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ABSTRACT

Phage display empowered the development of
proteins with new function and ligands for clinically
relevant targets. In this report, we use next-generation
sequencing to analyze phage-displayed libraries and
uncover a strong bias induced by amplification
preferences of phage in bacteria. This bias favors
fast-growing sequences that collectively constitute
<0.01% of the available diversity. Specifically, a
library of 109 random 7-mer peptides (Ph.D.-7)
includes a few thousand sequences that grow
quickly (the ‘parasites’), which are the sequences
that are typically identified in phage display screens
published to date. A similar collapse was observed in
other libraries. Using Illumina and Ion Torrent
sequencing and multiple biological replicates of amp-
lification of Ph.D.-7 library, we identified a focused
population of 770 ‘parasites’. In all, 197 sequences
from this population have been identified in literature
reports that used Ph.D.-7 library. Many of these
enriched sequences have confirmed function (e.g.
target binding capacity). The bias in the literature,
thus, can be viewed as a selection with two different
selection pressures: (i) target-binding selection, and
(ii) amplification-induced selection. Enrichment of
parasitic sequences could be minimized if amplifica-
tion bias is removed. Here, we demonstrate that
emulsion amplification in libraries of �106 diverse
clones prevents the biased selection of parasitic
clones.

INTRODUCTION

In vitro evolution and selection of genetic libraries is
central to molecular biology research. In drug discovery,
the selection of lead compounds from random genetically
encoded libraries complements rational drug design.
Many Food and Drug Administration (FDA)-approved

antibodies and peptides on the market have originated
from selection and evolution experiments (1,2). Selection
from genetically encoded libraries is finding increasing
utility in areas such as the development of new chemicals,
the design of new materials and the discovery of new
chemical reactions (3–5). Screening experiments—such as
phage display (6,7), nucleotide display, cell display,
Systematic Evolution of Ligands by Exponential
Enrichment (SELEX) and DNA aptamer selection
(8,9)—use libraries with a diversity of >109 unique se-
quences, which are then narrowed to 102–106 useful
library members. In a screen that aims to identify
binding sequences for a specific target, selection increases
the abundances of sequences that have high binding
capacity. Sequencing of clones enriched during in vitro
selection is often used to analyze the selection preferences
and the enrichment for sequence motif(s). Collapse of the
naı̈ve library to a collection of a few sequences indicates
that selection narrowed onto clones that bind to a target
(Figure 1A). While most screens exhibit convergence to
one sequence motif, screens against the surfaces of cells
or tissues (10–12), mixtures of antibodies (13–16) or other
proteins, could converge on multiple binding epitopes.
The screens against such ‘multisite targets’ could yield
information about multiple ligands for multiple receptors
on the cell (10,11). In recent years, deep sequencing
approaches have been used to assist the analysis of
phage-displayed selection (17), and in many cases, the
selection against multisite targets (18–20). Our group
used deep sequencing to detect convergence, which
occurs in the phage display screens without any selection
(Figure 1B). We amplified 106 sequences from a naı̈ve
library in bacteria, and observed that amplification alone
enriched a few hundred motifs by 10–100-fold and
depressed the remaining 106 motifs (21). This experiment,
for the first time quantified the collapse of the library
during amplification in bacteria in the absence of any
target-driven selection. It is possible that in screening for
some targets, biological factors that favor amplification
might also favor target binding (22). For many targets,
amplification-induced collapse is largely independent
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from the collapse induced by target-binding selection (23).
A typical phage display procedure that contains multiple
rounds of target-binding (panning) and amplification in
bacteria is thus driven by two separate selection pressures
(Figure 1C). There are two fundamental predictions from
Figure 1C: (i) selection could identify only a small number
of available binding clones (green dots in Figure 1C); (ii)
most of the selections should co-cluster with fast-growing
clones, which from here on are referred to as ‘parasitic
clones’. Figure 1C is a theoretical prediction (23), which
we confirm in this report.
There is numerous evidence in the literature that enrich-

ment of sequences in phage display is driven by two pres-
sures: (i) affinity of binding to target; (ii) rate of
amplification in bacteria. First reports of bias induced
by amplification in bacteria (24) appeared in the phage
literature a few years after the original description of
peptide libraries (6,25,26). This bias was characterized ex-
tensively in libraries displayed on major coat protein
pVIII (27–31). Makowski and coworkers quantified bias
in pIII-displayed libraries (22,32), and used this informa-
tion to develop a predictor of sequence-specific censorship
(33). Periplasmic export of phage proteins through the Sec
pathway, in general, was found to be a detriment to the
display of globular proteins; this bias could be overcome
by switching from Sec to other export pathways (34) [for
an in-depth review of mechanistic origin of bias see (35)].
Finally, sequence-independent bias caused by mutations
in regulatory regions of the phage genome has been un-
covered by research groups of Smith and Noren (36,37).
The effect these biases have on a library-wide scale was
not known until recently (21).
Despite abundant information about amplification-

induced bias, it is often viewed as an experimental incon-
venience that could be overcome by improvements in the
target-binding procedure (e.g. more washing steps). In this

article, we show that amplification-induced bias is ubiqui-
tous in phage display screens during the amplification of
the Ph.D.-7, Ph.D.-12 and Ph.D.-C7C libraries. Parasitic
or fast-growing clones are abundant in the naı̈ve libraries.
There are only two general strategies to avoid the bias:
(i) avoid any amplification; (ii) use amplification that
enriches all phage clones uniformly (38,39). In this
report, we confirm that the latter strategy can remove
sequence bias and avoid enrichment of parasitic clones.

MATERIALS AND METHODS

Phage libraries and their amplification

All libraries used in this report were purchased from New
England Biolabs (NEB). Lot numbers were Ph.D.-7
(# 0061101), Ph.D.-12 (# 0101002) and Ph.D.-C7C (# 3).
Reported diversity for each library was 109 sequences. For
amplification, we used Escherichia coli ER2738, which was
maintained on solid media with tetracycline (Tet) as rec-
ommended by NEB. We prepared an overnight culture
(ca. 109 cfu/ml) from a single colony, and before phage
amplification, we diluted it 1:100 with fresh Lysogeny
Broth (LB) medium to yield ca. 107 cfu/ml (‘cfu’ stands
for ‘colony-forming units’). Each library was amplified
under three different conditions:

Condition 1, bulk amplification of a 106 subset of the
library: 106 plaque-forming units (PFU) from the
naı̈ve library were mixed with 107 cfu of E. coli in
1ml of LB. The mixture was shaken at 200 rpm for
5 h at 37�C. Amplification increased the titer from 106
to 1012 PFU; on average, each library clone should be
amplified by a factor of 106. Single-stranded DNA
(ssDNA) was isolated from 1011 PFU.

