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Abstract

Name: Peter Graham Clark

Title of Thesis: Multi-Scale Modelling Describing Thermal Behaviour

of Polymeric Materials

Micrometer injection moulding is a type of moulding in which moulds have ge-

ometrical design features on a micrometer scale that must be transferred to the

geometry of the produced part. The difficulties encountered due to very high shear

and rapid heat transfer of these systems has motivated this investigation into the

fundamental mathematics behind polymer heat transfer and associated processes.

The aim is to derive models for polymer dynamics, especially heat dynamics, that

are considerably less approximate than the ones used at present, and to translate

this into simulation and optimisation algorithms and strategies, Thereby allowing

for greater control of the various polymer processing methods at micrometer scales.

Keywords: Lattice-Boltzmann, Polymer, Mathematical Model, Numerical Sim-

ulation, Extrusion, Thermal, Micro, Nano.
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Chapter 1

Introduction

A long time ago, in a university not so far away, it was a time of great empiricism.

Scientists of Bradford University’s Polymer Interdisciplinary Research Centre were

busy compounding, extruding and moulding plastics and recording the results with

ever more involved sensors and set ups. Amidst this process the scientists of the

Micromoulding Interest Group were looking for the polymers in their very small

moulds to behave better. There was perhaps a feeling that the available models

good though they were, were a little lacking when applied at the micro scale. Yet,

at that time the Bradford branch of the IRC put little emphasis on mathematical

theory. Some time a newly graduated mathematician made a speculative enquiry

about the possibility of a PhD at Bradford University, and “two and two were added

together” and this PhD project was conceived.

At the time it was felt that the unusual polymeric behaviour was in no small

part due to the large surface to volume ratio of the mould invalidating typical

assumptions about heat transport and cooling, but the possibility was raised that

unusual patterns of polymer chain orientation, that might be created by virtue of

the small mould geometry’s, might alter the temperature dynamics of the polymer.

Concerns voiced related to issues with weak points in the moulded parts and moulds

that did not completely fill.
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CHAPTER 1. INTRODUCTION

Since no existing tractable models (we are aware of) fully incorporate polymer

chain orientation into its dynamics and because there seemed no obvious way to

‘tack on’ such dynamics to something familiar, the need was felt to turn to rather

more exotic and less tractable models, arguably more basic models, and “build them

up” into something fit for purpose.

1.1 Approach

The approach was to go back to basics and investigate the mathematical theories

that give rise to the more tractable models from which simulations and optimisation

algorithms are constructed, and seek to derive new and more applicable models that

encompass the dynamics that are of concern to us.

When the research was started it was envisaged to take a very different course

than it eventually did. It was the intention that a model or models would be con-

structed and if they did not prove amenable to analytical treatment a combination

of numerical approximation and heuristics could be used to implement an optimisa-

tion process. However, the nature of the model was such that each step suggested

another analytical technique that might possibly work. Consequently this research

contains a lot of comparatively complex mathematics, compared to the typical en-

gineering project. A side effect of this is that there is a greater degree of work

and imagination required to apply the theories to polymer engineering but we like

to think a greater breadth and depth of application will be the result of the firm

analytical basis of this work when additional work is done.

The understanding of the problem grew holistically with the research. Other

contributing factors, such as the dynamics of air-polymer interfaces, turned out to

be easy to express in terms of the modelling framework that was chosen. Indeed,

in the easiest cases this amounted to cannibalising and perhaps slightly generalising

aspects of existing models.
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CHAPTER 1. INTRODUCTION

1.2 Aims and Objective

The end point is to produce models that can facilitate simulations and optimisations

of micro injection moulding processes and perhaps elucidate polymer behaviour in

general outside of well understood industrial processes. The desirable net result so

far as the empiricists and industrialists are concerned is to work towards a good

computer model that can be used to adjust aspects of manufacturing processes

and experiments in computer aided design, seeking optimisation prior to real-world

implementation, and of course for the empiricist to also provide simulation data to

compare to actual results in order to probe the limits of the models validity.

The intention is that the model may lead to a better understanding of the more

esoteric behaviour of polymers in general. Perhaps in time it will prove possible to

relate some existing approximations as special cases of the theory developed and

presented in this thesis.

More generally we assert that the novelty of this model can make a contribution

to broadening the toolbox of techniques used to model polymeric behaviour and

hope others will be able to pick up the model and apply it to unconnected areas,

which is itself the philosophy adopted in its construction.

1.3 Overview of Thesis

In this section a rough guide is provided to the component chapters in the thesis,

chapter by chapter, to facilitate a quick-and-easy parsing of the text.

Literature Review In this chapter we critically review a body of work relating to

the thermal modelling of polymers. We cover a number of models not normally used

for this purpose, that we have never the less applied, or attempted to apply, to the

modelling. Importantly we also attempt to introduce the reader to some key math-

ematics used in seeking generalisations of models and that the reader may not be

3



CHAPTER 1. INTRODUCTION

familiar with. We shall also indicate the potential importance of these mathematical

tools in relation to the “nuts and bolts” progression of the research.

Grmela’s Equation, Seeking a Solution In this chapter we introduce a model

due to Grmela and his colleagues [1, 2] that is specifically formulated for modelling

polymers. We then attempt to apply a series of mathematical techniques to simplify

and derive more useable models from Grmela’s model that are more like those of

conventional fluid dynamics. To do this we have to appeal to some complex mathe-

matics towards the end of the chapter as well as developing a new mathematical tool

which we can contrast and compare to a old tool for reference purposes. We then

show how the application of these techniques might be used to attain the results we

seek. We also construct a worked example of the technique developed to illustrate

it and also to demonstrate that is does have non trivial applications.

Seeking a Thermal Lattice Boltzmann-like Method from a Linear Grmela-

like Equation Here we show how discreet models can be derived from the model

described in chapter three, and how, in principal, continuous fluid dynamic like

models can be recovered from the discreet models. These derived discreet models

are further developed to generalise them, introducing rules for curved boundaries,

interactions with other fluids, and the reintroduction of internal potential forces

within the fluid.

Miscellaneous Investigations In this chapter we bring together several other

approaches. This chapter may be instructive to those wishing to continue this area

of research. We attempt to develop a generalisation based upon a model developed

by Kirkwood that allowed him to derive a continuum model by applying operators

to the ensemble of all particle states. This model never quite yields the momentum

conservation equation we strive for. Nevertheless there seems to be a great untapped

potential nascent in their further investigation.

4



CHAPTER 1. INTRODUCTION

We also investigate a very important function (typically labelled W ) in the model

of chapter three that is related to the microscopic properties of the polymers and

attempt to define necessary conditions and reasonable approximations upon its form

based on its physical interpretation. Considerable improvements in its form are made

but not sufficient to quite suggest easy simplifications in the calculations described

in chapter three.

Lastly we examine a technique based upon functional differentiation in order to

develop an approximate solution to the model in chapter three.

Conclusions Here we set out the major results and review work that is unfinished

and work that might yet be investigated. We also critically assess the work presented

in the thesis and make a series of recommendations.

Appendix A Thermal Polymer LBM Pseudocode Here we provide pseu-

docode for the results derived in chapter four that can be used to develop source

code proper for a polymer flow modelling package.
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Chapter 2

Literature Review

This review of the literature will be unlike that in the typical PhD thesis. Typically

one reads research papers that are closely related to the application one is concerned

with then, possibly bases ones next steps upon the outcomes. The approach here

has been to consistently go back to first principles with the models and mathematics

that underpin the basis of the field and then seek generalisations, and sometimes,

entirely new approaches. As such the literature review is not so much a catalogue

of related research in the state of the art in the field upon which we intend to build,

but rather a brief review of not only some of the mathematics that is basic to the

study of thermal polymer melts but also of the mathematical tools called upon in

seeking useful results1.

2.1 Micro Moulding and Polymer Fluid Dynam-

ics

When modelling the behaviour of polymers in bulk, the most conventional method is

to select a stress tensor that gives the particular type of behaviour that is expected

to be important in the model and then, either by referring to records or by educated

1Therefore we hope the reader will forgive us if it seems like we are trying to teach them to
‘suck eggs’ as we are well aware the detail here will be familiar to some.
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CHAPTER 2. LITERATURE REVIEW

guess work, fine tune the constants until the model starts to give reasonable answers.

The key property that tends to distinguish these stress tensors from those in non-

polymeric fluids is that they usually contain integrals over time. If temperature is

of particular importance in the model these expressions tend to grow even more

complex, as do the equations describing the dynamic change in temperature (which

are often approximated otherwise). So, one is typically left with a suite of three

equations: one for mass conservation, which is more or less uniform across all of

physics, one for the motion of the fluid, and one for its temperature dynamics.

