997) was designed to combine many “weak”

hypotheses that perform slightly better than random guessing into a “strong” hypothesis that has

very low error. Despite extensive theoretical and empirical study, basic properties of AdaBoost’s

convergence are not fully understood. In this work, we focus on one of those properties, namely, to

find convergence rates that hold in the absence of any simplifying assumptions. Such assumptions,

relied upon in much of the preceding work, make it easier to prove a fast convergence rate for

AdaBoost, but often do not hold in the cases where AdaBoost is commonly applied.

AdaBoost can be viewed as a coordinate descent (or functional gradient descent) algorithm

that iteratively minimizes an objective function L : Rn → R called the exponential loss (Breiman,

1999; Frean and Downs, 1998; Friedman et al., 2000; Friedman, 2001; Mason et al., 2000; Onoda
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et al., 1998; Rätsch et al., 2001; Schapire and Singer, 1999). Given m labeled training examples

(x1,y1), . . . ,(xm,ym), where the xi’s are in some domain X and yi ∈ {−1,+1}, and a finite (but

typically very large) space of weak hypotheses H = {~1, . . . ,~N}, where each ~ j : X → {−1,+1},

the exponential loss is defined as

L(λ)
△
=

1

m

m

∑
i=1

exp

(

−
N

∑
j=1

λ jyi~ j(xi)

)

where λ= 〈λ1, . . . ,λN〉 is a vector of weights or parameters. This definition can also be extended to

the setting where the weak hypotheses are confidence rated, that is, they output real numbers, with

the sign denoting prediction and magnitude indicating the confidence in that prediction. In each

iteration, a coordinate descent algorithm moves some distance along some coordinate direction λ j.

For AdaBoost, the coordinate directions correspond to the individual weak hypotheses. Thus, on

each round, AdaBoost chooses some weak hypothesis and step length, and adds these to the current

weighted combination of weak hypotheses, which is equivalent to updating a single weight. The

direction and step length are so chosen that the resulting vector λt in iteration t yields a lower value

of the exponential loss than in the previous iteration, L(λt)< L(λt−1). This repeats until it reaches

a minimizer if one exists. It was shown by Collins et al. (2002), and later by Zhang and Yu (2005),

that AdaBoost asymptotically converges to the minimum possible exponential loss. That is,

lim
t→∞

L(λt) = inf
λ∈RN

L(λ).

However, the work by Collins et al. (2002) did not address a rate of convergence to the minimum

exponential loss.

Our work specifically addresses a recent conjecture of Schapire (2010) stating that there exists a

positive constant c and a polynomial poly() such that for all training sets and all finite sets of weak

hypotheses, and for all B > 0,

L(λt)≤ min
λ:‖λ‖1≤B

L(λ)+
poly(logN,m,B)

tc
. (1)

In other words, the exponential loss of AdaBoost will be at most ε more than that of any other

parameter vector λ of ℓ1-norm bounded by B in a number of rounds that is bounded by a polynomial

in logN, m, B and 1/ε. (We require logN rather than N since the number of weak hypotheses will

typically be extremely large.) Along with an upper bound that is polynomial in these parameters,

we also provide lower bound constructions showing some polynomial dependence on B and 1/ε

is necessary. Without any additional assumptions on the exponential loss L, and without altering

AdaBoost’s minimization algorithm for L, the best known convergence rate of AdaBoost prior to

this work that we are aware of is that of Bickel et al. (2006) who prove a bound on the rate of the

form O(1/
√

log t).
We provide also a convergence rate of AdaBoost to the minimum value of the exponential loss.

Namely, within C/ε iterations, AdaBoost achieves a value of the exponential loss that is at most

ε more than the best possible value, where C depends on the data set. This convergence rate is

different from the one discussed above in that it has better dependence on ε (in fact the dependence

is optimal, as we show), and does not depend on the best solution within a ball of size B. However,

this second convergence rate cannot be used to prove (1) since in certain worst case situations, we

show the constant C may be larger than 2m (although usually it will be much smaller).
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Within the proof of the second convergence rate, we provide a lemma (called the decomposition

lemma) that shows that the training set can be split into two sets of examples: the “finite margin

set,” and the “zero loss set.” Examples in the finite margin set always make a positive contribution

to the exponential loss, and they never lie too far from the decision boundary. Examples in the zero

loss set do not have these properties. If we consider the exponential loss where the sum is only over

the finite margin set (rather than over all training examples), it is minimized by a finite λ. The fact

that the training set can be decomposed into these two classes is the key step in proving the second

convergence rate.

This problem of determining the rate of convergence is relevant in the proof of the consistency

of AdaBoost given by Bartlett and Traskin (2007), where it has a direct impact on the rate at which

AdaBoost converges to the Bayes optimal classifier (under suitable assumptions).

There have been several works that make additional assumptions on the exponential loss in

order to attain a better bound on the rate, but those assumptions are not true in general, and cases

are known where each of these assumptions are violated. For instance, better bounds are proved by

Rätsch et al. (2002) using results from Luo and Tseng (1992), but these require that the exponential

loss be minimized by a finite λ, and also depend on quantities that are not easily measured. There are

many cases where L does not have a finite minimizer; in fact, one such case is provided by Schapire

(2010). Shalev-Shwartz and Singer (2008) have proved bounds for a variant of AdaBoost. Zhang

and Yu (2005) also have given rates of convergence, but their technique requires a bound on the

change in the size of λt at each iteration that does not necessarily hold for AdaBoost. Many classic

results are known on the convergence of iterative algorithms generally (see, for instance, Luenberger

and Ye, 2008; Boyd and Vandenberghe, 2004); however, these typically start by assuming that the

minimum is attained at some finite point in the (usually compact) space of interest, assumptions that

do not generally hold in our setting. When the weak learning assumption holds, there is a parameter

γ > 0 that governs the improvement of the exponential loss at each iteration. Freund and Schapire

(1997) and Schapire and Singer (1999) showed that the exponential loss is at most e−2tγ2

after t

rounds, so AdaBoost rapidly converges to the minimum possible loss under this assumption.

In Section 2 we summarize the coordinate descent view of AdaBoost. Section 3 contains the

proof of the conjecture of Schapire (2010), with associated lower bounds proved in Section 3.3.

Section 4 provides the C/ε convergence rate. The proof of the decomposition lemma is given in

Section 4.2.

2. Coordinate Descent View of AdaBoost

From the examples (x1,y1), . . . ,(xm,ym) and hypotheses H = {~1, . . . ,~N}, AdaBoost iteratively

computes the function F : X →R, where sign(F(x)) can be used as a classifier for a new instance x.

The function F is a linear combination of the hypotheses. At each iteration t, AdaBoost chooses one

of the weak hypotheses ht from the set H , and adjusts its coefficient by a specified value αt . Then

F is constructed after T iterations as: F(x) = ∑T
t=1 αtht(x). Figure 1 shows the AdaBoost algorithm

(Freund and Schapire, 1997).

Since each ht is equal to ~ jt for some jt , F can also be written F(x) = ∑N
j=1 λ j~ j(x) for a vector

of values λ = 〈λ1, . . .λN〉 (such vectors will sometimes also be referred to as combinations, since

they represent combinations of weak hypotheses). In different notation, we can write AdaBoost

as a coordinate descent algorithm on vector λ. We define the feature matrix M elementwise by

Mi j = yi~ j(xi), so that this matrix contains all of the inputs to AdaBoost (the training examples and
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Given: (x1,y1), . . . ,(xm,ym) where xi ∈ X , yi ∈ {−1,+1}
set H = {~1, . . . ,~N} of weak hypotheses ~ j : X →{−1,+1}.

Initialize: D1(i) = 1/m for i = 1, . . . ,m.

For t = 1, . . . ,T :

• Train weak learner using distribution Dt ; that is, find weak hypothesis ht ∈ H whose correla-

tion rt
△
= Ei∼Dt

[yiht(xi)] has maximum magnitude |rt |.
• Choose αt =

1
2

ln{(1+ rt)/(1− rt)}.

• Update, for i = 1, . . . ,m: Dt+1(i) = Dt(i)exp(−αtyiht(xi))/Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis: F(x) = sign
(

∑T
t=1 αtht(x)

)

.

Figure 1: The boosting algorithm AdaBoost.

hypotheses). Then the exponential loss can be written more compactly as:

L(λ) =
1

m

m

∑
i=1

e−(Mλ)i

where (Mλ)i, the ith coordinate of the vector Mλ, is the (unnormalized) margin achieved by vector

λ on training example i.

Coordinate descent algorithms choose a coordinate at each iteration where the directional deriva-

tive is the steepest, and choose a step that maximally decreases the objective along that coordinate.

To perform coordinate descent on the exponential loss, we determine the coordinate jt at iteration t

as follows, where e j is a vector that is 1 in the jth position and 0 elsewhere:

jt ∈ argmax
j

∣

∣

∣

∣

(

−dL(λt−1 +αe j)

dα

∣

∣

∣

α=0

)∣

∣

∣

∣

= argmax
j

1

m

∣

∣

∣

∣

∣

m

∑
i=1

e−(Mλt−1)iMi j

∣

∣

∣

∣

∣

. (2)

We can show that this is equivalent to the weak learning step of AdaBoost. Unraveling the recursion

in Figure 1 for AdaBoost’s weight vector Dt , we can see that Dt(i) is proportional to

exp

(

−∑
t ′<t

αt ′yiht ′(xi)

)

.

The term in the exponent can also be rewritten in terms of the vector λt , where λt
j is the sum of αt’s

where hypothesis ~ j was chosen: ∑t ′<t αt ′1[~ j=ht′ ] = λt−1, j. The term in the exponent is:

∑
t ′<t

αt ′yiht ′(xi) = ∑
j

∑
t ′<t

αt ′1[~ j=ht′ ]yi~ j(xi) = ∑
j

λt−1
j Mi j = (Mλt−1)i,

where (·)i denotes the ith component of a vector. This means Dt(i) is proportional to e−(Mλt−1)i .

Equation (2) can now be rewritten as

jt ∈ argmax
j

∣

∣

∣

∣

∣

∑
i

Dt(i)Mi j

∣

∣

∣

∣

∣

= argmax
j

∣

∣

∣
Ei∼Dt

[Mi j]
∣

∣

∣
= argmax

j

∣

∣

∣
Ei∼Dt

[yih j(xi)]
∣

∣

∣
,
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which is exactly the way AdaBoost chooses a weak hypothesis in each round (see Figure 1). The

correlation ∑i Dt(i)Mi jt will be denoted by rt and its absolute value |rt | denoted by δt . The quantity

δt is commonly called the edge for round t. The distance αt to travel along direction jt is found for

coordinate descent via a linesearch (see for instance Mason et al., 2000):

0 =−dL(λt +αte jt )

dαt

= ∑
i

e
−(M(λt+αt e jt ))iMi jt

and dividing both sides by the normalization factor,

0 = ∑
i:Mi j=1

Dt(i)e
−αt − ∑

i:Mi j=−1

Dt(i)e
αt =

(1+ rt)

2
e−αt − (1− rt)

2
eαt ,

that is

αt =
1

2
ln

(

1+ rt

1− rt

)

,

just as in Figure 1. Thus, AdaBoost is equivalent to coordinate descent on L(λ). With this choice

of step length, it can be shown (Freund and Schapire, 1997) that the exponential loss drops by an

amount depending on the edge. First notice that for any value of αt we have:

L(λt) = L
(

λt−1 +αtejt

)

=

(

∑
i:Mi jt =1

Dt(i)e
−αt + ∑

i:Mi jt =−1

Dt(i)e
αt

)

L(λt−1)

=

(

(1+ rt)

2
e−αt +

(1− rt)

2
eαt

)

L(λt−1). (3)

Plugging in the choice of αt calculated before, we have

L(λt) =
(

√

(1+ rt)(1− rt)
)

L(λt−1) =

(

√

1− r2
t

)

L(λt−1) =

(

√

1−δ2
t

)

L(λt−1).

