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ON ANALYZING THE EFFECTS OF POLICY INTERVENTIONS:

*
BOX-JENKINS AND BOX-TIAO VS. STRUCTURAL EQUATION MODELS

In recent years interest in applying quantitative methodologies to

policy-related problems has increased markedly throughout the social sci-

ences. This paper outlines and contrasts two approaches to estimating the

effects of reforms, policy innovations, and similar discontinuous "interven-

tions" or "treatments" on phenomena that are observed through time. The

sorts of substantive problems for which the intervention analysis techniques

developed here are applicable include, for example, the impact of the intro-

duction or repeal of capital punishment on murder rates; the effect of govern-

ment incomes policies on wage and price inflation; and the contribution of

women's suffrage, personal registration and residency laws, new ballot forms,

and so on to the secular decline in American electoral turnout since the

1890's.

The first scheme for intervention analysis treated in this paper is

based on the time-series models of Box, Jenkins, and Tiao (Box and Jenkins,

1970; Box and Tiao, 1965, 1973). This approach owes much to the conceptual

work of D.T. Campbell (Campbell, 1963, 1969; Campbell and Stanley, 1966)

which emphasizes that post-hoc time-series analysis can be viewed quasi-

experimentally to evaluate the impact of interventions by government agencies

*
I am grateful to James Bennett, Arthur Goldberger, and Peter Lemieux

for comments on an earlier draft of this paper.
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and other institutional actors. Box-Tiao and Box-Jenkins models represent

time-series observations as the realization of a linear stochastic process

of autoregressive, moving average, or mixed autoregressive - moving average

form. Hence no attempt is made to model the causal structure generating

the time-series data. Intervention occurrences are represented by binary

variables (0,1) and intervention effects (changes in the slope and/or level

of the time-series) are assessed by estimating intervention "transfer func-

tions."

The second approach to intervention analysis considered here is the so-

called structural equation method. Structural techniques were developed pri-

marily in economics but have subsequently gained wide acceptance in all of

the social sciences. (See, for example, Blalock, ed., 1971; Goldberger,

1972; and Goldberger and Duncan, eds., 1973.) The principal difference be-

tween structural equation and Box-Tiao modelers is that the former specify

and estimate intervention effects in the context of a system of equations

designed to represent the causal relationships underlying the realizations

of endogenous time-series. The structural approach is therefore geared to

determining how and to what extent reforms or policy innovations influence

endogenous phenomena as they are transmitted through a dynamic causal structure.

These models have been explicitly linked to Campbell's methodological

perspective by the educational methodologists Glass, Gottman, Maguire and

Willson (Glass, 1968, 1972; Glass, Willson, and Gottman, 1972; Maguire and

Glass, 1967). A number of studies by political scientists have also employed

Campbell's perspective, but these analyses have relied on statistical procedures

that have weak justification in the time-series context. See, for example,

Caporaso and Pelowski, 1971; and Duvall and Welfling, 1973, which are con-

veniently collected along with related studies in Caporaso and Roos, eds., 1973.
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We develop what appear to be lines of convergence between the two ap-

proaches in the final section.

I. The Box-Tiao (Box-Jenkins) Approach

Imagine that we are dealing with a time-series of equally spaced ob-

servations on some endogenous or dependent variable Yt, t = 1, 2, ... , T, and

that we want to determine the impact of some exogenous treatment or policy

motivated intervention that occurs, say, at the nth period, Y1, ... , Yn' '''' t'

The Box-Tiao approach employs a model of the general form

(1) Yt = f(K, I) + N tt = 1 2, ... , T

where f(K, I) denotes an unspecified function of unknown parameters and as-

sociated binary intervention variables, respectively, and Nt denotes stochastic

noise and deterministic time effects.2

Suppose that the intervention occurring at the nth period is sustained

thereafter.. Only the pre-intervention Y series is therefore driven entirely
t

by stochastic noise and deterministic time trends. Hence:

(2) Nt = Y - f(K, I) = Y for t < n.
t t - - t

Since these Yt observations are unperturbed by external intervention, they

may be analyzed to determine a time-series model for the Nt component of

2 Actually Box and Tiao (1973) include deterministic time effects (func-

tions of time) in the first term on the right-hand side of (1), rather than

in the Nt component. The specification given here will make matters clearer

later on.
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3
(1). This N model provides a stochastic benchmark against which thet

intervention effects function f(K I) can be specified and estimated.

In the Box-Tiao framework the Nt process takes the form of an autoregressive,

moving average, or mixed autoregressive - moving average model of order

p, d, q:

d
(3) 4 (B)(1 - B) Y = 0 + 6 (B)a

p t 0 q t

where: B is a backshift operator such that BYt =t-, B Yt t-i

(1 - B) = Vd is a backward difference operator such that

2 2
(1 - B)Y = Y - Y = VYX, (1 - B) Y t(1 - 2B + B )Yt t t- ttt

2
=VY - VY = V Y , etc.,

t t-1 t

p(B) = 1 B 2 p

6 (B) = 1 - 0 B - 2 B2 - . - B are autoregressive and moving

average polynomials in B of order p and q, respectively (with roots

outside the unit circle),

In some situations the model for Nt can be developed by analyzing all

Yt observations that are not in the immediate vicinity of the initial inter-

vention point, Y n. This would apply, for example, in cases in which a sus-

tained intervention is believed to produce an immediate change in the level

of the series, or in cases in which a one-shot, nonsustained intervention

produces an effect that dies out quickly. See the discussion below.
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0 is a constant which indexes a deterministic polynomial 
time trend

d
of degree d in the Y . (Notice that this implies that V Y has a non-

t t

zero mean equal to 0 /1 - '- - p ), and

a is a sequence of independently distributed, random variables with
t

2
mean zero and variance a .

a

* * d d
Defining Yt as the d-th difference of Yt, so that Yt = (1 - B) Yt= V

the autoregressive - moving average model may be written in the familiar

form of a multiple regression equation

*
(4) p (B)Yt = 0 + 6 (B)at

(1 - #B -..- $Bp )Y = + (1 - e B - .. - 6B)a
p t 0 q t

* * *
Y - $ Y -...- $ Y =0 + a - a - . - a a
t 1 t-1 p t-p 0 t 1 t-l q t-q

* * *
Y = 4Y + ... + +Y +06 + a -G6a - ... -06a
t 1lt-1 p t-p 0 t 1lt-l q t-q

* *
Y = 60+ $Y - E 6a +a.,
t 0 p t-p q t-q t

p q

Despite the somewhat formidable notation, equation (4) shows that the

Box-Tiao scheme for the stochastic noise component in the general inter-

vention model of (1) is actually quite simple. It asserts that the d-th

d *
difference (V ) of the unperturbed Yt series, denoted Yt, is generated by

a linear combination of autoregressive terms and moving average shocks.