These three examples come from Ottinger’s [3] and Mashelkar’s [4] books

∂ρ

∂t
+ ∇ · (ρ�v) = 0

∂ρ�v

∂t
= −∇ (ρ�v�v) −∇ · π

dT

dt
=

λ

cρ
∇2T +

q

cρ

dβ

dt

d
dt is the total derivative and π is a tensor related to viscosity, c is heat capacity,

λ is thermal conductivity, and the last term in the third equation corresponds to

chemical reactions occurring in a polymer melt. It should be mentioned that in

this thesis we shall, in our own calculations, define units in such a way that as

many constants as possible will disappear, certain in the knowledge that they can

be reasonably easily reintroduced by those with a mind to do so. This dropping of

constants under the assumption that they can be absorbed with a change of units

may cause equations to feel unfamiliar to some readers but be assured care was

taken to ensure this was valid.

What all these equations have in common is that they are instances of, or derived

from, continuity equations. A continuity equation is as much a consequence of

geometry as physics, and is basically the statement that “what is in something” is the

sum of everything that has been put in it minus the sum of everything that has been

taken out. A “sum of things” is most naturally expressed as an integral equation

7



CHAPTER 2. LITERATURE REVIEW

but may be re-written as a differential equation using the divergence theorem giving

the expression

∂Ā

∂t
+ ∇ · B̄ = 0

Ā and B̄ are generally tensors with B̄ having one more index than Ā. So, for the

mass conservation equation, we have density ρ and momentum ρ�U , respectively,

for Ā and B̄. For the momentum conservation equation we have momentum ρ�U

and the expression ρ�U �U − σ where σ is the stress-strain tensor. Lastly, for energy

conservation, we have energy density ρE energy per unit volume and the energy flux

�q. Clearly the choices of these unknowns, such as σ and �q, is hugely important to

the meaningfulness and validity of these equations.

2.2 Multi Scale Modelling

The Reader having more familiarity with research in polymer dynamics may consider

the direction chosen in this research atypical. We are aware of the very good work

done by colleagues in the Universities of Leeds and Bradford in multi-scale modelling

of polymers. We have made a deliberate choice to go in another direction2. Never-

theless those researchers have made great progress in applying multi-scale modelling

to polymer dynamics [5] and it is instructive to say a few words here about what

multi-scale modelling is and how it works so we can clearly explain how the present

approach differs.

Normally a multi-scale simulation seeks to take simulation based on continuum

mechanics and link it to a molecular simulation. Using conventional equations for

fluid dynamics one takes a number of small characteristic regions of the fluid and

performs a molecular simulation of the transformation that this region has just

undergone, extracting important values that are then interpolated across the fluid

2We very much wanted to do original research rather than rehash or tack on some minor result
to the work of others. Partly because that is what we feel a PhD should be but also because that
is our personal preference.

8



CHAPTER 2. LITERATURE REVIEW

and fed back into the constitutive equation to calculate the system properties and

values for next time step.

This is one way of trying to include the information contained in the molecular

structure of the material with in the simulation. We chose to investigate another

approach, the mesoscopic approach, where a limited amount of information about

the molecular structure of the medium is added to the equations as new continuum

variables.

2.3 Mesoscopic Physics

Equations such as Navier-Stokes, and even the Burnett equation for supersonic flows,

can be derived from more fundamental equations, particularly from the equations of

gas kinetics. The equations of gas kinetics are a particular type of mesoscopic equa-

tion, which is a model that has only half divorced itself from the molecular nature

of the fluid and is very much based in the study of statistical mechanics. Not only

are distributions over the points of space taken into account but a single statistical

distribution over all of phase space describes the behaviour of the typical particle

in the fluid. Such a phase space may include internal variables such as orientation

and spin. In gas kinetics this produces the Boltzmann equation, and techniques,

specifically the Chapman-Enskog expansion, can then be used to derive equations

for mass, momentum, and heat transport. The Boltzmann equation also has a dis-

creet analogue that is efficiently parallelized to simulate the Navier-Stokes equation.

In fact it has been proved [6] that this analogue can be derived a priori from the

Boltzmann equation. Many variations on the Boltzmann equation have been derived

to study a range of phenomena so diverse that it includes t-cell proliferation and,

critically, polymer dynamics.

9



CHAPTER 2. LITERATURE REVIEW

2.3.1 The Boltzmann Equation

In the mid to late nineteenth century a series of scientists were beginning to develop

a theory regarding the way molecular dynamics lead to the fluid and heat dynamics

of gasses and diffusion phenomena that was based upon statistical mechanics. [7]

One of the seminal conclusions was Boltzmann’s equation [3, 8]

∂f

∂t
+ �v · ∇xf + �f · ∇vf =∫ ∫ ∫

W (�v ′
1, �v

′
2, �v,�v2)f(�v ′

1)f(�v ′
2) − W (�v,�v2, �v

′
1, �v

′
2)f(�v)f(�v2)d3�v ′

1d
3�v ′

2d
3�v2

(2.1)

Conceptually the Boltzmann equation can be divided into two parts as shown in

equation (2.1). Were the right hand set to zero, we would recover the Liouville

equation that describes the way a single isolated particle (the state of which is

only known statistically over phase space described by the distribution f(�x,�v, t))

moves. The left side is essentially the total derivative of the variable f being directly

proportional to force. In fact, it is acceleration. �f is generally assumed to be zero

in gas dynamics. Solutions of Liouville equations describe the trajectories that a

particle takes through phase space if there is nothing there for it to interact with

except a force field.

The Boltzmann equation has an integral on the right hand side. Conceptually

this integral represents a number of particles interacting with each other through

collisions. The first term in the integral represents the potential for two particles

to collide, shifting one of them into a trajectory of the solutions to the Liouville

equation (and when integrated gives the rate at which this is happening). The

second term encodes the possibility that a collision causes a particle to leave that

trajectory. In this equation f no longer represents the statistical distribution of

one particle but now describes the averaged-out density in phase space of all such

particles. On analysing these terms we can see several notable assumptions:

1. That all collisions are binary, occurring between two particles;

10



CHAPTER 2. LITERATURE REVIEW

2. that the likely hood of a collision between two states is directly proportional

to the product of the distribution functions for the states. This is often called

molecular chaos [9, p. 58] .

Further conditions inherent to the physics of collision dynamics are encoded into

W . W has several symmetry properties relating to its physical interpretation and

is typically composed of a product of a function with several Dirac delta functions

that represent properties that are preserved in collisions, such as momentum and

energy.

As a result of the assumption of molecular chaos it is possible to prove that

this system must always adhere to the second law of thermodynamics [9, p. 73].

Boltzmann defined a functional

H =
∫

f ln fd3�v

that was directly proportional to entropy, as it happens by a negative factor3. It

is possible to explicitly calculate its time derivative using the Boltzmann equation

and it is subject to the condition

dH

dt
� 0,

thus proving that entropy tends to a maximum.

2.3.2 Lattice Boltzmann Method

The lattice Boltzmann method was developed independently of the Boltzmann equa-

tion, being inspired by the work on lattice gas automation (LGA). In LGA models,

space and time is discretized as well as the velocities of each particle. Each node, a

unit of space, may have a finite number of states relating to the absence or presence

3So low negative values of H equate to high positive entropy.
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CHAPTER 2. LITERATURE REVIEW

in that node of a particle with a given velocity. Each velocity is itself wedded to a

transition to some nearby node. The simulation is a two step process. Each node

‘sends’ its particles to the appropriate nearby node. Nodes then allow the particles

with in them to ‘collide’. That is, the node may change its state to a new state

having the same total momentum and mass based on some weighted random se-

lection rule. Initially the node geometry, which are properly termed lattices, and

the rules were such that the ‘fluid’ like behaviour of the cellular automata was very

anisotropic. Later transition from square to hexagonal lattices improved this.

The lattice Boltzmann model (LBM) replaces the finite states of the nodes with

a set of continuous values for each discreet velocity and a collision rule which bears

remarkable similarity to the linearized Boltzmann equation.

fi(�x + �viΔt, �vi, t + Δt) − fi(�x,�vi, t) = −1
τ

(fi(�x,�vi, t) − feq
i (�x,�vi, t)) .

