
C/67-3

ADMINS - A Progress Report

by

David Griffel and Stuart McIntosh

Center for International Studies

Massachusetts Institute of Technology

January 1967

Preface

This document is intended to serve as an interim recording

of the work the authors are currently doing, and also to serve as

a back up user manual to the user documentation built into the

ADMNS system. The work is being done under the auspices of the

Center for International Studies here at M.I.T. and is supported

by an N.S.F.* grant for which project Professor Ithiel Pool is

the principal investigator, and is aided by a technical committee

comprised of faculty associates Professor James Beshers and

Professor Joseph Weizenbaum. Naturally, all of the vnistakes the

authors have made are their own, and of course, without the

facilities of Project MAC the work would not have been possible.

.S.F. Grant - Computer approaches for handling large social science
data files.

CONTENTS LIST

l.a.1-5. Data collection - organization

l.b. Data specification

l.c. System design requirements

l.d. Data types

i.e. Heavily structured data

l.f. Loosely structured data

l.g. Systems analysis - orientation

l.h. Designer, theorizer, etc.

l.i. Organizer, processor, -analyzer

l.j. Birds eye view - chart A

l.k. Language for interactive substantive uses

1.1. Specific problems

l.m. General considerations

2.a. Adform

2.b. Organizer

2.c. Processor

2.d. Category records - simple

2.e. Category records - derived

2.f. Indexes - (trees)

2.g. Information indexes - stat tests

2.h. Complex indexes - (tables) -- classified directory

2.i. Multi-source files

2.j. Multi-level files

2.k. User - control - flow Chart B

2.1. Admin - control - flow Chart C

2.m. Procedural research

3. Organizer - Processor

3.a. Input data

3.c. Organizer - overview

3.d. The adform

3.e. Adform syntax conventions

3.f. Location statements

3.g. Audit statements

3.h. Descriptive statements

3..i. Transformation statements

3.j. Contingency statements

3.k. Diagnostics

3.1. Organizer usage

3.m.l. Processor overview

3.m.2. Processor usage

3.m.3. Processor instructions

3.n.l. Processor output

3.n,.2. Marginals

3.n.4. Error report

3.o. File inversion

3.p. Data alteration

3.q. Concatenating files

4 Analyzer

4.a. Analyzer - overview

4.b. Analyzer instruction types

4.c. File focus

4.d. Classified directory maintenance

4.e. Set operations

4.f. Summarization

4.g. Recoding

4.h. Multi-level files

4.i. Syntax documentation

4.j. Analyzer - usage

4.k. Analyzer - error comments

4.1. Analyzer - storage management

4.m. Data manipulation language

5 Dynamic loops

5.a. Organizer -- processor loop

5.b. Admins binary input

5.c. Vertical horizontal-processing

5.d. Multi-source files

5.e. Multi-level files

ADMINS

Administrative Data Methods For Information Naming Systems

l.a.l. Data about the environment is gathered and recorded. This is

usually done according to some purpose. If many different types

of record are-generated, it becomes necessary to keep a record

(meta data - bibliographic data) of the data records.

l.a.2. Some other institution may acquire from many different original

generaters, their-data records and even perhaps their meta data

records. The-problem confronting this institution will, dependent

on its collection oriented purpose, be that of organizing the

variety of data records it has now acquired by means of its own

meta data record (which may or may not rest on the originators'

meta data records).

l.a.3. This institution.has a further problem. Any organization of the

record must be capable of re-organization to support a user ori-

ented purpose. which need only be stated in general but must be

supported in any particular case.

l.a.4. As records are always embodied in some media which has a con-

straining effect .we are concerned to design procedures using a

flexible media (a disk oriented, time shared computer facility)

which are effective on data records and meta data records where

we have no control over the input conventions, i.e. we did not

gather the gathered data, our selection is restrained to that

which we choose to acquire.

l.a.5. Administrative-Data Methods are quite well understood in the areas

of business management and public administration. Information

naming methods-are-quite well known in the areas of Librarianship

and Technical Documentation. What is not self evident is how to

design an infoumation system that does both, embodied in a third

generation computer facility that will be used by socialssiien-

tists who have a dynamic view of data.

1. b As methods by which one derives a norm from data are perhaps

more difficult to make completely public than are methods for

classifying data under a non, the public and explicit statements

about data are ordinarily of the type that this data has been

coded and categorized under that norm. Thus the systemic aspects

of an information handling design is the activity that makes

explicit what it means by data, e.g., actual or bibliographic.

What are data entries, data categories, data items, data files.

What are the ordering relations of each of these elements.

What data ought to flow where under what norms. What are the

functional sub systems, what different kinds of data flow do

they handle. How do they relate to the overall system, and how

does the information handling system interface with its environ-

ment?

1. c This abstraction called a system may be said to be workable

when it can adapt to the vagaries of the data it has been designed

to handle and also, when it can accomodate to and eventually

assimilate the changing purposes of its users. Thus the system

must not only be able to process data under its nonns, it must be

such that one can change its norms based on data experience. If

the system is to be designed to accomodate one particular appli-

cation problem, it is conceivable that the fitting together of a

congerie of components on a trial and error basis will provide an

adequate solution. When the application is a data management

system to support user applications in areas as yet unspecified

and with substantive data as yet unknown, the practical approach

is to proceed on a trial and error basis only within a framework

where the system relationships are made public and explicit at

all levels of system function. This will enable the input from

one sub system to take the output of another sub system without

the aid of prayer, chewing gum and string. Even so, one cannot

design an adequate data management system without some experience

in adapting to many substantive problem descriptions. Nor can one

accomodate a flexible data management system to a new application,

unless there is an adequate substantive problem description of this

new application.

1. d We are of course only concerned with systems for administering

information but even so this can be quite complex. There are

different types of data, different embodiments of the data, differ-

ent ways of naming the data. The data can be what we will call

actual data, i.e., data on the substantive and methodological

aspects of the environment that the system has been designed to

collect data about. The actual data can be information data

where interpretations of this data are essentially linguistic, vis

a vis what the data is pointing at in the environment, and ambig-

uities lie in the province of the philosophy of language. The

actual data can also be scientific data where interpretation of

this data are essentially scientific vis a vis theory, and

ambiguities lie in the province of the philosophy of science.

The data, however, may not be actual data but bibliographic data,

i.e., data which describes the physical embodiment of the actual

data record and in broadly logical terms describes the form and

content of the actual data record. Interpretations of biblio-

graphic data are essentially meta-linguistic, i.e., we have a

language for pointing at actual data which is also in a language.

There are of course plenty of naming confusions possible. The

name 'occupation' can be the name in a catalog describing the

content of a codebook prototype norm. The same name may be a

category of a codebook describing a data record of actual

information or scientific data. A data management system has to

avoid both the following options. It can address itself to trivial

clerical tasks and-give a user little intellectual assist. It can

address itself to intellectual tasks but the results of its opera-

tions are so esoteric that only members of the cult can live with

the constraints.

1. e Actual data and bibliographic data can both be heavily

structured, i.e., the norm under which the data is to be

processed can be designed such that the possible entries under

a category can be made explicit and the relationships of a

category within an item can also be made explicit. Finally,

these items, e.g., a catalog item describing say a survey code

book or e.g., a questionnaire report item describing information

data about a person, can also be made explicit as to the ordering

relations between the items in a file. Thus the codebook proto-

type norm that purports to control the processing of actual

information data in empirical questionnaire reports or of actual

analytic scientific data in social science index construction is

the same as the catalog prototype norm that purports to control

the processing of bibliographic data about codebook prototype

norms. That is to say is the same for a considerable amount of

data processing activities because they can both be heavily

structured.

When it is not possible to say explicitly what entries

are legal under what category, what are the precise relationships

between categories, what are the categories that define the

boundaries of an item, what is the threaded pattern of items in a

file--we say that we have loosely structured data. Both for real

data and for bibliographic data the structure may only be a little

loose, i.e., some of the entries umder some of the categories are

open, i.e., cannot be explicitly closed in some effective consis-

tent way. However, with feedback- -post editing in an adaptive

system for processing the data records--one can get on top of some

of these exigencies. The linguistic problems associated with wholly

loosely structured data are beyond our competence; however, we.

provide some clerical help for handling this kind of data.

l. g When one has different types of data in various states of

process from different files, generating reports of one kind or

other, one has to develop an administrati-ve model that can organ-

ize the contingencies via a process catalog of some complexity.

In effect we have backed off from 'the philosophy of language

problems inherent in loosely structured data in favor of the

philosophy of science problems inherent in the organizing and

searching heavily structured data that may be used for policy

and research purposes. The macro organization and search

capability operates through the prototype norms,. A particula:

norm is that. organization that controls a particular body of

data. The method is the procedures for processing the data

under the norm which may be viewed as a data sieve. When the

norm and data are not in correspondence, control audits over

their discrepancies must be available so that one can either

edit the noimi or edit +he data, It is also possible that one

may have errors in the smtax of the procedure descriptions;

it is therefore necary to have control audits over these

errors which must then be edited. One might also be accessing

the wrong data and tneefore control audits over these erroi

must also be available. In general, a visible sampling capability

must support the audit-edit mavchinery. As well as control over

the data process appl.cation one must have access also to controls

over data format, data embodiment and data channels provided by

the underlying computer (program management) systems structure.

