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Abstract. Electromagnetically induced transparency (EIT) and EIT-like effects
have been investigated in a wide variety of coupled resonant systems. Here,
a classification of the phase characteristics of the EIT-like spectral responses
is presented. Newly identified phase responses reveal unexplored operation
regimes of EIT-like systems. Taking advantage of these new phase regimes,
one can obtain group delay, dispersion and nonlinearity properties greatly
enhanced by almost one order of magnitude, compared to the traditionally
constructed EIT-like devices, all of which breaks the fundamental limitation (e.g.
delay–bandwidth product) intrinsic to atomic EIT and EIT-like effects. Optical
devices and electrical circuits are analyzed as examples showing the universality
of our finding. We show that cavity quantum electrodynamics (QED)-based
quantum phase gates can be greatly improved to achieve a phase shift of π . The
new phase characteristics are also believed to be useful to build novel doubly
resonant devices in quantum information based cavity QED, optomechanics and
metamaterials.
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1. Introduction

Electromagnetically induced transparency (EIT) has been intensively investigated in recent
decades [1, 2]. Extensive research efforts have been made in fundamental physics and exciting
applications. These include quantum information [3–5], lasing without inversion [6], optical
delay [7, 8] (sometimes called ‘slow light’ [9]), nonlinearity enhancement [10, 11] and precise
spectroscopy [12], pushing frontiers in quantum mechanics and photonics. EIT was first
observed in atomic media [1, 2]. Featuring a nearly transparent window in an ‘absorption’
spectrum, EIT-like effects are identified as a universal phenomenon in coupled resonant systems,
as shown in figure 1, in optics [13–16], mechanics and electrical circuits [17], plasmonics and
metamaterials [18–21] and hybrid configurations [22–26]. In these coupled resonant systems,
the basic underlying physical principle is the interference of fields instead of probability
amplitudes, as in a three-level atomic system [14]. This renders EIT-like systems flexible and
controllable candidates for diverse functional devices. Although, in physics, amplitude and
phase are generally viewed as equally important quantities, one tends to identify the EIT-
like effects from various new materials and structures only by reporting an EIT-like intensity
response; also, the phase characteristics of EIT-like effects remain unclear, compared to the
striking signature in intensity spectra.

In general, a physical resonant system can be characterized by its damping and driving
(sometimes called coupling in optics). The relationship between the two factors determines the
‘polarity’ of the resonance: here a resonator with coupling stronger or weaker than damping is
considered ‘positive polarity’ or ‘negative polarity’, respectively. It is important to note that the
response of the resonator to an input stimulus is strongly dependent on its ‘polarity’. A good
example is that, in optical domain, a resonator is typically differentiated to be under-coupled,
critically coupled or over-coupled [27]. As another example, in cavity quantum electrodynamics
(QED), strong coupling of a photon in the cavity mode with an intra-cavity atom or quantum
dot (QD) is a preferred operation regime [28, 29]. Not only as a physical concept, identifying
the ‘polarity’ of a resonator and constructing the desired ‘polarity’ of a resonator-based device
are essential for achieving many functional components in both classical physics [30–33] and
quantum physics [34–36]. Since the EIT-like effects are generally found in multi-resonant
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Figure 1. Various coupled resonant systems exhibiting EIT or EIT-like
transmission spectrum.

systems, it would be critically important to analyze and tailor the ‘polarity’ of each resonant
element.

In this paper, we reveal the existence of other phase regimes in EIT-like effects, besides
the well-known phase anomaly in atomic EIT, under the same EIT-like intensity response. We
classify them in terms of cavity ‘polarity’. New phase responses represent an unexplored aspect
of EIT-like systems. One can thus enhance dispersion and nonlinearity by almost one order
of magnitude compared to previous EIT-like devices, breaking the fundamental limitation (e.g.
delay–bandwidth product) intrinsic to atomic EIT and EIT-like effects. To show the universality
of new phase responses and the generality of their categorization, we analyze optical devices
and electrical circuits as examples. We also briefly discuss the impact of the new phase regimes
on important branches in physics (quantum information based cavity QED, optomechanics and
metamaterials), with an emphasis on the enhancement of quantum phase gates based on cavity
QED. A more than twice improvement of phase shift, as large as π , is obtained in the newly
indentified phase regime, which is highly desirable for basic quantum logic gates in quantum
computation.