Our rate bounds also hold when the weak-hypotheses are confidence-rated, that is, giving real-

valued predictions in [−1,+1], so that h : X → [−1,+1]. In that case, the criterion for picking a

weak hypothesis in each round remains the same, that is, at round t, an ~ jt maximizing the absolute

correlation jt ∈ argmax j

∣

∣

∣∑m
i=1 e−(Mλt−1)iMi j

∣

∣

∣
, is chosen, where Mi j may now be non-integral. An

exact analytical line search is no longer possible, but if the step size is chosen in the same way,

αt =
1

2
ln

(

1+ rt

1− rt

)

, (4)

then Freund and Schapire (1997) and Schapire and Singer (1999) show that a similar drop in the

loss is still guaranteed:

L(λt)≤ L(λt−1)

√

1−δ2
t . (5)

With confidence rated hypotheses, other implementations may choose the step size in a different

way. However, in this paper, by “AdaBoost” we will always mean the version in Freund and

Schapire (1997) and Schapire and Singer (1999) which chooses step sizes as in (4), and enjoys
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the loss guarantee as in (5). That said, all our proofs work more generally, and are robust to numer-

ical inaccuracies in the implementation. In other words, even if the previous conditions are violated

by a small amount, similar bounds continue to hold, although we leave out explicit proofs of this

fact to simplify the presentation.

Before proceeding to the statements and proofs of convergence we make a few technical ob-

servations that will simplify all the proofs considerably. All the convergence statements in this

paper are of the following form. Within a specific number of rounds T , AdaBoost will achieve loss

at most L0 for some non-negative L0: that is, L(λT ) ≤ L0. The non-negativity is necessary since

the exponential-loss L only takes non-negative values, and hence the minimum attainable value is

0. Since the loss is non-decreasing through various rounds of AdaBoost, we may assume, for the

sake of proving the kind of bound mentioned above, that the losses L(λ1), . . . ,L(λT ) are all strictly

greater than zero. Otherwise, within T rounds the minimum possible loss of zero has already been

attained and there is nothing to prove. By virtue of (5), the positivity assumption on the losses

in turn implies that we may assume that the edges δ1, . . . ,δT are all strictly less than 1. Finally,

note that δt = 0 implies that the optimal solution has been attained. To have a nontrivial conver-

gence problem, we may assume that all the edges are positive. Thus, we assume throughout that

0 < δt < 1 to ensure that the statements and proofs are non-trivial.

3. First Convergence Rate: Convergence To Any Target Loss

In this section, we bound the number of rounds of AdaBoost required to get within ε of the loss

attained by a parameter vector λ∗ as a function of ε and the ℓ1-norm ‖λ∗‖1. The vector λ∗ serves

as a reference based on which we define the target loss L(λ∗), and we will show that its ℓ1-norm

measures the difficulty of attaining the target loss in a specific sense. We prove a bound polynomial

in 1/ε, ‖λ∗‖1 and the number of examples m, showing (1) holds, thereby resolving affirmatively

the open problem posed in Schapire (2010). Later in the section we provide lower bounds showing

how a polynomial dependence on both parameters is necessary.

3.1 Upper Bound

The main result of this section is the following rate upper bound.

Theorem 1 For any λ∗ ∈ R
N , AdaBoost achieves loss at most L(λ∗)+ ε in at most 13‖λ∗‖6

1ε−5

rounds.

The high level idea behind the proof of the theorem is as follows. To show a fast rate, we require

a large edge in each round, as indicated by (5). A large edge is guaranteed if the size of the current

solution ‖λt‖1 of AdaBoost is small. Therefore AdaBoost makes good progress if the size of its

solution does not grow too fast. On the other hand, the increase in size of its solution is given by

the step length, which in turn is proportional to the edge achieved in that round. Therefore, if the

solution size grows fast, the loss also drops fast. Either way the algorithm makes good progress. In

the rest of the section we make these ideas concrete through a sequence of lemmas.

We provide some more notation. Throughout, λ∗ is fixed, and its ℓ1-norm is denoted by B

(matching the notation in Schapire, 2010). One key parameter is the suboptimality Rt of AdaBoost’s

solution measured via the logarithm of the exponential loss:

Rt
△
= lnL(λt)− lnL(λ∗).
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Another key parameter is the ℓ1-distance St of AdaBoost’s solution from the closest combination

that achieves the target loss:

St
△
= inf

λ

{

‖λ−λt‖1 : L(λ)≤ L(λ∗)
}

.

We will also be interested in how they change as captured by

∆Rt
△
= Rt−1 −Rt , ∆St

△
= St −St−1.

Notice that ∆Rt is always non-negative since AdaBoost’s loss is always decreasing, thus the sub-

optimality also decreases in each round. We assume without loss of generality that R0, . . . ,Rt and

S0, . . . ,St are all strictly positive up to at least t = 13‖λ∗‖6
1ε−5, since otherwise the theorem holds

trivially. In the rest of the section, we restrict our attention entirely to rounds of boosting when these

positivity conditions hold. We first show that a poly(B,ε−1) rate of convergence follows if the edge

is always polynomially large compared to the suboptimality.

Lemma 2 If for some constants c1,c2, where c2 ≥ 1, the edge satisfies δt ≥ B−c1R
c2

t−1 in each round

t, then AdaBoost achieves at most L(λ∗)+ ε loss after 2B2c1(ε ln2)1−2c2 rounds.

We will need the following expression within the proofs. From the definition of Rt and (5) we have

∆Rt = lnL(λt−1)− lnL(λt)≥−1

2
ln(1−δ2

t ). (6)

Proof Combining (6) with the inequality ex ≥ 1+ x, and the assumption on the edge,

∆Rt ≥−1

2
ln(1−δ2

t )≥
1

2
δ2

t ≥
1

2
B−2c1R

2c2

t−1.

Let T = ⌈2B2c1(ε ln2)1−2c2⌉ be the bound on the number of rounds in the lemma. If any of R0, . . . ,RT

are negative, then by monotonicity RT < 0 and we are done. Otherwise, they are all non-negative.

Then, applying Lemma 32 from the Appendix to the sequence R0, . . . ,RT , and using c2 ≥ 1 we get

R
1−2c2

T ≥ R
1−2c2

0 +

(

c2 −
1

2

)

B−2c1T ≥ (1/2)B−2c1T ≥ (ε ln2)1−2c2 =⇒ RT ≤ ε ln2.

If either ε or L(λ∗) is greater than 1, then the lemma follows since L(λT )≤ L(λ0) = 1 < L(λ∗)+ε.

Otherwise,

L(λT )≤ L(λ∗)eε ln2 ≤ L(λ∗)(1+ ε)≤ L(λ∗)+ ε,

where the second inequality uses ex ≤ 1+(1/ ln2)x for x ∈ [0, ln2].

We next show that large edges are achieved provided St is small compared to Rt .

Lemma 3 In each round t, the edge satisfies δtSt−1 ≥ Rt−1.

Proof For any combination λ, define Dλ as the distribution on examples {1, . . . ,m} that puts weight

proportional to the loss Dλ(i) = e−(Mλ)i/(mL(λ)). Choose any λ suffering at most the target loss

L(λ)≤ L(λ∗). By non-negativity of relative entropy we get

0 ≤ RE(Dλt−1 ‖ Dλ) =
m

∑
i=1

Dλt−1(i) ln

(

e−(Mλt−1)i/mL(λt−1)

e−(Mλ)i/mL(λ)

)

≤−Rt−1 +
m

∑
i=1

Dλt−1(i)
(

Mλ−Mλt−1
)

i
. (7)
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Note that Dλt−1 is the distribution Dt that AdaBoost creates in round t. The above summation can

be rewritten as

m

∑
i=1

Dλt−1(i)
N

∑
j=1

(

λ j −λt−1
j

)

Mi j =
N

∑
j=1

(

λ j −λt−1
j

) m

∑
i=1

Dt(i)Mi j

≤
(

N

∑
j=1

∣

∣

∣λ j −λt−1
j

∣

∣

∣

)

max
j

∣

∣

∣

∣

∣

m

∑
i=1

Dt(i)Mi j

∣

∣

∣

∣

∣

= δt‖λ−λt−1‖1. (8)

Since the previous holds for any λ suffering less than the target loss, we can choose in particular a

λ so that ‖λ−λt−1‖1 is arbitrarily close to St−1 showing that the last expression is at most δtSt−1.

Combining this with (7) completes the proof.

To complete the proof of Theorem 1, we will need that St is small compared to Rt . In fact we prove:

Lemma 4 Whenever R0, . . . ,Rt and S0, . . . ,St are all strictly positive, St ≤ B3R−2
t .

Before we prove Lemma 4, we show how to prove Theorem 1.

Proof [Of Theorem 1] Again if the positivity conditions on R0, . . . ,Rt and S0, . . . ,St do not hold,

then the result is trivial. Thus, assume these quantities are positive at least for t ≤ 13‖λ∗‖6
1ε−5.

Combining Lemma 3 and Lemma 4 yields

δt ≥ B−3R3
t−1.

Notice this matches the condition of Lemma 2 for c1 = c2 = 3. Lemma 2 provides the desired bound

on the number of rounds:

2(ε ln2)1−2·3B2·3 < 13B6ε−5.

We still need to prove Lemma 4. The bound on St in Lemma 4 can be proved if we can first

show St grows slowly compared to the rate at which the suboptimality Rt falls. Intuitively, when

the edge δt is large, it leads to a large step size, causing growth in St , and a proportionately larger

improvement in the suboptimality. To be precise, we prove the following about the relationship

between St and Rt .

Lemma 5 Whenever R0, . . . ,Rt and S0, . . . ,St are all strictly positive, we have

2∆Rt

Rt−1

≥ ∆St

St−1

.

Proof Firstly, it follows from the definition of St that ∆St ≤‖λt −λt−1‖1 = |αt |. Next, using (6) and

(4) we may write ∆Rt ≥ ϒ(δt) |αt |, where the function ϒ has been defined in Rätsch and Warmuth

(2005) as

ϒ(x) =
− ln(1− x2)

ln
(

1+x
1−x

) .
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It is known (Rätsch and Warmuth, 2005; Rudin et al., 2007) that ϒ(x)≥ x/2 for x∈ [0,1]. Combining

and using Lemma 3,

∆Rt ≥ |αt |δt/2 ≥ δt∆St/2 ≥ Rt−1∆St/2St−1.

Rearranging completes the proof.

Using this we prove Lemma 4.

Proof [Of Lemma 4] We first show S0 ≤ B3R−2
0 . Note, S0 ≤ ‖λ∗−λ0‖1 = B, so that it suffices

to show R0 ≤ B. By definition the quantity R0 = − ln
(

1
m ∑i e−(Mλ∗)i

)

. The quantity (Mλ∗)i is the

inner product of row i of matrix M with the vector λ∗. Since the entries of M lie in [−1,+1], this is

at most ‖λ∗‖1 = B. Therefore R0 ≤− ln
(

1
m ∑i e−B

)

= B, which is what we needed.

To complete the proof, we show that R2
t St is non-increasing. It suffices to show for any t the

inequality R2
t St ≤ R2

t−1St−1. This holds by the following chain:

R2
t St = (Rt−1 −∆Rt)

2 (St−1 +∆St) = R2
t−1St−1

(

1− ∆Rt

Rt−1

)2(

1+
∆St

St−1

)

≤ R2
t−1St−1 exp

(

−2∆Rt

Rt−1

+
∆St

St−1

)

≤ R2
t−1St−1,

where the first inequality follows from ex ≥ 1+ x, and the second one from Lemma 5.

This completes the proof of Theorem 1. Although our bound provides a rate polynomial in B,ε−1

as desired by the conjecture in Schapire (2010), the exponents are rather large, and (we believe)

not tight. One possible source of slack is the bound on St in Lemma 4. Qualitatively, the distance

St to some solution having target loss should decrease with rounds, whereas Lemma 4 only says

it does not increase too fast. Improving this will directly lead to a faster convergence rate. In

particular, showing that St never increases would imply a B2/ε rate of convergence. Whether or not

the monotonicity of St holds, we believe that the obtained rate bound is probably true, and state it

as a conjecture.

Conjecture 6 For any λ∗ and ε > 0, AdaBoost converges to within L(λ∗) + ε loss in O(B2/ε)
rounds, where the order notation hides only absolute constants.

As evidence supporting the conjecture, we show in the next section how a minor modification to

AdaBoost can achieve the above rate.

3.2 Faster Rates For A Variant

In this section we introduce a new algorithm, AdaBoost.S , which will enjoy the much faster rate

of convergence mentioned in Conjecture 6. AdaBoost.S is the same as AdaBoost, except that at the

end of each round, the current combination of weak hypotheses is scaled back, that is, multiplied

by a scalar in [0,1] if doing so will reduce the exponential loss further. The code is largely the same

as in Section 2, maintaining a combination λt−1 of weak hypotheses, and greedily choosing αt and

~ jt on each round to form a new combination λ̃t = λt−1 +αt~ jt . However, after creating the new

combination λ̃t , the result is multiplied by the value st in [0,1] that causes the greatest decrease in

the exponential loss: st = argmins L(sλ̃t), and then we assign λt = stλ̃
t . Since L(sλ̃t), as a function

of s, is convex, its minimum on [0,1] can be found easily, for instance, using a simple binary search.