* *
Hence, Y depends on p lagged terms Y with coefficients ($, '. .* . )

t t-p a p

and on a moving linear sum of q random shocks a twith coefficients
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(1, - 1, . . ., -6 ). A nonzero constant term 60 accomodates deterministic

time trends of order d in the undifferenced Yt, i.e., if = + 80td +

* d
stochastic terms, then Y = V dY =0 + stochastic terms.

t t 0

The first task in the Box-Tiao method is to derive a model for the

Nt component in (1) by fitting an appropriately specified version of (3)

or (4) to the Yt observations that are not perturbed by external interven-

tions. As developed by Box and Jenkins (1970), this involves an iterative

process of tentative model specification, preliminary estimation, a series

of diagnostic checks, possible model respecification, and so on.

Specification

The basic noise model in (3) or (4) is fully specified by choosing the

degree of differencing, d, the order of the autoregressive component, p,

and the order of the moving average component, q.

The degree of differencing, d, is chosen such that the differenced

series is stationary and hence varies about a fixed mean or equilibrium level

with variance independent of displacements in time and autocovariance de-

pendent only on the magnitude of lags in time. Stationarity therefore means

that E(Y t) = E(Y t-m) and Cov(Yt' t-k = t-m t-m-k) for all t, k,

and m. A stationary series will exhibit an autocorrelation function (pk

that dies out after moderate-to-large lag. (A "large" lag is on the order

of k = T/5.) Figure 1 shows hypothetical examples of the autocorrelation

functions of a nonstationary and a stationary time-series. Sample estimates

of the lag k autocorrelations (pk) are given by

T
E (Y t- I)(Y tk- I)

ttt=k

pk - 2 k = 1, 2, ..., T/5

E (Y - Y)
t=1
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Figure 1: HYPOTHETICAL AUTOCORRELATION FUNCTIONS FOR
NON-STATIONARY AND STATIONARY TIME-SERIES

A

l(a): Autocorrelation Function of a Stationary Time-Series

l(b): Autocorrelation Function of a Non-Stationary Time-Series

A'

-0/c
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and those of successive differences, V dY , d = 1, 2, ... , are calculated anal-

ogously. In practice it is rarely necessary that d exceed 2 and, typically,

d = 1 is sufficient to induce stationary behavior.

Having settled upon a degree of differencing sufficient to ensure sta-

tionarity, the orders of the moving average and autoregressive components of

(3) are tentatively specified by comparing the sample autocorrelation and

d
partial autocorrelation functions of V Y to the theoretical functions of

t

various autoregressive-moving average models. The theoretical behavior of

autocorrelation and partial autocorrelation functions, denoted as pk and

$kk' respectively, are readily derived through algebraic manipulation of (4)

for varying values of p and q. Such manipulations show that:

(1) Purely autoregressive processes of order p [AR(p)] have autocorrelation

functions that tail off and partial autocorrelation functions that cut off

after lag p. Hence, pk tails off and $kk = 0 for k > p in autoregressive

models.

(2) Purely moving average processes of order q [MA(q)] have autocorrelation

functions that cut off after lag q and partial autocorrelation functions that

tail off. Hence, pk 0 for k > q and $kk tails off in moving average models.

All homogeneous nonstationary series will exhibit stationary behavior

after suitable differencing, that is, the autocorrelations of the differences

d
V Y will "damp off", "tail off" or "cut off" as the lag k becomes large.

t

Occasionally it may be necessary to apply a transformation to the Yt in order

to obtain a well-behaved series. For example, a series driven by an exponen-

tial function of time is nonhomogeneous nonstationary and therefore should

be logarithmically transformed prior to specification and estimation.
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(3) Mixed autoregressive-moving average processes of order p,q [ARMA(pq)]

have autocorrelation functions that are a mixture of exponential and damped

sine waves after the first q-p lags and partial autocorrelation functions

that are dominated by a mixture of exponentials and damped sine waves after

the first p-q lags. Hence, neither pk nor $kk cut off in mixed models.

Since AR, MA, and ARMA time-series models are distinguishable by their

autocorrelation and partial autocorrelation functions, sample estimates of

these functions facilitate preliminary identification of p and q and permit

calculation of initial values of the parameters * and 0 . Figure 2 and
p q

Table 1 (derived from Box and Jenkins, 1970) put this into somewhat sharper

focus by displaying the autocorrelation functions, partial autocorrelation

functions, and related theoretical properties of some simple autoregressive,

moving average, and mixed autoregressive-moving average models.

Estimation

The specification process outlined above leads to a tentative choice of

p, d, and q, and yields preliminary guesses of the parameters $ and 0 .
p q

Recall that the autoregressive-moving average model is written most generally

as

(5) p (B) Vdyt =0 + 6 (B)at

* d d
Again, let Yt V Yt = (1 B) Yt .and rewrite (5) as

t t

-1 *
(6) a = 0 (B)[0 (B) Y -

t q p t 0
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Figure 2: TYPICAL AUTOCORRELATION (pk) AND PARTIAL

AUTOCORRELATION ($kk) FUNCTIONS FOR

VARIOUS STATIONARY AR, MA, AND ARMA MODELS

-2 02

2(a): Autocorrelation and Partial Autocorrelation
Functions for Various AR(2) Models

1

at

-1
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TABLE 1: SOME PROPERTIES OF SIMPLE ARMA MODELS OF ORDER (p, q)

Order

Behavior of pk

Behavior of $kk

AR (1)_

k
Pk =

kk = 0, for k > 1

MA (1)

Pk = 0, for k > 1

tails off, dominated by
damped exponential

Preliminary estimates from 4l = P P = -/(1 + 0 )

Admissible region

Order

-1 < $1 < 1 -1 < 01 < 1

AR (2) MA (2)

Behavior of pk k 1 lk-l + $2pk-2
(mixture of exponentials
or damped sine wave)

Pk = 0, for k > 2

Behavior of kk $kk = 0, for k > 2 tails off, mixture of ex-
ponentials or damped sine
wave

p1 (1 - P2)
Preliminary estimates from *l = 2

1 - p1

2
p2  p1

2 P 2
1 - p1

Admissible region

-6 (1 - 2)

P, +2 +2
1 2

-62
2 +2 2

1 2

-1 < 02 < 1; 02 + 0I < l;

62 - 6 < 1

Order

Behavior of pk

Behavior of kk

ARMA (1, 1)

k l p1, for k > 1

(decays exponentially
after first lag)

$11 = pl, thereafter tails

off dominated by damped ex-
ponential

(1 - $10l) ($ - 01)
Preliminary estimates from p = 2 1 1

1 + e1 - 2$ 61+ 1-

Admissible region -1 < 1 < 1; -1 < e < 1

2 l < 1

-1 < $ 2 < ;2 + $ 1 < 1;

P2 1 1~
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thereby obtaining an equation for the (independently distributed) "error"

term a . The model is estimated by choosing ($ 0, q , 0) in the admissible

parameter space 5 such that the sum of the squared errors

2
(7) S($ 0, ,0) E at is minimized.