The function ol designing a norm which is inteide to i

inforImtion data or bibliographic data is not fulfilled by AININS

in so far as tlhere are no executable procedures for norm desinin

Hoever, there is provided clerical procedures for manipalatiing t

descriptive infonnation used in desig'ing a norm, The f untion u

oprationalizing a theor ecl IgpLthesi such that c

may be sought with scientific data is similarly not fulfillcd

executably by AR~NSU. Hfowevex, there is provided executable pro

cedures for mainipulat ing the syuoLLic tokens which represcnt to

hypothesis after the clerical podurec havu been Led t

describe the infonatJon as scientific data. Indeed after o

chunk of scientific data has been -o handled another cunI nay b

processed by executable prccedte.. Thus tie constru.Lction oa

scientific data nonn may get mre of an executable boost fror:

ADMINS than an information data norm, although the intellectr

planning work in both cases is done by induction machines calle

people. However, by offrin; tham a comprehensive clerical asi

they get the most .ut Cf this augmentation by endeavoring to mik

public their priv ways of worling which they normasLiy d o)

think about d nnri on substantive or forma iss..

1 1 i Once a particular norm has been explicitly stated, if we

have been flexible in our system design, we can expect the system

to help us amend the norm. The function of an organizer sub

system is to make it possible to get a norm into an active state

so that it can be applied to the data. The function of a processor

sub system is to have controlled processing of the data under the

norm. The function of an analysis sub system is to accomodate to

the analysis purpose of the user of the data, and to assimilate

these purposes in the development of more powerful data analysis

capability. The analysis sub system must also provide an interface

to statistical analysis sub systems developed by scientific users.

The result of the analysis of information data will be derived ,

measures about the information system environment. The resul t of

the analysis of bibliographic data will be derived measures about

the information system collection and usage.

1. j Taking a general look from the top ADMES can be used in the

following way as outlined in Chart A. The heavily structured

bibliographic data, i.e., a catalog of codebook prototype norms

is analyzed. The result from analyzing this 'information model'

is the selection and subsequent retrieval of codebooks and

corresponding data files for some particular use purpose. The

pertinent actual information data is then processed under the

codebook prototype norm and analyzed according to the user

scientific purpose. The processing of data under norms continus

through several stages, at the end of a particular phase the data

and norm is 'in a certain state. Reports, current and cumulative,
will have been generated which describe the results of the

activity, and on the basis of these reports, decisions are made,
as to what to do about a certain state of data or norm. The macro

organization of data source files, report files and of norm file,

by means of a process catalog which wi.l permit flexible sea-rc(h

strategies is the administrative function of AININS. The purpose

of AM]]YNS as an 'administrative model' is to provide the data

management capability of accessing retrospective bibliographic

data via the 'information model' and then of providing selected

actual data for current processing as required by user purpose.

Basically ADINS can support three main types of user application.

The cross analysis of the characteristics of bibliographic data.

The cross analysis of the characteristics of information data,
which can then be operationalized to a cross analysis of the

characteristics of scientific data, which may then be used to

support the building and testing of a social science mode. The

cross analysis of the characteristics of information dat. can also

be used in the support of policy formulation. For example e

characteristics in a personnel file are original measures asto

role and person which may be cross analyzed and the derived mca-

sures used in support of staffing policies.

KDMINS

i.7CRO-OR2TMiIZATIONT

actual data bibliographic data

data-retrospective data analysis data-curcrent

derived measures .- cross analysis original measures

infor-mation data /-- information data

scientif ic data

4I
report files working files

4I

source file

actual data

data-retrospective

prototype of

collections (-.

catalog

linformation model'

source data

files

codebook prototype

It

data analysis

directory

(classified)

working files

1'%

data-current

adform

(bibliographic)

'I
collection

catalog files

process catalog

'adnin model'
+ dt

admif. data

directory

(classified)

adform

(codebook)

a source data file

a codebook prototype

4I
cross analysis bibliographic

bibliographic data

data

Chart A
1.J.1

'r

1. k KDiJIjS was conceived as a data management system using a com-

puter system as an administrative tool. This means that substantive

decisions can be made on an immediacy basis without being bogged

dowm with' clerical chores. Thus in order to make intelligent use

of interactive checkout and update, the data processing must be

such that control interrupt dccision making is really decision

making of an intellectual nature. Clerical decisions that one

cannot routinize must be swept up on the run when sifstantivc

decisions are being made; otherwise machine aided cognition is a

farce and resources aru being wastcd. This limits the use o) tha

ADIOTS system to users who have considerable substantive knowledge

of what they want to analyze, and are sufficiently dedicated to

learn to make decisions as they go rather than by searching far

a needle in a haystack of tables. Admittedly this is a tough

confrontation, it will, however, have to be faced sometime so it

may as well be now. This agony can be made somewhat less exasper-

ating if the designer can provide a consistent language in which

the user may describe and instruct the various data processing

tasks. The grammar of the organizer, processor and analyzer are

all quite different to each other, however both within and across

these sub systems we have made an effort to be consistent in

language conventions. FurtLcrmore we have provided on line docu-

mentation not only of lconnaand' syntax but of 'command' explanations,

1. 1 As the systems analysis developed and the efforts to abstract

general purpose functional sub systems that could handle different

types of data became easier to specify explicitly it became appar-

ent that some parts of the task were tougher than others. The

simulation of sub file construction both within and across files by

means of indexing the data so that one may compare the relevant

chunks to each other, further analyze within a chunk, re-group accord-

ing to a theory or policy, was one such task. Another was the

development of an ability to name indexes by means of token symbo

and/or by names such that one had a mechanism by means of which one

may begin a classification of data. An actual data (information

or scientific) index structure may be very complex. The co-ordiThna

of tokens (names or symbols), the relationship of tokens as roles

or links, the inclusive hierarchical relation of tokens providt

the ability to classify data indexes which can then be searched an

selected by means of these tokens. This classification of an indox

structure, which is in effect a classified index to the partial

contents of one data file, may be abstracted from a particular

index structure and then applied to another file, given that it is

possible to recognize and erect a similar index structure, i.e.,

if one could do it by hand, the classification will be able to do

it also. The relevant classification code conventions could

either be completely public or it could be an explicit but private

user convention. The public classification technique could be

applied to heavily structured bibliographic data provided the

categories in the catalog items are sufficiently detailed to make

the exercise interesting. However, in what way one can caeorize

in a heavily structured catalog the content of a vari o sur aXveys

Lsuch that the noise does not overpower the coherency of th ae

gories in the classification syntax is a problem we have yei ot ,
along with the problem of classification of topic subject descriptv'e

1. r The general considerations so far expressed usually serve two

purposes in any particular study. They jet the administrative

systems analysis into the right area of discourse and hopefully

they force the substantive problem specification& out into the,

public and explicit, open. However, the form of the system

design must eventually be specified in a more detailed, coherent

and integrated way.

2. a The design of an administrative form whose function is to be

a vehicle for expressing prototype norm specifications under which

heavily structured bibliographic data and actual data, both in-

formation and scientific may be processed, requires detailed

consideration. Basic data elements are possible entries under a

category. The tokens used for representation are numerical or

alphabetic codes sometimes even alphanumeric codes. Possible

interpretations of these codes vary. Sometimes the numerical cod-

represents a nominal code, sometimes a numerical value The tokens

may also be used in a classificatory way under a particular cata

gory. Within a category it must be possible to specify aociation

between the possible entries and also contingencies between thcm.

It must also be possible to change the order to the possible tries

and to combine as required. Where the entries are numerical vaue

to perform on them numerical computation and also as required to

interval the numerical values as discrete numerical codes. One

must also be able to specify audits on the legality of actual

entries against possible entries both before and after the required

transformations. The subject description of the possible entries

and of the category under which they fall must be stateable and

any changes to codes reflected in changes to subject description.

The format of the data must be specified unambiguously as thi3 is

a matter of interpretation as well as of existence. Finally the

category must be named as well as described. In sumary then, we

have statements in an object language about subject descriptions

of data and token codes for the data. We also have statements in

a meta language describing the data relationships and transforma-

tions, and ought/is relations between norm and data. These meta

language statements are named. For each category the objec't and

meta statement are set out as sentences in a paragraph and the

syntax is kept as consistent as possible. Some of the statements

are executable and some only descriptive. Some statements may
refer to another category.

2. b The categories, as named, may also exhibit associative and

contingent relationships which must be specified. There must also

be a capability of specifying audits between possible entries in

different categories. The description feature must allow for

descriptions that reflect a topic covering several categories and

any comments as required. The administrative form may be composed

of several categories for an original item. The adform must be so

named such that another adform composed from the same original item

may easily be related to it at analysis of categories stage. The

specification of an administrative form when syntactically complete

may be viewed as a computer program in a problem oriented language

which serves as input to another computer program called the

Organizer. This program is a translator or application compiler

which outputs a file of categories specification, a file of subject

descriptions, a format specifications file, a resequence table file,

and a recording and audit program, subject of course to syntax

error discrepancies which are reported upon at compilation stage.

This may be achieved in a diagnostic mode before a real run is

made.

2. c The function of the Processor sub system is that of a control

program over the coding transformiation process and audit control

process, as applied to the empirical data. The discrepancies

between the adform norm and empirical data are here checked out.

A pass may be made through the Processor sub system gathering

information on discrepancies without actually applying the required

transformations to the data. An item can be sampled giving the

details of the transfonmations and discrepancies for each entry as

occurs in each category. A number of items can be processed and

the type of discrepancy as occurs shown for the relevant category

in the relevant item. A control may be set on the number of

errors to be allowed before processing is to stop at the next item.

Control may similarly be set as to the number of errors allowed in

a category. Control results may be specified in an actual error

versus control error table. It is also possible to pass through

the system in silence mode, generating no descriptive information

about errors, only the number of errors, which may be done in

verify mode every 100 items. Naturally one will eventually pass

through the system actually changing the data and get an item

output file containing the relevant categories and changed entries.