The new distribution Dt+1 on the examples is constructed using λt as before; the weight Dt+1(i) on

2323



MUKHERJEE, RUDIN AND SCHAPIRE

example i is proportional to its exponential loss Dt+1(i) ∝ e−(Mλt)i . With this modification we prove

the following:

Theorem 7 For any λ∗,ε> 0, AdaBoost.S achieves at most L(λ∗)+ε loss within 3‖λ∗‖2
1/ε rounds.

The proof is similar to that in the previous section. Reusing the same notation, note that the proof

of Lemma 2 continues to hold (with very minor modifications to that are straightforward). Next

we can exploit the changes in AdaBoost.S to show an improved version of Lemma 3. Intuitively,

scaling back has the effect of preventing the weights on the weak hypotheses from becoming “too

large”, and we may show

Lemma 8 In each round t, the edge satisfies δt ≥ Rt−1/B.

Proof We will reuse parts of the proof of Lemma 3. Setting λ= λ∗ in (7) we may write

Rt−1 ≤
m

∑
i=1

Dλt−1(i)(Mλ∗)i +
m

∑
i=1

−Dλt−1(i)
(

Mλt−1
)

i
.

The first summation can be upper bounded as in (8) by δt‖λ∗‖ = δtB. We will next show that the

second summation is non-positive, which will complete the proof. The scaling step was added just

so that this last fact would be true.

If we define G : [0,1]→R to be G(s)= L
(

sλ̃t
)

=(1/m)∑i e−s(Mλ̃t)i , then observe that the scaled

derivative G′(s)/G(s) is exactly equal to the second summation. Since G(s)≥ 0, it suffices to show

the derivative G′(s) ≤ 0 at the optimum value of s, denoted by s∗. Since G is a strictly convex

function (∀s : G′′(s) > 0), it is either strictly increasing or strictly decreasing throughout [0,1],
or it has a local minimum. In the case when it is strictly decreasing throughout, then G′(s) ≤ 0

everywhere. Otherwise, if G has a local minimum, then G′(s) = 0 at s∗. We finish the proof by

showing that G cannot be strictly increasing throughout [0,1]. If it were, we would have L(λ̃t) =
G(1)> G(0) = 1, an impossibility since the loss decreases through rounds.

The above lemma implies the conditions in Lemma 2 hold if we set c1 = c2 = 1. The result of

Lemma 2 now implies Theorem 7, where we used that 2 ln2 < 3.

In experiments we ran, the scaling back never occurs. For such data sets, AdaBoost and Ad-

aBoost.S are identical. We believe that even for contrived examples, the rescaling could happen only

a few times, implying that both AdaBoost and AdaBoost.S would enjoy the convergence rates of

Theorem 7. In the next section, we construct rate lower bound examples to show that this is nearly

the best rate one can hope to show.

3.3 Lower Bounds

Here we show that the dependence of the rate in Theorem 1 on the norm ‖λ∗‖1 of the solution

achieving target accuracy is necessary for a wide class of data sets. The arguments in this section are

not tailored to AdaBoost, but hold more generally for any coordinate descent algorithm, and can be

readily generalized to any loss function L̃ of the form L̃(λ) = (1/m)∑i φ(−Mλ), where φ : R→ R

is any non-decreasing function. For instance, with the exponential loss, φ is the exponential

function, and the lower-bound results have a logarithmic term in them. For general non-decreasing

functions φ, similar arguments yield bounds which are identical to the ones in this section, except

the logarithmic terms are replaced by the inverse function φ−1.
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The first lemma connects the size of a reference solution to the required number of rounds of

boosting, and shows that for a wide variety of data sets the convergence rate to a target loss can be

lower bounded by the ℓ1-norm of the smallest solution achieving that loss.

Lemma 9 Suppose the feature matrix M corresponding to a data set has two rows with {−1,+1}
entries which are complements of each other, that is, there are two examples on which any hypothesis

gets one wrong and one correct prediction. Then the number of rounds required to achieve a target

loss L∗ is at least inf{‖λ‖1 : L(λ)≤ L∗}/(2lnm).

Proof We first show that the two examples corresponding to the complementary rows in M both

satisfy a certain margin boundedness property. Since each hypothesis predicts oppositely on these,

in any round t their margins will be of equal magnitude and opposite sign. Unless both margins

lie in [− lnm, lnm], one of them will be smaller than − lnm. But then the exponential loss L(λt) =
(1/m)∑ j e−(Mλt) j in that round will exceed 1, a contradiction since the losses are non-increasing

through rounds, and the loss at the start was 1. Thus, assigning one of these examples the index i,

we have the absolute margin |(Mλt)i| is bounded by lnm in any round t. Letting M(i) denote the

ith row of M, the step length αt in round t therefore satisfies

|αt |=
∣

∣Mi jt αt

∣

∣=
∣

∣

〈

M(i),αt~e jt

〉∣

∣=
∣

∣(Mλt)i − (Mλt−1)i

∣

∣≤
∣

∣(Mλt)i

∣

∣+
∣

∣(Mλt−1)i

∣

∣≤ 2lnm,

and the statement of the lemma directly follows.

When the weak hypotheses are abstaining (Schapire and Singer, 1999), a hypothesis can make a

definitive prediction that the label is −1 or +1, or it can “abstain” by predicting zero. No other levels

of confidence are allowed, and the resulting feature matrix has entries in {−1,0,+1}. The next

theorem constructs a feature matrix satisfying the properties of Lemma 9 and where additionally

the smallest size of a solution achieving L∗+ ε/m loss is at least Ω(2m) ln(1/ε), for some fixed L∗

and every ε > 0.

Theorem 10 Consider the following matrix M with m rows (or examples) (for m ≥ 2) labeled

0, . . . ,m− 1 and m− 1 columns labeled 1, . . . ,m− 1. The square sub-matrix ignoring row zero is

an upper triangular matrix, with 1’s on the diagonal, −1’s above the diagonal, and 0 below the

diagonal. Therefore row 1 is (+1,−1,−1, . . . ,−1). Row 0 is defined to be just the complement of

row 1. Then, for any ε > 0, a loss of 2/m+ε/m is achievable on this data set, but with large norms

inf{‖λ‖1 : L(λ)≤ 2/m+ ε/m} ≥ (2m−2 −1) ln(1/ε).

Therefore, by Lemma 9, the minimum number of rounds required for reaching loss at most 2/m+ ε

is at least
(

2m−2−1
2lnm

)

ln(1/ε).

A picture of the matrix constructed in the above lemma for m = 6 is shown in Figure 2. Theorem 10

shows that when ε is a small constant (say ε = 0.01), and λ∗ is some vector with loss L∗+ ε/(2m),
AdaBoost takes at least Ω(2m/ lnm) steps to get within ε/(2m) of the loss achieved by λ∗. Since m

and ε are independent quantities, this shows that worst case bounds can be exponential in m. Thus,

a polynomial dependence on the norm of the reference solution is unavoidable, and this norm might

be exponential in the number of training examples in the worst case.
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1 2 3 4 5 = m−1

0

1

2

3

4

m−1 = 5

















− + + + +
+ − − − −
0 + − − −
0 0 + − −
0 0 0 + −
0 0 0 0 +

















Figure 2: The matrix used in Theorem 10 when m = 6. Note that + is the same as +1, referring to

a correct prediction, and − the same as −1, referring to an incorrect prediction.

Corollary 11 Consider feature matrices containing only {−1,0,+1} entries. If, for some constants

c and β, the bound in Theorem 1 can be replaced by O
(

‖λ∗‖c
1ε−β

)

for all such matrices, then

c ≥ 1. Further, for such matrices, the bound poly(1/ε,‖λ∗‖1) in Theorem 1 cannot be replaced by

a uniform poly(1/ε,m,N) bound that holds for all values of m,ε and N.

We now prove Theorem 10.

Proof of Theorem 10. We first lower bound the norm of solutions achieving loss at most 2/m+ ε.

Observe that since rows 0 and 1 are complementary, then −(Mλ)0 = (Mλ)1, and any solution’s

loss on just examples 0 and 1 will add up to 1/m[exp(−(Mλ)1)+ exp(−(Mλ)2)] which is at least

2/m. Therefore, to get within 2/m+ ε/m, the margins on examples 2, . . . ,m−1 should be at least

ln(1/ε). Now, the feature matrix is designed so that the margins due to a combination λ satisfy the

following recursive relationships:

(Mλ)m−1 = λm−1,

(Mλ)i = λi − (λi+1 + . . .+λm−1) , for 1 ≤ i ≤ m−2.

Therefore, the margin of example m−1 is at least ln(1/ε), then by the first equation above, λm−1 ≥
ln(1/ε). Similarly, λm−2 ≥ ln(1/ε) + λm−1 ≥ 2ln(1/ε). Continuing this way, if the margin of

example i is at least ln(1/ε), then

λi ≥ ln

(

1

ε

)

+λi+1 + . . .+λm−1 ≥ ln

(

1

ε

)

{

1+2(m−1)−(i+1)+ . . .+20
}

= ln

(

1

ε

)

2m−1−i,

for i = m−1, . . . ,2. Hence ‖λ‖1 ≥ ln(1/ε)(1+2+ . . .+2m−3) = (2m−2 −1) ln(1/ε).
We end by showing that a loss of at most 2/m+ ε/m is achievable. The above argument im-

plies that if λi = 2m−1−i for i = 2, . . . ,m − 1, then examples 2, . . . ,m − 1 attain margin exactly

1. If we choose λ1 = λ2 + . . .+ λm−1 = 2m−3 + . . .+ 1 = 2m−2 − 1, then the recursive relation-

ship implies a zero margin on example 1 (and hence example 0). Therefore the combination

(2m−2 − 1,2m−3,2m−4, . . . ,1) achieves margins (0,0,1,1,1, . . . ,1). Hence when scaled by a factor

of ln((m−2)/ε), this combination achieves a loss
(

2+(m−2) ε
m−2

)

/m= 2/m+ε/m, for any ε> 0.

�

We finally show that if the weak hypotheses are confidence-rated with arbitrary levels of con-

fidence, so that the feature matrix is allowed to have non-integral entries in [−1,+1], then the
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−1 +1

+1 −1

−1+ν +1

+1 −1+ν









Figure 3: A picture of the matrix used in Theorem 12.

minimum norm of a solution achieving a fixed accuracy can be arbitrarily large. Our constructions

will satisfy the requirements of Lemma 9, so that the norm lower bound translates into a rate lower

bound.

Theorem 12 Let ν > 0 be an arbitrary number, and let M be the (possibly) non-integral matrix

with 4 examples and 2 weak hypotheses shown in Figure 3. Then for any ε > 0, a loss of 1/2+ ε is

achievable on this data set, but with large norms

inf{‖λ‖1 : L(λ)≤ 1/2+ ε} ≥ 2ln(1/(4ε))ν−1.

Therefore, by Lemma 9, the number of rounds required to achieve loss at most 1/2+ ε is at least

ln(1/(4ε))ν−1/ ln(m).

Proof We first show a loss of 1/2 + ε is achievable. Observe that the vector λ = (c,c), with

c= ν−1 ln(1/(2ε)), achieves margins 0,0, ln(1/(2ε)), ln(1/(2ε)) on examples 1,2,3,4, respectively.

Therefore λ achieves loss 1/2+ε. We next show a lower bound on the norm of a solution achieving

this loss. Observe that since the first two rows are complementary, the loss due to just the first two

examples is at least 1/2. Therefore, any solution λ= (λ1,λ2) achieving at most 1/2+ε loss overall

must achieve a margin of at least ln(1/(4ε)) on both the third and fourth examples. By inspecting

these two rows, this implies

λ2 −λ1 +λ1ν ≥ ln(1/(4ε)) ,

λ1 −λ2 +λ2ν ≥ ln(1/(4ε)) .

Adding the two equations we find

ν(λ1 +λ2)≥ 2ln(1/(4ε)) =⇒ λ1 +λ2 ≥ 2ν−1 ln(1/(4ε)) .