Figure 1. (A) Selection from phage display libraries after rounds of binding (RB) to the target can be represented as progressive collapse of naı̈ve
library (109 diverse sequences) to a smaller number of binding sequences (here, 102 sequences). (B) It is known that the naı̈ve library of phage-
displayed peptides contains sequences that amplify slowly in bacteria and those that amplify faster. Repetitive rounds of amplification (RA) in
bacteria, thus, lead to progressive collapse of diversity from the theoretical 109 clones to a smaller number of binding sequences. (C) Collapse due to
binding preferences and due to amplification in bacteria are independent of one another. In a selection that involves rounds of binding and
re-amplification, library collapses to a few clones that bind to a target and have high amplification rates. As a consequence, many binders,
labeled as ‘x’, cannot be discovered in conventional phage display selection.
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Condition 2, bulk amplification of the entire naı̈ve
library: 109 PFU from the naı̈ve library were mixed
with 1010 cfu of E. coli in 1 l of LB. The mixture was
shaken at 200 rpm for 5 h at 37�C. Amplification
increased the titer from 109 to 1015 PFU; on average,
each library clone should be amplified by a factor of
106. ssDNA was isolated from 1012 PFU.

Condition 3, emulsion amplification of a 106 subset of
the library: 106 PFU from the naı̈ve library were mixed
with 107 cfu of E. coli in 3ml of LB and emulsified
using a microdroplet generator as previously described
(38). The microdroplet generator produces
�4� 105 droplets/ml; 3ml of LB was used to ensure
each clone was encapsulated into individual compart-
ments and to avoid amplification-induced bias between
clones. The emulsion was shaken at 40 rpm for 5 h at
37�C and then destabilized to combine all amplified
phage. Amplification increased the titer from 106 to
1012 PFU; on average, each library clone should be
amplified by a factor of 106. ssDNA was isolated
from 1011 PFU.

The phage population from each condition was pro-
cessed for deep sequencing as described below.

Illumina sequencing

The steps for deep sequencing of phage libraries and
analysis of the results were similar to those described in
our previous report (21). In short, we isolated ssDNA
from M13 phage using NaI/EtOH precipitation and
purified it using phenol-chloroform extraction. The
variable regions were isolated from the library and
amplified by polymerase chain reaction (PCR) (25 ng of
ssDNA) using barcoded primers (See Supplementary
Scheme S1). We used 35 cycles of amplification because
this protocol was suggested by Illumina (IL) and used by
phage display researchers in at least three independent
groups (18,40,41). The dsDNA PCR fragment corres-
ponding to the expected size was purified by gel extraction.
A total of 75 ng of the PCR fragment from each library
was pooled together and processed for IL sequencing
using the manufacturer’s protocols for end repair,
adenylation, adapter ligation and PCR amplification of
the product. The samples were sequenced on HiSeq
IL using a 50-bp single-end run. FASTQ files were
analyzed using custom MATLAB scripts
(Supplementary Scheme S3). The software generated
plain text-based lists of sequences and their abundances
(Supplementary Scheme S2). These text files were used by
MATLAB scripts to generate Figures 3–7 (see ‘Data
Visualization’ section below). Raw FASTQ files (>10Gb
of data) are not included in this manuscript, but are avail-
able on request.

Mathematical representation of sequence uniqueness and
their abundance

A given list of sequences [s1, s2 . . . sn] can be conveniently
represented as mathematical multisets, a set in which
members can appear more than once (42). A multiset
(S, m) is made of a S set of all unique sequences, and m

is a vector, in which the mi is a count of the sequence
element Si. For more information about multiset
notation and visualization techniques, please see
Supplementary Scheme S3 and accompanying text.

IL analysis

Sequences emanating from each amplification condition
were identified using their respective barcodes
(Supplementary Scheme S2). Abundances of the sequences
and their quantities are described in Supplementary
Figure S1. In short, �98% of the sequences could be
mapped to a specific barcode. In the mapped sequences,
60% of the sequences contained all nucleotides with Phred
Score >30. From these sequences, 80% contained nucleo-
tides with (NNK)n structure (where N is any nucleotide
and K is G or T). We selected only sequences that had
NNK structure and a Phred >30 for each nucleotide. We
note that IL sequencing yielded both forward (F) and
reverse (R) sequences originating from the (+) and (�)
strand of the vector. The ratio of sequence abundances
in F and R multisets varied from 40 to 60%
(Supplementary Figure S1). In our processing, after
removing non-NNK sequences and Phred <30 sequences,
we observed significant overlap in sequence identity in F
and R populations and similar sequence abundances in
these populations (Supplementary Figures S14 and S15).
We combined the multisets F= (F,f) and R=(R,r) using
union definition: CF[R= [F[R, max(f,r)]. The union is
the list of all unique sequence from either F or R, where
the count of each sequence is equal to the maximum
number of its appearances in F or R (the appearance
was assigned 0, if the sequence was not present in one of
the sets). In canonical bioinformatics terms, if fij is the
number of forward reads for sequence i in library j and
rij is the number of reverse reads, the union count k[ij
is k[ij=max(fij; rij). In the combined multisets, we did
not consider the sequences with a copy number n< 10 in
our definition of parasites with the exception of analysis
by ‘volcano plot’, which was supported by biological rep-
licates (BR). Changing from the union to intersect-based
processing, CF\R= [F\R, max(f,r)], had little impact on
the results of this manuscript because sequences with
n> 10 were similar between F[R and F\R populations
(see Supplementary Figures S14, S15 and S16, and
‘Discussion’ section in the main text).

Ion torrent sequencing

We isolated ssDNA from M13 phage libraries using
QIAprep Spin M13 kit (#27704). The isolated phage
ssDNA (50 ng) was subjected to PCR amplification with
primers flanking the variable region. To avoid a second
round of PCR amplification, the primers contained Ion
Torrent (IT) adapters at the 50 ends. The concentration
of PCR fragments that resulted from amplification of
phage libraries was determined by analytical gel [2%
(w/v) agarose gel in Tris Borate EDTA (TBE) buffer
using a low molecular weight DNA ladder as a standard
(NEB, #N3233S)]. dsDNA fragment (40 ng) from multiple
PCR-amplified phage libraries were pooled together
before running on E-gel. The band corresponding to the
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expected dsDNA product was purified on an E-gel
SizeSelect 2% gel (Invitrogen, #G6610-02). The dsDNA
fragments were extracted with RNAse-free water and the
concentration determined by Qubit Fluorimeter
(Invitrogen, #Q32851) using manufacturer’s protocol.
The dsDNA fragments were ligated onto Ion Sphere
Particles (ISPs) and amplified by emulsion PCR according
to IT protocol. The concentration of ISPs with ligated
dsDNA fragments after emulsion PCR was determined
using Qubit Fluorimeter (Invitrogen) according to manu-
facturer’s protocol. The ISPs with ligated dsDNA frag-
ments were enriched for and loaded on an Ion 316 chip.
The sequencing was performed using an IT system (Life
Technologies) with an Ion OneTouch 200 Template Kit.
The FASTQ data from IT was processed by custom
MatLab script that identified the barcodes, constant
flanking residues, extracted the reads of the correct
length (21-mer only) and correct (NNK)7 structure.