One may also obtain a report file containing a summary by category

of error types and number of errors. Also obtained is a file of

aggregates of data entries from which a file of marginals, i.e.,

the aggregates with their subject descriptions may be procured.

There is also the capability of processing a data file in

sections such that one may append subsequent sections to previous

sections. This permits two different kinds of flexibility. Some

source files are continually having new items added to them, as

for example a catalog of bibliographic data. Some source files

are quite large, thus it would be convenient to process the file i

perhaps some random or skipped way and later perhaps process another

section of the file. In both cases one would like to be able to

treat the appended files as one file for analysis purposes.

2. d Uhen a user has selected all or some of the categories in a

codebook prototype norm, e.g., questions in a survey codebook,

e.g., combinations of responses from a variety of questions as a

social science category, e.g., categories describing bibliographic

data states, e.g., categories describing personnel characteristics;

and these categories have been assembled in an administrative form

under which the data has been processed, the result is a file of

processed items in correspondence with the norm. When this

processed item file is inverted we now have a file where the order-

ing relation is by category where previously it was by item. Each

category record contains the normative description that defines the

category and its legal entries plus and subject description of-

both plus the actual entries as have occurred in the empirical

data. In essence each category record is a contents list of the

possible characteristics and a file of the occurring characteristics

for each category. A category record file is a file of the cate-

gory records that have been chosen perhaps at different times

from the original codebook for the original source file.

2. e The simplest example of a category record is for example

when the contents list describes the possible responses to a

survey question and the record contains a file of the actual

responses of the population interviewed. A more complex example

would be when the contents list describes a grouping of possible

responses according to some social science category and the record

also contains a file of the actual responses of the people who

responded to these selectively grouped possible responses. The

second type of category record would have been constructed from

certain operations upon the first and contingent upon the results

of these operations. An in between kind of construction of a

category record would be that when a new category record constructed

from the first type does not contain all of the information in the

second type. For example, when the contents list is of the second

type but the record does not contain the file of actual grouped

responses but only contains the nunber of people who so responded.

2. f An index, in the simplest case, is an index to a particular

entry in a category record. It is a list of the locations of the

actual occurrences of, e.g., a particular response to a question

as filed in .the category record. More complex indexes may be

constructed by, for example, unioning responses to a question.

The actual entries in a category may be intersected with the

actual entries from another category thus forming another type

of complex index. In this case we would for example have a list

of the actual occurrences within the same item of two different

responses as filed in two category records drawn from the same

source file population. Similarly one may union entries from

different categories. With these tools one may build up complex

information indexes which point to the occurrence of character-

istics in combination from different category records about the

same source file. For people who think in terms of trees, each

node of the tree is an index and a path from one node to the next

node is operation of constructing another level of indexing with

another entry from another category. Unions are in effect the

combining together of paths.

2. g Decisions as to what characteristics ought to be combined in

an information index are made on the basis of what named information

one requires in combination. As in the case, for example, with

bibliographic data when one wants information about surveys, e.g.,

the country, the type of panels, the time, the size, the codebook

location, the data location. However, the number of items that

one obtains at a particular intersection in the case of surveys

is further examined in more detail for descriptive information. If,

however, the items are records about an individual in a personnel

file this further examination would also follow, but in the case of

a social science survey, the scientist wishes to invoke statistical

tests upon the numbers of individuals with selected characteristics

so that he may decide in what way he invokes further combinations

of these information characteristics. These complex information

indexes he is building according to a purpose such that at some

point he can assert that they are in correspondence with a social

science concept and thus name them as a social science index. In

effect for the social scientist, information index construction is

not only a search tool where interactive checkout of comparisons

of summarized data appropriately described is essential to path

one's way down complex trees (if so conceived) but is an analytic

tool in the sense that statistical tests may be called to allow

interactive decisions to be made in support of substantive

knowledge.

2. h As these complex information indexes are built with reference

to attitude characteristics, performance characteristics, existence

characteristics, and each one is perhaps equivalent to a simple

social science index, the table -,ay of thinking may then be helpful.

Several associated complex indexes may form the columns of a table

and several others the rows of the table. The social scientist

may be investigating some socio-psychological concept vis a vis

performance in certain subject areas. He may wish to compare

several socio-psychological concepts against the same subject

area performance and existence criteria within one source file

population. If he has several source files which are both in form

and in concept compatible he may wish to run his analysis in

parallel for the different populations. For example the same

type panel for different time periods for one country. Similar

panels for different countries at the same time. Comparisons

for respondents who repeated over time. The selection of similar

occupational groups from panels of a different nature for compar-

ison of attitude and performance at roughly similar t.mes in

different countries. As discussed in the previous paragraph,

information indexes may be built up, and several different files

worked in parallel. The ability to work in parallel allows the

investigator to depart from fundamentalist assumptions or clerically

Possilized activity and massage the given information for each file

into an indexing strategy that is compatible for comparing across

"iles, meanwhile using a rational naming convention which helps

keep track of the complexities involved in manipulating symbolic

tokens which are open to different interpretations. In order to

cake this feasible one has to have a directory of the index

structure that is a directory of the names or symbols used in

labelling the structure. One must also be able to list the

contents of the di2-ctory by file worked then index or by index

then file worked. One must also be able to list the details of

the index constructl*.on.

Chart

AAk, V

I
+Q cce.

di 0 ~

vos &t.e
a AAri

RO.PrA+ drt

2. i When the investigator is combining and recombining various

characteristics in his index construction he is in effect simu-

latirg recoding which he may actually effect later on if he com-

poses another administrative form embodying new combinations.

Also, if a consistent convention is adopted for the naming of

indexes either with names and/or symbols, with respect to one

processed source file, the recoding of another processed source

file may be simulated by application of the names in the directory

structure of source file A data to source file B data. The co-

ordination of word forms as index terms within a name, where the

index terms may be specified as role or link facets is a naming

organization which may be searched for co-ordinations or for

hierarchies of word forms. The information indexed thus named by

a co-ordination of word form index terms may have been constructed

from simpler indexes named one to one by the component word form

index terms. In all probability this will not often be so, thus

a mechanism for selecting names of indexes from which a more

complex index was constructed, is desirable. So also is the

converse ability to select the name of a complex index given the

names of the simpler indexes from which it was constructed. The

renaming of the names of indexes as names and/or symbols is required

as is the different requirement, i.e., the renaming of indexes.

When only one source file is being worked both of these renamings

have the same effect, however, when two or more source files are

being worked renaming of an index affects only the index concerned

whereas renaming of a name veffects all of the indexes thus named.

Conceptually the naming of data indexes and conventions for

classifying the names (and therefore the data indexes) is similar

to the naming by index term word forms which describe subject

descriptions (loosely structured data). Once index term word

forms have been chosen (by computer programs and post editing)

as naming elements for the description of subject descriptions, the

machinery for manipulating the naming classification of subj ect

descriptions can be the same as the machinery for m:anipulating the

naming classification of information indexes (and ,ocial science in-

dexes) for actual data and heavily structured biblig,.raphic data.

2. The data management task remains essentially the sane when

a category record contains only aggregates of an entgry, although

the scientific statistical tests may be of a different kind. In

the simplest case the aggregate may be the population of a town,

the sample size of a survey. For demographic or ecological data

the original measures are of this kind, when derived measures are

the result of some computation on the original measurcs. The

aggregates theaselves may have been produced by data processing

operations Aithin the system or an aggregated data file may have

been entered into the system as a source data file. When these

aggregates are to be selected as control contingencies over .he

analysis of category records containing the entry characteristics

of a number of individuals, the problemn becomes one of devising a

category record that contains as entries the aggregates for each

of the groups within the category. For example, a category record

for towns, for example, a category record for survey populations.

Once constructed these category records may be analyzed using the

normal indexing machinery.

2. k The flowT of the instruct ions and user control via feedback

loops is outlined in Chart B. The top level feedback is between

analytic and organization-processing. Here the hunting and com-

paring analysis (perhaps perceived as pathing a way through trees)

constructs complex indexes as rows and columns for tables. These

tables are convenient artifacts for book-keeping parallel index

construction rithin and across files by means of the directory

of classified names for the index structure. This simulation of

recoding by index construction may be consolidated in a new admin-

istrative form which is organized and processed against the previously

processed data, and the result of the subsequent processing

inverted to category records for analysis of these more cogent

data categories. An intermediate level feedback loop is between

organizing and processing. The discrepancies between norm and

empirical data have to be settled by amending the norm or the

data and re-processing until correspondence is satisfactory to

the user. The micro-level feedback loops and continuous inter-

active checkout is mainly evident in two ways. Syntax error

messages, especially in the organization of the adform; and data

processing and data analysis interim results checkout as information

upon which to make a decision as to how to direct the flow of control.

2. . The flowr of interaction and administrative control via feed-

back loops is outlined in Chart C. The top level macro-organization

feedback is via the collection catalog (also used by users) and

the process catalog which has to keep track of all files in process

and all states of each file for each phase of the process. An

administrative form can be at different states of organization,

there can be several administrative forms for one source file.

Adforms for different source files may be siblings of each other.

The organization of an adform results in a family of report files

and report files from the processing of data under this adform

join the family. The sour'ce data may be processed in separate

sections which have to be appended. The processed items are

inverted and the category record file may be composed from

different processed files frcn the same source file. The directory

and tazbles from analysis of category files in parallel from different

source files are also report files. Working files may be saved.

The function of a process catalog is that of a retrospective record

of the results of operations, such that the relevant files may

retrospectively be selected and retrieved. The collection cata-

log has the same function for unprocessed material. A system

reniark file allows for user suggestions and a monitoring of command

usage so that further options may be developed. On line documenta-

tion is part of each program and gives details of correct command

syntax and explains the function of each command. The retrospec-

tive selections and retireval capability for data, source and

processed, and for codebooks, source and processed will be augmented

by a more micro level feedback control in the form of a modest

ability to access small chunks of loosely structured data such as

subject descriptions to codebooks. The accessing capability in

conjunction with accessing of heavily structured categories of

file description both source and processed for empirical and norma-

tive data represents our present endeavor in computer based data

management.