Estimates (p , 9 , ) corresponding to a minimum of (7) are least-squares
pA

estimates, and evaluating (6) at ( p, 0 , a0) generates the residuals at'

(Notice that we ignore the problem of initializing the series.) In practice,

the minimization of (7) may be undertaken by a number of acceptable nonlinear

least-squares procedures, such as grid search, steepest descent, successive

5 Admissibility requires that the roots of the characteristic equations

$ (B) =1 - 4 B -..- $BP = 0,

6 (B) =1 -6 B- ... 6 B 0
q 1 q

(with B treated as an algebraic quantity) have roots outside the unit circle,

i.e., the solutions

B1, B2, ... , B

B1, B2, ... , B

must all be greater than one in absolute value. This means that the process

is stationary (if autoregressive) and invertible (if moving average) and

therefore converges to an equilibrium level. Notice that Table 1 gives the

admissible coefficient values for some simple ARMA models. For further dis-

cussion see Box and Jenkins, 1970 or Nelson, 1973a.



14

linearizations or some combination thereof.6 (Marquardt's (1963) compromise

between the latter two methods has been popular.)

Diagnostic Checks

If the fitted model is adequate, then the calculated residuals a
t

should behave as independently distributed random variates. This may be

formally tested by computing the residual autocorrelations

r t t-k
rk )2

t

and evaluating the test statistic (developed by Box and Pierce, 1970)

K 2
Q = (T-d) E rk (a) K > 20

k=l

6 Computer programs for Box-Jenkins ARMA model specification, estima-

tion, and forecasting are described in Box and Jenkins, 1973, appendix

(batch process programs are distributed by the Data and Program Library

Service, Social Systems Research Institute, University of Wisconsin,

Madison); Nelson, 1973a, appendix (batch process programs available by

writing to the author, Professor C.R. Nelson, Graduate School of Business,

University of Chicago); TSP/DATATRAN manual (Cambridge Project, M.I.T.,

interactive computer system accessible via the ARPA national network); and

the TROLL Reference Manual (available from Support Staff Coordinator, NBER

Computer Research Center, 575 Technology Square, Cambridge, Mass., inter-

active computer system accessible via the NBER's national network).
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which for large K is distributed as X2 with (K-p-q) degrees of freedom.

Q serves as a general or "portmanteau" criterion of model adequacy. A large

value is evidence of significant lack of fit and indicates that model

respecification is necessary. Patterns in the residual autocorrelations are

usually informative about the nature of the misspecification and should be

analyzed along the lines proposed earlier for specification of p and q.

A well-specified ARMA model should of course also satisfy more conven-

tional statistical criteria of adequacy. Thus the coefficient estimates

p, e 0 0 should be significantly different from zero, and the estimated
p q' 0

error variance, a2, should be less than that of alternative ARMA specifica-

tions.

Intervention Transfer Functions

The techniques outlined so far pertain to the specification, initial

estimation, and diagnostic checking of the Nt component of the general Box-

Tiao model in (1). As I noted earlier, the Nt process provides a stochastic

benchmark against which intervention-induced changes in the slope and/or

level of the endogenous Yt series can be determined. Recall that the inter-

vention effects part of the general model was expressed as f(K, I), and that

for the moment attention is confined to the case of a single intervention

occurring at the n-th period, which is sustained thereafter. Such an inter-

vention would be represented by the binary variable,

I =0 for t < n
t

=1 for t > n.

Let yt denote the "dynamic transfer" from It t, that is the influence of the

intervention on the endogenous variable, and replace f(K, I) in (1) with
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(8) y ' (B)
t 6(B) t-b

where: w(B) = w0 ~ W1B - . - s

6(B) = 1 - 6 B - ... B
1 r

are polynomials in B of degree s and r,

b is a delay (lag) parameter, and the system is stable.7

Hence, the impact of the intervention or the "transfer" from It is represented

by the linear difference equation

(9) 6(B) y = w(B) It-b

t -6 ly- _ 1- . - Sryt-r " w0It-b - wl t-b-l - wsIt-b-s

Yt =64-1 + .. + 6ryt-r + -O0t-b ~ w11t-b-1 ~ t-b-s

Stability requires that the roots of the characteristic equation

6(B) = 1 - 61B - ... - 6BrBr = 0

(with B treated as an algebraic quantity) lie outside the unit circle, i.e.,

the solutions B1 , B2 , ... , Br must all be greater than unity in absolute

value, which implies that the system eventually converges to an equilibrium

level. This exactly parallels the stationarity and invertibility conditions

of the ARMA model in (3) and means that the admissible regions for the

parameters are the same as those given in Table 1.
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which admits a wide variety of possibilities. Notice that when the inter-

vention is sustained indefinitely (It = 1 for all t > n), the response or

effect will eventually reach the equilibrium or steady state value
8

O ~ W 1 ~ - - s
1 -6 - . - 6 r

Figure 3 shows a few simple examples of transfer function responses

(taken from Box and Tiao, 1973) for s = 0; r = 0, 1; and b = 1. Suppose

that the (sustained) intervention is anticipated to produce a change in the

level of the endogenous series immediately following a one period delay.

The appropriate transfer function would be

(10) zt = WTht-1. (Figure 3a)

An intervention that generated a gradual change in the level of a series

could be represented by the model

8 Since is a stable or stationary process E( ) = E(yt 1)

* *

E(Yit-r) equals a constant, say y . Taking y as the initial conditions of

(9) gives

* * *

y- -6 1 y- . r- 0 t-b ~ s t-b-s'

Hence, if It is held indefinitely at the value +1, then

* O ~ 1 ~ s
- =1 - 6 - ...- 6

1 r

is the equilibrium value of y. Structural equation modelers will recognize

this as the equilibrium multiplier, which is discussed in the next section.
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(11) yt = 6 xt-1 + WO t-1

t 61B) =wot-1 (Figure 3b)

W0

t 1 - 61 B t-1

in which the rate of adjustment to a new equilibrium depends on 6 ' A slope

change intervention effect can be represented by taking 6 1 to unity, which

gives

(12) yt = ytl+ w0 t-1

yt(1 - B) = w0 t-1 (Figure 3c)

W0

t ~ l - B t-l'

This model never adjusts to a new equilibrium level and might be used to

characterize empirical situations in which convergence is very slow and oc-

curs far beyond the period of observation.