Volcano plot

This plot identified sequences that increased significantly
in frequency from the naı̈ve library after amplification. As
BR for the naı̈ve library, we used eight separate instances
of isolation and sequencing of naı̈ve library (8 separate
samples of 108 PFU from naı̈ve library, lot # 0061101,
were processed and sequenced separately). We compared
them with five BR of amplification (5 separate samples of
108 PFU from the naı̈ve library lot # 0061101, each
amplified by a factor of 106, and each was processed and
sequenced separately). We normalized copy numbers by
the total number of reads in each replicate and we con-
sidered all data that was observed either in the naı̈ve or
amplified populations. We did not remove the singleton
population; furthermore, sequences not observed in a
specific replicate were assigned a copy number of 0.
Significance was assessed using one-tailed, unequal vari-
ance Student t-test. We also built a volcano plot using
more rigorous statistics based on a negative binomial dis-
tribution and exact test with multiple testing correction
(for details, see Supplementary Material S1–S5). Data
from both plots were analyzed side by side (e.g. in com-
parison with MimoDB and non–peer-reviewed literature
published on the Internet).

Generation of stacked bars and scatterplots

Stacked bars, Venn diagrams and scatter plots in
Figures 3–7 were generated by one MatLab script
command_center.m, which contains a user-friendly
graphic user interface (see Supplementary Material S4).
We wrote the custom script to generate QQ-plots,
volcano plots, histograms of ratios and complex scat-
terplots; the scripts are available as Supplementary
Material under the names MakeFigureXX.m for various
XX (e.g. script MakeFigure5E.m-generated plot from
Figure 5E). Most raw files were not included in the
Supplementary Material owing to their large size (17–
130Mb). The files are available at http://www.chem.
ualberta.ca/�derda/parasitepaper/
To calculate the dimensions of the 2D stacked bars

segments for the library of Sall total sequences, we

converted copy numbers (Ni) to sequence abundance as
Ni/sum(Sall) and binned the sequences to approximately
log-uniform bins (0.3 1], (0.1 0.3], (0.03 0.1], etc., where we
assigned sequence i to bin (N1 N2] if N1<Ni�N2. In
Figures 2 and 7 and Supplementary Figures S2, S10,
S11, S14 and S15, each bin was represented by a
segment of specific color. The height h and width w of
the segment representing each bin was calculated as
hbin=Sbin/Sall, and wbin= log10(U

bin), where Sbin is the
total number of sequences and Ubin the total number of
unique sequences. Specifically, in Figure 2C as an
example, the top crimson segment contains six unique
peptides (Ucrimson=6) with abundance �0.03 and
>0.01. These peptides constitute 8% of the library
(Scrimson/Sall=0.08). The peptides in the bottom blue
segment also constitute 8% of the library. This segment,
however, contains 100 000 unique peptides
(Ublue=100 000). Each peptide has an abundance
�0.0000003 and >0.0000001. Bottom gray segment repre-
sents the singleton population (sequences were observed
only once).

Web software for prospective identification of
parasitic sequences

We provide an example of implementation as an open-
source online script for use given a list of peptide
sequences (http://chem-derda-web.chem.ualberta.ca/).
The web application converts sequences provided by the
user to a stacked bar (Figure 2B) and colors the segments
according to their propensity to be ‘parasitic sequence’
using internally stored deep-sequencing data.

Analysis Ph.D.-7, Ph.D.-12 and Ph.D.-C7C
library screens

The literature data of phage display screens that used
Ph.D.-7, Ph.D.-12 and Ph.D.-C7C libraries were extracted
from the raw MimoDB 2.0 database. MimoDB is a
database of all peptides identified by phage display
screens (43). We used this database provided by Jian
Huang, from which we extracted hits for each library
(files are available in the Supplementary Material). The
files were used by the command_center script to generate
bar and scatterplots in Figure 6 and Supplementary
Figure S11. (see Supplementary Materials and Methods
for more details).

Internet search for parasite sequences

We built a custom MatLab script googlesearch.m, avail-
able in the Supplementary Material, to streamline the
GoogleTM search. A search URL was concatenated from
’https://www.google.ca/search?hl=en&as_q=’, ‘peptide se-
quence’ and ‘&as_epq=&as_oq=peptide+++&as_eq=
&as_nlo=&as_nhi=&lr=&cr=&as_qdr=all&as_site
search=&as_occt=any&safe=images&tbs=&as_filetype
=&as_rights=’. The HTML was loaded and parsed in
Matlab to discard the results that contained no hits
(�90%); the remaining 10% were batch-loaded and in-
spected manually. On average, we were able to process
500 peptides in <30 min. The results of the search and
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URL of all identified references are available in the
allparasites.xls file (Supplementary Material)

RESULTS

Identification of parasitic sequences using deep sequencing
of naı̈ve and amplified PhD-7 library

Our report focuses on the library of 7-mer peptides
(Ph.D.-7TM) because the reported diversity of the library
(109) approaches the theoretical diversity of (NNK)7
motifs (1.3� 109) and it covers most amino-acid diversity.
To assess the diversity of the naı̈ve library, we isolated
DNA from 1010 PFU from the naı̈ve Ph.D.-7 library
(Figure 2A); this number should yield, on average, 10
copies of each available sequence, if the library was
uniform. Sequencing of DNA by IL yielded 4� 106

reads (Figure 2B). Although sequence coverage was not
complete, it was sufficient for our analysis here. If the
naı̈ve library contains 109 sequences in equal abundances,
the expected value of abundance of each sequence in a
subsample of 4� 106 reads is 4� 106/109=0.004. For
this expected value, the Poisson probabilities to find a
sequence with copy number 1, 2, 3 or 4 is 0.996, 0.002,
3� 10�5 or 3� 10�9, respectively. Over 99% of the popu-
lation, thus, should have a single copy number (‘singleton
population’). In 4� 106 reads, we expect at most one
sequence with copy number strictly above three. In
reality, we found that only 72% of the library contained
a singleton population (gray segment, Figure 2B), 20%

contained sequences with copy number of 2 or 3 (blue
segment, Figure 2B) and 8% of the library had copy
number of >3. Some sequences had a copy number
>1000 (Figure 2B, list of top 30 sequences).
We hypothesized that library members present at higher