2. Phase regimes of electromagnetically induced transparency (EIT)-like effects in
coupled optical resonators

2.1. Four types of phases with the same EIT intensity profile

First, we consider a coupled resonator system consisting of two identical optical microring
resonators between two waveguides in figure 2. The resonators are coupled to the waveguides
with power coupling coefficients c1, c2, c3 and c4. Although reported [15], this device is only
designed to have coupling coefficients that are all equal or very close to each other. Due to
cavity loss, the two resonators are under-coupled in reality. Here, we break the symmetry of
the coupling between the rings and the waveguides. For simplicity, the coupling between the
resonators is ignored. As an example, we consider Si3N4 cavities where the azimuthal mode
orders of the resonators are m1 = m2 = 129. The straight waveguides between the resonators
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Figure 2. Schematic of the optical coupled resonators.

have an equivalent mode order m3 = 47. The transfer function, Eout(ω)/Ein(ω), of this system
is derived using coupled mode theory (CMT) [37], where Ein(ω) and Eout(ω) are optical fields at
the ‘In’ and ‘Out’ ports in figure 2. The transmission and phase are defined as |Eout(ω)/Ein(ω)|2

and angle (Eout(ω)/Ein(ω)), respectively.
For simplicity, without losing generality, we first ignore optical loss and thus the ‘polarity’

of each cavity is determined by the relationship between the in-coupling (c1, c2, i.e. the
driving) and the out-coupling (c3, c4, i.e. the damping). In figure 2, c1 and c4 are chosen to
be 0.008 and 0.02, while c2 and c3 are set to be 0.01 and 0.04, respectively. By switching
the coupling coefficients of Ring 1 and Ring 2, respectively, we identify four types of phase
responses; they all have the same EIT-like intensity response, as shown in figure 3 (solid lines
in the transmission and phase profiles). With c1 = 0.008, c4 = 0.02, c2 = 0.01 and c3 = 0.04,
both resonators are under-coupled; the phase profile in figure 3(a) features a non-monotonic
shift across the resonance frequency. This was reported together with the EIT-like intensity
response [15]. Such a phase anomaly corresponds to the well-known phase characteristics in
atomic EIT phenomena [38], which we name Type I. When we switch c2 and c3, Ring 2 is
changed to the over-coupled regime, with Ring 1 still under-coupled. The exact same EIT-like
intensity response is obtained, but, intriguingly, the phase response is dramatically changed,
being monotonically increasing with frequency from 0 to 2π , as shown in figure 3(b). A similar
phase profile with the same intensity response in figure 3(c) can also be observed, when Ring
2 remains under-coupled and Ring 1 is turned to be over-coupled by switching c1 and c4.
These two 2π phase profiles in figures 3(b) and (c) correspond to different ‘polarity’ states
of the coupled resonators, which causes a different slope of phase change, which we name
Types II and III. Finally, by setting both resonators over-coupled, we obtain a phase shift of 4π

in figure 3(d), which is called Type IV. Note that the phase characteristics in the EIT-like effects,
called Types II–IV, have not been investigated in the literature.