Chart C

System Programs

Organizer
Processor
Analyzer

Program IMaintenance

ro

Data Files (source)

Collection Catalog

System
Programmer
Files

USER FILESM

report
files

working
files

Administrator

Administrative information

Control over data

Control over programs

Process Catalog

USER FILES

report
files

working
files

USIER Connon Files

report files

working files

USER FILES

report
files

working
files

2. m As Admins is a developmert system resting on top of another

development system, the CTS of7 Project MAC, the obviously one

seeks ground rules for developing an interactive data management

system. Monitoring usage is helpful but not very meaty. Pro-

cedural research, i.e., the activity of regarding any particular

substantive analysis from the frame of reference of the massaging

of data management procedures to a better user fit within an

interactive checkout philosophy, is the only really useful way to

proceed. This in turn means that uasers who insist on using a

machine aid cognition resource, which is limited, only with pro-

duction of substantive results in mind, the fast turri around of

batch production of tables mentality ought to be discouraged.

One can do this by system design, administrative action and social

pressure and perhaps better, by all three.

3.a.1 Physically, data input to Admins consists of a linear seguence

(file) of items. Each item contains positionally designated head-

ings under which codes are found. We call these headings categories

and the codes entries. A category may be of the following types:

1. Nominal - Each entry records the presence of some nominal

characteristic of the item. These nominal codes may be

either numeric or alphabetic.

2. Ordinal - As with nominal entries, ordinal entries -

record some characteristic of the item, however, the

alphanumeric values of the entries code an ordered

relationship linking the characteristics the entries

represent.

3. Interval - The entry numerically measures some charac-

teristic of the item.

3.a.2 The physical representation of the entry codes may be one of

three types.

1. Binary Coded Decimal - The entries are 6-bit codes

which may be used to represent the integers, alpha-

betic and most punctuation characters, Sequences

of BCD codes may have several interpretations, such

as various length integers, alphabetic codes, etc.

Most commonly BCD codes are found on IBM (Hollerith)

punch cards or on tape rimages' of these cards.

Clearly, BCD codes only cover a few of the possible

punch permutations in a 12 hole column. This fact

leads us to 2.

3.a.3 2. Column Binary - The entries are represented as holes in

columns of a puznch card image which exists on tape or

disk; each column is imaged in a 12-bit pattern.

(Column binary card images are commonly used to hold

binary translations produced by Fortran-like compilers.)

Much dat4 prepared -pfore the late 1950 s, that is

under the influence of" the counter-sorter, etc. attempted

to code maximum information onto the punch card thereby

creating patterns o holes in a column which had no BCD

equivalent. As a result if such cards are read by

standard input/outpbt 3ackages (i.e., designed to

accomodate BCD) varkouj forms of confusion ensue, none

of a constructive nitu e. To summarize, BCD uses 6-bit

codes to represent the 'ontents of a column on a Hollerith

card. Column binar'ages a column as a 12-bit

pattern.

3.a.4 3. Admins binary - The da4 output of Admins, a form of

binary coding whicin tvidually packs each category

based on the data d sc 4 ptions of the category on the

adform, may be used as .nput to Admins as well. The

various uses of fee ing: system output back in as input are

discussed further oh.

3

Admins can be conceived of as a static collection of integrated

functional sub systems, each embodied in computer programs, each

with its owm administrative languages, each with its own report

generation and diagnostic abilities. Alternatively, the system can

be understood as a dynamic flow of information and decisions within

and across sub systems under control of the user, 'conversing'with

and reacting to Admins.

In order to fully understand the latter some 1mowledge of the

foraer is required. Therefore, we will first attempt a static

description of the sub systems followed by a discussion of the

possible administr -d man-machine feedback loops the

program design is aoie . _comodate.

CTSS Manual AH 3.07

3.c.l The input to the Organizer sub system is an administrative form

(adform). The adform contains process and audit information for

each category the user wishes to access in the data file. That is,

the adform describes a prototype (as well as transformation for

producing this prototype) of the item record (output) file which

the Processor should produce from the input data file.

The process and audit statements on the adform are either

executable or descriptive. The following chart gives examples of

each.

3.c.2 Process Audit

Descriptive Examples: Examples:

No. of entries in category, The maximum permissable
an EngJlish subject descrip- number of entries in a
tion for each entry and for category, likewise for
the category. the minimum.

instruction Examples: Examples:
(Execuable)

A recode statement, a re- An executable statement
sequence statement, the which declares the
location of the input codes 'legal' input code con-
on the item record. figuration, likewise for

the output code configur-
ation.

3.c.3 The output from the Organizer is, in the case of a 'valid organ-

ization', a group of disk files containing tables, a ring structure,

and a computer program, all of which can be though of as a computer

understandable rendition of the adform.

Alternatively, the Organizer may have found errors in the ad-

form either of a purely syntactic or of a coherence nature, in which

case the output from the Organizer are descriptions of the errors.

The user is expected to correct these errors and re-submit his ad-

form for organization.

The adform i- prepared, edited and re-edited using the EDL com-

and of CTSS, which allows an alphanumeric file to be flexibly typed

onto the disk and contertually altered.

3.d.l The adform is a sequence of paragraphs, each corresponding to

a category in the data. Each paragraph is broken down into a

sequence of sentences. Each sentence contains a statement in a

language which is -understandable to the Organizer. The function

of the repetoire of statements made available to the composer of

the adform (the user) is to provide a language sufficiently rich

for describing all necessary data audit and data process procedures

dictated by the users purpose and the state of the inpurit data file.

A statement consists of a statement identifier, followed by

an I=', followed by a string of alphanumeric symbols conforming to

the syntax of that statement, followed by a '.'. Blank characters

are of no conseguence anywhere on the adform. This permits the

user any I formt design he wishes in laying out the adform within

the constraints that statements terminate ith periods, para-

graphs with double periods (..), the adform with a triple period

(...); plus constraints imposed by the syntax of the individual

statements.

3.d.2 Statements are of the folloring types.

1. Location - This instructs the Processor as it is filling

the input positions where to locate and how to interpret

the input codes.

2. Audit - These state a norm against which the data will

be compared. Discrepancies between norm and data will

be reported by the Processor sub system.

3. Descriptive - These aescribe the form and content of the

category.

4. Transformation - These transform the contents of the

input positions into output entries.

5. Contingency - These assert the data contingent flow of

computer control thrpugh the adform during processing.

These statement types are not mutually exclusive, that is particular

statements may be of more than one type. (For example, the re-

sequence statements perform both audit and C Z"" functions.)
transformational

3.d.3 Tne Processor sub system (under interactive control) will be
responsible for reading the input items, using the location state-

ments on the adform to fill the input positions, applying the

executable statements on the adform to these positions, placing

the output entries from each category into item records, and writing

the item record file onto the disk. As processing occurs (and

cumulatively as well) audit discrepancies are reported.

3.e.0 Before delineating the individual statements of the organizer

language let us describe certain syntactic conventions common

across many of the statements.

3.e.1 Positions can be thought of in two ways; as containers holding

alphanumeric values or as codes which are present or absent. Each

interpretation is convenient for certain types of input data.

Containers are referenced by prefixing the position number with a

V, creating a simple arithmetic expression. For example, 'V3' is
read 'the value in'position 3'. The alternate interpretation of

positions is as a boolean or logical expression which is either

true (if the entry is present) or false (if the entry is absent)

and is stated by prefixing the position number with a B, creating

a boolean expression. For example, tB3' is read 'boolean 3'.

3.e.2 Constants are numeric values, such as 7, 10, etc., or alpha-

numeric in which case they are enclosed in ',$', such as a, 77,

$$. Constants are simple arithmetic expressions.

3.e.3 Arithmetic operators are used to link arithmetic expressions

to form arithmetic expressions. Arithmetic operators are + (plus),
- (minus), * (multiplication), and / (division).

3.e.4 Relational operators are used to link arithmetic expressions

to form boolean expressions. The relational operators are:

L (less than), E (equal to), G (greater than).

3.e-5 Logical operators are used to link boolean expressions to form

boolean expressions. The logical operators are: A (and), 0 (or),
X (exclusive or), N (not), T (then).

3.e.6 Precedence operators - Parentheses are used to express precedence

of interpretation when evaluating expressions.

3.e.7 Subroutines may be invoked by preceding the subroutine name with

'SB' for a boolean subroutine, 'SV' for an arithmetic subroutine, and

following the name with arguments enclosed in parenthesis and separated

by commas.

(As the statements using the syntax conventions thus far des-

cribed are easily translatable into MAD statements, which is what

is done to them, further excplanations of their meaning can be elicited

from the beginning chapters of the MAD manual.)*

Through Notation - certain statements require the assertion

of sequences of constants. '+' (read I and') is used to separate

constants which are noncontiguous (i.e., do not differ by 1) and

.1 (read 'thru') is used to assert a contiguous sequence of con-

stants.

Notation

1-3

1-5 + 7+6

1 - 4
T-4+2

Interpretation

1,2,3

1,2, 3, 4,5, T,6

1,2,3,4 left-justified alphanumeric

7,6,5,4,2,

Syntax Convention Chart

Positions

Constants

Arithmetic operators

Relational operators

Logical operators

Subroutines

Through Notation

Precedence

V'n? or B'n'

numeric or alphanumeric (enclosed in $)

+ - * /
L E G

A 0 X N T

Boolean and arithmetic

+ - numeric and alphanumeric

()

* MAD Manual - Galler Arden Grah:p, 1963.