The rationale is that with each collision the distribution is nudged towards the

equilibrium function, that is, the function that represents the distribution with the

most entropy for a given set of properties (such as density etc). The continuous

equivalent of this function will be derived a little later on in equation (2.6) but the

form of the discrete version is different but related. One of the great advantages of

this method is that it very easily allows us to implement boundary conditions by

‘bouncing back’ the distribution in much the same way as the LGA would bounce

back an individual particle, although much more sophisticated boundary methods

have been devised since. In fact it is quite difficult to implement curved boundaries

intuitively but several approaches have been devised to do this and often improve

the accuracy of simulations over curved surfaces [10, 11]. Unlike the LGA it is

possible to simulate heat transport in a lattice Boltzmann model [12–14]. However,

the numerical stability and isotropy of these models often suffers (although as with

the LGA a good choice of the lattice can help). It happens that the choice of

12
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the discrete velocities in the model deeply effects stability and isotropy and that

mathematically, for constancy, certain conditions must be met by these velocities

to accurately replicate momentum conservation isotropically. The conditions for

accurate replication of energy conservation are more stringent still [15, 16].

In fact, the choice of the form of function feq
i was originally determined largely

by the type of momentum conservation equation that could be reconstructed from

it. The general form used is

feq
i = ρ

(
Ai + Bi�vi · �U + Ci

(
�vi · �U

)2
+ DiU

2

)

as given in several texts [16, p. 159-160] [17, p. 1816] [18, p. 2942] [12, p. 319-320] [19,

p. R15]. Ai, Bi etc are are constants that may be different for different magnitudes of

�vi. By selecting these in a slightly more flexible way than a strict analogue with the

continuous case would suggest more general results may be obtained that are capable

of modelling viscous fluids with non ideal equations of state [12, 16–19]. Further

generalisations have allowed the modelling of multiple immiscible fluids by allowing

components to exert a repulsive force on each other. These same generalisations also

broaden the class of fluids that may be modelled by allowing a given fluid component

to exert proximity forces on itself [17, 18].

Most importantly of all, since its conception, it has since been shown that the

lattice Boltzmann equation can be derived from the Boltzmann equation a priori

by invoking some techniques from numerical integration [6]. This provides a start-

ing point for taking any generalisation or variation of the Boltzmann equation and

attempting to find a lattice equivalent. As is seen normally, doing thermal sim-

ulations using the lattice Boltzmann method leads to numerical instabilities [20]

and hybrid schemes have been developed to attempt to compensate for this by

modelling temperature separately, either as a ‘passive scalar’ or by invoking conven-

tional computational fluid dynamics to model temperature and link it to the lattice

13
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Boltzmann equation (which is still used to model flow and density). Attempts have

also been made to re-formulate the lattice Boltzmann equation based on consider-

ation of molecular dynamics to increase numerical stability [12]. However, He and

Luo [6] observe that the natural derivation of a non isothermal fluid in their a priori

technique does not neatly or properly map all velocities onto an adjacent node but

rather onto the spaces between the nodes. This, to them, suggests the need for an

interpolation step between the nodes. They believe that this provides “an explana-

tion of the instability of the existing LBE thermal models” and this line of thinking

was most influential in the present thinking when working on lattice Boltzmann like

models in this research.

2.3.3 Chapman-Enskog Method

Developed by Chapman and Enskog [9] in a series of papers in the early 20th century,

the Chapman-Enskog method allows a ladder of progressively better approximate

solutions to the Boltzmann equation to be derived, solutions that can then be used

to find progressively more complex continuity equations. The intergro-differential

equation is broken down into a non-linear integral equation and an infinite ‘ladder’ of

linear integral equations, each recycling the results of the previous approximation,

produces the next approximation. Notably, at the first (or maybe we would be

better to call it the zeroth step) one acquires the Euler equations. Subsequently the

Navier-Stokes, Burnet, and super Burnet equations for gases are acquired. This is

achieved through expansion in a small parameter that has the same dimensions as

the Knudsen number, which is why the procedure is some times called an expansion

in the Knudsen number and is the rationale for it being a better approximation for

fluids who’s Knusden numbers are small. We mostly follow the working presented by

Harris [8] as being easier to follow but often borrowing the notation of Ottinger [3]

as being less ambiguous.

14
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The Boltzmann equation (2.1) is modified to introduce a small parameter ε

∂f

∂t
+ �v · ∇xf =

1
ε

∫ ∫ ∫
W (�v ′

1, �v
′
2, �v,�v2)f(�v ′

1)f(�v ′
2) − W (�v,�v2, �v

′
1, �v

′
2)f(�v)f(�v2)d3�v ′

1d
3�v ′

2d
3�v2

(2.2)

An ansatz for f is defined in that parameter

f = f0(�v, ρ, �U, T ) + εf1(�v, ρ, �U, T,∇�xρ,∇�x
�U,∇�xT ) + · · ·

=
∞∑
i=0

fi(�v, x{i})
(2.3)

dependence of f on time is only expressed through the variation of the spatial

derivatives it takes as arguments. Because of this, the time derivative in equation

(2.2) must be expanded using the chain rule

∂f

∂t
=

∂ρε

∂t

∂f

∂ρ
+

∂Ui,ε

∂t

∂f

∂Ui
+

∂Tε

∂t

∂f

∂T
.

in addition, because the time variation is inherently linked conceptually to the ex-

pansion in ε the time derivatives in this chain rule are also expansions in ε obtained

by inserting expansion (2.3) into the Boltzmann equation (2.1) and applying the

rule. ⎛
⎜⎜⎜⎜⎜⎜⎝

ρ

ρ�U

ρE

⎞
⎟⎟⎟⎟⎟⎟⎠

δ0i =
∫
⎛
⎜⎜⎜⎜⎜⎜⎝

1

�v

v2

⎞
⎟⎟⎟⎟⎟⎟⎠

fid
3�v (2.4)

E = T + 1
2U2. This extra condition defines the relationship between the mesoscopic

and macroscopic systems and ensures a unique solution where otherwise many equiv-

alent solutions could be obtained by redistributing values and terms between dif-

ferent fi. This gives the following expression used to obtain time derivatives in the
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chain rule:

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ρε

∂t
∂ρε

�Uε

∂t
∂ρεEε

∂t

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∫
⎛
⎜⎜⎜⎜⎜⎜⎝

1

�v

v2

⎞
⎟⎟⎟⎟⎟⎟⎠
∫ ∫ ∫

W (�v ′
1, �v

′
2, �v,�v2)f(�v ′

1)f(�v ′
2)

−W (�v,�v2, �v
′
1, �v

′
2)f(�v)f(�v2)d3�v ′

1d
3�v ′

2d
3�v2 −

⎛
⎜⎜⎜⎜⎜⎜⎝

1

�v

v2

⎞
⎟⎟⎟⎟⎟⎟⎠

�v · ∇xfd3�v

For our purposes this can be rearranged and truncated before the first-order terms

to give
∂ρε

∂t
= −∇ ·

(
ρ�U
)

∂�Uε

∂t
= −

(
�U · ∇

)
�U − 1

ρ
∇2ρT

3
+ O (ε)

∂Tε

∂t
= −�U · ∇T − 2T

3
∇ · �U + O (ε)

(2.5)

On neglecting the first order terms we recover the Euler equations, which we shall

use later.

Expanding equation (2.2) in terms of ε and taking the 1
ε terms we obtain a

non-linear integral equation for f0.

0 =
∫ ∫ ∫

W (�v ′
1, �v

′
2, �v,�v2)f0(�v ′

1)f0(�v ′
2) − W (�v,�v2, �v

′
1, �v

′
2)f0(�v)f0(�v2)d3�v ′

1d
3�v ′

2d
3�v2

The solution to this equation is found by solving the related problem of the special

case where entropy is constant related to Boltzmanns H theory,

∂H

∂t
= 0 ⇒ f0 =

3
√

3ρ

8π
3
2 T

3
2

e−
3(�v−�u)2

4 (2.6)

This is known as the Maxwell distribution and happens to also be a solution for f0.

With a great many handwaving arguments it can be established that for sensible W
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it is the general solution [8, p. 90, Chapter 5].

By taking the constant term of the expansion of equation (2.2), for which we

need the substitutions (2.5), and by invoking a symmetry property of W related to

its physical meaningfulness, namely W (�v ′
1, �v

′
2, �v,�v2) = W (�v,�v2, �v

′
1, �v

′
2), we obtain an

expression for f1,

3f0

2T

(
(�v − �U)(�v − �U) − (�v − �U)2

3
I

)
: ∇�U +

f0

T

(
3(�v − �U)2

4T
− 5

2

)
(�v − �U) · ∇T

=
∫ ∫ ∫

W (�v,�v2, �v
′
1, �v

′
2)
(
f1(�v ′

1)f0(�v ′
2) − f1(�v)f0(�v2)

+f0(�v ′
1)f1(�v ′

2) − f0(�v)f1(�v2)
)
d3�v ′

1d
3�v ′

2d
3�v2

Dyadic notation is used.