By the triangle inequality, ‖λ‖1 ≥ λ1 +λ2, and the lemma follows.

Note that if ν = 0, then an optimal solution is found in zero rounds of boosting and has optimal loss

1. However, even the tiniest perturbation ν > 0 causes the optimal loss to fall to 1/2, and causes the

rate of convergence to increase drastically. In fact, by Theorem 12, the number of rounds required

to achieve any fixed loss below 1 grows as Ω(1/ν), which is arbitrarily large when ν is infinitesimal.

We may conclude that with non-integral feature matrices, the dependence of the rate on the norm of

a reference solution is absolutely necessary.

Corollary 13 When using confidence rated weak-hypotheses with arbitrary confidence levels, the

bound poly(1/ε,‖λ∗‖1) in Theorem 1 cannot be replaced by any function of purely m, N and ε

alone.
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The construction in Figure 3 can be generalized to produce data sets with any number of examples

that suffer the same poor rate of convergence as the one in Theorem 12. We discussed the smallest

such construction, since we feel that it best highlights the drastic effect non-integrality can have on

the rate.

In this section we saw how the norm of the reference solution is an important parameter for

bounding the convergence rate. In the next section we investigate the optimal dependence of the

rate on the parameter ε and show that Ω(1/ε) rounds are necessary in the worst case.

4. Second Convergence Rate: Convergence to Optimal Loss

In the previous section, our rate bound depended on both the approximation parameter ε, as well

as the size of the smallest solution achieving the target loss. For many data sets, the optimal target

loss infλ L(λ) cannot be realized by any finite solution. In such cases, if we want to bound the

number of rounds needed to achieve within ε of the optimal loss, the only way to use Theorem 1

is to first decompose the accuracy parameter ε into two parts ε = ε1 + ε2, find some finite solution

λ∗ achieving within ε1 of the optimal loss, and then use the bound poly(1/ε2,‖λ∗‖1) to achieve at

most L(λ∗)+ ε2 = infλ L(λ)+ ε loss. However, this introduces implicit dependence on ε through

‖λ∗‖1 which may not be immediately clear. In this section, we show bounds of the form C/ε, where

the constant C depends only on the feature matrix M, and not on ε. Additionally, we show that this

dependence on ε is optimal in Lemma 31 of the Appendix, where Ω(1/ε) rounds are shown to be

necessary for converging to within ε of the optimal loss on a certain data set. Finally, we note that

the lower bounds in the previous section indicate that C can be Ω(2m) in the worst case for integer

matrices (although it will typically be much smaller), and hence this bound, though stronger than

that of Theorem 1 with respect to ε, cannot be used to prove the conjecture in Schapire (2010), since

the constant is not polynomial in the number of examples m.

4.1 Upper Bound

The main result of this section is the following rate upper bound. A similar approach to solving this

problem was taken independently by Telgarsky (2011).

Theorem 14 AdaBoost reaches within ε of the optimal loss in at most C/ε rounds, where C only

depends on the feature matrix.

Our techniques build upon earlier work on the rate of convergence of AdaBoost, which have mainly

considered two particular cases. In the first case, the weak learning assumption holds, that is, the

edge in each round is at least some fixed constant. In this situation, Freund and Schapire (1997) and

Schapire and Singer (1999) show that the optimal loss is zero, that no solution with finite size can

achieve this loss, but AdaBoost achieves at most ε loss within O(ln(1/ε)) rounds. In the second case

some finite combination of the weak classifiers achieves the optimal loss, and Rätsch et al. (2002),

using results from Luo and Tseng (1992), show that AdaBoost achieves within ε of the optimal loss

again within O(ln(1/ε)) rounds.

Here we consider the most general situation, where the weak learning assumption may fail to

hold, and yet no finite solution may achieve the optimal loss. The data set used in Lemma 31

and shown in Figure 4 exemplifies this situation. Our main technical contribution shows that the

examples in any data set can be partitioned into a zero-loss set and finite-margin set, such that a

certain form of the weak learning assumption holds within the zero-loss set, while the optimal loss
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considering only the finite-margin set can be obtained by some finite solution. The two partitions

provide different ways of making progress in every round, and one of the two kinds of progress will

always be sufficient for us to prove Theorem 14.

We next state our decomposition result, illustrate it with an example, and then state several

lemmas quantifying the nature of the progress we can make in each round. Using these lemmas, we

prove Theorem 14.

Lemma 15 (Decomposition Lemma) For any data set, there exists a partition of the set of training

examples X into a (possibly empty) zero-loss set Z and a (possibly empty) finite-margin set F
△
=

Zc = X \Z such that the following hold simultaneously :

1. There exists some positive constant γ > 0, and some vector η† with unit ℓ1-norm ‖η†‖1 = 1

that attains at least γ margin on each example in Z, and exactly zero margin on each example

in F

∀i ∈ Z : (Mη†)i ≥ γ, ∀i ∈ F : (Mη†)i = 0.

2. The optimal loss considering only examples within F is achieved by some finite combination

η∗. (Note that η∗ may not be unique. There may be a whole subspace of vectors like η∗ that

achieve the optimal loss on F.)

3. There is a constant µmax < ∞, such that for any combination η with bounded loss on the finite-

margin set, specifically obeying ∑i∈F e−(Mη)i ≤ m, the margin (Mη)i for any example i in F

lies in the bounded interval [− lnm,µmax].

A proof is deferred to the next section. The decomposition lemma immediately implies that the

vector η∗+∞ ·η†, which denotes
(

η∗+ cη†
)

in the limit c → ∞, is an optimal solution, achieving

zero loss on the zero-loss set, but only finite margins (and hence positive losses) on the finite-margin

set (thereby justifying the names).

~1 ~2

a + −
b − +
c + +

Figure 4: Matrix M for a data set requiring Ω(1/ε) rounds for convergence.

Before proceeding, we give an example data set and indicate the zero-loss set, finite-margin set,

η∗ and η† to illustrate our definitions. Consider a data set with three examples {a,b,c} and two

hypotheses {~1,~2} and the feature matrix M in Figure 4. Here + means correct (Mi j = +1) and

− means wrong (Mi j = −1). The optimal solution is ∞ · (~1 +~2) with a loss of 2/3. The finite-

margin set is {a,b}, the zero-loss set is {c}, η† = (1/2,1/2) and η∗ = (0,0); for this data set these

are unique. This data set also serves as a lower-bound example in Lemma 31, where we show that

2/(9ε) rounds are necessary for AdaBoost to achieve loss at most (2/3)+ ε, where the infimum of

the loss is 2/3. Observe that this data set is similar to the data set in Theorem 10 in that the zero-loss

set (corresponding to the complementary rows) and finite-loss sets (remaining examples) are both

non-empty.
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Before providing proofs, we introduce some notation. By ‖·‖ we will mean ℓ2-norm; every other

norm will have an appropriate subscript, such as ‖·‖1,‖·‖∞, etc. The set of all training examples

will be denoted by X . By ℓλ(i) we mean the exp-loss e−(Mλ)i on example i. For any subset S ⊆ X

of examples, ℓλ(S) = ∑i∈S ℓ
λ(i) denotes the total exp-loss on the set S. Notice L(λ) = (1/m)ℓλ(X),

and that Dt+1(i) = ℓλ
t

(i)/ℓλ
t

(X), where λt is the combination found by AdaBoost at the end of

round t. By δS(η;λ) we mean the edge obtained on the set S by the vector η, when the weights over

the examples are given by ℓλ(·)/ℓλ(S):

δS(η;λ) =

∣

∣

∣

∣

∣

1

ℓλ(S) ∑
i∈S

ℓλ(i)(Mη)i

∣

∣

∣

∣

∣

.

In the rest of the section, by “loss” we mean the unnormalized loss ℓλ(X) = mL(λ) and show that in

C/ε rounds AdaBoost converges to within ε of the optimal unnormalized loss infλ ℓ
λ(X), henceforth

denoted by K. Note that this means AdaBoost takes C/ε rounds to converge to within ε/m of the

optimal normalized loss, that is to say at most infλ L(λ)+ ε/m loss. Replacing ε by mε, it takes

C/(mε) steps to attain normalized loss at most infλ L(λ)+ ε. Thus, whether we use normalized

or unnormalized does not substantively affect the result in Theorem 14. The progress due to the

zero-loss set is now immediate from Item 1 of the decomposition lemma:

Lemma 16 In any round t, the maximum edge δt is at least γℓλ
t−1

(Z)/ℓλ
t−1

(X), where γ is as in

Item 1 of the decomposition lemma.

Proof Recall the distribution Dt created by AdaBoost in round t puts weight Dt(i)= ℓλ
t−1

(i)/ℓλ
t−1

(X)
on each example i. From Item 1 we get

δX(η
†;λt−1) =

∣

∣

∣

∣

∣

1

ℓλt−1(X)
∑
i∈X

ℓλ
t−1

(i)(Mη†)i

∣

∣

∣

∣

∣

≥ 1

ℓλt−1(X)
∑
i∈Z

γℓλ
t−1

(i) = γ

(

ℓλ
t−1

(Z)

ℓλt−1(X)

)

.

Since (Mη†)i = ∑ j η†
j(M~e j)i, we may rewrite the edge δX(η

†;λt−1) as follows:

δX(η
†;λt−1) =

∣

∣

∣

∣

∣

1

ℓλt−1(X)
∑
i∈X

ℓλ
t−1

(i)∑
j

η†
j(M~e j)i

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
j

η†
j

1

ℓλt−1(X)
∑
i∈X

ℓλ
t−1

(i)(M~e j)i

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
j

η†
jδX(~e j;λ

t−1)

∣

∣

∣

∣

∣

≤ ∑
j

∣

∣

∣
η†

j

∣

∣

∣
δX(~e j;λ

t−1).

Since the ℓ1-norm of η† is 1, the weights

∣

∣

∣
η†

j

∣

∣

∣
form some distribution p over the columns 1, . . . ,N.

We may therefore conclude

γ

(

ℓλ
t−1

(Z)

ℓλt−1(X)

)

≤ δX(η
†;λt−1)≤ E j∼p

[

δX(~e j;λ
t−1)

]

≤ max
j

δX(~e j;λ
t−1) = δt .
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If the set F were empty, then Lemma 16 implies an edge of γ is available in each round. This in fact

means that the weak learning assumption holds, and using (5), we can show an O(ln(1/ε)γ−2) bound

matching the rate bounds of Freund and Schapire (1997) and Schapire and Singer (1999). This is

in fact the “separable” case where positive and negative examples can be separated by AdaBoost.

Henceforth, we assume that F is non-empty. This implies that the optimal loss K is at least 1 (since

we are in the nonseparable case, and any solution will get non-positive margin on some example in

F), a fact that we will use later in the proofs. In the separable case, the minimum normalized margin

becomes an important performance instead of the exponential loss. Convergence with respect to the

normalized margin has been studied by Schapire et al. (1998), Grove and Schuurmans (1998), Rudin

et al. (2004), Rätsch and Warmuth (2005), and others.

Lemma 16 says that the edge is large if the loss on the zero-loss set is large. On the other hand,

when it is small, Lemmas 17 and 18 together show how AdaBoost can make good progress using

the finite margin set. Lemma 17 uses second order methods to show how progress is made in the

case where there is a finite solution. Similar arguments, under additional assumptions, have earlier

appeared in Rätsch et al. (2002).

Lemma 17 Suppose λ is a combination such that m ≥ ℓλ(F)≥ K. Then in some coordinate direc-

tion ~e j the edge δF(~e j;λ) is at least
√

C0 (ℓλ(F)−K)/ℓλ(F), where C0 is a constant depending

only on the feature matrix M.

Proof Let MF ∈ R
|F |×N be the matrix M restricted to only the rows corresponding to the examples

in F . Choose η such that λ+η = η∗ is an optimal solution over F . Without loss of generality

assume that η lies in the orthogonal subspace of the null-space {~u : MF~u = 0} of MF (since we

can translate η∗ along the null space if necessary for this to hold). If η = 0, then ℓλ(F) = K and

we are done. Otherwise ‖MFη‖ ≥ λmin‖η‖, where λ2
min is the smallest positive eigenvalue of the

symmetric matrix MT
FMF (which exists since MFη 6= 0). Now define f : [0,1]→R as the loss along

the (rescaled) segment [η∗,λ]

f (x)
△
= ℓ(η

∗−xη)(F) = ∑
i∈F

ℓη
∗
(i)ex(MFη)i .