After a theoretically plausible intervention transfer function has been

specified (in practice, several alternatives might be entertained), it should

be adjoined to the noise model whose functional form has been established by

the procedures outlined previously. The parameters of the complete model

can then be estimated simultaneously in order to make inferences about the

impact of interventions. For example, given the general model

(13) Yt =t + Nt

+ 6 (B)a
= (B) t-b + q d (by eqs. 3 and 8)

65(B) t- (B)(1 - B)
p
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FIGURE 3: RESPONSES TO A SUSTAINED INTERVENTION FOR

Intervention
t

0 t-1

0 -

- SIB

f1 -p _ _
(b)

I - B

SOME SIMPLE TRANSFER FUNCTIONS

(a)

Response v 0

1

0

(C)
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suppose that analysis of the unperturbed Yt series establishes that the

noise process satisfies a first-order moving average in the first difference

(14) VNt =at -O 1at-1

(1 - B)Nt (1 - 01B)at

1 - 0B

t 1 - B at

Furthermore, suppose that the intervention event is believed to have produced

a gradual change in the level of the series which commences after a lag of 1

period and is parsimoniously expressed as a first-order dynamic response:

(15) yt =6 yt_l + wo0t-1

0 1
1 -6 B t-1

This leads to the full model

(16) Yt - 16B t1 1-B at t = 1, 2, ... T.

Clearing (16) of denominators (by treating the shift operator B as an

algebraic quantity) yields

(17) (1 - B)(1 - 6
1B)Yt = W0 (1 - B)It-1

+ (1 - 61 B)(1 - 1 B)at

(1 - B - 6 1B + 61B2 t = (1 - B)I t-

+ (1 - 01 B - 1B + 6 6 B 2)at
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Y t Y t - 6 Y t-l + 6 t Y = 'o (1 - B)I 1 + at
t t- 1 t-1 1 t-a t-1 t -

i 1t-i i 1t-i +l6lyt-2

VYt 6 VYt- + W0 Vt-l + at (6 + d1)at-1

+ 6 e1a t-2'

which can be estimated from the entire time-series by using the nonlinear

least-squares methods noted earlier. In particular, (17) implies regressing

VYt on VYt-1 and VIt-1 in the presence of a second-order moving average

error [MA(2)] and, therefore, may be approached as a generalized least squares

estimation problem (cf. Hibbs, 1974). Since the errors at from the gener-

alized estimation equation are assumed to be white noise,9 hypothesis tests

may be undertaken in the usual way.

Finally, the Box-Tiao scheme readily accommodates multiple interventions,

a wide variety of effect patterns (transfer function responses), and seasonal

or cyclical movements in a time-series. As an illustration of a more complex

problem, consider a situation in which two sustained interventions were

initiated at different periods and are hypothesized to have produced a

level change and a slope change, respectively, in the endogenous variable.

Let these interventions be represented by the binary variables

Ilt 0 for t < n

-1 for t > n

I2t =0 for t < n + k

=I for t > n + k

9 Diagnostic checks applied to the residuals test this assumption and

serve also to evaluate the overall adequacy of the model. Cf. the previous

discussion.
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and specify the hypothetical transfer function

(18) y = o01 lt + 1 B '2t

Equation (18) allows an immediate change in the level of the endogenous

series (of magnitude w0 1), which commences at time n, and a slope change

(defined by the parameter w0 2), which commences at time n + k. If we again

let the noise process governing the stochastic behavior of the Yt series

to be given by (14), we arrive at the complete model

(19) Yt + Nt

"O02 1-~G0B

Yt= I + I + a
t 0it 1-B 2t 1 -B at

Rewriting (19) yields an estimating equation with VYt as a function of

VIlt' 2t and a first-order moving average disturbance

(20) (1 - B)Yt = 01(1 - B)Iit +W0212t + (I - 1B)at

VYt 01 VIit + W02 2t + a t - lat-1 *

Equation (20) is estimable by standard nonlinear, generalized least-squares

techniques and thus the level change and slope coefficients, w01 and O2

are readily determined.

If the pre-intervention series or noise component Nt exhibited a

linear time trend, the post-intervention slope coefficient w02 would index

the time trend change induced by the intervention event I 2t For example,

suppose that
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(21) Nt = + 1 - a

where 0 t denotes a deterministic linear trend. Notice that (21) implies

the model

(22) (1 - B)Nt = 0 + (1 - 61B)at

N 0 1 ~ E1
N = + a,
t 1 - B 1 - B t

which is compatible with the ARMA notation introduced previously. Adjoining

(22) to the hypothetical intervention transfer function of (18) gives the

complete model

___2 60 1 y

(23) Yt 01 lt + 1 - B 2t 1 - B 1- B t

VYt 01 lt + W02 2 t + 60

+ at - t-1

The Yt series therefore trends linearly at a rate of 60 units per period

prior to the intervention event I2t, whereas, after I2t the series trends

at the average rate of (00 + o02) units per period.

Extensions of the basic underlying model to even more complex situations

involving multiple interventions sustained over varying periods (including

1 period, "pulse" interventions) are handled straightforwardly by appro-

priate application of previous results.
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II. The Structural Equation Approach

In contrast to the Box-Tiao scheme, which employs a sophisticated noise

model as the point of reference for assessing intervention effects, the

structural equation approach attempts to represent explicitly the behavioral

processes generating movements in endogenous variables. Stochastic noise

in structural models is usually given little attention, and is typically

specified as a sequence of additive, independently distributed random

variates perturbing each equation in the model.

Consider a model of M simultaneous (jointly dependent) equations taking

the structural form

(24) p+ ... + p lmm(t) + a yl(t-i) + m(i)y m(t-i)

b 11xlt) +... + blk k(t) + E c xl t-j) + + c lk(j)xk(t-j) ul t)

pml l(t) + ... +P mmm(t) + a ml(i) l(t-i) + + a (i)Ym(t-i) +

bml l(t) + + bmk k(t) + E cml(j) l(t-j) + .+ mk(j)xk(t-j) um(t)

where: ym(t)' Ym(t-i) denote current and lagged endogenous variables,

respectively, xk(t)' Xk(t-j) denote current and lagged exogenous

variables, respectively, and u(t) denotes stochastic disturbances.

Without sacrificing the generality of subsequent analyses, it is convenient to

confine lags in endogenous and exogenous variables to one period (any higher-
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order system of difference equations can be translated to a first-order

system) and to write the model more compactly in matrix notation as

(25) PY + AY + BX + CX = U (t = 1, 2, ... T)
t t-1 t t-l t

where: P and A are M x M coefficient matrices; B and C are M x K

coefficient matrices; Yt and Yt-1 are M-component column

vectors of current and lagged endogenous variables, respective-

ly; Xt and Xt-1 are K-component column vectors of current and

lagged exogenous variables, respectively; and Ut is an M-

component column vector of current disturbances.

If identification conditions are satisfied (see Fisher, 1966 for an exhaustive

analysis), simultaneous equation models can be estimated by a variety of con-

10T
sistent methods; the most common being two-stage least-squares. In the

special case of recursive models in which P is triangular (there are no

simultaneous relationships) and the cross-equation disturbance covariance

10 Note, however, that the appearance of lagged endogenous variables in

(24) and (25) introduces additional complications. Briefly, consistency is

not ensured unless the Ut are serially uncorrelated. If this condition fails,

there are essentially two options: (1) treat the Yt-l as endogenous for

estimation purposes (which has obvious implications for identification); or

(2) combine two-stage least-squares with generalized least-squares so that the

transformed disturbances are properly behaved. On the latter procedure see

Fair, 1970. A general review of this and related problems is provided by

Fisher, 1970a and Hibbs, 1973, Appendix 3.
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matrix is diagonal (the disturbances are uncorrelated across equations),

ordinary least-squares regression yields consistent parameter estimates.