Also in figure 3, we show the normalized power distributions of the four EIT types,
corresponding to the phase profiles above, with loss ignored. At the resonance frequency,
the accumulated optical power in the cavities greatly varies from type to type. To evaluate
the nonlinearity enhancement in the presented coupled-resonant system, one can treat it as
a nonlinear medium and calculate the nonlinear refraction (e.g. we consider third-order Kerr
nonlinearity here) [39]: 1n = n2 P/Aeff, where P is the optical power, Aeff is the effective mode
area and n2 is the Kerr nonlinear index related to χ (3) by n2 = 3/(4ε0cn)Re(χ (3)) [40]. This
way, the nonlinear refraction is 1n = 3Re(χ (3))P/(4ε0cn Aeff), which is proportional to the
product of P and Re(χ (3)). Therefore, the EIT-like resonance enhancement to the input optical
power in our case is equivalent to an χ (3) enhancement in atomic EIT media [2], to obtain
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Figure 3. Transmission and phase spectra of the EIT-like effect in coupled optical
resonators and corresponding power distributions for (a) Type I, (b) Type II,
(c) Type III and (d) Type IV, respectively. Transfer characteristics are obtained
with both coupled mode theory (CMT), denoted by solid lines, and the finite
element method (FEM), denoted by red circles. Power distributions are also
obtained with both CMT and FEM.

the same nonlinear refraction 1n. Large power enhancement, i.e. a strong χ (3) nonlinearity
enhancement is obtained in a certain ring, when it is turned to be over-coupled. In Type I
and II, χ (3) nonlinearity enhancements are 37.31 and 149.53, respectively; while a large χ (3)

enhancement of 317.12 is obtained in Type III and Type IV, which is 8.5 times that in Type I
and 2.1 times that in Type II. In addition, we note that the power enhancement factors in Ring 1
are the same for Type I and Type II in figures 3(a) and (b). This is because Ring 1 has its
‘polarity’ unchanged in the two types. A similar trend is also found with Ring 2, as shown
in figures 3(a) and (c). That is, the power distribution in one of the two coupled resonators is
dominantly determined by its own ‘polarity’, with negligible influence from the other resonator,
although optical fields in the two resonators strongly interact when the EIT-like effect occurs.

The numerical simulation of the coupled resonator system in figure 2 is conducted using a
finite-element-method (FEM) solver, which verifies the results obtained with CMT. In order to
have the same parameters as above, we set the waveguide width to be 330 nm. With azimuthal
mode orders m1 = m2 = 129, the ring resonators have a radius of 20 µm and the resonance
wavelength is calculated to be 1553.9 nm. To realize the above coupling coefficients: 0.008,
0.01, 0.02 and 0.04, we locally taper the widths of the straight waveguides in the coupling
regions to be 430, 415, 366 and 284 nm, respectively. Note that the distance between the central
lines of the ring-shaped waveguides and straight waveguides is 1 µm. In excellent agreement
with the analytical results by CMT, four types of phase responses with almost unchanged
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EIT-like transmission are observed, as shown by red circles in figure 3. We also show power
distributions from FEM simulations for the four phase regimes, which are almost the same as
those from CMT.

2.2. Physical origin of the newly identified EIT phase regimes

To gain a better understanding of the phase characteristics in the EIT-like effects, we use
the dynamic CMT [41] to describe the coupled resonator system. The straight waveguides
are assumed to have frequency-independent phase shifts near the resonance and are set to
be lossless, since optical power is mainly confined in the cavities. The dynamic equations
describing the evolution of energy in the resonators are:

da1

dt
= (−iω1 − κ1 − κ4 − γ1)a1 + i

√
2κ1 Ein + (i

√
2κ4)(i

√
2κ3a2), (1)

da2

dt
= (−iω2 − κ2 − κ3 − γ2)a2 + i

√
2κ2 Ein + (i

√
2κ2)(i

√
2κ1a1). (2)

The output electric field is expressed as

Eout = Ein + i
√

2κ1a1 + i
√

2κ2a2, (3)

where Ein and Eout are the electric fields at the ‘In’ and ‘Out’ port; a j( j = 1, 2) is the energy
amplitude in the jth ring and is defined as a j = |a j |e−iωt; κk(k = 1, 2, 3, 4) is the cavity decay
rate due to coupling, which is related to ck by κk = ckvg/(4π R); γ j and ω j( j = 1, 2) are the
cavity decay rates due to cavity loss and the resonance angular frequency of the jth resonator,
respectively. The two resonators have the same resonance frequency ω1 = ω2. Solving these
equations, we obtain the transfer function for the system:

T =
Eout

Ein
=

A1 B1

A2 B2 − 4
√

κ1κ2κ3κ4
, (4)

where A j and B j( j = 1, 2), related to Ring 1 and Ring 2, are defined as A j = i(ω − ω1) −

(−1) jκ1 − κ4 − γ1 and B j = i(ω − ω2) − (−1) jκ2 − κ3 − γ2, respectively.
From equation (4), we note that the denominator remains the same when the coupling

factors are switched; the overall spectral phase of the coupled resonator system is changed only
because of the change in the positions of the zeros of the transfer function. With loss neglected
(i.e. γ1 = γ2 = 0), the two zeros, Z1 = κ1 − κ4 and Z2 = κ2 − κ3, are determined purely by the
difference between the cavity decay rates due to coupling. For Type I, where κ1 < κ4 and
κ2 < κ3, Z1 and Z2 are both on the lower half complex frequency plane and the coupled
resonators work as a minimum-phase system [42]. If the ‘polarity’ of one ring is switched,
one of the zeros is shifted to the upper half plane and the change of phase near the resonance is
increased, as shown in figures 3(b) and (c). When both rings are over-coupled and Z1 and Z2 are
on the upper half plane, the system works in the maximum-phase regime, with a maximum phase
shift of 4π in figure 3(d). In this process, the spectral amplitude of the EIT-like transfer function
does not change. Clearly, the expression of the transfer function derived from the dynamic CMT
provides a mathematical proof of the existence of the presented phase characteristics and their
relationship to the ‘polarity’ of the cavities, which is also physically intuitive.

Intriguingly, it seems that only the Type I phase satisfies the Kramers–Kronig relations,
with the EIT-like amplitude response. In fact, the Kramers–Kronig relations hold for the real
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Figure 4. Panels (a), (b), (c) and (d) are real (solid line) and imaginary (dashed
line) parts of the EIT-like complex transfer functions for the coupled resonators
in Types I, II, III and IV, respectively.

and imaginary parts of the transfer function of our casual coupled resonance system, which is
explained in [43]. Our simulation also confirms this by showing the real and imaginary parts
over frequency in figure 4. However, the amplitude and phase responses of the system are
not governed by the Kramers–Kronig relations [43], except for the minimum-phase operation
regime (i.e. Type I). In Type I, the zeros of the transfer functions, i.e. Z1 and Z2, are both
negative, making the natural logarithm of equation (4) analytic in the upper half of the complex
frequency plane and the amplitude and phase of the transfer functions a Hilbert transform
pair [43]. Structure-induced phase and dispersion are actually designable; many non-minimum-
phase devices are broadly used in various applications [42, 44].

2.3. Enhanced group delay and nonlinearity in the new EIT phase regimes

A highly interesting feature of EIT and EIT-like effects is the great reduction of the group
velocity of light [7, 15, 16], sometimes called ‘slow’ light. Although different physical systems
and devices have been demonstrated for ‘slowing’ light, the group delay is always produced via a
phase anomaly (i.e. Type I phase in this phase) and enhanced through narrowing the linewidth of
the EIT-like transmission. There is a well-known trade-off between group delay and bandwidth,
which is intrinsic to atomic EIT and EIT-like effects with a phase anomaly. Figure 5(a) shows the
group delays (τd) normalized to the cavity round-trip time (τc) versus frequency detuning, with
all the parameters the same as in figure 3. The group delay is obtained using CMT and is defined
as τd = ∂(angle(Eout(ω)/Ein(ω)))/∂ω. With the same intensity response, Type IV produces the
largest delay on the resonance, which is almost four times that given by the commonly used
Type I phase. Moreover, Type IV exhibits the largest bandwidth of delay. Therefore, the newly
identified phase regimes, particularly for Type IV, break the fundamental limitation set by the
delay–bandwidth product in the traditional EIT-like effects. There are the negative or zero group
delay regions in Type I, which seems interesting that fast light might be generated. But these
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Figure 5. (a) Normalized group delay in four types of EIT-like systems. The
role of cavity loss on (b) group delay, (c) delay–bandwidth product and (d)
nonlinearity enhancement, respectively.

regions correspond to the EIT valleys in the amplitude response, where optical loss is high and
therefore are hard to utilize for practical applications.