Since the left hand side is linear in the first order spatial derivatives of �U and

T , and these are functions of �x which is not a variable of the integration, it then

follows that the solution is linear in �U ant T as well and, in fact, the solution can

be shown to have the general form

f1 = f0

⎛
⎝A
(∣∣∣�v − �U

∣∣∣)
T

(�v − �U) · ∇T

+
3B
(∣∣∣�v − �U

∣∣∣)
2T

(
(�v − �U)(�v − �U) − (�v − �U)2

3
I

)
: ∇�U

⎞
⎠

A and B are defined relative to W by much simpler integral equations that they

must satisfy. By substituting f = f0 + f1 into the Boltzmann equation (2.1) and

making use of the conditions (2.4) we can recover the NavierStokes equation (with a

fairly general term for the stress tensor) and Fourier’s law (with a specific expression

for conductivity given in terms of B and A, respectively). Specifically

�q =
√

3ρ

16π
3
2 T

5
2

∫
e−

3v2

4 A (|�v|) v4d3�v∇T

σ =
9
√

3ρ

16π
3
2 T

5
2

∫
e−

3v2

4 B (|�v|)�v�v

(
�v�v − v2

3
I
)

d3�v : ∇�U
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We have taken the Reader through these calculations since in later chapters

the Reader will have cause to refer to the specifics of such calculations in ever

greater detail in the works of Ottinger [3], Harris [8], and to a lesser extent perhaps

Chapman [9], who co-developed this method.

It should also be noted that a variation on the Chapman-Enskog method can be

applied to the lattice Boltzmann equation [15, 16]. We can not emphasise enough

how important a step we consider this process in the research. A great deal of effort

was put into developing this method into something that would be useful, in terms

of being as tractable as we were able to make it, upon polymers and it is well worth

the time spent on familiarising the reader with it.

2.3.4 Collision Analysis

As previously mentioned it is possible to take the term W in the collision integral

(see equation (2.1)) and derive a lot of information about it by considering the ac-

tual physics of collisions. Roughly speaking W (�v1, �v2, �v
′
1, �v

′
2) can be thought of as

the probability that two particles, �v1 and �v2, collide and leave the collisions with

the new velocities, �v ′
1 and �v ′

2 respectively [8]. Clearly, because the two particles are

equivalent, swapping their numbering still describes the same physical situation giv-

ing W (�v1, �v2, �v
′
1, �v

′
2) = W (�v2, �v1, �v

′
2, �v

′
1). Also, under the assumption of time reversal

symmetry, for the collision process we have W (�v1, �v2, �v
′
1, �v

′
2) = W (�v ′

1, �v
′
2, �v1, �v2). Fi-

nally, of course, the function describes a physical process so must have rotational

and Galilean invariance. We also know that the collisions preserve momentum and

energy so we have W (�v1, �v2, �v
′
1, �v

′
2) ∝ δ(�v1 + �v2 − �v ′

1 − �v ′
2)δ(�v

2
1 + �v 2

2 − �v ′2
1 − �v ′2

2 ). The

preservation of momentum actually proves that the values of �v1, �v2 etc, treated

as vertices, form a parallelogram as conservation of momentum can be written as

�v ′
1 − �v1 = �v2 − �v ′

2 which implies two opposite sides are equal in length and direction.

Using the equations for momentum and energy conservation in collisions it is also

possible to derive the relation |�v2 − �v1| = |�v ′
2 − �v ′

1|, which is to say the 2 diagonals

18



CHAPTER 2. LITERATURE REVIEW

across the parallelogram are of equal length proving that it is in fact a rectangle.

Given �v1 and �v2 define two opposite corners of this rectangle, it is sufficient to define

an additional unit vector α̂ = �̂v ′
1 − �v1 to give the form of the whole rectangle4.

Of some considerable use are derived equations for �v ′
1 and �v ′

2, namely �v ′
1 = �v1 +aα̂

and �v ′
2 = �v2 − aα̂. These expressions are conceptually simple: the statement that

a certain amount of momentum is transferred from one particle to another and

so automatically satisfies the momentum conservation equation. Insertion into the

energy conservation equation gives a formula for a, namely a = α̂ · (�v2 − �v1). It is

quite legitimate to treat �v ′
1 and �v ′

2 as functions of α̂ and replace the integration over

�v2, �v ′
1 and �v ′

2 by integration over �v2. The spherical integral over α̂, neglecting the

Dirac delta functions for momentum and energy conservation as the substitution

satisfies momentum and energy conservation automatically.

The important thing to consider is that W must have rotational and Galilean

invariance, so although this substitution automatically makes W a function of �v1, �v2

and α̂, it only needs to take enough information from those variables to determine

the width and height of the rectangle. The values |�v2 − �v1| and �̂v2 − �v1 · α̂ would be

quite sufficient, for example.

2.3.5 Other Models

It was extremely instructive to study many generalised Boltzmann-like models in

coming to understand those relating to polymer dynamics. Of particular interest

to this work were those relating to biological and sociological systems described by

Bellomo [21] and his contemporaries [22–24]. It is interesting to note that biological

systems are mostly composed of cells which can be modelled as point-like entities

much like gas atoms and fibres (such as collagen and elastin that conceptually can be

thought of as elongated strings much as polymer chains can). It is conceivable that

4A great deal of time was spent doodling on notepads looking for generalised diagrams that
might yelled useful geometric insights but to little effect.
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integro-differential equations much like those of Bellomos, only more complex, might

one day describe how the interplay of cells, the fibres of the extra cellular matrix,

and diffusive signalling factors give rise to the complex organs and appendages of

living things from much simpler structures. It might also describe how the body

goes about maintaining and repairing damage to these structures. Collectively, these

processes are referred to as organogenesis, morphogenesis, homeostasis, and wound

remodelling, and the applications of a better mathematical understanding of these

processes to regenerative medicine is obvious.

However, we refer to them here simply because they illuminate the huge range of

generalisations that are possible regarding the Boltzmann equation. Sadly, there is

no time to do so comprehensively but we will pick out a few themes. One obvious way

is to add an extra mechanical property such as orientation (and then angular velocity

must also be included). In the two dimensional case with spin perpendicular to the

plain, we could write f = f(t, �x, y,�v, p) where y and p are orientation and angular

velocity, respectively. These can be treated as simple extensions to the position and

momentum variables and give contributions to the equation of the form p∂f
∂y + Fy

∂f
∂p

that mirror the contribution given by position and linear velocity �v · ∇xf + �F · ∇vf .

In fact, in biological equations one typically considers internal properties, with no

easy relationship to mechanical properties, such as the activity of a gene in a cell

or the number of nucleic factors unbound and free in the cell. Nevertheless these

properties, usually represented by the ‘vector’ �u, give rise to terms like �K · ∇�uf .

In biological systems we also tend to consider more than one particle type. For

example we might consider the interaction of cancer cells with natural killer cells.

This raises two issues. First, an index for different populations must be added

changing f to fi and a sum must be added to the collision integral to account

for collisions between different types of particles. Also, in biological systems, the

‘particles’ (typically cells) can be both created and destroyed, as is the case with

cancer cells, thus requiring far more complex collision integrals. Typically these
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processes are sorted into three categories:

1. those that change a particle’s state to the state of interest (the state addressed

by the left, non collision, side of the equation, Ci+

[
�f
]
, where �f is a ‘vector’ of

all population distribution functions),

2. terms to describe conservative loss from the state of interest Ci−
[
�f
]
, and lastly

3. terms to describe the creation and destruction of particles given by Ii

[
�f
]
.

The collision term is then given by the three integrals Ci+

[
�f
]
− Ci−

[
�f
]

+ Ii

[
�f
]
.

The integral Ii might be non-zero in a polymer if it were modelling a polymerisation

reaction in a polymer melt.

It should for example be noted that force and force-like fields such as �F and �K also

often involve integrals of �f . The expression for this is typically given by equations

like �Fi =
∑

j

∫
�Pij(�x,�v, �u, �x ′, �v ′, �u ′)fj(t, �x ′, �v ′, �u ′)d3�x ′d3�v ′d3�u ′. Here �P relates to the

amount of force a particle in state (�x ′, �v ′, �u ′) exerts upon a particle in state (�x,�v, �u).