Throughout the discussion in this section it is assumed that the functional

form of the hypothetical structural model is well established and hence that

model validation is not an issue.11 Attention will be confined therefore to

techniques for intervention effects analysis in the context of a well-defined

model.

Interventions and Direct Manipulation of Exogenous Variables

Intervention analysis is least problematic when the intervention or

policy change is known to have been implemented by direct manipulation of

exogenous variables or policy parameters. Notable examples are policy

motivated, exogenously induced changes in government spending, tax rates,

and the like, which figure prominently in econometric analyses of macro-

economic policy experiments.

If the structural model consists of a relatively small number of linear,

simultaneous difference equations, the response of endogenous ("target")

variables to exogenous interventions can be assessed analytically by the

method of multiplier analysis. (See Goldberger, 1959; and Thiel and Boot,

1962.) The first step in multiplier analysis is to derive the "reduced form"

11 It is hardly necessary to mention that establishing the functional

form of a structural model is a substantial task, particularly in areas in

which theory is not well developed and the processes under investigation are

behaviorally complex. A very useful review of model evaluation procedures

(which is geared to econometric systems) is given by Dhrymes et al., 1972.
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of the system by solving all right-hand side current endogenous variables

as functions of the predetermined lagged endogenous and exogenous variables.

Thus, given the estimated structural form

(26) PYt =AYt-1 -BXt - t- + t

the reduced form can be secured by premultiplying by P

(27)A -
t..l = 

AIlIA
(27) Y = -(P A)Y - (P B)X - (P C)X + P U

t1t t-1 t

which for convenience may be rewritten as

* * *
(28) Yt = A Yt-1 + B Xt + C Xt-1 + Vt

* -l^ * ^-^l^ * l^ ^-
where: A = -P A; B = -P B; C = -P C; and V = P U .

t t

Notice that every predetermined variable appears in each reduced form

equation. Hence, derivation of the reduced form of the model makes explicit

what is implied by the structural form; namely, that all predetermined variables

directly and/or indirectly influence all endogenous variables.12 The effects

of policy motivated interventions now can be readily assessed by analyzing

the reduced form in (28). Assuming that the expectation of Ut Vt = 0, the

immediate effects of induced changes in exogenous variables (xkt) on the

expected values of endogenous variables (y mt) taking account of all contem-

12 This of course also means that the reduced form parameters can be (con-

sistently) estimated by regressing each endogenous variable on all predetermined

variables. The trade-offs between the derived reduced form estimation procedure

shown in (24) and the unrestricted least-squares method mentioned here are de-

veloped in Fisher, 1965; and Goldberger, 1964, chapter 7.9.
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*
poraneous feedbacks in the system, are given by elements of B -- the so-called

*
impact multiplier matrix. The elements of B therefore estimate the instan-

taneous impact of a unit change in xkt on the (conditional) expectation of

Ymt with the remaining exogenous variables held constant. Thus the impact

*
multipliers correspond to the reduced form derivatives Dy /ax = b .

m(t) k(t) mk

Since the model at hand is linear, endogenous responses to multiple interven-

tions (packages of policy changes) are determined by summing over the appro-

*
priate elements of B , that is by calculating

* 13
Ezy /ax = E b .
k m(t) k(t) mk*

k k

Typically, interest will not be confined to the immediate consequences

of policy treatments or interventions but will center instead on the dynamic,

long-run implications of exogenously induced change. This amounts to investi-

gating how the time-paths of endogenous variables are affected by external

manipulation of exogenous policy instruments. Lagged, cross-temporal feed-

backs in the system are now of central importance.

The effects of exogenous interventions, as they are transmitted dynamic-

ally through the model, are evaluated by lagging (28) repeatedly and sub-

stituting in for lagged endogenous variables. For example, lagging (28) one

period gives

13 The response to a change of any order is simply Ay k b Ax
Ym(t) =k mk t)

Sociologists and political scientists will recognize that algebraic computa-

tion of the reduced form coefficients is the simultaneous equation analog of

compound path analysis, which is commonly applied to static, recursive models.

See, for example, Stokes, 1971.
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(29) Y
* * *

= AY + BX + CX + V

which upon substitution yields

*2 * * * * ** *

(30) Yt t-2 + B Xt + (C + A B )X + A C Xt-2 + Vt + A Vt-1

Applying this procedure s times, we obtain:

*s+1 s
(31) Y~ =A Yts+ B X + Z

t t-s- t Tl

*T-A * ** *s *
A (C + A B)X + A C X

t-tt--

S
+ E A V

t-T

If the system is stable

infinity yields

14 (in which case lim A5 = 0), letting s go to
54,o

*0
(32) Y = B X + E

t t l

*T-l * ** *
A (C +A B)X + E A V

t-T t-T
T=0

14 The stability assumption is identical to that of the previous section

and essentially means that the system cannot grow or oscillate explosively

without growth in exogenous variables and/or without impulses from the dis-

turbances. Introductory accounts of the formal conditions for stability of

simultaneous difference equations are given by Baumol, 1970; and Goldberg,

1958. Samuelson, 1947, provides an advanced treatment.
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which is known as the final form of the model.15

15 The final form of the model can also be derived by applying the

algebra of lag operators. Previously we introduced the backshift operator

*
B, however, to avoid confusion here with the coefficient matrices B and B

we define a new lag operator L, such that L Yt = Yt-i. The reduced form

of the system given in (28) can therefore be expressed

* * *
(I - A L)Yt = B Xt + C Xt-1 + Vt

* -l * * -l *
Y = (I - A L) B Xt + (I - A L) C Xt

t t*t-l

+ (I - A L)~1 Vt *

* -l
Since (I - A L) is the limit of the convergent geometric series

* *2 2
(I + A L + A L + ...) we have

* *2 2 *
Y = (I + A L + A L + ... )B X

* *2 2 *
+ (I + A L + A L + ... )c Xt-1

* *2 2
+ (I + A L + A L + ... )v

* *T * * *
Y = B E A X + C E A X i

t t-T t-1--1=0 -1=0

+ZE A V
t-T

Tr=0

* *T-i * * *
Y = BX + E A (C + A B)X

t t )X t-T

T

+ E A V
T=O tT
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The period-by-period responses of endogenous variables to induced shifts

in exogenous variables, which are known as dynamic multipliers, now can be

obtained from (31) and (32). If the exogenous change is sustained for only

one period, the effects on subsequent (expected) values of endogenous varia-

bles are given by the delay multiplier matrices. Hence the estimated in-

fluence of a one-shot exogenous intervention s periods later is

*s-i * * *
(33) A (C + A B ) s > 1 .