3. e.

3.e.9

3.e.10

What follows is a descrintion of all the statements in the

Organizer language. Following each statement in parentheses is its

abbreviation, which :may appear on the adform in its place.

Location

3.f.0 FOPMA1T (2) - There are three fomat statements; for BCD, for

column binary, for Admins binary.

3.f.1 BCD - This states the card number (within the input item), the

column on the card, and a Fortran format statement of form XZ where

X is the number of input positions to be filled, Y the interpretation

(I for integer, A for alphanumeric) and Z the size (in columns) of

the field; card, column, format are separated by commas.

3.f.2 Column Binary - Card number, column nuiber, punch number. The

punches specifiable are as follows on the table.

Punch nuaber Hole

1 1
2 2
3 3

5 5
6 6
7 7
8 8
9 9

10 0
11 X (Zone)
12 Y (Zone)
13 Blank (i.e., not 1-12)

Punches may be referenced using the through notation. Each punch

goes into an input position. The card and column number are

separated by a comma; the punch numbers are enclosed in parentheses.

An entire column may be read as one input position containing the

12 bit pattern by not specifying any punches. More than one column

may be referenced in one FORMAT statement, by repeating the pattern

of card, column, punches.

Two subroutines, COLIN and COLBCD are available for inter-

preting full columns read into single positions as integers or

alphanumeric respectively.

3.f.3 Admins Binary - the category name followed by the entries

required. As in column binary entries are enclosed in parentheses,

may be specified using the through notation and more than one

category may be referenced.

Numerical (i.e., interval or bibliographic) categories are

referenced by placing an 'N' between the parentheses.

3.-L.4 In all three varieties of the FOPMAT statement the user is not

restricted to the original ordering in the input item, e.g., the

BCD FORMAT statements in an adform may skip back and forth across

the input cards and columns. As well multiple references are made

to the same input fields by prefixing in the FORIAT statement a

previous category name--whose input positions one wishes to reference--

with a I/'. This allows one to reference the same input positions

as the category 'slashed'.

Audit

3.g.1 AUDIT INPUT (A:) - The user is asserting--by stating a

boolean expression in terms of the input positions--his expec-

tation as to the state of the data in the input positions. The

boolean expression is evaluated using the data in the input posi-

tions, for each item. If the boolean expression is false the data

in the input positions for that item is discrepant; such occurrences

are reported during processing.

3.g.2 AUDIT OTPUT (AO) - Similar to the Audit Input statement

except the boolean expression is stated in terms of the ouftput

entries.

3.g.3 AUDIT ITEM RECORD (AITR) - The boolean expression is stated

in terms of categories and their entries appearing in the adform.

This allows an output audit contingent on data in several different

categories.

Descriptive

3.h.1 7 7 7 NAME (1N) - This is used to assign each category a

6 or fewer alphanumeric character name. All references to the

category are made with this name. NAME is always the first state-

ment in each paragraph, as all diagnostics are described with

reference to a category name.

3.h. 2 SUBJECT DESCRIPTION (D) - Each category and each entry within

it receive an English subject description--72 alphanumeric charac-

ters or fewer. All multiple blanks in the description are squeezed

to single blanks. The entry descriptions are separated by slashes.

Numeric categories are only given category descriptions.

3.h.3 ENTRIES (E) - This states the number of possible entries,
the maximum permissable in an item and the minimum permissable.

These three numbers are separated by commas. If the category

is numeric, that is its entries are numeric values, then one writes

an 'N' followed by a maximum value for the output entry.

3.h.4 ASSOCIATION LOCAL (ASL) - By using a pattern of l's and O's

the ASL statement asserts associations among the entries.

3.h.5 ASSOCIATION GLOBAL (ASG) - Same as ASL except the association

is among the categories.

SCALE (S) - 'ON' specifies the entries are ordinal.3. h. 6

Transformation

3.1.l RESEQUNCE CODES (RSC) - Input positions (interpreted as values)

may be resequenced into output entries by specifying a resequence

table using the through notation. The table is interpreted to mean:

if the nth value of the table is present in any of the input positions,

the nth output entry should be produced.

As RSC implicitly audits the data (i.e., an audit discrepancy

occurs if an input position contains a value not in the resequence

table) one may follow the resequence table with a permission table-

separated from the resequence table by permitL--which contains values

(again using the through notation) one does not want represented in

the output entries but nonetheless are permissable input.

3.i.2 RSSEQUUTCE POSITIONS (RSP) - The same as RSC except one

specifies positions and not their values. An alert reader will

notice that the flexibility of the colun binary or Admins binary

varieties of FOPMAT statement allows one to resequence in that

statement. Since the absence of any transformation statement in

a paragraph causes input to become output, one can resequence

positions without a transfonation statement. However, reasons

of style, double resequencing of complex input, and the fact that

one cannot 'permit' on the FOPMJT statement make RSP useful.

3.i.3 RECODE (RC) - One states a sequence of IF's, each of which

are followed by a boolean expression. Each 'IF' is evaluated

producing the nth output entry if the nth 'IF' nas true.

3 i.4 ARITIUTIC (ARITH) - If the output entry is a numerical value

computed by an arithmetic expression in terms of the input positions,

the arithmetic expression is here stated.

.i.5 InThERVAL (INT) - This is us(,d if the input positions contain

numeric values and one wishes to -roduce output entries corresponding

to intervals of these values. Th(intervals are specified by writing

the boundaries separated by a 1-1; the intervals are separated by conmas.

Contingency

3. j.1 FILTER (F) - This contains boolean expressions followed by

destination paragraphs specified by their category names. Each

boolean expression (stated in terms of the output entries) is

evaluated. If found true control is routed to the specified

destination, otherwise the next boolean expression is evaluated,

and so on. If all boolean expressions in the FILTER statement

are false, or if there is no FILTER statement, control continues

at the next paragraph. As in RECODE the .boolean expressions are

preceded by IF. They are followed by GOTO and a category name.

Note: FILTER affects control flow during processing not during

organization.

3.k.O The Organizer is programed to recognize and clearly describe

guite a variety of possible syntax or coherence errors. Let us see

a few examples.

3.k.1 Syntax

A statement in category xxx' does not have a terminal period.

BCD Format - category =xxxT uses column outside item.

Image Format - category 1xx exceeds 12 punches plus blank.

BCD Format - category xxx' overlays previous format.

Literal - category 1xxx' has unbalanced dollar signs.

Category xxx' - item record audit references non-existent
entry of category 1xxx T.

Interval for category 1xxx' is incomplete.

3.k.2 Coherence

The following statements must always refer to the same number

of output entries: SUBJECT 1DESCRIPTION, E17TEIES, RESEQUENCE

POSITIONS/CODES, RECODE, OUTPUT, AUDIT. They are checked against

each other and if incoherent the Organizer prints a message

followed by a table specifying for each statement involved the

number of entries referenced.

As these examples are but a small part of the programmed

syntax and coherence checks the user can feel secure that an

adform organized without error expresses at least clerically,

his full intent.

3.k.0 The Organizer is programmed to recognize and clearly describe

auite a variety of possible syntax or coherence errors. Let us see

a few examples.

3.k.1 Syntax

A statement in category t xxx' does not have a terminal period.

BCD Format - category 1xxx' uses column outside item.

Image Format - category txxxt exceeds 12 punches plus blank.

BCD Format - category Ixxx overlays previous format.

Literal - category Ixxx' has unbalanced dollar signs.

Category 'xxx' - item record audit references non-existent
entry of category 'xxx'.

Interval for category ':x' is incomplete.

3.k. 2 Coherence

The following statements must always refer to the same number

of output entries: SUBJECT DESCRIFTION, E17=-IES, RESEQUENCE

POSITIONS/CODES, RECODE, OUY23TU, AUDIT. They are checked against

each other and if incoherent the Organizer prints a message

followed by a table specifying for each statement involved the

number of entries referenced.

As these examples are but a small part of the programmed

syntax and coherence checks the user can feel secure that an

adform organized without error expresses at least clerically,

his full intent.

4

3.1.1 When the user has finished preparing this adform with EDL, it

exists on the disk as a disk file of name ADFORM 'basic-label'

where basic-label is a 6 or fewer character name which the user

has selected to identify all report and process riles associatcd

iith this pati icular adform. The user may then give the ORGA1TIZE

co-rnand uith arguments specifying:

1. The basic label of the adf'orm.

2. The mode of input - BCD, Column Binary, A dmins Binary.

3. The size of an input item; in case of Admins binary this

is irrelevant and the name of the source file of the input

category records is specified instead.

4. An optional argument 'diag t which asserts to the Organizer

not to produce any of the intermediary files but only to

scan the adform for samtax and coherence errors. This is

done whether 'diag:' is specified or not, but in the latter

case a valid organization produces intermediary files.

If the ORGANIZE conand is given free of arginents, the console

prints back the proper argtument syntax. (This is so for every

command in Admins; the ten 'command' is used to refer to programs

that exist on the disk loaded, awaiting execution, i.e., core

images. The term 'instruction' is used to describe 'verbs'

understandable to core images.)

3.1.2 If the Organizer finds an error in the adform, it ill continue

the scan of the adform seeking further errors. However, certain

errors dis-orient the program, in which case the Organizer stops.

3.1.3 When the user has achieved a valid organization his disk files

hold a compiled MAD program, named 'Basic-Label BSS' and 4 inter-

mediary files containing:

1. A ring embodying the structure of his adforms.

2. A table containing the English subject descriptions.

3. A resequence table.

4. A format table.

These disk files are used by the rest of Admins as the data prog-

resses thru the system. Their existence need not concern the user.