than theoretical abundance are the rapid-growing clones.
Their number, thus, must increase if the library is
re-amplified in bacteria. To validate this hypothesis, we
amplified 109 PFU from the naı̈ve library in bacteria to
yield 1015 PFU (expected amplification by a factor of 106

for each clone) under amplification condition 2 (See
‘Materials and Methods’ section). Isolation of DNA
from the amplified population and IL sequencing yielded
�5� 106 reads. We observed that sequences that had high
copy number in the naı̈ve library N (e.g. GKPMPPM:
copy number 5548, abundance 0.0014, Figure 2B) have
been enriched in the amplified library A (GKPMPPM:
copy number 60099, abundance 0.012, Figure 2C). Copy
numbers of sequences in amplified libraries reached
>50 000; this number, when normalized to total number
of reads (5� 106), corresponds to 1% of the abundance
in the library (sequences in the crimson segment of
Figure 2C). Comparing N and A multisets by scatterplot
(Figure 3A) and ratio plot (Figure 3B) traced the fate of
all parasitic sequences during amplification. It suggested
that most sequences with a copy number >10 in the naı̈ve
libraries have been enriched during re-amplification
(Figure 3A and B). Previously, we have shown that IL
sequencing of the same amplified population of phage
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Figure 2. (A) We selected 109 PFU from Ph.D.-7 library, amplified in bacteria, isolated the phage genome, amplified the library portion by PCR and
obtained 4–5 million sequences using IL HiSeq. (B and C) To visualize all sequences, we generated a stacked bar in which each segment contains all
sequences with specific abundance (color-coded); the width of each segment is equal to the number of unique sequences per segment. Before
amplification (B) the majority of the clones in naı̈ve library have low abundance. After amplification (C), �8% of the library is occupied by six
sequences (crimson segment), �20% of the library is occupied by 35 sequences (red + crimson segments), etc.
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yielded reproducible copy numbers (21). Figure 3C shows
the ratio plot of re-sequencing data and suggests that
increase in copy numbers in amplifications is not the
result of sequencing bias. We sought to validate that the
observed data are not the result of the biological variabil-
ity in amplification or technical variability in sample
preparation for deep sequencing.

Variability of sequence abundances during
phage amplification

Copy numbers in deep sequencing only approximate the
true sequence abundance. Variability in copy numbers in
re-sequencing of the same DNA samples could be

modeled by Poisson distribution (44); variability in
sequencing of closely related biological samples follows a
Poisson distribution with Gaussian noise (45). Variability
of the amplification process in phage libraries, however,
has never been characterized. To this end, we analyzed
multiple BR of phage amplification using lower cost
(and lower throughput) IT sequencing. We estimated
how naı̈ve and amplified libraries would look at lower
sequencing resolutions (Supplementary Figure S2). The
analysis suggested that the high copy number sequences
in amplified libraries should be readily identified from
amplified libraries by IT. Most of the high copy number
sequences visible in amplified libraries by IL were also
identified by IT sequencing (Supplementary Figure S3).
Figure 4A describes the sampling process: five BR
originated from five independent samples of the library,
108 PFU each. Every population of phage was amplified
by a factor of 106 in bacteria and sequenced independ-
ently. Additionally, we generated five technical replicates
(TR) by isolating the DNA from the same amplified
library five times and sequencing it separately. We
examined how copy number in each scaled read count
deviated from an average value across libraries, and
indeed observed higher variance in BR than in TR
(Figure 4B). We calculated the Pearson’s cumulative test
statistic from five replicates (Figure 4C) and compared it
with a chi-square distribution with 4 degrees of freedom
(44). A QQ-plot confirmed that copy numbers in TR and
BR had a larger variance than would be predicted by a
Poisson distribution, where the variance of TR and BR
are �1.25 and 1.5 times larger than expected under a
Poisson distribution (Figure 4C).

Our TR contained three sources of noise: (i) DNA iso-
lation; (ii) PCR amplification and (iii) sequencing.
Deviation from Poisson distribution caused by PCR
re-amplification and re-sequencing has been observed pre-
viously (45). The BR contained (iv) variability in phage
amplification and (v) variability in the composition of the
initial sample. The latter increased as the sample size
decreased from 108 to 106 PFU (Figure 4D and E).
Decreasing the sample to 103 PFU made all five BR com-
pletely irreproducible (no common sequences were
observed among five BR, Figure 4F). In conclusion,
when sample size is sufficiently large (here 108 PFU), the
biological variance is only 2� higher than technical
variance and observable copy numbers are reproducible
and normally distributed. Low-PFU samples are theoret-
ically attractive because they could be sequenced with high
coverage by medium-throughput sequencing; but for
library with 109 theoretical clones, repeated amplifica-
tion starting from 103 PFU yield misleading and irrepro-
ducible BR.

Statistically significant definition of the fast-growing
(parasite) sequences

Using multiple biological and TR, we established the
limits of the variance in ratios of copy numbers in
repeated amplification experiments. If deep-sequencing
data were filtered to remove copy numbers <10, the
99th percentile of the distribution of ratios was 2.4–3.0 in

Figure 3. (A) Scatterplot describing naı̈ve (N) and amplified (A) Ph.D.-
7 library (condition 2, see ‘Materials and Methods’ section). Each dot is
a unique sequence; multiple data at the same (x,y) coordinate are bigger,
darker dots (see legend). Numbers represent the number of data points
within each cell of the rectangular grid. Green data are observed both in
N and A, while blue and red data are unique to N or A. (B) Ratio plot
compares normalized ratio of each sequence between naı̈ve and
amplified library and copy number in naı̈ve library. Copy number of
many sequences present in the naı̈ve library at copy number nnaı̈ve >10
(red box, N10) increased during re-amplification. (C) The ratio plot
similar to (B) comparing the same phage library samples by IL twice
[data from reference (21)]. Distribution of the ratios of two technical
replicates TR1 and TR2 is symmetric around 1.
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technical or BR on IL and IT platforms (Figure 5A and
B). The deep sequencing data acquired by high-through-
put hiSeq IL, thus, could be analyzed by these two
criteria—n(naı̈ve)> 10 and n(amp)/n(naı̈ve)> 3—to
define a population of parasites significantly enriched
during the amplification process (Figure 5C). As this
definition does not use true BR, only extrapolated
variance, we call this population P1R (parasites based on
one replicate).