The responses of endogenous variables to one-shot exogenous impulses can

therefore be tracked through time by evaluating the impact and successive

* * * * * * * * *2 * * *

delay multiplier matrices B , (C + A B ), A (C + A B ), A (C + A B),

the elements of which correspond to the reduced form derivatives

/3x, Since the assumption of system stability implies that
m(t+s) K(t)

lim A= 0, it is clear that unsustained exogenous interventions will produce

responses (displacements from equilibrium) in the Yt that die out after

sufficiently long lag.

Frequently, however, policy motivated interventions will be sustained

through time. The dynamic implications of (unit) changes in exogenous varia-

bles that are continued, say, over s periods are given by the cumulated mul-

tiplier matrices

* s *T- * ** * * *2 *T-l * **
(34) B + E A (C + A B )=B + (I + A + A + ... + A )(C + A B)

T=1

which have elements corresponding to the summed reduced form derivatives

5

O DYm(t+T) k(t)
T1=0
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The time paths of endogenous responses to sustained exogenous interventions

can therefore be determined by evaluating (34) over the index T.

Finally, by taking T + we obtain the equilibrium multiplier matrices

00

* *T-1 * * *
(35) B + E A (C + A B)

T=l

* * *2 * * *
-B + (I + A + A + ... )(C + A B)

* * -i * * *
-B + (I- A ) (C + A B) (by the convergence rule

for a geometric series)

* l* * * * *
= (I- A) [(I- A) B + C + AB

* -l * * * * * *
-(I- A*) [B -A B + C + A B]

* -l * *
-(I- A ) (B + C )

The elements of (35) give the equilibrium or steady-state responses of

endogenous variables to unit changes in exogenous variables that are sus-

tained indefinitely.

Perhaps a simple analytic example will help clarify the results of this

section. Suppose that the system under investigation is adequately represented

as a pair of simultaneous equations in the structural form

(36a) yl(t) ++ all y(t-1) + b 1 xl t) ul t)

(36b) p21 l(t) + y2(t) + a2 2  2(t-1) + b22 x2(t) = u2(t)

In order to determine the consequences of hypothetical policy manipulations

of the exogenous variables x1 and x2 we need to derive the reduced form of

the system, which is obtained by applying simple matrix operations in the

manner of (27) or, alternatively, by solving algebraically the current



33

endogenous variables as functions of the lagged endogenous and exogenous

variables. Either approach yields the reduced form equations 16

-a11  p1 2 a22
(37a) yl(t) 1 - p12 p2 1  l(t-1) 1 - p12 p2 1  2(t-1)

1 p12 b22
1 - p1 2 p21 Xl(t) + - p12 p21  2 (t)

+ 1 - 1 (ul(t) - 1 2 u2 (t))
p12 2

21 a11 a2 2
(37b) y2(t) 1 - p12 p2 1  1(t-1) 1 - p12  21 2(t-1)

21 b11  b_22_ _
+ 12 2 l(t)- 1 - p1 2 p21  2 (t)

1 - p1 (u2(t) 21 ul t)
p1 2 p2 1 -p 2

16 The results in (37a) and (37b) are obtained as follows. Rearrange

terms in (36a) and (36b) so that the structural form is written

i =l(t) 12 - a 1 t-1) b 1 xl t) + ul t)

( 2(t) P21 yl(t) a2 2 Y2(t-1) b22 x2(t) + u2(t)

Now simply solve yl(t) and y2(t) as functions of the lagged endogenous and

exogenous variables. Solving (i) gives

(iii) yl(t) 1221 l(t) - a2 2  2(t-1) - b22 x2(t)

+ U2(t)] a11 yl(t-1) b 1xlt) + ul(t)

(footnote continued on p. 33a)
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(footnote 16 continued)

yl(t) - P12 p2 1 y1(t) = P12 a2 2 Y2(t-1) + p 12 b2 2 X2 (t) - P1 2 u2 (t)

-b xl(t) + ul t)

-a1

yl(t) 1 - p12 p2 1 y1(t-1)

b 1

1 - p12 p2 1 1(t)

+ 1 21 (ul(t)

Similarly, solving (ii) gives

(iv) y2(t) = -P211P2 Y2(t)

p12 a2 2
S1 - p12 p21 -2(t-2)

p1 2 b22

- p12 P21 2(t)

-12 U2 (t)

- b
11 xl(t)

+ u1 t)] - a2 2 Y2(t-1) - b22 x2(t) + u2(t)

Y2(t) - P21 P12 Y2(t) = p21 a 11 yl(t-l) + p2 1 b11 xl(t)

-21 ul(t) - a22 2(t-1) b22 x2(t) + u2(t)

21 a 1 1
2(t) 1 - p1 2 p2 1

21 b 1 1
S- p12 p21

1 - p p21 (u2 (t)

a
2 2

P12 P2 1
Y2(t-1)

b 22

p12 21 2(t)

- P21 ul (t))

y

- a 11yl(t-1)

-a 1 Ylt-1)
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In accordance with the earlier convention (cf. eq. 28) these equations are

conveniently rewritten as

* * * *

(38a) ylt + +a yb x +b xl(t) a y(t-1) a12  2(t-1) + 1 l(t) + 12 2(t) + vl(t)

* * * *
(38b) y = a* lt + + *b *x +b *x

(2(t) a2 1 1l(t-1) a22 Y2(t-1) + 21 l(t) + 22 2(t) + v2(t)

The instantaneous effects of unit changes in the exogenous x kt on the

conditional expectations of the endogenous ym, the impact multipliers, are

*
given directly by the bmk, which as (37) makes apparent are nonlinear func-

tions of the underlying structural coefficients in (36). The responses of

the ymt s periods later to interventions (which, for simplicity, are again

taken to be unit changes in the x kt) that are initiated at time t and sus-

tained only 1 period are given by the delay multipliers. For example, taking

s = 2 and applying (33) to the model at hand yields

(39) 3 m(t+2)
ax k(t)

*2 *
A B

2

* *Kb blb11 b12

* *

b21 b22

* *
a 21 a 2 2

*2 * * *

(a1 1 + a 2  a211

* * * * *

+ (a a + a2 a22) b2 1

* * * * *
(a21 a1 1 ± a2 2 a2 1) b1 1

* * *2 *
+ (a21 al2 + a2 2) b2 1

*2 +a*(1 1  12

+(a +1 a12
* *

+ (aya12

* *
(a21 a 1 +

* *
(a2 1 al2+

* *
a2 1 ) b1 2

* *
+ a1 2 a2 2)

* * *

a22 a2 1.) b1 2

*2 *

a22) b2 2

*
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Hence, the impact of a one-shot (or pulse) unit increment in xlt on yl(t+2) is

given by the northwest entry of the matrix, that of xlt on y2(t+2) by the

southwest entry, that of x2t on yl(t+2) by the northeast entry, and that of

x2t on y2(t+2) by the southeast entry. Delay multipliers for longer lags

(leads) and/or for more complex models will obviously require even more

tedious calculations if undertaken analytically.