The Organizer never saw the users data. It is the function

of the Processor to apply the torganized' adform to the data -under

interactive control.

The function of the Process command is to load up the following
into a 'rocess image'.

1. The BSS program produced by the organizer.

2. The appropriate interface subroutine (BCD, Column Binary,
Admins binary).

3. The control program which shall apply the organized

prototype to the data and produce online reports and

disk summary files.

1. A subroutine 'BIBLIO BS2' which is called after each

input item record is read into core with a pointer to

the input buffer and is expected to return a value

representing one of the following messageo:

a. The control program should proceed.

b. The control program should halt because this item

is out of sort, or for some other reason. BIBLIO

may print a message if it wishes.

c. This item should be skipped. This permit samples,
random or otherwise, of the input file to be taken.

If a disk file of name BIBLIO BSS is found in the users file directory

it is loaded into the process image; otherwise a BIBLIO BSS which

always returns the first (i.e. the proceed) request is used.

3.m.2 The user provides the following information as arguments when

he invokes the PROCESS comand:

1. The basic label of the adfon which he wrote and now

wishes to apply to his data. (A link must exist in the

users directory of name 'INPTO Basic-label' which points

to the input data file.)

2. The mode of the input data file - BCD, Column Binary,

Admins Binary.

3. Optionally, that he is producing an output data file

which he wished to 'append' to an already existing

output data file.

4. Optionally, that he wishes to save his 'process image'.

If this option is not taken the 'process image' is

placed into core for execution.

The instructions the user may type at the console to his

process image are as follows:

3.m-3 DO 'n' or 'all' - which instructs the processor to process in'

input items or all of them. As audit errors are found a one line

message of the following form is printed on the console. Item

number/Category name/reason for message/contents of input positions/

output entries.

The possible reasons for the message and their mnemonic codes

are:

Mnemonic Reason

SAMP the user requested a sample.

IAUD input audit discrepancy.

RSP resequence position discrepancy.

RSC resequence code discrepancy.

PRIM user supplied primitive flagged an error

(i.e. returned 'false' when called).

MAX user specified maximum for number of
entries was exceeded

same for minimum.

OAUD output audit discrepancy.

AITR audit item record discrepancy.

INT interval discrepancy, i.e. a value which
fell out of all the intervals was input.

ARTH The numerical value exceeds the maximum
specified by the entries statement.

If the user has 'turned on' the silence feature all such

messages are suppressed.

Unless a relevant control interrupt is brought to bear, the

process image will process the instructed amount of items and print

a summary line telling the total items processed thus far, and the

total errors discovered. If the user has instructed the processor

to do all',,processing continues until an lend of file' is encountered

on the input data file.

M14 SMLE - This command processes one item printing the contents

of the input positions and the output entries for each category

processed. In effect this produces a 'slow motion film' of the

application of the adform to one item. Sample may be used at any

time during processing.

3.m.5 STOP - This instruction terminates processing.

COW1TROL In' - This tells the process image to control inter-

rupt after In' errors are found in the input file. At a control

interrupt the summary line is printed on the console and the user

is free to give any command he wishes.

3.m.7 SET - This instruction puts the user in a mode where he types

a category name followed by 'n' a tolerance setting; he may do so

for as many categories as he ishes. A control interrupt will occur

if 'n't errors in the specified category are exceeded.

3.m. 8 SETOFF - This turns all individual settings off.

3.m.9 DECONTROL - This turns the interrupt features (COITROL, SET) off.

3.m.10 SPECIFY - This prints outs small table showing for each cate-

gory in which an error has occurred, thenumber of errors and the

current tolerance setting.

3..11 SILENCE - This turns off the printing of error messages

feature.

3.ra.12 PRINT - This turns on the printing of error message feature.

Initially this feature is on.

3.m.13 DU@1Yf - This instructs the process image not to produce an

output file, that is the user is processing the file in order to

generate the reports and not to produce data output. Obviously,

this introduces an economy in computer time usage.

3.m.14 DATA - This instructs the process image to produce an output

data file. This feature is initially on.

3.n-15 SICEP in' - This causes the processor to SKIP 'n' input items.

3.n.16 VERTY 'on' I of - If this feature is 'on' the processor

prints the one line summary message every 100th iten record

processed.

3.m.l7 These instructions are typed on a line. The 'process image'

responds to them, either by processing data (printing messages

as it process), or by printing some information, or by turning

some ' switch', and then prints back 'ok' whereupon the user can

type another instruction.

The output of the 'process image' is:

1. A binary disk file of aggregates.

2. A binary disk file of errors.

3. Optionally, the output data file in Admins binary form

which exists on disk file I item basic-label' or, if

appending, on 'append basic-label'.

Upon completion of processing there are two printed reports

the user can obtain.

3.n.2 (1) Marginals - this consisted of a printout which contains

for each category and each entry in the category:

1. The number of items with that entry (category).

2. 1 as a percentage of the total number of items.

3. 1 as a percentage of the number of items having

that category.

4. The english subject description.

3.n.3 This report is composed from the binary aggregate file and the subject

description table by typing the MARGIAL command followed by the

basic-label. The -report is placed on the disk file 'MG1\LS Basic-

label' and may be printed on the console using the 'PRINT' command

in CTSS* or by requesting it be printed offline on the 1401 using

the 'RQUEST' command in CTSS.X(-

3.n.4 (2) Error Report - whereas the error messages printed out by

the process image were one-to-one in relation to the error

causing the message, the user may ggerate an error report

which summarizes the errors with respect to the cause of

the error; the form of the error report is as follows:

*

CTSS Manual AH.5.03

CTSS Manual AH.6.0o

3.n.1

For each category the nnaber of errors are specified. Under

each category heading, lines of the following form appear. Error

type; contents of input positions; number of errors of this type

with these contents; serial nuabers of the first 3 items in which

the error occurred.

The report is composed from the binary errors file by typing

the REIORT comand followed by the basic-label. The report is

written on disk file REPORT basic-labelr and may be printed by

the same means described for printing the marginals.

File Inversion

The data output from the process sub-system is a linear sequence

of item records each containing entries under the categories specified

in the adform (the prototype of the item record). This data is not

usable by any further part of Admins until this item record file

has been inverted, that is, until for each category required, a

category record is produced. A category record is a disk file con-

taining the entries under a particular category for all items, the

english subject description of the category and its entries, the

aggregates of the category and its entries as well as other descrip-

tive inf:ormation from the adform. The disk file name of a category

record is 'CATG FILUAIM: where CATG is the name of the category

(assigned with the NAME instruction in the adform) and FILNAM is

a user assigned name of the source file from which the category

record was produced.

3.o.2 A file is inverted using the IVERT command, which requires

the following infomation from the user.

1. The basic-label of the item record file.

2. The name of the source file.

3. Optionally the names of the categories to be inverted.

If none are specified all categories from 'ADFOFM basic-

label' are inverted.

The invert command takes as input:

1. An item record file.

2. The ring structure produced by the organizer

3. The subject description table.

4. The binary aggregates file.

These four are integrated to produce the category records requested.

3.p.1 Data Alteration

Decisions made from the reports of the process image may

recuire a few alterations in the data (i.e. the entries) of certain

categories for certain items. This is done using the ALTER com-

mand. The comand is typed followed by a category record name

and the source file name. The ALTER comnand obeys instructions

which can print or change the entries of items in the category

record specified. The ALTER program automatically redistributes

the aggregates to reflect the changes to individual items.

3.g .1. Appending Files

The APPEITD command concatenates the item record file 'ITEM

basic-label' and the item record file 'APPED basic-label,. Both

must have been produced by the same process image. As well, the

binary aggregate files from both are 'added' together to reflect

the concatenated file. The APP]TD command is typed followed by the

basic label of the appropriate 'item' and 'append' item record

files.

The Analyzer

4.a.1 The Analyzer is the key sub system inasmuch as the user has

organized and processed his data in order to analyze it. Generally

speaking, data analysis consists of a dynamic interaction between

classification and summarization according to a theory (or set of

hypotheses). As the Analyzer is a tool, a perspective on the

Analyzer's capabilities can be gained in a discussion of the tools

required to classify and summarize heavily structured data.

Classification, clerically, is a process of combining charac-

teristics and naming these combinations according to a plan. If

the classification is to be empirical, i.e. is responsive to the

empirically observed items which fall under the classification, the

data must be summarized in terms of the classification, and the

resulting summarization fed back into the plan. The classification

is built up as the a priori (theoretical) notions interact (in the

mind of the user) with empirical summarizations of the data.

As the Analyzer is the users clerical aid in this process of

empirical classification, it must possess tools for combining

characteristics, applying classificatory names to combinations of

characteristics, and summarizing the data in the framework of the

classification.

Characteristics are combined by building indexes to the items

in the file. Indexes are lists of token pointers to items. The

criteria for building an index are stated in terms of the existence

of a category and/or (combinations of) entry(ies) in the item

record file.

Indexes, once built, may be conceived of as sets of items,

The basic set theoretic operations may be applie9 to these sets

producing complex indexes. In turn, the set ope rions may be

applied to complex indexes, ad infinitum.

:aones may be given to indexes as they are built. The naming

mechanisms allow both symbolic as well as mnemonic english names;

these mechanisms can interpret names as expressing hierarchical

or facet relationships. The names and explicit descriptions of

the indexes they label are organized in a 'classified directory'.

As indexes are constructable both within and across source files,

the classified directory is a very complex structure,- as it is

responsible for the recording of arbitrarily complex index con-

struction and classification.