With optical loss taken into account, the group delay for all the four types decreases with
loss, as shown in figure 5(b). The decrement rate is almost the same, i.e. Type IV becomes
more advantageous as a delay element, compared to other types. For example, as the loss
increases from 0 to 0.5 dB cm−1, the group delay in Type IV increases from 3.8 to 5.3 times
that in Type I. An interesting phenomenon is found in figure 5(c): the four types of EIT-like
effects have different trends in the delay–bandwidth product (τd × 1 f ) as the loss changes,
where 1 f is defined as the full width at half maximum of the normalized group delay. The
commonly addressed phase, Type I, has a delay–bandwidth product decreasing with loss. When
the resonant system becomes more over-coupled transitioning from Type I to Type IV, the
delay–bandwidth product can even increase with loss (see, e.g. Types II–IV in figure 5(c)). With
a loss of 0.5 dB cm−1, the delay–bandwidth product in Type IV is 11.1 times that in Type I. Thus,
it is concluded that Type IV is preferred for group delay enhancement.

We study the nonlinear property of the system by comparing two configurations with
the lowest and highest nonlinearity enhancements, i.e. Types I and IV. Figure 5(d) shows
that, as loss increases, the χ (3) enhancements for both types decrease. Note that the ratio of
the χ (3) enhancements between Types IV and I remains almost the same, between 8.5 and
7.2. Therefore, properly choosing the operation regime of phase in EIT-like coupled resonant
systems is critically important for both group delay and nonlinearity, which can result in one
order of magnitude difference.

3. Phase regimes of EIT-like effects in coupled LC resonant circuits

The phase characteristics identified above can be universally existent in various physical systems
with coupled resonators. We note that the concept of the ‘polarity’ of a resonator is applicable
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Figure 6. Coupled LC resonant circuit exhibiting different EIT-like responses.

to various physics branches. For example, an electrical resonator with no resistance can be
viewed as a lossless cavity and changing the coupling coefficients can alter its ‘polarity’. We find
different phase responses of the EIT-like transmission profiles in electric circuits with coupled
LC resonant structures, as an example. We numerically analyze the circuit shown in figure 6
using a circuit emulation tool. Port A has the incident and reflected waves labeled a1 and a2

in figure 6 and Port B has the incident and reflected waves named b1 and b2. The S-parameter
describing the response at Port A is defined as

S11 =
a2

a1
. (5)

The circuit in figure 6 has two LC resonators, as shown in the dash-line boxes; their ‘polarities’
are controlled by the in- and out-coupling coefficients determined by Lk and Ck (k = 1, 2, 3,
4). Setting L1 = 0.208 nH, C1 = 4.8 pF, L2 = 0.2 nH, C2 = 5 pF, L3 = 0.217 nH, C3 = 4.6 pF,
L4 = 0.204 nH, C4 = 4.9 pF, L = 1 nH and C = 1 pF, we have the product of Lk and Ck (k = 1,
2, 3, 4) equal to the product of L and C. Thus, all the LC resonators have the same resonance
frequency. As shown in figures 7(a) and (b), the magnitude response of S11 is featured by the
EIT-like profile, which has a non-monotonic phase, similar to Type I in the optical resonators
above. By switching Lm and Cm (m = 1, 2) as well as Ln and Cn (n = 3, 4), respectively, we
observe the same EIT-like transmission and a 4π phase profile in figures 7(e) and (f). This
is an analogue of the Type IV example above. When we set L1 = 0.195 nH, C1 = 5.12 pF,
L2 = 0.208 nH and C2 = 4.8 pF with the rest unchanged, a monotonic phase shift of 2π is
observed, similar to the results in Types II and III. Until now, all the phase characteristics in
the optical coupled resonators were identified in the electric system.