In lower-throughput methods, such as IT, significance
based on cutoff in copy numbers is unreliable because few
reads have n(naı̈ve) >10 (Supplementary Figure S3). For
IT, the significance of increase could be determined from k
BR (here k=5) generated by sampling and amplifying
108 PFU and m re-sequencing instances of the naı̈ve
library (here m=8). For the ith sequence, we calculate
the fold increase as fi= hnik(amp)i/hnim(naı̈ve)i where h..i
denotes averaging over replicates, and estimating the stat-
istical significance ti of this increase using one-sided
unequal variance Student’s t-test. The resulting fi-ti plot
(‘volcano plot’) for �105 sequences appears in Figure 5D
(each dot is a unique sequence). We identified 996 para-
sites at a significance level of 5% and termed this popula-
tion PBR or ‘parasites based on biological replicates’.
While PBR originates from a different platform and a dif-
ferent type of statistical analysis, 80% of PBR can be found
in the P1R population (Figure 5E). The remaining 20% of
PBR were found in the population with n(naı̈ve)< 10, but
the majority of these sequences (�99%) exhibited an
increase in copy number by IL sequencing [n(amp)/

n(naı̈ve)> 3], Figure 5E). Identification of a similar para-
sitic population from two separate sequencing platforms
and two types of analysis confirmed that increase in
ratio of copy numbers is neither the result of sequencing
artifacts nor biological noise.

Identification of the enriched (parasite) sequences using a
negative binomial model

The 996 parasites in the previous section were identified
based on statistics that relied on an incorrect assumption
of normality as well as independent testing of significance
for each parasite without correction for multiple testing.
We aimed to check that these conclusions remain valid if
we apply more rigorous statistical analysis. In the re-
analysis of data, we accounted for three factors: (i) appro-
priate modeling of the counts using a negative binomial
model, which allows for overdispersion when compared
with Poisson distribution (Figure 4C); (ii) Benjamini–
Hochberg (BH) correction for multiple testing (46),
which was not accounted for in conventional t-test
analysis and Volcano plot (Figure 5D); (iii) improved nor-
malization of data across multiple replicates using the
Trimmed Mean of M-values (TMM) normalization.(47)
The integrated re-analysis of data was performed using
Bioconductor package edgeR (48,49) (see Supplementary
Section S1–S5 for R-code). We combined 10 replicates of
Naı̈ve library and 5 BR of library amplified from 108 PFU
(BR8) (Supplementary Figure S4). The edgeR analysis
identified 606 parasites based on uncorrected P-values

Figure 4. (A) Scheme describing generation of BR and TR. (B) Scatterplot of copy numbers in five replicates normalized by the mean copy number.
(C) QQ-plots comparing goodness-of-fit statistics X(i) of scaled counts N(i,k), assuming Poisson distribution (44) and �2 distribution with 4 degrees
of freedom. Scaling factor was estimated as the total number of reads in library j divided by the average of the total read count across all
libraries. The slopes of 1.25 and 1.5 suggested that the dispersion is 25% higher than Poisson for TR and 50% higher than Poisson for BR.
Increase in BR is the result of the noise during PCR or re-amplification of phage in bacteria. The data deviates from the straight line because
dispersion is not equal for all counts (confirmed by tagwise dispersion estimate for BR in Supplementary Figure S6). (D and F) Comparison of the
distributions of the normalized copy numbers in BR and TR originating from different sample sizes. BR that start from 106 PFU (E, blue line) have
higher variance than BR that start from 108 PFU (D), while BR that start from 103 PFU are not reproducible; all TR are reproducible and have
similar variance (red line).
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and 219 parasites after correction for multiple testing
(Supplementary Figure S5 and S7). The overdispersion
parameters estimated by edgeR were not constant but
varied for different parasites (Supplementary Figure S6).
The parasites defined by edgeR (designated as PER popu-
lation) resided at the intersection of previously defined
PBR and P1R populations. All definitions of parasites
were similar for reads with high copy number, but PER

parasites were scarce in reads with copy number <100
(Supplementary Figure S8B). The negative binomial
model with TMM-normalization was designed for data
that have relatively high copy numbers (e.g. RNA-seq
data), and this algorithm tends to have weak detection
power for low copy number reads (Andrea Rau,
personal communication). In addition, the abundance of
low copy number reads made the analysis sensitive to the
model used for the estimation of dispersion parameters.
For example, the DESeq Bioconductor package, which
estimates per-sequence dispersions based on a local or
parametric regression between means and dispersion esti-
mates (50), produced significantly fewer enriched se-
quences: 294 without BH correction and 156 after BH
correction.

Parasitic sequences in the literature

The hypothesis formulated in Figure 1 predicts that fast-
growing sequences should be commonly identified during
panning against any target. To test this hypothesis, we
used MimoDB to extract sequences found in most peer-
reviewed literature reports that used Ph.D.-7 library (Lit)
to date (51). Six observations are important: (i) 382 out of

2000 Lit peptides could be identified in the entire Naı̈ve
library (Figure 6A). (ii) The ‘hit rate’—that is, the prob-
ability to find peptides in the naı̈ve library—increased as
we focused on subpopulations with higher copy numbers
(Figure 6B). The ‘hit rate’ changed from 0.01% in the
entire N to 4.3% in P10, in a subpopulation of �3000
peptide sequences with a copy number n> 10. (iii) From
129 literature hits in the P10 population, 127 resided in a
parasite population P1R identified from one round of IL
sequencing (hit rate: 5.3%). (iv) Parasites defined by IT
and BR PBR contained 95 results from the literature (hit
rate: 9.5%). (v) From 770 sequences in P1R \ PBR popu-
lation, which contained parasites found by both
sequencing platforms, 85 were found in the literature
(hit rate: 11%). (vi) From the focused population of 219
hits defined by EdgeR (PER), 48 were in the literature (hit
rate: 22%) (Supplementary Figure S8). The simultaneous
increase in hit rate and decrease in the number of literature
hits suggests that parasite population PER is more specific
than PBR (9.5 versus 22% hit rate) but less sensitive (e.g.
95 versus 50 hits in literature hits). While we cannot
estimate the exact number, it is possible that at least a
few of the 45 ‘missed hits’ are true ‘false negatives’. For
example, peptide NQDVPLF identified in PBR but not in
PER has a relatively high copy number in naı̈ve library (58
copies, 0.002% abundance) and it has been identified as a
ligand for at least seven unrelated targets: 16S RNA (52),
chromatin high mobility group protein 1 (HMGB1) (53),
kidney (in vivo panning) (54), human synovial B cell
hybridoma ELB13/3-56 (55) antibody against Neisseria
meningitidis group(56) and cyclodextrin (patent) and 001
face of nacreous aragonite (Ph.D. thesis). Other potential

Figure 5. (A) Distribution and cumulative distributions of ratios observed between TR or BR described in Figure 4A and D. Less than 1% of
sequences increased by >2.6-fold in BR. (B) Distribution of ratios in TR of amplified and naı̈ve libraries from Figure 2C. Both A and B used reads
with copy number >10. (C) The 99th percentile of replicate in (A and B) suggested the use of 3-fold increase in n(amp)/n(naı̈ve) ratio to define
parasite populations, referred to as P1R. (D) More rigorous definition of parasite population, denoted as PBR, used five BR of the amplified
population. Volcano plot highlights 996 sequences that increased significantly (P< 0.05) in amplification. Ninety-nine percent of sequences
increase by >3-fold. (E) Mapping the PBR population onto a parasite population defined by one replicate of IL Sequencing (P1R). Some sequences
identified in P1R have copy number <10 in naı̈ve library, but all of them increase in amplification (as predicted by IL). (F) Venn diagram description
of the overlap between naı̈ve, P10, P1R and PBR populations.
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‘false negative’ peptides missed in PER are peptides that
bind to more than one target (according to Internet search
in peer-reviewed and other literature): examples are
SPPQSRA (mesenchymal cells and antibody 5F1),
KQTLPSA (HUVEC cells and oocytes) and AVPRASF
(lipopolyscharide and S16 RNA) (complete list is provided
in allparasites.xls in the Supplementary Material).