This implies that f (0) = K and f (1) = ℓλ(F). Notice that the first and second derivatives of f (x)
are given by:

f ′(x) = ∑
i∈F

(MFη)iℓ
(η∗−xη)(i), f ′′(x) = ∑

i∈F

(MFη)
2
i ℓ

(η∗−xη)(i).

Since f ′′(x) ≥ 0, f is convex; further it attains the minimum value at 0. Therefore f is increasing,

and f ′(x)≥ 0 at all points. We next lower bound possible values of the second derivative as follows:

f ′′(x) = ∑
i′∈F

(MFη)
2
i′ℓ

(η∗−xη)(i′)≥ ∑
i′∈F

(MFη)
2
i′ min

i
ℓ(η

∗−xη)(i) = ‖MFη‖2 min
i
ℓ(η

∗−xη)(i).

Since both λ = η∗−η, and η∗ suffer total loss at most m, by convexity, so does η∗− xη for any

x ∈ [0,1]. Hence we may apply Item 3 of the decomposition lemma to the vector η∗ − xη, for

any x ∈ [0,1], to conclude that ℓ(η
∗−xη)(i) = exp{−(MF(η

∗− xη))i} ≥ e−µmax on every example i.

Therefore we have

f ′′(x)≥ ‖MFη‖2e−µmax ≥ λ2
mine−µmax‖η‖2 (by choice of η) . (9)
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A standard second-order result for a twice-differentiable function f is (see, e.g., Boyd and Vanden-

berghe, 2004, Equation (9.9))

∣

∣ f ′(1)
∣

∣

2 ≥ 2

(

inf
x∈[0,1]

f ′′(x)

)

( f (1)− f (0)) . (10)

Collecting our results so far, including the definition of f ′ and the fact that it is non-negative, and

equations (9) and (10), we get

∑
i∈F

ℓλ(i)(MFη)i = f ′(1) =
∣

∣ f ′(1)
∣

∣≥ ‖η‖
√

2λ2
mine−µmax (ℓλ(F)−K).

Next let η̃ = η/‖η‖1 be η rescaled to have unit ℓ1 norm. Then dividing the previous equation by

‖η‖1

∑
i∈F

ℓλ(i)(MF η̃)i =
1

‖η‖1
∑

i

ℓλ(i)(MFη)i ≥
‖η‖
‖η‖1

√

2λ2
mine−µmax (ℓλ(F)−K).

Applying the Cauchy-Schwarz inequality, we may lower bound
‖η‖
‖η‖1

by 1/
√

N (since η ∈ R
N).

Along with the fact ℓλ(F)≤ m, we may write

1

ℓλ(F) ∑
i∈F

ℓλ(i)(MF η̃)i ≥
√

2λ2
minN−1m−1e−µmax

√

(ℓλ(F)−K)/ℓλ(F).

If we define p to be a distribution on the columns {1, . . . ,N} of MF which puts probability p( j)
proportional to

∣

∣η̃ j

∣

∣ on column j, then we have

1

ℓλ(F) ∑
i∈F

ℓλ(i)(MF η̃)i ≤ E j∼p

∣

∣

∣

∣

∣

1

ℓλ(F) ∑
i∈F

ℓλ(i)(MF~e j)i

∣

∣

∣

∣

∣

≤ max
j

∣

∣

∣

∣

∣

1

ℓλ(F) ∑
i∈F

ℓλ(i)(MF~e j)i

∣

∣

∣

∣

∣

.

Notice the quantity inside the max is precisely the edge δF(~e j;λ) in direction j. Combining the

previous two lines, the maximum possible edge is

max
j

δF(~e j;λ)≥
√

C0 (ℓλ(F)−K)/ℓλ(F),

where we define

C0 = 2λ2
minN−1m−1e−µmax . (11)

Lemma 18 There are constants C1,C2 depending only on the feature matrix M with the following

property. Suppose, at any stage of boosting, the combination found by AdaBoost is λ, and the loss

is K +θ. Let ∆θ denote the drop in the suboptimality θ after one more round; that is, the loss after

one more round is K +θ−∆θ. In this situation, if ℓλ(Z)≤C1θ, for C1 ≤ 1, then ∆θ ≥C2θ.

Proof Let λ be the current solution found by boosting. Using Lemma 17, pick a direction j in

which the edge δF(~e j;λ) restricted to the finite margin set is at least

δF(~e j;λ)≥
√

C0(ℓλ(F)−K)/ℓλ(F). (12)
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We can bound the edge δX(~e j;λ) on the entire set of examples as follows:

δX(~e j;λ) =
1

ℓλ(X)

∣

∣

∣

∣

∣

∑
i∈F

ℓλ(i)(M~e j)i +∑
i∈Z

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

≥ 1

ℓλ(X)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑
i∈F

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∑
i∈Z

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(using the triangle inequality),

≥ 1

ℓλ(X)

(∣

∣

∣

∣

∣

∑
i∈F

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∑
i∈Z

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

)

.

We can bound the first summation as
∣

∣

∣

∣

∣

∑
i∈F

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

= ℓλ(F)δF(~e j;λ)≥
√

C0(ℓλ(F)−K)ℓλ(F) (by (12)) .

We can bound the second summation as
∣

∣

∣

∣

∣

∑
i∈Z

ℓλ(i)(M~e j)i

∣

∣

∣

∣

∣

≤ ∑
i∈Z

ℓλ(i)‖M‖∞ ≤ ℓλ(Z).

Substituting the two bounds above,

δX(~e j;λ)≥
1

ℓλ(X)

(

√

C0(ℓλ(F)−K)ℓλ(F)− ℓλ(Z)

)

. (13)

Now, assume as in the statement of the lemma that ℓλ(Z) ≤ C1θ. Thus, ℓλ(F)−K = θ− ℓλ(Z) ≥
(1−C1)θ. Set C1 = min

{

1/4,(1/4)
√

C0/m
}

. Then we have

√

C0(ℓλ(F)−K)ℓλ(F)≥
√

C0(1−C1)θ

ℓλ(Z)≤C1θ.

The last inequality holds because θ ≤ m, which follows since the total loss K + θ at any stage of

boosting is less than the initial loss m. Using the above, we simplify (13) as follows:

δX(~e j;λ)≥
1

ℓλ(X)

(

√

C0(ℓλ(F)−K)ℓλ(F)− ℓλ(Z)

)

≥ 1

K +θ

(

√

C0(1−C1)θ−C1θ
)

Using θ ≤ m, we can bound the square of the term in brackets on the previous line as

(

√

C0(1−C1)θ−C1θ
)2

≥C0(1−C1)θ−2C1θ
√

C0(1−C1)θ

≥C0(1−1/4)θ−2
(

(1/4)
√

C0/m
)

θ
√

C0(1−0)m

=C0θ/4.

So, if δ is the maximum edge in any direction, then

δ ≥ δX(~e j;λ)≥
√

C0θ/(2(K +θ)2)≥
√

C0θ/(2m(K +θ)),
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where, for the last inequality, we again used K + θ ≤ m. Therefore, from (5), the loss after one

more step is at most (K + θ)
√

1−δ2 ≤ (K + θ)(1− δ2/2) ≤ K + θ− C0

4m
θ. Setting C2 = C0/(4m)

completes the proof.

Proof of Theorem 14. At any stage of boosting, let λ be the current combination, and K + θ be

the current loss. We show that the new loss is at most K + θ−∆θ for ∆θ ≥ C3θ2 for some con-

stant C3 depending only on the data set (and not θ). To see this, either ℓλ(Z)≤C1θ, in which case

Lemma 18 applies, and ∆θ≥C2θ≥ (C2/m)θ2 (since θ= ℓλ(X)−K ≤m). Or ℓλ(Z)>C1θ, in which

case applying Lemma 16 yields δ ≥ γC1θ/ℓλ(X)≥ (γC1/m)θ. By (5), ∆θ ≥ ℓλ(X)(1−
√

1−δ2)≥
ℓλ(X)δ2/2 ≥ (K/2)(γC1/m)2θ2. Using K ≥ 1 and choosing C3 appropriately as

min
{

C2/m,(1/2)(γC1/m)2
}

gives the required condition for ∆θ ≥ C3θ2. Note that plugging in

the estimates for C1 and C2 from the proof of Lemma 18 yields

C3 ≥ max

{

C0

4m2
,

γ2C0

32m3

}

=
C0

4m2
max

{

1,
γ2

8m

}

. (14)

If K +θt denotes the loss in round t, then the above claim implies θt −θt+1 ≥ C3θ2
t . We will

show that T = C−1
3 /ε rounds suffice for the loss to be at most ε, that is, θT ≤ ε. Since θt is non-

increasing and non-negative, if it is non-positive at any point before T iterations, then the bound

follows trivially. So assume θt’s are positive for t ≤ T . Applying Lemma 32 to the sequence {θt}
we have 1/θT −1/θ0 ≥C3T = 1/ε. Since θ0 ≥ 0, we have θT ≤ ε, completing the proof. �

4.2 Proof Of The Decomposition Lemma

Throughout this section we only consider (unless otherwise stated) admissible combinations λ of

weak classifiers, which have loss ℓλ(X) bounded by m (since these are the ones found by boosting).

We prove Lemma 15 in three steps. We begin with a simple lemma that rigorously defines the

zero-loss and finite-margin sets.

Lemma 19 For any infinite sequence η1,η2, . . . , of admissible combinations of weak classifiers, we

can find a subsequence η(1) = ηt1 ,η(2) = ηt2 , . . . , whose losses converge to zero on all examples in

some fixed (possibly empty) subset Z (the zero-loss set), and whose losses are bounded away from

zero in its complement X \Z(the finite-margin set)

∀x ∈ Z : lim
t→∞

ℓη(t)(x) = 0, ∀x ∈ X \Z : inf
t
ℓη(t)(x)> 0. (15)

Proof We will build a zero-loss set and the final subsequence incrementally. Initially the set is

empty. Pick the first example. If the infimal loss ever attained on the example in the sequence is

bounded away from zero, then we do not add it to the set. Otherwise we add it, and consider only

the subsequence whose t th element attains loss less than 1/t on the example. Beginning with this

subsequence, we now repeat with other examples. The final sequence is the required subsequence,

and the examples we have added form the zero-loss set.

Lemma 19 can be applied to any sequence to yield a new sequence with respect to which the exam-

ples can be decomposed into zero-loss and finite-margin sets satisfying (15). This way we can get

nicer sequences out of ones with possibly complicated tail behavior. The next lemma shows, that

given such a nice sequence, one may extract a single vector that satisfies properties similar to those

required in Item 1 of the decomposition lemma.
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Lemma 20 Let M be a feature matrix, with rows indexed by examples in X. Suppose Z is a subset

of the examples, and η(1),η(2), . . . , is a sequence of combinations of weak classifiers such that Z is

its zero loss set, and X \Z its finite margin set, that is, (15) holds with respect to the entire sequence

itself. Then there is a combination η† of weak classifiers that achieves positive margin on every

example in Z, and zero margin on every example in its complement X \Z, that is:

(Mη†)i

{

> 0 if i ∈ Z,

= 0 if i ∈ X \Z.

Proof Firstly assume Z is non-empty, since otherwise setting η† to the zero-vector proves the

lemma. Since the η(t) achieve arbitrarily large positive margins on Z, the sequence ‖η(t)‖ will be

unbounded, and it will be hard to extract a useful single solution out of them. On the other hand,

the rescaled combinations η(t)/‖η(t)‖ lie on a compact set, and therefore have a limit point, which

might have useful properties. We formalize this next.

We prove the statement of the lemma by induction on the total number of training examples

|X |. To be more precise, the lemma makes an assertion about feature matrices M, whose rows are

indexed by the set X . We will prove this assertion for all feature matrices M by induction on the

number |X | of rows it contains. If X is empty, then the lemma holds vacuously for any η†. Assume

the statement of the lemma holds inductively for all subsets of X of size less than m > 0, meaning

that a vector analogous to η† exists for the subset, and consider X of size m.