To understand the electrical circuit in figure 6, the LC resonant structures enclosed in the
dash-line boxes can be treated as counterparts of the optical resonators in figure 2 [45]. The
sub-circuits consisting of two inductors and one capacitor on both sides of the LC resonators
are analogous to the couplers between the optical resonators and waveguides near the resonance
frequency, with the ‘coupling coefficients’ determined by the inductance and capacitance by
κk = µ2

k/2 = Ck/(2C Lk) (k = 1, 2, 3 and 4) [45]. The two electrical resonators are connected
(i.e. coupled) by a wire between L2 and L4. In figures 7(a) and (b), both LC resonators can
be regarded as under-coupled with κ1 = 1.152 × 1010 rad s−1, κ2 = 1.250 × 1010 rad s−1, κ3 =

1.058 × 1010 rad s−1 and κ4 = 1.201 × 1010 rad s−1. The upper LC resonator is shifted to be over-
coupled in figures 7(c) and (d) with κ1 = 1.311 × 1010 rad s−1 and κ2 = 1.152 × 1010 rad s−1 and
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Figure 7. EIT-like magnitude spectra of S11 and corresponding phase profiles.
In (a) and (b), L1 = 0.208 nH, C1 = 4.8 pF, L2 = 0.2 nH, C2 = 5 pF, L3 =

0.217 nH, C3 = 4.6 pF, L4 = 0.204 nH, C4 = 4.9 pF, L = 1 nH and C = 1 pF;
(c) and (d) correspond to L1 = 0.195 nH, C1 = 5.12 pF, L2 = 0.208 nH and
C2 = 4.8 pF, with the rest of the parameters unchanged; (e) and (f) are obtained
by switching Lm and Cm (m = 1, 2) as well as Ln and Cn (n = 3, 4) in (a) and
(b), respectively.

the ‘polarity’ of the lower LC resonator is unchanged. In figures 7(e) and (f), with Lm and
Cm (m = 1, 2) as well as Ln and Cn (n = 3, 4) in (a) and (b) switched, respectively, both LC
resonators are simultaneously switched to be over-coupled. In this way, one can expect to obtain
the non-monotonic 2π and 4π phase profiles identified in the optical systems.

4. Application in quantum phase gate based on cavity quantum electrodynamics

Potentially, some important physics branches can benefit from the new phase regimes in EIT-like
effects. These include, but are not limited to, (i) an enhanced delay/memory and nonlinearity in
all-optical [16] and optomechanical [23, 24] resonator systems, (ii) a possibly new parameter
space of dispersion engineering of metamaterials [46–48] and (iii) novel quantum phase gates
based on cavity QED [22, 35, 36]. Here, as an example, we show how the newly identified phase
regimes of EIT can be used to enhance the performance of quantum phase gates.

Cavity QED is the study of the interaction between light and an atom/QD placed in a cavity.
As a fundamental quantum logic operation, a controlled-phase gate can be realized based on
cavity QED with optical cavities [49]. It has been shown that the accumulated phase of cavity-
reflected light is dependent on the number of photons interacting with the atom/QD, which can
be controlled by a pump light [35]. The maximum phase shift is obtained in the case of atom/QD
saturation, when the pump power is increased to a certain level [36]. In this situation, the EIT-
like cavity–atom/QD spectrum approaches the Lorentzian shape of an empty cavity. Therefore,
the maximum phase shift can be calculated as the phase difference between the cavity–atom/QD
and ‘empty cavity’ operations.

An on-chip realization of the controlled quantum phase gate based on a microring–QD
system is shown in figure 8, which can be generalized with the optical microring
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Figure 8. Configuration of a cavity–QED based quantum phase gate.

resonator replaced by any other optical cavities, such as the photonic crystal cavity [35],
microsphere/microdisk [50] and Fabry–Pérot cavity [34]. The side-coupled cavity–QD system
imposes an additional optical phase, which can be measured by interfering the affected optical
wave with a reference beam, based on a Mach–Zehnder interferometer, as shown in figure 8. The
signal detected at the output port is Iout(ω) = |Eout(ω)|2 = |[(1 − η)ei1ϕ + ηt (ω)Es(ω)]|2, where
Es(ω) is the electric field of the input signal, t (ω) is the transfer function of the cavity–QD
system, η is the amplitude splitting ratio of the Y-coupler and 1ϕ is the phase difference between
the interferometer’s two arms. The phase response of the cavity–QD system, i.e. angle (t (ω)),
can be obtained through fitting of the detected power [35]. The detected signal spectrum changes
from EIT to electromagnetically induced absorption as 1ϕ changes from 0 to π . Here, we set
η = 0.15 and 1ϕ = π , to produce similar results as in [35].