Statistical significance of the observations above can be
validated using a series of null hypotheses (H0). To test
observation (i) the null hypothesis was: ‘For a peptide
found in the literature, the probability for it to appear in
our naı̈ve library is no different from the probability for it
to appear in a random library of the same size’, where, by
‘random library of the same size’, we mean a library of 3.2
million peptides that were chosen at random from all
possible 7-mer peptides encoded NNK codons. The
problem can be solved using Fisher’s exact test (Simon
Anders, personal communication), by using amino acid
composition of each literature hit to calculate its exact
probability to be found in a (NNK)7-encoded library of
peptides. As an alternative, we used bootstrapping simu-
lation, in which we generated random uniform libraries of
3.2� 106 (NNK)7 encoded peptides in silico and calculated
Lit \ Rnd3200000. As expected from the Fisher’s test, the
simulated values of intersection between Lit \Rnd3200000

followed Poisson statistics with an expectation value of 15
(Supplementary Figure S9A). The probability (P) to
observe �382 common sequences was P� e�382. This
result suggested that the much larger observed overlap
between Lit \ N is not due to chance, but may instead
be the result of diversity collapse via similar forces.
Testing a general hypothesis for sample size m assessed
the expected overlap between the literature and any
sample Lit \Rndm (Supplementary Figure S9F). For
example, Rnd770 had the same size as the ‘focused
parasite population’ (P1R \ PBR, Figure 5F). The prob-
ability to find a population of 770 random peptides that
contained even one literature hit was 0.4% (1 in 250 popu-
lations contained one literature ‘hit’, the rest contained
none). It was highly improbable (P� e�85) to ‘guess’ a
population of 770 peptides that contained 85 sequences
from the literature. Observations (ii) through (iv) could
also be tested as another hypothesis: ‘parasites are a
random subpopulation of naı̈ve library’. Specifically, for
(ii) H0:(Lit \ N3000)= (Lit \ N10)=382 (For a peptide
found in the literature, the probability for it to appear the
specific list of 3000 parasites (N10) is no different from the
probability for it to appear in a random subset of 3000
sequences from the naı̈ve library (designated as N3000).
We generated N3000 libraries by random sampling of the

Figure 6. (A) Scatterplot comparing the abundance of sequences found in the literature (MimoDB database) and the naı̈ve library sequenced by IL.
Each dot is a unique sequence; multiple data at the same (x,y) coordinate are bigger, darker dots. Numbers represent the number of data points
within each cell of the rectangular grid. Green data describes common sequences, while blue and red describe data unique to the MimoDB database
or the naı̈ve library. (B) Abundance of a sequence in the naı̈ve library is correlated with the probability of finding this sequence in the literature.
Abundance is reported as range: (2–20] means that abundance is >2 and �20. The second bar represents singleton reads; hence, abundance is not
reported as range; the first bar represents the reads that were not found in the IL run. They are calculated as a difference between all possible 7-mer
peptides and observed peptides (X7\IL). (C) Overlap between MimoDB and two putative parasite populations defined by IL. P1R population (see
Figure 5) has the most significant overlap with literature. The overlap is >1000-fold higher than overlap between MimoDB and 3000 random
sequences, see Supplementary Figure S9). (D) Overlap between MimoDB and parasite populations defined by IL (P1R and P10) and IT (PBR from
volcano plot, Figure 5). The PBR \ P1R population (crimson) has the highest overlap with the literature. (E) From 770 peptides in PBR \ P1R

population, we found 85 in MimoDB; we performed an exhaustive Google search using 685 remaining peptides and found additional 112 peptides in
the patent literature, published thesis work and peer-reviewed publications not yet included in MimoDB.
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N library and observed that Lit \ N3000 followed Poisson
distribution with an expectation value of 0.4. The prob-
ability to observe overlap of 130 peptides was P� e�130

(Supplementary Figure S9B). It is therefore essentially
impossible to ‘guess the parasite sequences at random’
from a sequenced set.
To provide additional ‘replicates’ for the literature

search experiment, we selected 770 peptides from the
putative parasite population (PTR \ PBR), eliminated 85
peptides found in MimoDB and searched for the remain-
ing 685 peptide on the open Web using Google (see
‘Materials and Methods’ section). Interestingly, we
found 112 matching peptides in various peer-reviewed
and non-reviewed publications (Figure 6E). Specifically,
33 originated from PubMed-indexed peer-reviewed publi-
cations, 15 were from published theses and the rest were
from patent literature. All publications used the Ph.D.-7
library. References to all publications are available in
the Supplementary Material. The 197 peptides found in
a small 770-peptide population (PTR \ PBR) doubled the
discovery rate from 11% in MimoDB to 26% in the entire
Internet (which includes MimoDB) (Supplementary
Figure S8). We repeated the same search for P1R, PTR,
PBR and PER populations. Focused population PER,
which had 22% discovery rate in MimoDB, had 44%
rate in the entire Internet. Populations N10 and P1R,
which has a low discovery rate in MimoDB (4.3 and
5.1%), also doubled their rate in the ‘expanded search’
(8.9 and 12%). The same trend was observed in ‘negative
control populations’, which were depleted of statistically
significant peptides (Supplementary Figure S8).
From the size of the MimoDB database (�2000

peptides) and the observed trends in discovery rates, we
extrapolated the size of the expanded database as 2�
MimoDB (�4000). We thus estimated that every 20th

peptide ever reported in the literature originates from a
subset of parasite peptides that constitute <10�7 of the
available diversity. (We believe that there is a correlation
between the lot number and the probability to identify a
parasite. Unfortunately, it was impossible to map the lot
origin of the libraries used in the literature because few
publications report the lot number).
Some parasitic sequences we identified have been

already characterized. Noren and coworkers identified
that the HAIPYRH sequence is associated with phages
that have mutations in the regulatory regions (37). This
sequence has a copy number of >2000 in the naı̈ve library
and >68 000 in the amplified library (Figure 2B and C).
This sequence appeared in screens against 13 unrelated
targets (51), and has been confirmed as a weak binder
for many targets. Other sequences have similar properties:
GETRAPL (#21 in Figure 2C) was found in 4 independ-
ent screens; 6 independent screens identified sequence
SILPYPY and 11 screens identified LPLTPLP (see
allparasites.xls, Supplementary Material) (51,57).
Sequences such as EPLQLKM (#1 in Figure 3D) have
been identified in over six screens (58–60), annotated in
databases and flagged as ‘suspicious’. Other sequences,
such as sequence #8 STASYTR, have not been annotated
in any databases yet, but it has been found in two pub-
lished screens (61,62) and our own unpublished results.