The overall force is assumed to be the additive force from all those particles and

so is proportional to fj and is integrated over all states. Similar terms exist for

�K like functions. Typically, in biological systems, �F has no dependence upon �v

but �K often does have some dependence upon �u in which case it is generally more

useful and correct to write ∇�u ·
(

�Kifi

)
instead of �Ki · ∇�ufi. Note that if �K has no

dependence upon �u, the two are equivalent. Holding some of these generalisations

in mind may be useful when we come to examine some of the more exotic models

of Boltzmann-like polymer dynamics [1, 2, 25].
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2.4 Theory of Integral Equations

The field of integral equations is wide and varied. This can be seen from their

classification [26]

f(x) =
∫ b

a
K(x, t)u(t)dt, u(x) = f(x) +

∫ b

a
K(x, t)u(t)dt

Equations such as those on the left are referred to as linear integral equations of the

first kind, and those on the right as “second kind”. As with differential equations

there is typically a homogeneous and inhomogeneous part to any solution. The

equations themselves will be homogeneous if f(x) = 0. They will be Fredholm

equations if a and b are constants or Volterra equations if a is a constant but b is the

variable x. In fact, the Volterra equation can be thought of as a special case of the

Fredholm equation as can be seen by observing that if K(x, t) = 0 whenever t > x

then, provided x < b, we have
∫ b
a K(x, t)u(t)dt =

∫ x
a K(x, t)u(t)dt. Unsurprisingly

there are then techniques that apply to the solution of the Volterra equation that do

not generalise to the Fredholm equation. Notice that these equations are all defined

for functions of one variable. It is often taken as obvious that any dynamics of

multivariable integral equations can be replicated in the one-dimensional case. Even

if this is in fact true, it is our contention that it is more helpful and informative to

study the multidimensional case sometimes. There are numerous methods of solving

different special cases of integral equations. Volterra equations can be related to

Cauchy problems on related ODE’s. Equations with kernels of the form K(x − t)

may be solved by applying a Fourier Transform. However, we are concerned with the

general inhomogeneous Fredholm equation of the second kind, which is the linear

integral equation encountered in the Chapman-Enskog method, although in our case

they are multidimensional and subject to constraints taking the form of Fredholm

equations, this time homogeneous ones of the first type. The Fredholm equations we

are concerned with will have improper definite integrals over all values. Therefore
∫
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will often be used as a “short hand” for
∫∞
−∞ · · ·

∫∞
−∞ throughout this thesis. Fredholm

equations with improper integrals are classed as being ‘singular’. In this case it may

be less clear what class of functions will have well defined integrals with the kernel

and this has a bearing on existence and uniqueness theory. However for the most

part we are not concerned with such theorems beyond the methods to actually find

solutions since we are looking for specific useful classes of results (the existence of

unknown results intractable to access will be of little use).

There are basically three approaches typically used to solve a Fredholm equation.

The first is the method developed by Fredholm [27], which may provide a single

solution or a set of solutions where the homogenous parts form a finite dimensional

vector space. This method involves the construction of a ratio of two infinite sums

of nested integrals that tend to an infinite number of nesting towards the end of

the series. We shall go into much more detail on this when we contrast Fredholm’s

method with one we outline.

Another, the Hilbert-Schmidt method, only applies to symmetric kernels, that

is kernels with the property K(s, t) = K(t, s), and is based on solving the eigenvalue

problem for the integral part of the equation and expressing the solution in terms

of eigenvectors (and in some cases an extra finite number of constants based upon

multiplicity of an eigenvalue) [26].

The final method is known as Neumann series and involves an iterative integral

equation that will, under certain conditions, converge to a single answer.

Ruston has developed the theory of Fredholm equations into the equivalent the-

ory of operators on a Hilbert space [28]. He only addresses the cases giving rise to

finite dimensional solution sets, which he proves are the consequence of a certain

class of operators he describes. Later we will argue that the constraints in the ad

hoc method in Section 2.3.3 amounts to removing an infinite number of degrees of

freedom to achieve a solution. We therefore suspect that, without constraints, the

equation we consider in Section 3.3 admits an infinite dimensional space of solutions.
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However, that problem may also be reformulated as a Fredholm type equation. From

this we conclude that the class of kernels we are concerned with are of interesting

and unusual form.

However, It is the Neumann series we will mostly draw upon in our work so it

behoves us to discuss its construction.

Given the Fredholm equation

u(x) = f(x) + λ

∫ b

a
K(x, t)u(t)dt

we can construct an iterative equation of the form

un+1(x) = f(x) + λ

∫ b

a
K(x, t)un(t)dt

and assuming that it converges at infinity we can make the assumption u0 = f and

construct the value the iteration converges to which is given by

f(x0) + λ

∫ b

a
K(x0, x1)f(x1)dx1 + · · ·+

λn

∫ b

a
· · ·
∫ b

a
K(x0, x1) · · ·K(xn−1, xn)f(x1)dx1 · · · dxn + · · · .

Intuitively we may guess that the value converges to a fixed point of the iterative

equation and hence a solution of the original Fredholm equation, and provided that

a certain set of conditions is met it can be proved that the series converges and this

is in fact the case. This method is grounded in the study of Hilbert space, which is

independent of considerations of the number of variables in the equation or whether

the limits of integration are definite or indefinite, and later we will seek to generalise

this method.
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2.5 Hilbert Spaces

Hilbert space theory is an indispensable tool much used in physics and applied

mathematics. It underpins much of quantum mechanics and signal processing as

well as offering a firm foundation for the study of linear differential and integral

equations. Whereas integral and differential equations are formulated in a certain

dimensionality of space and time, the separable infinite dimensional Hilbert spaces

we consider are all isomorphic and so all theories proved for them will be applicable

to any integro-differential problems we prove that can be formulated in terms of

Hilbert spaces.

2.5.1 Hilbert Spaces

The technical definition of a Hilbert space is “any complete inner product space”.

The notion of an inner product is almost certainly familiar to the Reader but we

state it here for completeness. An inner product on a vector space is a mapping

〈·, ·〉 : E × E → C, where E is a vector space, that has the following properties [29].

• 〈�v, �w〉 = 〈�w,�v〉∗ where the asterisk represents conjugation.

• 〈a�u + b�v, �w〉 = a 〈�u, �w〉 + b 〈�v, �w〉 where a, b ∈ C.

• 〈�v,�v〉 =� 0 and 〈�v,�v〉 = 0 ⇔ �v = �0.

Any vector space with an inner-product is an inner-product space. Additionally,

it is complete if every Cauchy sequence in it, that is every sequence �vi such that

‖�vi+1 − �vi‖ → 0 as i → 0 where ‖�v‖ =
√

〈�v,�v〉, converges to some element in the

vector space. It is immediately obvious that Cn is a Hilbert space. In fact, all finite

dimensional Hilbert spaces are isomorphic to one of these spaces. However, there

are also infinite dimensional Hilbert spaces that require more exotic representations

than the finite cases, and many useful representations exist.
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Examples include the space of complex-valued functions defined over a given

finite interval with inner product 〈f, g〉 =
∫ b
a f(x)g∗(x)dx. The space of all complex

valued functions on R such that
∫∞
−∞ |f(x)|2dx is well defined is a Hilbert space with

the same inner product except that the integral is now over all of R. Hilbert spaces

may have the property of being separable, that is there exists a sequence �xi ∈ E

such that 〈�xi, �xj〉 = δij and 〈�xi, �x〉 = 0∀i ⇒ �x = �0. This is to say the Hilbert space has

a countable basis. All infinite dimensional separable Hilbert spaces are isomorphic

to each other. Non-separable Hilbert spaces do exist but tend to involve functions

with odd properties.

2.5.2 Linear Mappings

We are particularly concerned with linear mappings on Hilbert spaces, the definition

being L : E1 → E2 where E1 and E2 are vector spaces and L has the property

L(a�v + b�w) = aL(�v) + bL(�w) where a, b ∈ C and �v, �w ∈ E1. Two equivalent (for

linear mappings) properties are continuity (defined as ‖�vi − �v‖ → ‖L(�vi) − L(�v)‖ for

all �vi and �v) and boundedness (defined as the property that ‖L(�v)‖ � K‖�v‖ for

all �v). The boundedness of a linear mapping can be quantified with the mappings

norm ‖L‖ = sup‖�V ‖=1 ‖L(�v)‖, which gives us the lowest possible bound and also

defines a normed vector space of all bounded linear mapping between given normed

vector spaces. Another vital concept is the contraction mapping, defined as being a

mapping such that ‖L(�v) − L(�w)‖ � α‖�v − �w‖ for α < 1.