The cumulative effects of interventions that are sustained over some

finite period are determined by application of (34), that is by simply summing

the impact and delay multiplier matrices over the appropriate time index.

The ultimate impact of induced changes in exogenous variables that are main-

tained indefinitely are calculated by employing the equilibrium multiplier

expression in (35). To illustrate for the system of (36) - (38) we derive

~m(t+T) -

(40) E =x
T=0 k(t)

* -l *
(I -A ) B

1 -1 -a12 b 1

whr: D l) * :2 * *

L-a 21 1 - a22 b 21

(1 - a22) b11 + al12 b 21

D

a21 b11 + (1 a 11 ) b21

* * * *whee: = 1 -ayy (1- 22) a21 al2'

*

*

b 221

* * * *
(1 - a2 2) bl2 + al2 b22

* * * *
a21 b1 2 + (1- a1 1 ) b2 2

The elements of (37) give the equilibrium responses of the ym to unit changes

in the x k that are sustained forever.
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Although the analytic approach taken thus far has considerable heuristic

value, the dynamic multipliers associated with changes in exogenous variables

are in practice usually derived numerically by computer simulation. The

reason, of course, is that simulated solutions are vastly more convenient

computationally, even for relatively small models.17 Simulation-based es-

timates of the intervention multipliers are secured by simulating the model

dynamically in order to obtain an "intervention" endogenous series and a

"nonintervention" endogenous series. 1 8  The intervention or "policy-on"

solution is designed to depict actual endogenous outcomes during the post-

intervention periods. Accordingly, these outcomes, which we denote as 9 t'

are generated by supplying initial conditions (values) for the ymt and allowing

exogenous variables and parameters to take on their historical, post-inter-

vention values. On the other hand, the nonintervention or "policy-off"

solution attempts to replicate endogenous outcomes that would have occurred

in the absence of exogenously induced change. These outcomes, which we

denote as ymt, are obtained by imposing values on exogenous variables and/or

17 Multiplier analysis in nonlinear models (i.e., models in which one or

more endogenous variables appear in two or more linearly independent functional

forms) requires a simulation approach, since explicit analytical solutions for

the reduced form equations are difficult, if not impossible, to obtain. For

further discussion see Howrey and Kelejian, 1969.

18 Dynamic simulation simply means that actual historical values of lagged

endogenous variables are used only for initial conditions; all subsequent en-

dogenous values are generated sequentially by the model. Thus, the current

period's endogenous calculations form the lagged inputs to the next period,

and so on.
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parameters that would have prevailed without the external manipulation (i.e.,

by subtracting the known magnitude of induced changes from the historical

values).

i n -i -n -n
Comparison of the differences (ymt YM, mt+l - mt+i ' mt+1 - Ymt+T

yields estimates of the endogenous responses to exogenous interventions. Simula-

tion estimates of the intervention multipliers corresponding to a sustained

exogenous variable change of, say, 6--(xkt + 6), ... , (x kt+ + 6)--would be given

the ratios y - yt /6, ... , (y - y )/6. Studies of the consequences

of specific policy changes (hypothetical and actual) that have been undertaken

in this way include Fromm and Taubman's (1967) analysis of the effects of the

U.S. excise tax cut of 1965, Klein's (1969) similar investigation of the U.S.

income tax cut of 1964, and Klein's (1968) study of the economic consequences

of Vietnam peace.

It is clear that static and dynamic multipliers are the structural equa-

tion equivalents of the Box-Tiao transfer function response schemes. However,

an important advantage of the structural method is that endogenous responses

to exogenous interventions can be interpreted causally in the light of struc-

tural information. That is, the behavioral mechanisms underlying intervention

multipliers are made apparent by inspection of the interdependent structure of

the system. Naturally, such multipliers have meaning only within the framework

of the model from which they are derived. If the model does not square well

with reality, then the estimated multipliers cannot be informative about real-

world intervention effects.
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Intervention and Structural Shifts

In most empirical situations, at least outside of macroeconomics, policy

interventions are not likely to consist of direct manipulation of exogenous

variables or policy parameters. On the contrary, the typical intervention

will involve a change in law, government regulation or administrative pro-

cedure, or perhaps, a dramatic event such as a war, strike, critical electoral

outcome, important international agreement, and so on. In such situations

the manner in which an exogenous intervention or event potentially affects a

particular endogenous variable or an entire system of variables is not known

a priori.

If it can be assumed that the intervention does not perturb the values

of exogenous variables, but affects only the parameters of the model, the

problem is readily approached by structural shift estimation. Recall that

the general (M equation) linear dynamic structural model was expressed pre-

viously as

(41) PY + AY + BX + CX = U .
t t-1 t t-1 t

Rearranging terms and normalizing for left-hand side endogenous variables

allows the equations of the model to be written in the scalar form

Mim M K K

(42) ymmym(mmmt) X a m(t-1) E bmk k(t) - E cmk k(t-1) + um(t)

Suppose that the intervention event under investigation occurs at the

n-th period and continues thereafter. Shifts in the structural parameters

associated with the intervention can be determined by defining a binary

variable, say, D
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D = 0 for t < n

= 1 for t > n

and estimating the revised, unrestricted equation(s)

M#m M#m M M

(43) Y = p - E p'm[ym- D] - E ay(tl) - E a' [yD]
m(t) 1 mm m(t) 1 1 1 mm m(t-1) I

K K K K
bx - E b D] - E - c' [x D]

mk (t) mk[xk(t) mk k(t-1) mk k(t-1)

*
+ um(t)

Equations in the form of (43) allow detection of structural shifts or

breaks induced by the exogenous intervention by permitting all parameters to

have different values in the pre- and post-intervention periods.19 Of course

any prior (theoretical) information about the location of intervention shift

effects should be exploited by setting the relevant cross-product terms equal

to zero. The t ratios of p' , a' , b' and c' provide direct tests of the
;m mm mk mk

null hypotheses that the post-intervention parameters are not significantly

different from the corresponding pre-intervention parameters. The joint

hypothesis that all coefficients (or some subset thereof) are common across

19 Intercept-constants are not shown explicitly in (42) or (43) but may

be considered to be among the b mk Also, there are alternative ways to set

up the problem, for example, one might estimate equations in the model

separately for the pre- and post-intervention periods in the spirit of

analysis of covariance.
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the pre- and post-intervention observations may be evaluated by computing

the F ratio(s) 20

2 ,*2
[Eu - Eu ]/r

m(t) m(t)
F=F(m) t * 2t

[E -u ]/T-J
m(t)t )

which is (are) distributed with r, and T-J degrees of freedom, where:

Eu and Eu are estimates of the restricted and unrestricted
m(t) m(t)t MW tM

residual sums of squares, respectively, and are derived by applying

the structural coefficient estimates to the original data,21 r

denotes the number of restrictions or constraints in (42), and

T-J denotes the degrees of freedom of the residual sum of squares

in (43)--J being the number of parameters in that equation.