First, we consider the cavity–QD device operated with a signal light only. The system can
be modeled with the dynamic CMT model similar to that in [22]; the transfer function t (ω) is

t (ω) =
[i(ω − ωr) + 1

2(κ − γr)][i(ω − ωd) −
1
2γd] + g2

[i(ω − ωr) −
1
2(κ + γr)][i(ω − ωd) −

1
2γd] + g2

, (6)

where ωr and ωd are the resonance frequencies of the optical microring cavity and QD,
respectively, γr denotes the cavity decay rate due to the loss, γd denotes the QD spontaneous
emission rate, κ is the cavity decay rate due to the coupling and g is the vacuum Rabi frequency
of the QD. We note that γd can be negligible compared with γr [35]. Thus, the ‘polarity’ of the
cavity–QD is determined by the sign of κ − γr. Here, we set ωr = ωd = ω0, κ/2π = 0.693 GHz,
g/2π = 0.193 GHz. As an example, we first consider γr/2π = 1.078 GHz (γr > κ), which
corresponds to a loss of 3.95 dB cm−1 (with a ring radius of 24.7 µm) in the optical cavity. In
this case, t (ω) feathers an EIT-like intensity response with a phase anomaly. The detected power
and phase spectrum of t (ω) is shown in figures 9(a) and (b) in solid lines and is similar to the
results in [35]. Then, when γr/2π is decreased to 0.385 GHz (γr < κ), i.e. a loss of 1.40 dB cm−1

in the cavity, the operation regime is switched to the 4π phase response with a small change in
transmission, as shown by the solid lines in figures 9(c) and (d).

If a pump light is added, which saturates the QD, i.e. both Es and Ep are sent into
the ‘In’ port, the transfer characteristics of the cavity–QD system can be obtained using the
‘empty cavity’ model. The spectral responses for γr/2π = 1.078 GHz and γr/2π = 0.385 GHz
are plotted with dashed lines in figure 9. A pump-light-controlled phase shift is calculated at
a frequency (blue vertical line), where the maximum phase difference occurs within the phase
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Figure 9. Detected power at the ‘Out’ port and phase spectrum of the transfer
function of the cavity–QD system, i.e. angle (t (ω)). Panels (a) and (b)
correspond to the case where κ < γr; (c) and (d) correspond to the case where
κ > γr. Two operation conditions are considered: (i) cavity–QD operation with
only signal light (Es) as an input (solid line); (ii) ‘empty cavity’ operation with
both signal light (Es) and pump light (Ep) as inputs (dashed line).

anomaly regime, which is 0.25π in our case. This phase modulation is close to the phase shift
of 0.24π demonstrated in [35]. However, the phase shift increases sharply to 0.61π in the 4π

phase regime at the same frequency, which is 2.4 times that in the phase anomaly regime. If
the operating frequency (blue vertical line) is blue-shifted, one can have a much larger phase
difference in the 4π phase regime, but a smaller one in the phase anomaly regime. Note that
a phase shift of π can thus be achievable at 1ω = 0, which is highly desirable in quantum
computation [49] and could hardly be obtained before. The transmission at 1ω = 0 is now
around 50%, as shown in figure 9(c), which could be further increased through configuration
improvement.