Summarization involves tabulating the empirical data in the

framework of the classification embodied in the classified

directory. As data and user purposes are varied there is a lage

repetoire of summarization procedures in the Analyzer. One is the

ability to build a table, whose rows and columns are complex

indexes existing in different source files, and whose cells are

the sizes of the intersection of the row and column co-ordinate

indexes.

The Analyzer is a highly interactive program. The user types

an instruction and is immediately presented with.its effective

result. Almost every instruction the user issues states a decision

he has made as a result of information presented by the Analyzer

in response to a previous instruction.

4.b.O The instructions available in the Analyzer fall into the

following types:

1. Maintenance of the classified directory. As the user

proceeds in his analysis, he is empirically combining

characteristics of the items of the data and giving these

empirical combinations names. The sequence of his set

operations and the names he gives are stored in a clas-

sified directory.

4.b.2 2. Maintenance of the 'file focus' - As the analyzer crosses

files the user needs a group of instructions which tells

the Lnalyzer which source file he wishes to work and

which allows him to continually switch back and forth

between these files as he goes.

4.b.3 3. Set operations - these instructions are used to empirically

construct the boolean combinations of characteristics in

the data.

4.b.4 4. Summarization - The Analyzer permits many types of data

stumarization from simple marginals to complex co-

occurrence tables.

5. Recoding - The Analyzer has instructions for certain

necessary recoding of category records as analysis proceeds.

6. Multi-level files - As the analyzer permits integrated

analysis of multi-level files (i.e. the data exists at

different levels of aggregation or can be sub-divided

into groups), instructions which allow the usor to pass,

between different grouping levels are reqie

File Focus

4.c.1 WORK{ - The user types the names (these names are the names of

the source files the user assigned to the category records when he

inverted the item record file) of the files he wishes to work. All

subsequent relevant instructions will then be applied, in parallel,

to each of the files being 'worked. These files constitute the

worklist'.

.c. 2 UTNITRSE - The user types a list of all the files in his

universe of discourse. Whenever he chooses he may then type

'work universe' and all the files he declared to be in his universe

go into the worklist.

4.c.3 ADD - The user types the names of the files that should b

added to the worklist.

.. 4 UBTRACT - The user types the names of the files to be removed

from the worklist.

WORIIST - The Analyzer prints back the current worklist.

Classified Directory Maintenance

0 The classified directory consists of all the names assigned

to all the indexes constructed across all the files that have been

worked. The user may assign two 'names' to each index; one less

than 6 characters (a symbol) and the others between 7 and 30

characters.' The name (7-30) may be broken down into facets by

using 1.' as a separator.

.d. 1 LIST prints out a list containing for each index the surce

file name, the index name, the index symbol, the index size, the

paragraph number in which the index was created. If LIST is typed

alone all indexes are listed. Alternatively, specific indee.s:

can be asked for either by name or by symbol. As well one cain

make implicit requests using a I' notation: For example:

LIST DR*4 lists all indexes whose symbol has B as character 1,

R as character 2, and 4 as character 4; LIST BRIT-.CHINA lists

all indexes whose first facet is BRIT, third is CEINA. These

may be intermingled in one request.

d. 2 LISTC is the same as LIST except LISTC explicitly documents

the construction of the indexes listed, i.e. what operators acting

on which categories and entries and in what sequence produced the

index.

4.6.3 ALLIST - whereas LIST and LISTC operates in parallel over the

files in the worklist, ALLIST gives each index requested (same

conventions as LIST) and under it the files in which it exists;

they need not necessarily be on the worklist at the tim the

instruction is given.

SOURCES prints the index names and the set operation from

its arguments were built.

4-.5)RESULTS prints all the index names which have the arguments

as one of their direct parts.

4.d.6 NAIE is used to assign a symbol/name to a name/symbol or to

change a name/symbol. It is effective across all files, not

necessarily those on the worklist.

4. d. T RECLASSIFY is the same as TAIE except it only affects those

files on the worklist.

4. d. DELETE is used to delete indexes for files on the worklist.

4.d.9 DEPAGE - The classif'ied directory is kept in a paged nry

may be removed from one \nalyzer core iaage and transferred to

another. DEPAGE is used to -rite the directory into a disk file

IAME! PAGES' where NTAMEB is specified as an argument in the DTPAGE

instruction. This is very handy because a user can build a very

complex classified directory and then store it on the disk in a

small amount of space. This directory can then be read into an
temptyt Analyzer core-image belonging to its author or perhaps to

some other individual rho wished to use the complex classified

directory.

The Analyzer automatically depages itself every 10 directory

altering instructions providing backuip protection to the user.

Set Operations

4.e.0 To name the result of a set operation instruction the arguments

should be followed by an '=1 and then a name and another 1=1 and a

symbol. Symbols may precede the name, and, if the user wishes,

only one of the two need be present. If neither is present the

summary line for that operation is printed but the actual index

is not built and therefore never saved, i.e. no directory entry

is made for it.

4.e.1 IDEX is used to build an index to items possessing a specified

category or an entry in a category; or one or more of a list of

entries in a category; or if the category is numeric, to itcs -

whose value possess the relationship (less than, greater than, or

equal to) Tith a specified constant. The summary line returned

for each file on the worlist is file name, population, index size,

index name--if assigned.

4412ITERSECT is used to build an index containing those items in

every one of the arguments of the ITERSECT instruction. (up to

10 indexes may be specified.) The summary lines returned contain

the arguments and for each file on the worklist, the file name,

argument sizes, file population, result size, Fisher Exact Text,*

applied to the intersection if but 2 arguments were specified,

and the result name-- if any.

T4.e3 UION is similar in form to INTERSECT except the result index

contains items present on at least one of the arguments. And, of

course, no Fisher Exact Test is applied.

2,."., COM 'ENT is used to build an index to items not in it

single argument. Again the summary line is similar to IlTSEC'

2405 RELCOM - The relative complement is used to build an index

to all items in its second argument which are no, in its first argu-

ment. That is, RELCOMPL is the complement of the .cond argument

rel.. ative to a universe specified by the first argu'nt.

The FJET is a statistic which measures the randomroos of the size
of an intersection.

Sumarization

4.1%l SUBJECT prints the aggregates, aggregate percentages and the

subject description for the category speclfied. If particular

entries are specified, only they will be printed.

4.f.2 INTERVAL takes as argument the name of a category whose entry

is a numeric value, indexes (optionally) and percentage breakpoints.

It orders the entries (for only those items in the indexes if

indexes were specified) and prints out the value of the entry at

each percentage breakpoint.

f3 DISPLAY is used to display the actual entries for items in

an index. It accepts as arguments the categories to be displayed

and the index.

4..4 PEMUTE is used to simulate the combining of entries in a

category. It accepts as arguments a category, a list of entries,

an index and a threshold value for the Fisher Exact Text. It

then simulates t1he recoaing of the entries supplied by trying

all permutations of the entries as a single entry intersected

with the supplied index. The entries which produce a FET value

over the given threshold value (or only the highest one--if

requested) are printed out.

PATTERN - As the data may include categories with multiple

entries in the item the user may be interested in a summarization

of the patterns as opposed to the individual entries--which can

be obtained from the TABLE instruction. PATTERN accepts as

arguments a raultiple-entried category and (optionally) indexes.

It orints out for each entry pattern in the data the nmber of

occurrences in the total population and, if indexes were suppli

in the sub-population specified by each index.

V S prints the nuber of occurrences of -ch value in the

numerical category record supplied, as well as the number of

occurrences for the items in the indexes--if the re supplied.

Co-occurrence Tables

4..TThe tables generated are bf two types.

1. The columns contain indexes and the rows contain cate-

gories, i.e. each entry in the category is a row.

2. Both the rows and column contain indexes.

Tables are either labelled (TABLES instruction) or unlabelled

(FIGURES instruction). They are printed on the console and may be

also printed on the disk (DISK instrunaction). Many types of per-

centages may be printed on the tables (STATS instruction) as well

as the Fisher Exact Text. Users are encouraged to program their own

statistical tests as well.

Tables are printed in horizontal parallel form with respect t

the worklist.

.8 COLS is used to pecify the indexes on the columns.

ROWS is used to specify the rows, which are either indexes or

categories (in which case each entry becomes a row).

o.3 DISK specifies the nane of a disk file on which all tables

should be written until a new name is specified or DISK is turned
Toff T.

4.f.11 TABLE prints a labelled table on the console. For indexes the

labels are the names assigned to them. For categories and their

entries the labels are the english subject descriptions from the

adform. The cells of the table contain of course the sizes of7 the

intersection of the indexes on the rows and columns aforming tne

o-ordinates of the cells.

. 12 FIGURES- prints an unlabelled table. If a k file has beer

specified a labelled table is printed there.

4.f.13 STATS is used to specify the statistics which appear on the

table. The currently available ones are:

PC/TOT - each cell as a percentage of the total population of

the file.

PC/ROW - each cell as a percentage of the row marginal.

PC/COL - each cell as a percentage of the column marginal.

PC/TN' - the ratio of the cell to the nth cell in the row

as a ratio of the column marginal over the nth

column marginal.

SIG - Fisher Exact Test

OFF - turn all statistics off. The STATS settings apply

till they are changed or turned off.

Recoding

RATIO is used to produce a category record which, item by

iten, is the ratio (over 100) of two other numerical category

records.

;.2 COW is used to produce a numerical category record, where

each entry is the aggregate of that item over a list of supplied

indexes. It may be used to simulate 'threshold' or 'majority'

logic of the kind: if an item has n out of m specified character-

istics, classify that item which characteristic X.

4.g.3 RECATEGORIZE builds a category record whose entries corres-

pond to the indexes specified as arguments. It can be used to"

regroup a group of related complex indexes. This can be done,

as well, by writing an adform with Admins Binary input.