2.5.3 Fixed Point Theorems

The Banach fixed point theorem underpins several existence and uniqueness proofs

in the theory of integral equations and its generalisations. It also has a constructive

proof, that is it proves the solution exists by constructing it. For this reason the

proof is very instructive and will be included.
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Let F be closed a subspace of a Banach space E, and let L be a contraction

mapping from F into F. There exists a unique �w ∈ F such that L(�w) = �w. This is

proved as follows. Let �vn+1 = L(�vn). ‖�vn+1 − �vn‖ = ‖L(�vn)− L(�vn−1)‖ � α‖�vn − �vn−1‖

for 0 < α < 1 as L is a contraction mapping. By induction it is easily shown

that ‖�vn+1 − �vn‖ � αn‖�v1 − �v0‖ and by the triangle inequality for m < n we can

derive ‖�vn − �vm‖ �
∑n−1

i=m ‖�vi+1 − �vi‖ � ‖�v1 − �v0‖
∑n−1

i=m αi as m → ∞ for n − m

constant
∑n−1

i=m αi → 0, so also ‖�vn − �vm‖ → 0. Therefore �vn is a Cauchy sequence

and converges because E is a Banach space. Let �v = limn→∞ �vn, then ‖L(�v) − �v‖ �

‖L(�v)−�vi‖+‖�vi−�v‖ = ‖L(�v)−L(�vi−1)‖+‖�vi−�v‖ � α‖�v−�vi−1‖+‖�vi−�v‖ which tends to

0 as i → ∞ so L(�v) = �v. Suppose L(�w) = �w, then ‖�v− �w‖ = ‖L(�v)−L(�w)‖ � α‖�v− �w‖

as α < 1 this implies ‖�v − �w‖ = 0 and so �v = �w.

2.6 Functional Derivatives

A functional is a mapping of a vector space of functions to a scalar field although

the term is sometimes used more loosely to indicate a mapping to another space

of functions with fewer variables or a mapping to a finite dimensional vector space.

Functionals typically involve integrating over the variables in a function. For ex-

ample, a common form of functional is F [y(x)] =
∫ b
a H(x, y(x))dx, where H is some

specified function. Functionals are important to us since in the Boltzmann equation,

mass, momentum, and energy are defined using functional-like expressions and the

total entropy is defined by a functional.

It is of particular concern to us as to how one differentiates a functional. Volterra

adopted an interesting conceptual approach thinking about operations on functions

[30]. His thinking was that a function y(x) could be approximated by a long discreet

set of points at set intervals along the function yx. That being the case, a functional

F would simply be a function of the yx and the chain rule would apply, namely

dF =
∑

x
∂F
∂yx

dyx. He reasoned that he could equate parts of the discreet system
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with continuous analogues. dyx = εη(x) would be an infinitesimal amount of change

for the function, the infinitesimal part being ε. dF = F [y(x) + εη(x)] − F [y(x)], the

infinitesimal change of the functional, and ∂F
∂yx

= δF
δy(x) , the derivative that we are

seeking. The sum is of course an inner product in a finite Hilbert space and, as we

have stated for spaces of square integrable functions, the inner product is an integral.

So, the analogous continuous expression is F [y(x) + εη(x)]−F [y(x)] = ε
∫

δF
δy(x)η(x)dx.

Dividing by ε and taking the limit ε → 0 we get d
dε F [y(x) + εη(x)]|ε=0 =

∫
δF

δy(x)η(x)dx.

It will occur that the left hand side will evaluate, certainly for all functionals of the

type we’ve described, to be a product of η(x) within an integral like that on the right

hand side. Thus, by equating the unaccounted for expression on the left hand side

with δF
δy(x) we may, in a sense, discover the partial differential of a functional with

respect to all the possible values its input function may take at all points. This is

called the Volterra functional derivative [30].

Ottinger further generalises Volterra’s functional derivative by adding the capac-

ity to consider the functional derivative subject to constraints [3]. This is achieved by

noting that we have assumed η(x) to be arbitrary. If η(x) is in some way constrained,

for example it is assumed that δG = 0 (the infinitesimal change in some other func-

tional is assumed to be zero). Assuming the functional G [y(x)] =
∫

K(x)y(x)dx, then

δG = ε
∫

K(x)η(x)dx, which implies
∫

K(x)η(x)dx. We must now rewrite our expres-

sion for the functional derivative to include the expression −CK(x)η(x), which will

evaluate to zero under the integral on the right side. So, we have the new equation

d

dε
F [y(x) + εη(x)]|ε=0 =

∫ (
δ′F

δy(x)
− CK(x)

)
η(x)dx

where δ′F
δy(x) is the constrained functional derivative. Thus, we have

δ′F
δy(x)

=
δF

δy(x)
+ CK(x)

so contrary to our usual experience the imposition of this constraint actually gener-
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ates an arbitrary constant.

2.7 Quadrature Methods for Numerical Integra-

tion

The derivation of lattice Boltzmann like models a priori is deeply tied to numeri-

cal integration and we have spent a good deal of time researching the literature on

this topic. The Reader is no doubt familiar with the trapezoid rule for numerical

integration. In a sense it can be thought of as the approximation of a function with

piecewise line segments that is then integrated over. Generally speaking, numerical

integration can be considered the process of approximating a function by considering

the function only at a few input ‘points’ and then integrating this simpler approx-

imate function [31]. This construction often involves orthogonal polynomials and

polynomial interpolation to get the best approximation possible. The nature of these

approximations is typically that for an integral
∫ b
a w(x)f(x)dx with limits that may be

definite or indefinite and where w(x) is a known as the weight function, the approx-

imate integration defines a set of points xi known as abscissae and constant values

wi known as weights such that the approximation is
∫ b
a w(x)f(x)dx =

∑
i wif(xi).

The choice of abscissae and weights is determined by the weights function and the

limits of integration in order to give a good approximation. In fact, it is some times

the case that one or more abscissae may be given a specified position or that the

derivative of the function instead of, or as well as, its value might be considered

at some point for various practical reasons. Naturally, these have trade-offs in the

quality of the approximation. Also, multiple variable versions of these techniques

exist and can often be constructed by simple compositions of the one dimensional

case.

We are primarily concerned with the approximation of three types of integrals,

namely integrals of the form
∫∞
−∞ e−x2

f(x)dx that are well approximated with Her-
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mite quadrature [31], integrals of the form
∫
S2 f(x)dΩ (that is integration over the

angular part of spherical co ordinates) which proves to necessarily have a trivial

approximation provided certain conditions are imposed, and integrals of the form∫∞
0 x2e−x2

f(x)dx, to which we could find no reference for in literature.

2.8 Kirkwood’s Approach to Statistical Mechan-

ics

In our explorations of the literature we found the work of Kirkwood to be most

promising. Kirkwood was able to use some novel approaches to derive equations for

mass, momentum, and energy transport from a classical statistical mechanics model

of molecular motion [32]. The full workings of this process are a little too verbose to

include here but we shall outline the process he used along with some key techniques

employed.

Kirkwood chose to consider the distribution function f over all possible states of

a system of n molecules. That is f(�R1, · · · , �Rn, �p1, · · · , �pn, t) where �Rk is the position

of the kth molecule and �pk is its momentum. The space of distribution functions for

fixed time have an associated inner product

〈g; f〉 =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(�R1, · · · , �pn)f(�R1, · · · , �pn)d3 �R1 · · · d3�pn.

Using this result then operators giving expectation values of the system from and

for an arbitrary dynamical variable can be defined. If α(�R1, · · · , �pn) is that dynamic

variable, then 〈α; f〉 gives its expectation value.

Kirkwood’s key observation was that if the distribution function was subject to

time evolution under a Liouville equation

∂f

∂t
=

n∑
k=1

(
− �pk

mk
· ∇�Rk

f + ∇�Rk
U · ∇�pk

f

)
,
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with some potential energy function U , then the expectation value of any non time

dependant dynamical variable would be governed by the time evolution equation

∂

∂t
〈α; f〉 =

N∑
k=1

〈
�pk

mk
· ∇�Rk

α −∇�Rk
U · ∇�pk

α; f
〉

. (2.7)

Kirkwood defined macroscopic variables (such as mass, momentum, and energy)

from certain expectation values, specifically mass density

ρ(�r, t) =
N∑

k=1

mk

〈
δ(�Rk − �r); f

〉
,

momentum density

ρ(�r, t)�u(�r, t) =
N∑

k=1

〈
�pkδ(�Rk − �r); f

〉
,

kinetic energy density

EK(�r, t) =
N∑

k=1

〈
p2

k

2mk
δ(�Rk − �r); f

〉
,

potential energy density due to external fields

Eψ(�r, t) =
N∑

k=1

〈
ψk(�Rk)δ(�Rk − �r); f

〉
=

N∑
k=1

ψk(�r)
〈
δ(�Rk − �r); f

〉
,

and the potential energy density due to internal forces

EV (�r, t) =
1
2

∑
j �=k

〈
Vjkδ(�Rk − �r); f

〉
.