First, we find a unit vector η′ that we will show has a positive margin on a non-empty subset

S of Z and zero margins on X/Z. Since translating a vector along the null space of M, kerM =
{~x : M~x = 0}, has no effect on the margins produced by the vector, assume without loss of generality

that the η(t)’s are orthogonal to kerM. Since the margins produced on Z, which we have assumed is

non-empty, are unbounded, so are the norms of η(t). Therefore assume (by picking a subsequence

and relabeling if necessary) that ‖η(t)‖ > t. Let η′ be a limit point of the sequence η(t)/‖η(t)‖, a

unit vector that is also orthogonal to the null-space. Then firstly η′ achieves non-negative margin

on every example; otherwise by continuity for some extremely large t, the margin of η(t)/‖η(t)‖ on

that example is also negative and bounded away from zero, and therefore η(t)’s loss is more than

m, which is a contradiction to admissibility. Secondly, the margin of η′ on each example in X \Z

is zero; otherwise, by continuity, for arbitrarily large t the margin of η(t)/‖η(t)‖ on an example in

X \Z is positive and bounded away from zero, and hence that example attains arbitrarily small loss

in the sequence, a contradiction to (15). Finally, if η′ achieves zero margin everywhere in Z, then

η′, being orthogonal to the null-space, must be 0, a contradiction since η′ is a unit vector. Therefore

η′ must achieve positive margin on some non-empty subset S of Z, and zero margins on every other

example.

Next we use induction on the feature matrix restricted to the reduced set of examples X ′ = X \S.

Since S is non-empty, |X ′|< m. Further, using the same sequence η(t), the zero-loss and finite-loss

sets, restricted to X ′, are Z′ = Z \ S and (X \ Z) \ S = X \ Z (since S ⊆ Z) = X ′ \ Z′. The set X ′

is smaller than the set X , and thus the inductive hypothesis holds for X ′, meaning that there exists

some η′′ that achieves positive margins on every element in Z′, and zero margins on every element

in X ′ \Z′ = X \Z. Therefore, by setting η† = η′+ cη′′ for a suitable c, we can achieve a positive

margin on every element in S∪Z′ = Z, and zero margins on every element in X \Z, completing the

proof.

We may now use the previous two results to prove Item 1 of the decomposition lemma. First, we
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apply Lemma 19 to some admissible sequence converging to the optimal loss (for instance, the one

found by AdaBoost). Let us call the resulting subsequence η∗
(t), the obtained zero-loss set Z, and

the finite-margin set F = X \Z. Now, applying Lemma 20 to the sequence η∗
(t) yields some convex

combination η† having margin at least γ > 0 (for some γ) on Z and zero margin on its complement,

proving Item 1 of the decomposition lemma. The next lemma proves Item 2.

Lemma 21 The optimal loss considering only examples within F is achieved by some finite combi-

nation η∗.

Proof The existence of η† with properties as in Lemma 20 implies that the optimal loss is the

same whether considering all the examples, or just examples in F . Therefore it suffices to show the

existence of finite η∗ that achieves loss K on F , that is, ℓη
∗
(F) = K.

Recall MF denotes the matrix M restricted to the rows corresponding to examples in F . Let

kerMF = {~x : MF~x = 0} be the null-space of MF . Let η(t) be the projection of η∗
(t) onto the orthog-

onal subspace of kerMF . Then the losses ℓη
(t)
(F) = ℓ

η∗
(t)(F) converge to the optimal loss K. If MF

is identically zero, then each η(t) = 0, and then η∗ = 0 has loss K = |F | on F . Otherwise, let λ2

be the smallest positive eigenvalue of the symmetric matrix MT
FMF . Then ‖Mη(t)‖ ≥ λ‖η(t)‖. By

the definition of the finite margin set, inft mini∈F ℓ
η(t)

(i) = inft mini∈F ℓ
η∗
(t)(i) > 0. Therefore, the

norms of the margin vectors ‖Mη(t)‖, and hence that of η(t), are bounded. Therefore the η(t)’s have

a (finite) limit point η∗ that must have loss K over F .

As a corollary, we prove Item 3.

Lemma 22 There is a constant µmax < ∞, such that for any combination η that achieves bounded

loss on the finite-margin set, ℓη(F)≤m, the margin (Mη)i for any example i in F lies in the bounded

interval [− lnm,µmax] .

Proof Since the loss ℓη(F) is at most m, therefore no margin may be less than − lnm. To prove

a finite upper bound on the margins, we argue by contradiction. Suppose arbitrarily large mar-

gins are producible by bounded loss vectors, that is arbitrarily large elements are present in the set

{(Mη)i : ℓη(F)≤ m,1 ≤ i ≤ m}. Then for some fixed example x ∈ F there exists a sequence of

combinations of weak classifiers, whose t th element achieves more than margin t on x but has loss at

most m on F . Applying Lemma 19 we can find a subsequence λ(t) whose tail achieves vanishingly

small loss on some non-empty subset S of F containing x, and bounded margins in F \S. Applying

Lemma 20 to λ(t) we get some convex combination λ† which has positive margins on S and zero

margin on F \S. Let η∗ be as in Lemma 21, a finite combination achieving the optimal loss on F .

Then η∗+∞ ·λ† achieves the same loss on every example in F \ S as the optimal solution η∗, but

zero loss for examples in S. This solution is strictly better than η∗ on F , a contradiction to the opti-

mality of η∗. Therefore our assumption is false, and some finite upper bound µmax on the margins

(Mη)i of vectors satisfying ℓη(F)≤ m exists.

The proof of the decomposition theorem is complete.

4.3 Investigating The Constants

In this section, we try to estimate the constant C in Theorem 14. We show that it can be arbitrarily

large for adversarial feature matrices with real entries (corresponding to confidence rated weak

hypotheses), but has an upper-bound doubly exponential in the number of examples when the feature
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matrix has {−1,0,+1} entries only. We also show that this doubly exponential bound cannot be

improved without significantly changing the proof in the previous section.

By inspecting the proofs, in particular equations (11) and (14), and seeing that 1/C3 is C from

Theorem 14, we can bound the constant in Theorem 14 as follows.

Corollary 23 The constant C in Theorem 14 that emerges from the proofs is

C ≤ 2m3Neµmax

λ2
min

max

{

1,
8m

γ2

}

,

where m is the number of examples, N is the number of hypotheses, γ and µmax are as given by

Items 1 and 3 of the decomposition lemma, and λ2
min is the smallest positive eigenvalue of MT

FMF

(MF is the feature matrix restricted to the rows belonging to the finite margin set F).

Our bound on C will be obtained by in turn bounding the quantities λ−1
min,γ

−1,µmax. These are

strongly related to the singular values of the feature matrix M, and in general cannot be easily

measured. In fact, when M has real entries, we have already seen in Section 3.3 that the rate can be

arbitrarily large, implying these parameters can have very large values. Even when the matrix M has

integer entries (that is, −1,0,+1), the next lemma shows that these quantities can be exponential in

the number of examples.

Lemma 24 There are examples of feature matrices with −1,0,+1 entries and at most m rows or

columns (where m > 10) for which the quantities γ−1,λ−1 and µmax are at least Ω(2m/m).

Proof We first show the bounds for γ and λ. Let M be an m×m upper triangular matrix with +1

on the diagonal, and −1 above the diagonal. Let ~y = (2m−1,2m−2, . . . ,1)T , and b = (1,1, . . . ,1)T .

Then M~y = b, although the~y has much bigger norm than b: ‖~y‖ ≥ 2m−1, while ‖b‖= m. Since M

is invertible, by the definition of λmin, we have ‖M~y‖ ≥ λmin‖~y‖, so that λ−1
min ≥ ‖~y‖/‖M~y‖ ≥ 2m/m.

Next, note that ~y produces all positive margins b, and hence the zero-loss set consists of all the

examples. In particular, if η† is as in Item 1 of the decomposition lemma, then the vector γ−1η†

achieves margin greater than 1 on each example: M(γ−1η†) ≥ b. On the other hand, our matrix is

very similar to the one in Theorem 10, and the same arguments in the proof of that theorem can

be used to show that if for some ~x we have (M~x) ≥ b entry-wise, then ~x ≥~y. This implies that

γ−1‖η†‖1 ≥ ‖~y‖1 = (2m −1). Since η† has unit ℓ1-norm, the bound on γ−1 follows too.

Next we provide an example showing µmax can be Ω(2m/m). Consider an m× (m− 1) ma-

trix M. The bottom row of M is all +1. The upper (m − 1)× (m − 1) submatrix of M is a

lower triangular matrix with −1 on the diagonal and +1 below the diagonal. Observe that if

~yT = (2m−2,2m−3, . . . ,1,1), then ~yT M = 0. Therefore, for any vector ~x, the inner product of the

margins M~x with~y is zero: ~yT M~x = 0. This implies that achieving positive margin on any example

forces some other example to receive negative margin. By Item 1 of the decomposition lemma,

the zero loss set in this data set is empty since there cannot be an η† with both positive and zero

margins and no negative margins. Thus, all the examples belong to the finite margin set. Next,

we choose a combination with at most m loss that nevertheless achieves Ω(2m/m) positive margin

on some example. Let ~xT = (1,2,4, . . . ,2m−2). Then (M~x)T = (−1,−1, . . . ,−1,2m−1 − 1). Then

the margins using ε~x are (−ε, . . . ,−ε,ε(2m−1 − 1)) with total loss (m− 1)eε + eε(1−2m−1). Choose

ε = 1/(2m) ≤ 1, so that the loss on examples corresponding to the first m − 1 rows is at most

eε ≤ 1+ 2ε = 1+ 1/m, where the first inequality holds since ε ∈ [0,1]. For m > 10, the choice

2337



MUKHERJEE, RUDIN AND SCHAPIRE

of ε guarantees 1/(2m) = ε ≥ (lnm)/(2m−1 − 1), so that the loss on the example corresponding

to the bottom most row is e−ε(2m−1−1) ≤ e− lnm = 1/m. Therefore the net loss of ε~x is at most

(m− 1)(1+ 1/m)+ 1/m = m. On the other hand the margin of the example corresponding to the

last row is ε(2m−1 −1) = (2m−1 −1)/(2m) = Ω(2m/m).

The above result implies any bound on C derived from Corollary 23 will be at least 2Ω(2m/m) in the

worst case. This does not imply that the best bound one can hope to prove is doubly exponential,

only that our techniques in the previous section do not admit anything better. We next show that the

bounds in Lemma 24 are nearly the worst possible.

Lemma 25 Suppose each entry of M is −1,0 or +1. Then each of the quantities λ−1
min,γ

−1 and µmax

are at most 2O(m lnm).

The proof of Lemma 25 is rather technical, and we defer it to the Appendix. Lemma 25 and Corol-

lary 23 together imply a convergence rate of 22O(m lnm)
/ε to the optimal loss for integer matrices.

This bound on C is exponentially worse than the Ω(2m) lower bound on C we saw in Section 3.3, a

price we pay for obtaining optimal dependence on ε. In the next section we will see how to obtain

poly(2m lnm,ε−1) bounds, although with a worse dependence on ε. We end this section by showing,

just for completeness, how a bound on the norm of η∗ as defined in Item 2 of the decomposition

lemma follows as a quick corollary to Lemma 25.

Corollary 26 Suppose η∗ is as given by Item 2 of the decomposition lemma. When the feature

matrix has only −1,0,+1 entries, we may bound ‖η∗‖1 ≤ 2O(m lnm).

Proof Note that every entry of MFη
∗ lies in the range [− lnm,µmax = 2O(m lnm)], and hence ‖MFη

∗‖≤
2O(m lnm). Next, we may choose η∗ orthogonal to the null space of MF ; then ‖η∗‖≤ λ−1

min‖MFη
∗‖≤

2O(m lnm). Since ‖η∗‖1 ≤
√

N‖η∗‖, and the number of possible columns N with {−1,0,+1} entries

is at most 3m, the proof follows.

5. Improved Estimates

The goal of this section is to show how the ideas introduced in the paper can be applied in ways

other than presented so far to produce new and stronger results. By combining techniques from

Sections 3 and 4, we obtain both new upper bounds for convergence to the optimal loss, as well as

more general lower bounds for convergence to an arbitrary target loss. We also indicate what we

believe might be the optimal bounds for either situation.

We first show how the finite rate bound of Theorem 1 along with the decomposition lemma

yields a new rate of convergence to the optimal loss. The proof includes choosing a useful target λ∗

for Theorem 1. Although the dependence on ε is worse than in Theorem 14, the dependence on m

is nearly optimal. We will need the following key application of the decomposition lemma.

Lemma 27 When the feature matrix has −1,0,+1 entries, for any ε > 0, there is some solution

with ℓ1-norm at most 2O(m lnm) ln(1/ε) that achieves within ε of the optimal loss.