The parasite population has no common sequence motif.
Aside from the small bias to Pro and Ser/Thr amino acids,
we could not detect any sequence similarity in ‘parasites’.
The sequences did not correlate with motifs that occur
owing to nonspecific binding to polystyrene (4). The des-
ignation ‘parasite’ is different from ‘nonspecific binder’.
In many publications, the binding properties of these se-
quences have been confirmed to be in the micromolar
range. These observations confirm that the parasitic
sequences are selected because they have both target
binding capacity and high amplification rate (in line with
our prediction in Figure 1).

Bypassing selection of parasite sequences

Enrichment of parasites occurs owing to competition
between phage clones during amplification in bacteria
(Figure 1B). If competition between clones could be
avoided, emergence of ‘parasites’ could be suppressed.
Previously, we developed a technology to perform
uniform amplifications in emulsions. We demonstrated
that emulsions can be used to amplify a mixture of fast-
and slow-growing phage clones uniformly (38,39). Here
we demonstrate that emulsion amplification can bypass
the biased overselection of parasitic sequences from large
libraries. We have previously demonstrated that this tech-
nique is well-suited for amplification of 106 PFU (38); we
also observed that amplification experiments based on
samples of 106 PFU yields reproducible, albeit noisy, BR
(Figure 4E). We selected 106 PFU from the naı̈ve library
and amplified them to 1012 copies using bulk or emulsion
amplification (Figure 7A) (for details, see conditions 1 and
3 in the ‘Materials and Methods’ section). The library
after bulk amplification of 106 PFU (Figure 7B and D)
was similar to the library after bulk amplification of the
entire 109-scale library (Figures 2C and 3A). It contained
the same parasitic sequences and >50% of them have been
enriched beyond the variance of BR (>3-fold, Figure 7E);
small deviations originated from a limited sampling in a
106 PFU set. In contrast, the emulsion amplification
maintained the abundance of the sequences (Figure 7C).
The abundance of high copy number clones in the phage
library amplified in emulsion was suppressed (Figure 7D).
The abundance of the majority of the parasitic sequences
from P1R and PTR populations remained within the
variance of the BR. Their ratio increased by <3-fold
(Figure 7F).

We emphasize that the use of emulsion amplification
cannot fix the skewed diversity already present in the
naı̈ve libraries; it can maintain this diversity and
minimize any further selection of fast-growing clones.
We have used emulsion amplification in selection to
show that such selection allows identification of sequences
that cannot be identified by conventional phage display
(red x in Figure 1C). These results, however, extend
beyond the scope of this manuscript and they will be
presented elsewhere.

Other libraries

We observed similar results to those described above
in other libraries: in Ph.D.-C7C (Supplementary
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Figure S10A and B) and Ph.D.-12 (Supplementary Figure
S11A and B); namely, the diversity in naı̈ve libraries was
skewed, and it collapsed on re-amplification. We used
these libraries to demonstrate that emulsion amplification
is reproducible. The collapse of diversity in PhD-C7C and
PhD-12 libraries was mitigated by emulsion amplification
(Supplementary Figures S10C–G and S11C–G). We an-
ticipate that the diversity of other phage libraries could
be maintained by this method.

We propose that it should be possible to map parasitic
sequences in other libraries using two simple steps. If di-
versity of the library is 10k for some k> 1: (i) isolate the
DNA from �10k clones in the naı̈ve library and sequence
them to obtain several replicates of the naı̈ve library (N).
(ii) Amplify separate samples of at least 10k�1 clones from
the naı̈ve library by factor of 106 and sequence them to get
amplified libraries (A). Then, compare multisets A and N
using statistical analysis (e.g. similar to volcano plot in

Figure 5) to identify parasitic populations. We strongly
believe that performing prospective identification of para-
sitic populations will be critical for selecting functional
sequences from these libraries. This identification should
become a standard protocol/practice for the researchers
using these libraries, as well as commercial providers of
these libraries. Both high-throughput methods like IL
HiSeq and lower-throughput technique like IT could
provide statistically significant results with high predictive
power.

Effect of sequencing errors on identification of parasites

Deep sequencing methods have an error rate of �1%. Our
prospective identification by deep sequencing inevitably
contained some false-positive reads (incorrectly inter-
preted) or false-negative reads (censored by sequencing).
Distribution of Hamming distances in the library

Figure 7. (A) Scheme of the amplification of 106 PFU taken from Ph.D.-7 naı̈ve library. Amplification was performed either in bulk or emulsion (as
described in Conditions 1 and 3 in the ‘Materials and Methods’ section). (B) Bulk amplification or ‘BA’ shows significant enrichment of parasitic
sequences when compared with emulsion amplification ‘EmA’ (C). (D) The sequences with high abundance (fi> 10�4, orange-red segments) constitute
�35% of the population after bulk amplification; these highly abundant sequences largely constitute <1% of the emulsion-amplified library (E and
F). We monitored the fate of parasites (PBR and P1R populations). Both parasite populations are enriched during BA (E). (F) In EmA, the majority
of the clones from the parasite populations increased by <3 (within the 99% confidence interval, as defined in Figure 5A).
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suggested that sequencing results contain a large number
of point mutations (Supplementary Figure S12). Point
mutations are not the result of phage amplification, and
they originate from PCR or sequencing errors (63). For
every abundant sequence, we identified a large number
of mutants (MUT) in the library (Supplementary Figure
S13A and B). Their abundance was 1–5% of the parent
sequence (Supplementary Figure S13C). We developed an
algorithm that tagged and removed MUT errors
(Supplementary Figure S14) to create mutation-free
(MUT�) libraries with a normalized Hamming distance
profile (Supplementary Figure S12). The other known
source of error is formation of hairpins during sequencing
(64); it can change NNK structure (NNM errors) and
skew the copy numbers in forward (F) versus reverse (R)
reads (Supplementary Figures S14 and S15). We observed
that in libraries made by intersection (F\R) instead of
union (F[R) of reads, MUT and NNM errors were
reduced but not eliminated (Supplementary Figures S14
and S15).
Our standard processing of sequencing data could be