The total energy density for the energy equation is defined as the sum of the three

energies E = EK + Eψ + EV .

Kirkwood realised that he could apply equation (2.7) to his definitions of the

macroscopic variables to find time evolution equations for them. Certain aspects

of the right hand sides of these new expressions would be immediately replaceable
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with known macroscopic variables. Others would require extensive manipulation

and subsequent approximation in order to express the whole right side in terms of

macroscopic variables.

We will discuss a few key manipulations but not Kirkwood’s complete workings.

The first is the well known technique of replacing a term with two identical terms

multiplied by (1
2) and swapping two summation indices in the second. For example

−
∑
j �=k

〈
(∇�Rk

Vjk)δ(�Rk − �r); f
〉

= −1
2

∑
j �=k

〈
(∇�Rk

Vjk)δ(�Rk − �r) + (∇�Rj
Vkj)δ(�Rj − �r); f

〉
.

Another key technique that follows on neatly from the previous example is the

application of Newton’s third law expressed in the equation

∇�Rj
Vkj = −∇�Rk

Vjk.

Applied to the same example this yields

−
∑
j �=k

〈
(∇�Rk

Vjk)δ(�Rk − �r); f
〉

= −1
2

∑
j �=k

〈
(∇�Rk

Vjk)
(
δ(�Rk − �r) − δ(�Rj − �r)

)
; f
〉

.

Another important identity is derived by taking the Taylor expansion of δ(�Rk − �r)

giving

δ(�Rk − �r) − δ(�Rj − �r) = −∇�r

[
�Rjk

( ∞∑
i=1

1
n!

(−�Rjk · ∇�r)n−1

)
δ(�Rj − �r)

]

where we define �Rjk = �Rk − �Rj. This identity often allows most of the expression to

be written in terms of �Rjk as opposed to �Rj or �Rk. This facilitates the next step.

When an expression, such as follows, can be written using a potentially compli-
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cated operator P (�Rjk) (that commutes with integration) and a fairly simple function

Q(�pj , �pk), we can formulate the following identity.

∑
j �=k

〈
P (�Rjk) ◦

(
Q(�pj , �pk)δ(�Rj − �r)

)
; f
〉

=
∫

P (�R) ◦
∑
j �=k

〈
Q(�pj , �pk)δ(�Rjk − �R)δ(�Rj − �r); f

〉
d3 �R

=
∫

P (�R) ◦
∑
j �=k

〈
Q(�pj , �pk)δ(�Rk − �r − �R)δ(�Rj − �r); f

〉
d3 �R

Expressions of the form
∑

j �=k

〈
Q(�pj , �pk)δ(�Rk − �r − �R)δ(�Rj − �r); f

〉
, if Q(�pj , �pk) is

sufficiently simple, can be approximated as the product of two macroscopic vari-

ables, one in terms of �r + �R and the other in terms of �R, and a third function

g(�r, �R, t), a “correlation function”. In summary, Kirkwood’s general approach seems

to have been to rearrange expressions he couldn’t convert directly into macroscopic

variables into such forms and perform these approximations introducing “correlation

functions”.

2.9 Summary

In examining the literature we have learned several important things that guided

the research in the rest of the thesis.

• That many physical systems including polymers can be modelled using equa-

tions similar to the Boltzmann equation.

• That the Boltzmann equation and it’s analogues are more directly linked to

the microscopic dynamics of physical system than fluid dynamics.

• That the Boltzmann equation has an analogue discrete in time, space, and a

velocity that can be very computationally tractable.
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• That a methodology known as the Chapman-Enskog procedure exists to facil-

itate attempts to derive a model similar to those of fluid dynamics from the

Boltzmann equation and its discrete and continuous analogues.

• Collisions are modelled statistically by a function W that is greatly restricted

to ensure that only physically possible collisions are admitted in its statisti-

cal distribution. Among other things this leads to a set of useful symmetry

conditions upon W and theoretically should allow the number of variables

“integrated over” in the equation to be greatly reduced.

• The Chapman-Enskog method involves solving a ‘ladder’ of Fredholm integral

equations upto a certain ‘rung’.

• A series of techniques exist to solve Fredholm equations including the Neu-

man series where a single solution exists and a method due to Fredholm and

formalised in Hilbert space theory by Ruston [28] that applies to Fredholm

equations with finite dimensional ‘spaces’ of solution.

• Integral equations can be studied through the theory of Hilbert spaces.

• Certain operators on Hilbert spaces have unique fixed points to which they

converge and this theory underpins the validity of the Neuman series.

• Entropy can be expressed as a functional.

• There is an analogue of partial derivatives for functionals known as functional

derivatives that is useful in determining the maxima and minima of functionals.

• Functional derivatives may be generalised to include the derivative subject

to constraints. This is useful in determining maxima and minima subject to

constraints.

• The derivation of lattice Boltzmann like models a priori relates to, and is

dependent upon, numerical integration.
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• The relevant forms of numerical integration are those that involve considering

the integral of an approximating function that is formulated by considering

the properties of the function to be integrated and a finite number of ‘points’.

• Kirkwood was able to take a simple classical statistical mechanics model of

molecular interactions and use it to derive a set of fluid dynamics like transport

equations from first principals.

These key points will no doubt suggest to the Reader a course upon which to proceed

as it did to us, and so we shall move on to our research material directly.
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Chapter 3

Seeking a Solution to Grmela’s

Equation

In dealing with polymeric fluids we often refer to their memory. The functions

with which we model these fluids contain integrals over time that consider the state

of the fluid over some, usually finite, time of the recent past that contributes to

the behaviour of the fluid in the present. Clearly fluids don’t have memory as

such1. If polymeric fluids appear to have memory it is because their environment

affects their internal degrees of freedom, which subsequently affects their behaviour

at “later times”. The internal structure of a polymer (the microscopic arrangement

of its polymer chains, their branching, direction, tension and interleaving) can be

expected to contribute to the behaviour of the bulk polymer.

This work seeks to include information about the distribution of polymer chain

orientations and extensions in models we develop as one feature of high shear rate

and micro scale mould geometries, as we can expect some degree of preferential

alignment of polymer chains. It is possible that in this situation heat transfer might

favour one direction over another.

1No polymer melt ever got up in the morning and said to itself ‘oh I just remembered I’m
supposed to be more stretchy today.’ Although give nano-technologists time and who knows,
puddles of goo may be vying for dominance of planet Earth some day.
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�v1

�v2

�v3

�v4

ν1

ν1

ν2

ν2

�r1

�r2

�r3

�r4

Figure 3.1: This diagram represents two
sections of polymer chains potentially
undergoing a collision like interaction.
Immediately before and also after the
interaction the position of the ‘ends’ of
the ‘dumbbells’ are labelled by �ri and
the length along chain where this sec-
tion rests is given by σi. These variables
have associated velocity like parameters
�vi and νi before the collision. These
values will change post collision but �ri

and σi will experience no instantaneous
change. Note νi, it can be thought of
as representing the ‘speed’ at which the
polymer chain is being drawn through
the two end points of a ‘dumbbell’.

3.1 Mesoscopic Kinetic Theory Approach

In gas dynamics it is possible to derive conservation equations from the kinetic theory

of gasses, the so called mesoscopic domain where, instead of considering observable

variables mapped over space, we consider the statistical distribution over phase

space. This work was very influenced by the work of Miroslav Grmela [1, 2] who

developed a kinetic theory of polymeric fluids and proved the theory’s consistency

with the laws of thermodynamics. In this work we shall apply further analysis to

Grmela’s equations in an effort to derive conservation equations over six dimensions,

providing for three degrees of freedom for space and a further three internal degrees

of freedom.

Grmela’s equation (3.1) [2] is a kinetic equation describing the time evolution of

a function f , which itself describes how the material of the polymer is distributed

over phase space:
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∂f(1, t)
∂t

= −viα
∂

∂riα
f(1, t) − ν1

∂

∂σ1
f(1, t) +

∂

∂viα

(
f(1, t)

1
m

∂

∂riα

(
ϕ(int) + ϕ(ext)

))

+
∫ ∫ ∫ (

W (n;1′,2′;1,2)e−
δS

δf(1′,t)− δS
δf(2′,t) − W (n;1,2;1′,2′)e−

δS
δf(1,t)

− δS
δf(2,t)

)
d2d1′d2′

(3.1)

i = (�r2i−1, �r2i, �v2i−1, �v2i, σi, νi), S(f) = −
∫

f(1, t) ln f(1, t)d1 − L(n) (3.2)

n(�r1, �r2, σ1, t) =
∫ ∫ ∫

f(1, t)d�v1d�v2dν1 (3.3)

This particular phase space as described in equation (3.2) has 14 degrees of

freedom. �r1 and �r2 represent two points, at either end of an abstract dumb-bell-like

entity. This could be thought of as two points reasonably close to each other on the

same polymer chain. �v1 and �v2 are their associated velocities. Grmela introduced

the somewhat artificial ‘feeling’ σ1 and ν1 as the “position co-ordinate on the line

following the linear chain” and it’s “corresponding velocity” respectively [2].