Multi-Level Files

4.h.0 A file is multi-level if a subfile based on bibliographic

tokens in the main file exists (or is constructable). The

selection of the items which will make up the subfile may be

dcmographic, kinship, or based on any arbitrary index. The

instructions for dealing with ulti-level files have two

purposes:

1. Construction of a subfile from a main file, i.e. the

selection of the subfile bibliographic tokens.

2. Relating data in the subfile to the items in the main

file and vice versa and aggregating data in the main

file over the subfile.

The full power of the other Analyzer instructions can be brought

to bear in analyzing 'subfiles in relation to the main file.

4.h1 UNIQUE accepts a category whose entries are bibliographic

tokens and produces a category record containing each unique

occurrence of a token. A category record containing biblio-

graphic tokens is called the 'basis' for the subfile.

£.. SUF creates a category record containing the bibliographic

tokens only for those itens in a specified index. This instruction

(in conjunction with the UINIQUE instruction) permits the user to

build a basis for any arbitrary subfile.

MAP - This instruction maps category records from one file

into another, using the respective bases as a cross reference

between files.

2a4 AGGREGATE - This instruction aggregates the items in an ind2

in one file over the items in a second file, usa g the respective

bases as a cross reference between the files.

SORT orders a category record of bibliographIc tokens.

i.1. The SMITAX instruction can be used to ask the Analyzer to print

the abbreviations and syntax of the instructions specified as argu-

ments. The syntax for all instructions are kept on a disk file

'SDITAX CROSS' and are read in when the analyzer is initiated.

That is, each analyzer core-image contains some self-documentation.

i.j~ .1 The user may type one or more instructions (with arguments)

to the Analyzer; the instructions are separated by commas. A I/

kills the line being typed back to the last comma. An extra carriage

return tells the Analyzer to execute the above instructions. When

completed, the Analyzer types a paragraph number (cross referenced

in the classified directory) and the user may type the next para-
graph, which may be but one instruction.

The Analyzer is error-proof in the sense that the user cannot

give an instruction in error, which causes him to lose some work

inadvertantly or lose his core image. If the Analyzer detects a

user error, it prints a clear explanatory message and is unable to

'ham' itself. All error messages are kept on disk file 'ERRORS

CROSS' and are read into core when needed, thereby saving space and

putting no storage limitation on the richness of error messages.

Storage Management

4.1.0 As there are five basic elements which require storage during

aralysis let us relate each separately to the storage management

issue.

4.1.1 1. Programs - As the analyzer offers an ever growing repetoire

of instructions, core might be exceeded someday by pro-

grams alone. Therefore, the Analyzers user-interface links

up with the subprograms embodying individual or small

clusters of instructions at execution time. It reads

the entry points of all instructions from a disk file

table. This allows the Admins administrator to make an

Analyzer image tailored to a users needs, i.e. only

containing those instructions a specific user requires.

A misjudgment does not involve loss of work, for the user

can always depage an ill-suited Analyzer image and repage

his directory into a freshly prepared one.

4.1.2 2. Classified Directory - As the classified directory is paged

(512 words to a page) and all address pointers in the

classified directory are page and word numbers (i.e. relative),

directories are relocatable across Analyzer core images.

As well they are a compact form of backup and saving ones

work. As the classified directory solely contains directory

(i.e. prototype) information and only points to blocks of

token pointers which are the actual indexes, classified

directories are only a few disk records in length.

4.1.3 3. Indexes - Indexes are lists of token pointers tightly

packed in blocks of storage. The information as to what

an index is, i.e. the sequence of set operations which

led to its construction, is in the classified directory.

That is, the indexes (token pointer lists) are dispensable.

They can always be rebuilt, as required, by a recursive

procedure levaluating' the classified directory. Realizing

this, the Analyzer purges (that is, returns to free storage)

all unessential indexes whenever memory is full. This

guarantees almost indefinitely long analysis, until the

directory itself overruns memory which seems very unlikely

because it would involve an extremely complex analysis.

4.1.4 4. Data - The actual data, the category records, are kept on

disk until they are specifically required. Whereupon they

are read into memory, used, and immediately deleted from

memory.

4.1.5 5. Comment information - The error comments, which are numerous

and rich, and an explanation of each command will be kept on

disk until specifically required, then read, printed or

otherwise displayed but not kept in core.

4.m.1 The data manipulation functions of the Analyzer have been

separated from the application instructions. This gives us a

language (in the sense of an integrated group of subprograms)

independent of the Analyzer. As the rational reconstruction of this

language is yet incomplete it would be premature to specify it pre-

cisely. When complete, however, it would offer to the sophisticated

user a language, based on MAD, for referencing a data base, operating

upon it, and keeping a classified directory to what he is doing.

This would allow users to program their own information models (say

a special purpose analyzer or a heuristic tree analyzer--as one of

the authors has done with a now obsolete version of the language)

or scientific models (say a data based complex simulation).

DEh':N1IC LOOPS

Having described the statics of the three Admins sub system--

Organizer, Processor, Analyzer--one can now relate this to descrip-

tions of the Admins use dynamics.

Organizer-Processor Loop

5.a.1 This is the interactive process involved in preparing data for

analysis. The problem is to find agreement between a normative

description of the data which will support onds analysis and the

actual data. Any discrepancy between data and prototype, other

than that caused by a clerical error on the part of the user, e.g.
mistyped adform, can be resolved in one of two ways: change the

prototype (adform) or change the data (item record file). The

Organizer-Processor loop is concerned with the flow of information

involved in deciding whether to change adform or data and how, as

well as with the tools used to implement these decisions.

5.a.2 In writing his adform the user has a hard copy description of

the data and an analysis purpose. He may have, as well, aggregate

information from previous analysis results, perhaps from Admins if

his input is Admins Binary. He uses the Organizer language to

construct an adform which expresses the data prototype as he believes

it now exists and as he would have it transformed. He types the

adform onto the disk using a context editing program EDL* to input

and alter the adform. Then the user types the ORGANIZE command,

most likely with the diagnostic option. Users being human the

Organizer finds syntax and/or coherence errors. A descriptioi of

each error is printed narrowing the error source down at least

within the category. This information is used to change the adform,
whereupon it is resubmitted for organization by typing the ORGAKIZE

command again. Usually diagnostic errors are clerical ones but

occasionally the coherence checks pinpoint actual logical flaws in

the adform.

op cit

5.a.3 Eventually the user comies out with an I organized adform'. The

PROCESS command creates a process image which will apply the adform

to the data. At least the first time through a new data file the

user will run in 'dummyl mode, that is, not producing an output file.

The user will sample a few input items and follow the input/output

changes with his adform in front of him. This may turn up enough

errors in the adform to justify quitting out of the process image

and changing the adform.

If the user suspects the whole file, or perhaps just certain

categories, are particularly error prone he issues the appropriate

control instructions. He then may process part of the file.

Error comments are printed out as the data is processed. Eventually

he teminates the process, and gets the marginals and summary error

report using the. MARGINAL and REPORT commands, respectively. He now

has produced the following information in addition to information

existing prior to processing.

1. Sample item records.

2. Error messages.

3. Aggregates of the entries and categories over the part

of the file processed.

4. A summarized error report.

Decisions to ORGATIZE and change the adform are implemented

with EDL. The PROCESS command can then be used. Decisions to

change the data are implemented with the ALTER command after an

item record file has been produced and inverted.

Admins Binary Input

5.b.1 Analysis of category records may prompt the user to reconcep-

tualize his data into macro-categories his empirical analyses have

shown to be fuitful. He can write an adfom which publicly states

these macro-categories, that is, an adform which combines entries

from different micro-categories into macro-categories. This adform

can be applied to the category records and as described in the

Organizer-Processor loop discussion yield an item record file.

This item record file can be inverted and analyzed along with any

other category record from the same source file.

Vertical and Horizontal Processing

5.c.l The Processor can be used to produce an item record file

which is a sample of the source file. The samples can be staggered

or random or contiguous. If the sample is contiguous, i.e. taking

different chunks of the file, the chunks can be processed separately,

and concentrated with the APPi\D command; analyzed separately or

analyzed together after concatenation. These flexible options are

useful in a current data application where items are being originated

over time and need be added to a Imaster T file.

5.c.2 An adform need not describe all the categories in a file. One

can have many adforms, each describing from one to all of the cate-

gories in the file. Each adform (selection) can be processed

separately but the category records inverted from the item record

file can be analyzed together.

MUlti-Source Files

5.d.I One can analyze multi-source files by writing adfons for

each file and processing them separately. Category records from

many adforms across one or may files can be analyzed in parallel

by the Analyzer and reprocessed if desired, as Admins Binary input.

The coding across files can be different at the category and/or

entry level. The worldist feature and the classified directory

of the Analyzer can be used to build up the characteristics of

each source file until a classification valid across the files is

applicable. Then parallel summarizations can be produced for the

different source files.

Multi-Level Files

5.c.l The Analyzer can be used to construct arbitrary subfiles from

a main file. As well Admins can bring already existing subfiles to

analysis stage, and relate them to the main file; constructed sub-

files; constructed category records from the dlready existent sub-

file. Subfiles may contain categories of factual data from the

main file, or aggregates of characteristics in the main file.

Since all subfiles are in Admins binary form high level adforms

can be written which regroup the characteristics of the subfile.

The main file and the subfiles (constructed and/or inputed?) may

be multi-source, of course, as discussed in 5.d.l.

Yhe task of describing all that Admins can do is a subset of

the task o2 describing all that a computer can do given that it

obeys the instructions add, store, and transfer on minus; that is

an impossible task. What we hope we have succeeded in doing is

giving a flavor of the power the systemic generality of Admins

affords.