20 If the number of parameters to be estimated exceed the available post-

intervention observations, the F test of Chow, 1960, should be used in place

of that given above. A unifying exposition of these and related tests is

given by Fisher, 1970b.

21 Because the residual sums of squares are necessarily calculated in

this way in simultaneous equation models, t and F statistics do not have full

classical justification in the sample. They might be viewed as tests of

Iquasi-significance." If the model under investigation consists of a single

equation that can be estimated consistently by ordinary least-squares (rather

than by a simultaneous equations estimator such as two-stage least-squares),

2 * 2
EG M and Eu are of course computed directly from the residuals of the
m(t) m(t)t t

estimating equation.
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Once the magnitude of parameter shifts attributable to the exogenous

intervention(s) has been determined for each equation in the model, the me-

thods outlined previously for calculating intervention effects can be em-

ployed. However, the structural equation approach would appear to be of

little value in situations in which the external intervention not only per-

turbs the model's parameters but also affects the values of exogenous varia-

bles. Unless the investigator knows which exogenous variables are affected,

and how much (a case which was treated earlier), there is simply no way to

determine the consequences of an intervention within the structural frame-

work. This is an important limitation which we will return to in the next

section.



42

III. Limitations and Lines of Convergence

Limitations

Box-Tiao or Box-Jenkins methods are essentially models for "ignorance"

which are not based on theory and are therefore void of explanatory power.

Although these models are in many situations likely to yield good estimates

of endogenous responses to external interventions, they provide no insight

into the causal structure underlying the transmission of exogenous impulses

through a dynamic system of interdependent social, economic, or political

relationships. Moreover, the Box-Tiao approach appears to be very suscepti-

ble to errors of inference due to "omitted variables". Discontinuous move-

ments in endogenous variables that are actually responses to discontinuous

changes in omitted exogenous variables are easily attributed by Box-Tiao

methods to external interventions that happen to covary with the omitted

variables. However, the multiple contrast design ("multiple-group time-

series design") proposed by Campbell (1963; 1966) to deal with this problem

and implemented in the Box-Tiao framework by Glass, Willson, and Gottman

(1972) is likely to be at least somewhat effective in coping with this poten-

tial source of spurious inference.
2 2

22 A good example of this design is provided by Glass' (1968) study of

the effectiveness of Governor Abraham Ribicoff's 1955 "crackdown" on speeding

in reducing traffic fatalities in Connecticut. In order to ensure that the

effects attributed to this intervention were genuine, Glass analyzed the fa-

tality rates of four "control" states that did not experience a comparable

alteration of law enforcement practice.
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Perhaps the most obvious constraint on the use of the structural ap-

proach to intervention analysis is that many areas of inquiry are simply not

sufficiently rich in theory and/or data to permit specification and estima-

tion of adequate structural models. In such situations, the causally naive

Box-Tiao scheme--which merely requires time-series observations on endogen-

ous variables, knowledge of the time-spans of external interventions, and

some hunches about the form of endogenous responses--would appear to have

no serious rival.

However, even in areas in which acceptable structural models have been

developed, the empirical data cannot be informative about intervention ef-

fects unless it can be assumed that exogenous variables do not respond to

external treatments (or at least do not respond in ways that are not fully

known a priori). An illustration of this problem in macroeconomics, a field

in which theory is comparatively well developed and structural models have

enjoyed great success, is provided by Feige and Pearce's (1943) recent study

of the impact of wage and price controls on the rate of inflation in the

United States. Feige and Pearce reject standard econometric procedures in

favor of Box-Jenkins and Box-Tiao methods because of the general "unreliability"

of the former in generating accurate forecasts. They go on to argue that

variables such as the unemployment rate, which are normally taken to be

exogenous in the estimation of structural models of inflation, are them-

selves potentially affected by the policy intervention and therefore are

likely to contaminate "counterfactual" forecasts (policy-off simulations) of
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the endogenous series.23 The situation encountered by Feige and Pearce is

likely to be common in applied work and serves to underscore the limitations

of the structural approach to intervention analysis.

Lines of Convergence

It has been noted several times that Box-Jenkins and Box-Tiao methods

are essentially sophisticated noise models that make no attempt to represent

the behavioral structure generating endogenous time-series. However, recent

Box-Tiao papers hint at the need to elaborate the basic "noise plus inter-

vention transfer function" model to incorporate additional exogenous vari-

ables and interdependent relationships among "output" or endogenous variables.

Work on this is apparently underway and clearly points in the structural

equation direction.

Conversely, the structural equation tradition has placed great emphasis

on behavioral sophistication but has given much less attention to noise or

disturbance processes. Error models other than first-order autoregressive

schemes are rarely entertained in empirical studies; indeed, in simultaneous

equation models the disturbances are nearly always assumed at the outset to

be white noise. This may in part underlie the rather poor short-term fore-

casting performance of econometric models in relation to that of naive,

23 "Exogenous" variables that respond in this way to external interven-

tions are, in a sense, really endogenous. Hence, a more committed structural

modeler might argue that such a study should have been framed in the context

of a "large" macroeconomic model that explicitly treats unemployment and re-

lated variables as endogenous. However, this argument can only be pushed so

far, and we are still left with the general problem.
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especially Box-Jenkins, alternatives. (Cf. Cooper, 1972; Naylor et al.,

1972; Nelson, 1973; Stekler, 1968.)

However, structural modelers are becoming more sensitive to the need for

stochastic sophistication. A number of recent state of the art papers have

urged that greater attention be given to error processes (Dhrymes, et al.,

1972; Klein, 1971) and work on the specification and estimation of more

complex disturbance models in the structural context is beginning to appear

with regularity in the technical literature. (See, for example, Chow and

Fair, 1973; Fair, 1970, 1973; Hannan and Nichols, 1972; Hibbs, 1974; Sarris

and Eisner, 1974; and Schmidt, 1971.) As I have tried to show in an earlier

paper (Hibbs, 1974), Box-Jenkins techniques are ideally suited to the character-

ization of structural disturbance processes, which, after all, represent our

ignorance. Finally, the traditional econometric commitment to the maintained

hypothesis and strong axiomatization of models appears to be giving way to a

renewed emphasis on experimentation with functional forms. These developments

in the structural equation camp have much in common with the explicit em-

piricism of the ARMA approach and clearly point in the Box-Jenkins direction.

Indeed, Box-Jenkins techniques applied to the fundamental dynamic equations

of econometric models have been shown to be useful in validating the adequacy

of the presumed causal structure. (See Pierce and Mason, n.d.; and Zellner

and Palm, 1973.)

Convergence will be fully realized when structural models corrupted by

ARMA noise are used routinely in empirical work.
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