Proof Let η∗,η†,γ be as given by the decomposition lemma. Let c = mini∈Z (Mη∗)i be the min-

imum margin produced by η∗ on any example in the zero-loss set Z. Then η∗ − cη† produces

non-negative margins on Z, since Mη∗− cMη† ≥ 0, and it attains the optimal margins on the finite
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margin set F , since Mη† = 0 on F . Therefore, the vector λ∗ = η∗+
(

ln(1/ε)γ−1 − c
)

η† achieves

at least ln(1/ε) margin on every example in Z, and optimal margins on the finite loss set F . Hence

L(λ∗)≤ infλ L(λ)+ ε. Using |c| ≤ ‖Mη∗‖ ≤ m‖η∗‖,

‖λ∗‖1 ≤ ‖η∗‖+ ln(1/ε)γ−1‖η†‖+ |c|‖η†‖
≤ ‖η∗‖+ ln(1/ε)γ−1 ·1+m‖η∗‖ ·1.

Combining this with the results in Corollary 26 and Lemma 25, we may conclude the vector λ∗ has

ℓ1-norm at most 2O(m lnm) ln(1/ε).

We may now invoke Theorem 1 to obtain a 2O(m lnm) ln6(1/ε)ε−5 rate of convergence to the optimal

solution. Rate bounds with similar dependence on m and slightly better dependence on ε can be

obtained by modifying the proof in Section 4 to use first order instead of second order techniques.

In that way we may obtain a poly(λ−1
min,γ

−1,µmax)ε
−3 = 2O(m lnm)ε−3 rate bound. We omit the rather

long but straightforward proof of this fact. Finally, note that if Conjecture 6 is true, then Lemma 27

provides a bound for B in Conjecture 6, implying a 2O(m lnm) ln(1/ε)ε−1 rate bound for converging to

the optimal loss, which is nearly optimal in both m and ε. We state this as an independent conjecture.

Conjecture 28 For feature matrices with −1,0,+1 entries, AdaBoost converges to within ε of the

optimal loss within 2O(m lnm)ε−(1+o(1)) rounds.

We next focus on lower bounds on the convergence rate to arbitrary target losses discussed

in Section 3. We begin by showing the rate dependence on the norm of the solution as given in

Lemma 9 holds for much more general data sets.

Lemma 29 Suppose a feature matrix has only ±1 entries, and the finite loss set is non-empty. Con-

sider any coordinate descent procedure, that iteratively chooses a sequence of vectors λ1, . . . ,λt , . . . ,
such that successive elements λt and λt+1 of this sequence differ in at most one coordinate, and the

loss on this sequence is non-increasing. Then, the number of rounds required by such a procedure

to achieve a target loss φ∗ is at least

inf{‖λ‖1 : L(λ)≤ φ∗}/(2+2lnm).

Proof It suffices to upper-bound the step size |αt | in any round t by at most 2+2lnm; as long as the

step size is smaller than or equal to 2+2lnm, it will take at least inf{‖λ‖1 : L(λ)≤ φ∗}/(2+2lnm)
steps for ‖λ‖1 to be at least inf{‖λ‖1 : L(λ)≤ φ∗}. To see this, recall that (3) shows that a step αt

causes the loss to change by a factor of f (αt) given by:

f (αt) =
(1+ rt)

2
e−αt +

(1− rt)

2
eαt ,

where rt denotes the correlation in direction jt in which the step is taken. We find the maximum

magnitude of αt that will still allow f (αt) to be at most 1. Notice that f ′′(αt) = f (αt) is always

positive, since |rt | = δt ≤ 1. Therefore f is strictly convex, and f (αt) ≤ 1 for αt lying in some

interval. Since f (αt) = 1 at αt = 0 and αt = ln((1+ rt)/(1− rt)), the desired maximum magnitude

is the latter value. Therefore,

|αt | ≤
∣

∣

∣

∣

ln

(

1+ rt

1− rt

)∣

∣

∣

∣

= ln

(

1+ |rt |
1−|rt |

)

= ln

(

1+δt

1−δt

)

.
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Further, by (5), we have that the optimal step in direction jt would cause the loss to change as

follows: L(λt) ≤ L(λt−1)
√

1−δ2
t . On the other hand, before the step, the loss is at most 1,

L(λt−1) ≤ 1, and after the step the loss is at least 1/m, that is, L(λt) ≥ 1/m. This last fact comes

from having at least one example with at most margin 0. Combining these inequalities we get

1/m ≤ L(λt)≤ L(λt−1)

√

1−δ2
t ≤

√

1−δ2
t ,

that is,
√

1−δ2
t ≥ 1/m. Now the step length can be bounded as

|αt | ≤ ln

(

1+δt

1−δt

)

= 2ln(1+δt)− ln(1−δ2
t )≤ 2δt +2lnm ≤ 2+2lnm.

We end by showing a new lower bound for the convergence rate to an arbitrary target loss studied

in Section 3. Corollary 11 implies that the rate bound in Theorem 1 has to be at least polynomially

large in the norm of the solution. We now show that a polynomial dependence on ε−1 in the rate is

unavoidable too. This shows that rates for competing with a finite solution are different from rates

on a data set where the optimum loss is achieved by a finite solution, since in the latter we may

achieve a O(ln(1/ε)) rate.

Corollary 30 Consider any data set (e.g., the one in Figure 4) for which Ω(1/ε) rounds are neces-

sary to get within ε of the optimal loss. If there are constants c and β such that for any λ∗ and ε, a

loss of L(λ∗)+ ε can be achieved in at most O(‖λ∗‖c
1ε−β) rounds, then β ≥ 1.

Proof The decomposition lemma implies that λ∗ = η∗ + ln(2/ε)η† with ℓ1-norm O(ln(1/ε))
achieves loss at most K + ε/2 (recall K is the optimal loss). Suppose the corollary fails to hold for

constants c and β≤ 1. Then L(λ∗)+ε/2=K+ε loss can be achieved in O(ε−β/ lnc(1/ε)) = o(1/ε)
rounds, contradicting the Ω(1/ε) lower bound in Lemma 31 in the appendix.

6. Conclusion

In this paper we studied the convergence rate of AdaBoost with respect to the exponential loss. We

showed upper and lower bounds for convergence rates to both an arbitrary target loss achieved by

some finite combination of the weak hypotheses, as well as to the infimum loss which may not be

realizable. For the first convergence rate, we showed a strong relationship exists between the size of

the minimum vector achieving a target loss and the number of rounds of coordinate descent required

to achieve that loss. In particular, we showed that a polynomial dependence of the rate on the ℓ1-

norm B of the minimum size solution is absolutely necessary, and that a poly(B,1/ε) upper bound

holds, where ε is the accuracy parameter. The actual rate we derived has rather large exponents, and

we discussed a minor variant of AdaBoost that achieves a much tighter and near optimal rate.

For the second kind of convergence, using entirely separate techniques, we derived a C/ε upper

bound, and showed that this is tight up to constant factors. In the process, we showed a certain

decomposition lemma that might be of independent interest. We also studied the constants and

showed how they depend on certain intrinsic parameters related to the singular values of the feature

matrix. We estimated the worst case values of these parameters, and when considering feature
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Convergence rate with

respect to:

Reference solution (Sec-

tion 3)

Optimal solution (Section 4)

Upper bounds: 13B6/ε5 poly(eµmax ,λ−1
min,γ

−1)/ε ≤ 22O(m lnm)
/ε

[Corollary 23, Lemma 25]

[Theorem 1] poly(µmax,λ
−1
min,γ

−1)/ε3 ≤ 2O(m lnm)/ε3

[Section 5]

Lower bounds with: (B/ε)1−ν for any ν > 0

[Corollaries 11 and 30]
max

{

2m ln(1/ε)
lnm

, 2
9ε

}

a) {0,±1} entries O(2m/ lnm) ln(1/ε)
[Theorem 10]

[Theorem 1, Lemma 31]

b) real entries Can be arbitrarily large even when m,N,ε are held fixed [Corollary 13]

Conjectured upper

bounds:

O(B2/ε) [Conjecture 6] 2O(m lnm)/ε1+o(1), if entries in {0,±1}
[Conjecture 28]

Figure 5: Summary of our most important results and conjectures regarding the convergence rate

of AdaBoost. Here m refers to the number of training examples, and ε is the accuracy

parameter. The quantity B is the ℓ1-norm of the reference solution used in Section 3.

The parameters λmin, γ and µmax depend on the data set and are defined and studied in

Section 4.

matrices with only {−1,0,+1} entries, this led to a bound on the rate constant C that is doubly

exponential in the number of training examples. Since this is rather large, we also included bounds

polynomial in both the number of training examples and the accuracy parameter ε, although the

dependence on ε in these bounds is non-optimal.

Finally, for each kind of convergence, we conjectured tighter bounds that are not known to hold

presently. A table containing a summary of the results in this paper is included in Figure 5.

Acknowledgments

This research was funded by the National Science Foundation under grants IIS-1016029 and IIS-

1053407. We thank Nikhil Srivastava for informing us of the matrix used in Theorem 10. We also

thank Aditya Bhaskara and Matus Telgarsky for many helpful discussions.

Appendix A. Proofs

We provide proofs for results that have appeared before.

A.1 Lower Bound For Convergence To Optimal Loss

Lemma 31 For any ε< 1/3, to get within ε of the optimum loss on the data set in Table 4, AdaBoost

takes at least 2/(9ε) steps.
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Proof Note that the optimal loss is 2/3, and we are bounding the number of rounds necessary

to get within (2/3) + ε loss for ε < 1/3. We will compute the edge in each round analytically.

Let wt
a,w

t
b,w

t
c denote the normalized-losses (adding up to 1) or weights on examples a,b,c at the

beginning of round t, ht the weak hypothesis chosen in round t, and δt the edge in round t. The

values of these parameters are shown below for the first 5 rounds, where we have assumed (without

loss of generality) that the hypothesis picked in round 1 is ~b:

Round wt
a wt

b wt
c ht δt

t = 1 : 1/3 1/3 1/3 ~b 1/3

t = 2 : 1/2 1/4 1/4 ~a 1/2

t = 3 : 1/3 1/2 1/6 ~b 1/3

t = 4 : 1/2 3/8 1/8 ~a 1/4

t = 5 : 2/5 1/2 1/10 ~b 1/5.

Based on the patterns above, we first claim that for rounds t ≥ 2, the edge achieved is 1/t. In fact

we prove the stronger claims, that for rounds t ≥ 2, the following hold:

1. One of wt
a and wt

b is 1/2.

2. δt+1 = δt/(1+δt).

Since δ2 = 1/2, the recurrence on δt would immediately imply δt = 1/t for t ≥ 2. We prove the

stronger claims by induction on the round t. The base case for t = 2 is shown above and may be

verified. Suppose the inductive assumption holds for t. Assume without loss of generality that

1/2 = wt
a > wt

b > wt
c; note this implies wt

b = 1− (wt
a +wt

c) = 1/2−wt
c. Further, in this round,

~a gets picked, and has edge δt = wt
a +wt

c −wt
b = 2wt

c. Now for any data set, the weights of the

examples labeled correctly and incorrectly in a round of AdaBoost are rescaled during the weight

update step in a way such that each add up to 1/2 after the rescaling. Therefore, wt+1
b = 1/2,wt+1

c =

wt
c

(

1/2

wt
a+wt

c

)

= wt
c/(1+ 2wt

c). Hence, ~b gets picked in round t + 1 and, as before, we get edge

δt+1 = 2wt+1
c = 2wt

c/(1+2wt
c) = δt/(1+δt). The proof of our claim follows by induction.

Next we find the loss after each iteration. Using δ1 = 1/3 and δt = 1/t for t ≥ 2, the loss after

T rounds can be written as

T

∏
t=1

√

1−δ2
t =

√

1− (1/3)2
T

∏
t=2

√

1−1/t2 =
2
√

2

3

√

T

∏
t=2

(

t −1

t

)(

t +1

t

)

.

The product can be rewritten as follows:

T

∏
t=2

(

t −1

t

)(

t +1

t

)

=

(

T

∏
t=2

t −1

t

)(

T

∏
t=2

t +1

t

)

=

(

T

∏
t=2

t −1

t

)(

T+1

∏
t=3

t

t −1

)

.