designated as (F[R, MUT+, NNM�) (union of F and
R reads, MUT were not removed, NNM sequences were
removed). The entire manuscript could be re-analyzed
using more stringent processing such as (F[R, MUT�,
NNM�) or (F\R, MUT�, NNM�). This processing
changed the apparent size of the libraries from 3.2
million for Naı̈ve(F[R, MUT+, NNM�) to 260,000 for
Naı̈ve(F\R, MUT�, NNM�). The major conclusions of
the article, however, were largely unchanged. The size
of the parasite population and the number of sequences
identified in the literature varied by �5% (Supplementary
Figure S16). We observed an increase in copy number in
bulk amplification and no increase in emulsion amplifica-
tion (Supplementary Figure S16). Even the most stringent
populations, such as (PTR \ PBR) defined by multiple BR
on two different sequencing platforms, could contain a
few erroneous sequences. Still, we believe the method
described here provides one of the most rigorous ways
for the prospective identification of parasite sequences.
The errors could be further decreased with advances in
deep-sequencing techniques and improved error-analysis
algorithms.

DISCUSSION

For libraries made from 109 transformants of randomized
DNA vectors, the expected abundance of each sequence is
0.0000001% (65). However, our data indicates that as the
DNA is translated and the naı̈ve library is produced in
bacteria, the abundance of parasitic sequences rose from
0.0000001 to >0.01% (over five orders of magnitude).
Additional amplification of this library in bacteria in-
creases the abundance of parasites to 1%. To our know-
ledge, this is the first time naı̈ve libraries have been
characterized at this level. The analysis of diversity as a
result of amplification provides an explanation to several
problems commonly observed in the phage display litera-
ture: (i) the majority of published screens could identify
only a small number of binding clones; (ii) binding ability
of phage rarely correlates with its abundance in the screen;

(iii) screens against targets with multiple binding sites
(cells and tissues) identify only a few hits. These observa-
tions were summarized in several recent reviews (4,23). To
explain these observations, we proposed a 2D selection
model (23), which describes how phage display selection
and amplification drive collapse of diversity and lead to
identification of only a subset of binding sequences
(Figure 1). Deep sequencing data presented in this
report strengthens this model.

Loss of useful binding clones cannot be mitigated by
improved selection procedures: if multiple binders have
an equal selection pressure in binding (equal Kd) (66–68)
and have unequal selection pressures in amplification (dif-
ferent phage propagation rates), the ‘slow growing’ binder
always disappears from the selection and the ‘parasite’ is
always selected. Such loss presents no problem if the
screen aims to identify only one lead. Loss of binders,
however, precludes simultaneous identification of ligands
for multisite targets, such as mixtures of antibodies,
and surfaces of cells and tissues. To select diverse se-
quences for these targets, one must reengineer amplifica-
tion [e.g. use emulsion amplification (39)] or avoid
amplification entirely and use deep sequencing to run se-
lections without amplification (19). We note that for some
targets, the properties of the sequence that generate
stronger binding could be identical to those that enhance
amplification. Such a possibility has been proposed for
peptide libraries (22).

Parasites and censored clones

Makowski and coworkers, among others, introduced the
term ‘censorship’ to describe that some sequences are
improbable to find in the library (22). They linked censor-
ship to a specific pattern of amino acids at specific pos-
itions and they hypothesized that censored sequences
displayed on phage inhibit infection and production of
phage. Makowski also attempted to predict fast-growing
sequences using the same positional abundance algorithm
(22). Our report uncovers ‘parasites’, which do not have a
specific amino-acid sequence. Their high abundance
cannot be predicted from positional abundance of amino
acids. For example, if positional abundance was import-
ant, most of the point mutants of the parasites should
have high copy numbers as well (this hypothesis could
be easily rejected by searching for any mutants of
sequences in Figure 3C and D, see Supplementary
Figure S13). The biological mechanism that makes some
sequences ‘parasitic’ is already known: they emerge due
to mutation in the regulatory region of the phage
genome (37). This mechanism has been verified only for
one parasitic clone HAIYPRH but it is possible that emer-
gence of other parasites occur owing to a similar mechan-
ism. Since the displayed sequence is not related to
mutation in the regulatory region, it might not be
possible to predict parasitic sequences. Instead, parasites
have to be mapped prospectively for each batch of the
produced library by sequencing a portion of the naı̈ve
and amplified library.

Smith and coworkers predicted the existence of ‘para-
sites’ but they hypothesized that the incidence of
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mutations that yield parasitic clones are rare and such
mutations occur only after serial amplification (36). Our
large-scale sequencing suggested the opposite: parasitic
clones exist in the library immediately after generation;
however, they become visible to small-scale sequencing
only on serial re-amplification of the library. Deep-
sequencing and appropriate statistical analysis could
identify these parasites directly in naı̈ve libraries using
only one round of amplification.

Prospective mapping of parasitic clones in all libraries

Our analysis of parasitic clones in this report is based on
one lot of the phage library. NEB produced and sold >10
independent lots of their phage libraries (NEB, personal
communication). As these lots could contain different
sequences, our analysis does not contain all possible para-
sitic clones. This fact could explain the incomplete overlap
of ‘parasitic clones’ with literature clones in Figure 6.
Sequencing of all lots of all libraries produced to date
could provide a powerful bioinformatics resource for
analysis of past and future phage screens. Importantly,
this sequencing could be completed using only 1–2 deep-
sequencing runs of pooled libraries tagged by barcoded
primers (21,41)

The examples presented here were related to peptide
libraries identified via phage display. Identical steps can
be used to analyze polypeptide libraries from other screens
(e.g. RNA-, DNA-, ribosome-, bacteria- or yeast-display)
and RNA/DNA aptamers. The molecular mechanisms
that generate ‘parasitic’ sequences in RNA or DNA
libraries (69,70) are different from the mechanism that
leads to emergence of parasitic phage; the phenotypic
outcome—enrichment in amplification—can be readily
detected by deep sequencing. The online version of our
visualization software can be expanded to allow for
linking to existing databases that contain peptide or
nucleotide sequences. We anticipate that the analysis tech-
niques described in this report will improve analysis of
selection and amplification from all genetically encoded
libraries.

Emulsion amplification and generation of
parasite-free libraries

We believe that it should be possible to use emulsion amp-
lification to repair the collapse of diversity that occurs
during the generation of libraries in bacteria. The trans-
formation of bacteria in emulsions has been reported
(71,72). Large-scale emulsion-generation techniques to
produce 108–109 droplets are also known (73). This
large-scale transformation-in-emulsion could be used to
generate naı̈ve libraries with uniform sequence diversity.
Due to rapid development of techniques for generation of
monodisperse emulsions and their popularization in bio-
technology (74), we anticipate that such capabilities could
be achieved in a few years.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [47–50].
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