5. Conclusion and outlook

We have shown that differentiating phase regimes reveal unexplored aspects of the extensively
studied EIT-like effects. One could gain a more comprehensive understanding on the operations
of EIT-like devices and thus achieve the most desirable device performance, which can be
dramatically different if the phase regime is switched. Very recently, it was found that coupled
optical ring resonators in an embedded configuration [51] also exhibit greatly designable power
and nonlinearity enhancement factors [52], which are associated with different EIT phase
regimes. This serves as another good example showing the benefit of choosing an EIT phase
regime wisely.

Because of the universality shown above, it is believed that the newly identified phase
characteristics in the EIT-like systems can be generalized to a wide variety of coupled resonant
systems. As an example, the cavity-QED-based quantum phase gate has been dramatically
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improved by increasing the phase tuning range up to π . Therefore, one may find other possible
operation regimes in the exciting research reported in [13–26, 35, 36, 46–48] as examples, which
have never been recognized and exploited.
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[1] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107–10
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633–73
[3] Lvovsky A I, Sanders B C and Tittel W 2009 Nature Photon. 3 706–14
[4] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87–90
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[37] Yariv A 2000 Electron. Lett. 36 321–2
[38] Xiao M, Li Y-Q, Jin S-Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666–9
[39] Agrawal G P 2001 Nonlinear Fiber Optics 3rd edn (New York: Academic) p 18
[40] Hon N K, Soref R A and Jalali B 2011 J. Appl. Phys. 110 011301
[41] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall)
[42] Lenz G, Eggleton B J, Ciles C R, Madsen C K and Slusher R E 1998 IEEE J. Quantum Electron. 34 1390–402
[43] Heebner J, Grover R and Ibrahim T 2008 Optical Microresonators: Theory, Fabrication, and Applications

(London: Springer) p 94
[44] Kop R H J, de Vries P, Sprik R and Lagendijk A 1997 Opt. Commun. 138 118–26
[45] Van V 2006 J. Lightwave Technol. 24 2912–9
[46] Kildishev A V, Cai W, Chettiar U K and Shalaev V M 2008 New J. Phys. 10 115029
[47] Caloz C 2011 Proc. IEEE 99 1711–9
[48] Yu N, Wang Q and Capasso F 2012 Laser Photon. Rev. 6 24–46
[49] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[50] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
[51] Zhang L, Song M, Wu T, Zou L, Beausoleil R G and Willner A E 2008 Opt. Lett. 33 1978–80
[52] Zhou X, Zhang L, Armani A M, Beausoleil R G, Willner A E and Pang W 2013 Opt. Express 21 20179–86

New Journal of Physics 15 (2013) 103033 (http://www.njp.org/)

http://dx.doi.org/10.1364/JOSAB.20.002125
http://dx.doi.org/10.1103/PhysRevLett.93.083904
http://dx.doi.org/10.1103/PhysRevLett.92.127902
http://dx.doi.org/10.1126/science.1154643
http://dx.doi.org/10.1038/nature06234
http://dx.doi.org/10.1049/el:20000340
http://dx.doi.org/10.1103/PhysRevLett.74.666
http://dx.doi.org/10.1063/1.3592270
http://dx.doi.org/10.1109/3.704327
http://dx.doi.org/10.1016/S0030-4018(97)00061-8
http://dx.doi.org/10.1109/JLT.2006.875951
http://dx.doi.org/10.1088/1367-2630/10/11/115029
http://dx.doi.org/10.1109/JPROC.2011.2114631
http://dx.doi.org/10.1002/lpor.201100019
http://dx.doi.org/10.1103/PhysRevA.71.013817
http://dx.doi.org/10.1364/OL.33.001978
http://dx.doi.org/10.1364/OE.21.020179
http://www.njp.org/

	1. Introduction
	2. Phase regimes of electromagnetically induced transparency (EIT)-like effects in coupled optical resonators
	2.1. Four types of phases with the same EIT intensity profile
	2.2. Physical origin of the newly identified EIT phase regimes
	2.3. Enhanced group delay and nonlinearity in the new EIT phase regimes

	3. Phase regimes of EIT-like effects in coupled LC resonant circuits
	4. Application in quantum phase gate based on cavity quantum electrodynamics
	5. Conclusion and outlook
	Acknowledgment
	References