Notice almost all the terms cancel, except for the first term of the first product, and the last term of

the second product. Therefore, the loss after T rounds is

2
√

2

3

√

(

1

2

)(

T +1

T

)

=
2

3

√

1+
1

T
≥ 2

3

(

1+
1

3T

)

=
2

3
+

2

9T
,

where the inequality holds for T ≥ 1. Since the initial error is 1 = (2/3)+ 1/3, therefore, for any

ε < 1/3, the number of rounds needed to achieve loss (2/3)+ ε is at least 2/(9ε).
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A.2 A Useful Technical Result

Here we prove a technical result that was used for proving the various rate upper bounds.

Lemma 32 Suppose u0,u1, . . . , are positive numbers satisfying

ut −ut+1 ≥ c0u
1+p
t , (16)

for some non-negative constants c0, p. Then, for any t,

1

u
p
t

− 1

u
p
0

≥ pc0t.

Proof By induction on t. The base case t = 0 is an identity. Assume the statement holds at iteration

t. Then, by the inductive hypothesis,

1

u
p
t+1

− 1

u
p
0

=

(

1

u
p
t+1

− 1

u
p
t

)

+

(

1

u
p
t

− 1

u
p
0

)

≥ 1

u
p
t+1

− 1

u
p
t

+ pc0t.

Thus it suffices to show 1/u
p
t+1 − 1/u

p
t ≥ pc0. Multiplying both sides by u

p
t and adding 1, this is

equivalent to showing (ut/ut+1)
p ≥ 1+ pc0u

p
t . We will in fact show the stronger inequality

(ut/ut+1)
p ≥ exp

(

c0u
p
t

)p
= exp

(

pc0u
p
t

)

. (17)

Because of the exponential inequality, ex ≥ 1+ x, (17) will imply (ut/ut+1)
p ≥ exp

(

pc0u
p
t

)

≥ 1+
pc0u

p
t , which will complete our proof. To show (17), we first rearrange the condition (16) on ut ,ut+1

to obtain

ut+1 ≤ ut

(

1− c0u
p
t

)

=⇒ ut

ut+1

≥ 1

1− c0u
p
t

≥ 1

exp
(

−c0u
p
t

) = exp
(

c0u
p
t

)

,

where the last inequality again uses the exponential inequality. Notice in dividing by ut+1 and

(1− c0u
p
t ), the inequality does not flip since both terms are positive: ut ,ut+1 are positive according

to the conditions of the lemma, and (1− c0u
p
t ) is positive because of the inequality on the left side

of the implication in the above. Since p ≥ 0, we may raise both sides of the above inequality to the

power of p to show (17), finishing our proof.

A.3 Proof Of Lemma 25

In this section we prove Lemma 25, by separately bounding the quantities λ−1
min, γ−1 and µmax,

through a sequence of lemmas. We will use the next result repeatedly.

Lemma 33 If A is an n×n invertible matrix with −1,0,+1 entries, then min~x:‖~x‖=1‖A~x‖ is at least

1/n! = 2−O(n lnn).

Proof It suffices to show that ‖A−1~x‖ ≤ n! for any ~x with unit norm. Now A−1 = adj(A)/det(A)
where adj(A) is the adjoint of A, whose i, j-th entry is the i, jth cofactor of A (given by (−1)i+ j

times the determinant of the n− 1× n− 1 matrix obtained by removing the ith row and jth col-

umn of A), and det(A) is the determinant of A. The determinant of any k × k matrix G can be
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written as ∑σ sgn(σ)∏k
i=1 Gi,σ(i), where σ ranges over all the permutations of 1, . . . ,k. Therefore

each entry of adj(A) is at most (n− 1)!, and det(A) is a non-zero integer. Therefore ‖A−1~x‖ =
‖adj(A)~x‖/det(A)≤ n!‖~x‖, and the proof is complete.

We first show our bound holds for λmin.

Lemma 34 Suppose M has −1,0,+1 entries, and let MF ,λmin be as in Corollary 23. Then λmin ≥
1/m!.

Proof Let A denote the matrix MF . It suffices to show that A does not squeeze too much the norm

of any vector orthogonal to the null-space kerA
△
= {η : Aη = 0} of A, that is, ‖Aλ‖ ≥ (1/m!)‖λ‖

for any λ ∈ kerA⊥. We first characterize kerA⊥ and then study how A acts on this subspace.

Let the rank of A be k ≤ m (notice A = MF has N columns and fewer than m rows). Without

loss of generality, assume the first k columns of A are independent. Then every column of A can

be written as a linear combination of the first k columns of A, and we have A = A′[I|B] (that

is, the matrix A is the product of matrices A′ and [I|B]), where A′ is the submatrix consisting

of the first k columns of A, I is the k × k identity matrix, and B is some k × (N − k) matrix of

linear combinations (here | denotes concatenation). The null-space of A consists of ~x such that

0 = A~x = A′[I|B]~x = A′(~xk +B~x−k), where~xk is the first k coordinates of~x, and~x−k the remaining

N−k coordinates. Since the columns of A′ are independent, this happens if and only if~xk =−B~x−k.

Therefore kerA =
{

(−B~z,~z) :~z ∈ R
N−k
}

. Since a vector~x lies in the orthogonal subspace of kerA

if it is orthogonal to every vector in the latter, we have

kerA⊥ =
{

(~xk,~x−k) : 〈~xk,B~z〉= 〈~x−k,~z〉 ,∀~z ∈ R
N−K

}

.

We next see how A acts on this subspace. Recall A = A′[I|B] where A′ has k independent columns.

By basic linear algebra, the row rank of A′ is also k, and assume without loss of generality that the

first k rows of A′ are independent. Denote by Ak the k× k submatrix of A′ formed by these k rows.

Then for any vector~x,

‖A~x‖= ‖A′[I|B]~x‖= ‖A′(~xk +B~x−k)‖ ≥ ‖Ak(~xk +B~x−k)‖ ≥
1

k!
‖~xk +B~x−k‖,

where the last inequality follows from Lemma 33. To finish the proof, it suffices to show that

‖~xk +B~x−k‖ ≥ ‖~x‖ for ~x ∈ kerA⊥. Indeed, by expanding out ‖~xk +B~x−k‖2 as inner product with

itself, we have

‖~xk +B~x−k‖2 = ‖~xk‖2 +‖B~x−k‖2 +2〈~xk,B~x−k〉 ≥ ‖~xk‖2 +2‖~x−k‖2 ≥ ‖~x‖2,

where the first inequality follows since~x ∈ kerA⊥ implies 〈~xk,B~x−k〉= 〈~x−k,~x−k〉.
To show the bounds on γ−1 and µmax, we will need an intermediate result.

Lemma 35 Suppose A is a matrix, and b a vector, both with −1,0,1 entries. If A~x = b,~x ≥ 0 is

solvable, then there is a solution satisfying ‖~x‖ ≤ k · k!, where k = rank(A).

Proof Pick a solution~x with maximum number of zeroes. Let J be the set of coordinates for which

xi is zero. We first claim that there is no other solution ~x′ which is also zero on the set J. Suppose

there were such an~x′. Note any point ~p on the infinite line joining~x,~x′ satisfies A~p = b, and ~pJ = 0

(that is, pi′ = 0 for i′ ∈ J). If i is any coordinate not in J such that xi 6= x′i, then for some point ~pi
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along the line, we have ~pi
J∪{i} = 0. Choose i so that ~pi is as close to~x as possible. Since~x ≥ 0, by

continuity this would also imply that ~pi ≥ 0. But then ~pi is a solution with more zeroes than ~x, a

contradiction.

The claim implies that the reduced problem A′~̃x = b,~̃x ≥ 0, obtained by substituting ~xJ = 0,

has a unique solution. Let k = rank(A′), Ak be a k× k submatrix of A′ with full rank, and bk be

the restriction of b to the rows corresponding to those of Ak (note that A′, and hence Ak, contain

only −1,0,+1 entries). Then, Ak~̃x = bk,~̃x ≥ 0 is equivalent to the reduced problem. In particular,

by uniqueness, solving Ak~̃x = bk automatically ensures the obtained ~x = (~̃x,0J) is a non-negative

solution to the original problem, and satisfies ‖~x‖= ‖~̃x‖. But, by Lemma 33,

‖~̃x‖ ≤ k!‖Ak~̃x‖= k!‖bk‖ ≤ k · k!.

The bound on γ−1 follows easily.

Lemma 36 Let γ,η† be as in Item 1 of Lemma 15. Then η† can be chosen such that γ≥ 1/
(√

Nm ·m!
)

≥
2−O(m lnm).

Proof We know that M(η†/γ) = b, where b is zero on the set F and at least 1 for every example

in the zero loss set Z (as given by Item 1 of Lemma 15). Since M is closed under complementing

columns, we may assume in addition that η† ≥ 0. Introduce slack variables zi for i ∈ Z, and let M̃

be M augmented with the columns −~ei for i ∈ Z, where ~ei is the standard basis vector with 1 on

the ith coordinate and zero everywhere else. Then, by setting~z = M(η†/γ)−b, we have a solution

(η†/γ,~z) to the system M̃~x = b,~x ≥ 0. Applying Lemma 35, we know there exists some solution

(~y,~z′) with norm at most m ·m! (here~z′ corresponds to the slack variables). Observe that~y/‖~y‖1 is

a valid choice for η† yielding a γ of 1/‖~y‖1 ≥ 1/(
√

Nm ·m!).

To show the bound for µmax we will need a version of Lemma 35 with strict inequality.

Corollary 37 Suppose A is a matrix, and b a vector, both with −1,0,1 entries. If A~x = b,~x > 0 is

solvable, then there is a solution satisfying ‖~x‖ ≤ 1+ k · k!, where k = rank(A).

Proof Using Lemma 35, pick a solution to A~x = b,~x ≥ 0 with norm at most k · k!. If ~x > 0, then

we are done. Otherwise let ~y > 0 satisfy A~x = b, and consider the segment joining ~x and~y. Every

point ~p on the segment satisfies A~p = b. Further any coordinate becomes zero at most once on the

segment. Therefore, there are points arbitrarily close to~x on the segment with positive coordinates

that satisfy the equation, and these have norms approaching that of~x.

We next characterize the feature matrix MF restricted to the finite-loss examples, which might be

of independent interest.

Lemma 38 If MF is the feature matrix restricted to the finite-loss examples F (as given by Item 2

of Lemma 15), then there exists a positive linear combination~y > 0 such that MT
F~y = 0.

Proof Item 3 of the decomposition lemma states that whenever the loss ℓ~x(F) of a vector is bounded

by m, then the largest margin maxi∈F(MF~x)i is at most µmax. This implies that there is no vector~x
such that MF~x ≥ 0 and at least one of the margins (MF~x)i is positive; otherwise, an arbitrarily large

multiple of~x would still have loss at most m, but margin exceeding the constant µmax. In other words,
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MF~x ≥ 0 implies MF~x = 0. In particular, the subspace of possible margin vectors
{

MF~x :~x ∈ R
N
}

is disjoint from the convex set ∆F of distributions over examples in F , which consists of points in

R
|F | with all non-negative and at least one positive coordinates. By the Hahn-Banach Separation

theorem, there exists a hyperplane separating these two bodies, that is, there is a~y ∈ R
|F |, such that

for any~x ∈R
N and ~p ∈ ∆F , we have 〈~y,MF~x〉 ≤ 0 < 〈~y,~p〉. By choosing ~p =~ei for various i ∈ F , the

second inequality yields ~y > 0. Since MF~x = −MF(−~x), the first inequality implies that equality

holds for all~x, that is,~yT MF = 0T .

We can finally upper-bound µmax.

Lemma 39 Let F,µmax be as in Items 2,3 of the decomposition lemma. Then µmax ≤ lnm · |F|1.5 ·
|F|! ≤ 2O(m lnm).

Proof Pick any example i ∈ F and any combination λ whose loss on F , ∑i∈F e−(Mλ)i , is at most m.

Let b be the ith row of M, and let AT be the matrix MF without the ith row. Then Lemma 38

says that A~y = −b for some positive vector ~y > 0. This implies the margin of λ on example

i is (Mλ)i = −~yT ATλ. Since the loss of λ on F is at most m, each margin on F is at least

− lnm, and therefore maxi∈F

(

−ATλ
)

i
≤ lnm. Hence, the margin of example i can be bounded

as (Mλ)i =
〈

~yT ,−ATλ
〉

≤ lnm‖~y‖1. Using Corollary 37, we can find ~y with bounded norm,

‖~y‖1 ≤
√

|F|‖~y‖ ≤
√

|F|(1+ k · k!) , where k = rank(A)≤ rank(MF)≤ |F |. The proof follows.
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