S is a functional giving the entropy of f . n is a density-like functional of f that

Grmela calls a “configuration space distribution function” [2]. ϕ(int) and ϕ(ext) are

potential energies, the first due to the internal tension of the polymer chain and that

is purely dependent upon the length |�r1 − �r2|, and the second due to the external

‘crowding’ of other polymer chains dependent on �r1, �r2, and n. Finally, δS
δf is the

notation we use to represent a Volterra functional derivative [30].

To give some context to the physical meaning of equation (3.1) the first three

terms can be interpreted as the total derivative of f , that represent the rate of change

of a ‘blob’, a volume in motion with the fluid, as opposed to a stationary volume. The

fourth term can be interpreted as the effect of the force of two potential fields (ϕ(int)

and ϕ(ext)) upon the fluid. The fifth term represents collision-like events, typically
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short range interactions between two sections of polymer chain. The first term of

this integral represents the likelihood of such and interaction between sections in

states 1′ and 2′, resulting in new states 1 and 2. The second term describes the

likelihood of ‘collisions’ causing states 1 and 2 to shift to new states 1′ and 2′.

n(�r1, �r2, σ1, t)
∂ϕ(ext)(n;�r1, �r2)

∂riα
=
∫ ∫ ∫

F (ext)(n;�r1, �r2, σ1, �r3, �r4, σ2, t)

×
(
φ̃

(ext)
iα (n;�r1, �r2, �r3, �r4) − φ̃

(ext)
iα (n;�r3, �r4, �r1, �r2)

)
d�r3d�r4dσ2

(3.4)

∂

∂riα

δL
δn(�r1, �r2, σ1, t)

= 2
5∑

j=3

∫ ∫ ∫
(riα − rjα)ω(n;�r1, �r2, σ1, �r3, �r4, σ2)

×n(�r3, �r4, σ2, t)e
2+ δL

δn(�r1,�r2,σ1,t)
+ δL

δn(�r3,�r4,σ2,t) d�r3d�r4dσ2

(3.5)

∂

∂σ1

δL
δn(�r1, �r2, σ1, t)

= 2
∫ ∫ ∫

(σ1 − σ2)ωrept(n;�r1, �r2, σ1, �r3, �r4, σ2)

×n(�r3, �r4, σ2, t)e
2+ δL

δn(�r1,�r2,σ1,t)
+ δL

δn(�r3,�r4,σ2,t) d�r3d�r4dσ2

(3.6)

Grmela states this set of conditions for equation (3.1) to conform to the laws

of thermodynamics. To proceed with the analysis it was necessary to make some

simplifications, namely that, ωrept = ω = L = 0, which automatically satisfies equa-

tions (3.5) and (3.6), and implies δS
δf(1,t) = − ln f(1, t), which causes equation (3.1) to

simplify to

∂f(1, t)
∂t

+ viα
∂

∂riα
f(1, t) + ν1

∂

∂σ1
f(1, t) − ∂

∂viα

(
f(1, t)

1
m

∂

∂riα

(
ϕ(int) + ϕ(ext)

))

=
∫ ∫ ∫ (

W (n;1′,2′;1,2)f(1′, t)f(2′, t) − W (n;1,2;1′,2′)f(1, t)f(2, t)
)
d2d1′d2′

(3.7)
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3.2 Chapman-Enskog Expansion

Non-linear integro-differential equations like (3.7) are not only computationally in-

tensive to evaluate but they are also difficult to extract useful results from analyt-

ically. In the case of gas kinetics it is possible to derive equations for mass, mo-

mentum, and energy conservation using an analysis called the Chapmann-Enskog

expansion [3]. We select a number of functionals of f , much like equation (3.3), and

attempt to use the expansion to construct, in some sense, an ideal form for f for

the given functionals (that we shall tend to refer to as the macroscopic functions

or variables) and their derivatives in the space-like co-ordinates remaining after the

functional integration. This idealised f is reinserted into the original equation (3.7)

to derive equations for the macroscopic variables that it is composed of.

The analysis presented in this work is a (slight) variation of the technique de-

scribed in Ottinger’s book [3] and is as follows.

We start with an equation of the form

D̂tf −
[
∂f

∂t

]
coll

= 0 (3.8)

where D̂tf represents terms relating to (effectively) long time scale forces and time

evolution terms, and where
[

∂f
∂t

]
coll

represents short ‘collision’ time scale terms. We

take the equation and modify it by introducing a new variable ε like so

εD̂tf −
[
∂f

∂t

]
coll

= 0 (3.9)
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and define an approximation for f of the form2

f =
∞∑

j=0

εjf (j)(�v, x{j}(�r, t)) (3.10)

where x{j}(�r, t) are what we shall term macroscopic variables and their spatial deriva-

tives (in the space-like part of phase space) up to order j. These macroscopic vari-

ables are linear functionals (we shall use Y to denote one such arbitrary functional

and y to denote the macroscopic variable Y ’s result when applied to f) and impose

the following condition necessary to ensure uniqueness in our final result,

Y
[
f (i)
]

= δ0iy(t, �r) (3.11)

These macroscopic variables are fields or vector fields over the space-like co-ordinates

of phase space. In gas kinetics, for example, they would be fields such as density

and velocity.

We insert equation (3.10) into equation (3.8) and apply some set of functionals

we simply refer to as Y , noting that

Y

[
∂f

∂t

]
=

∂

∂t
Y [f ] =

∂y

∂t

We then generate a set of expressions for the time differentials of the macroscopic

variables in terms of the f (i), and apply this technique to higher orders. We take

equation (3.9) and insert equation (3.10), then apply the chain rule to occurrences

of ∂f (i)

∂t , which introduces time derivatives of the macroscopic variables that we

substitute our previously derived expressions for. The subsequent expression derived

from equation (3.9) is expanded as a Taylor series, which has the form

2conceptually each higher order of ε relates to a different ‘order’ of the Knudsen number and a
different level of ‘bumpyness’ in the fluid the occurrence of higher order factors is supposed to reflect
subtlety that may be unimportant when ‘bumpyness’ is low. For a clearer more mathematical
explanation see Harris’s book [8].
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∞∑
j=0

εjΞ(j)
[
f (0), · · · , f (j)

]
= 0. (3.12)

Setting all the coefficients to 0, to satisfy the equation for all ε, gives

Ξ(j)
[
f (0), · · · , f (j)

]
= 0. (3.13)

This generally produces a non-linear integral equation that gives f (0) and linear

equations thereafter. From this we can derive successive approximations for f by

solving more of these equations subject to the restriction (3.11). When we have

computed forms for f (0), · · · , f (j) for some j we can reinsert these forms into the

expressions for ∂y
∂t (the time derivatives of the macroscopic variables) with the ad-

ditional condition that we set ε = 13 and thus generate time evolution equations for

the macroscopic variables.

To perform this analysis on equation (3.7) we pick the following macroscopic

variables:

ρ = n, ρ�Ui =
∫

�vifd3�v1d
3�v2dν1, ρT =

∫ (
(�v1 − �U1)2 + (�v2 − �U2)2

2
+ ν2

1

)
fd3�v1d

3�v2dν1

(3.14)

ρ is a density-like variable re-labelled to reflect convention, �Ui are velocity-like vari-

ables, and T is a temperature-like variable. We also define a fourth convenient

energy-like variable not independent of these three:

ρ

(
T +

U2
1 + U2

2

2

)
=
∫ (

v2
1 + v2

2

2
+ ν2

1

)
fd3�v1d

3�v2dν1 = E (3.15)

It will often be easier to work with conditions on E than conditions on T .

To perform the Chapman-Enskog expansion on equation (3.7) we define a new

3Note this is just convenient way of recovering the original Boltzmann equation with out having
to recalculate with out the presence of ε.
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equation that is to equation (3.7), as equation (3.9) is to equation (3.8),

ε
∂f(1, t)

∂t
= −εviα

∂

∂riα
f(1, t) − εν1

∂

∂σ1
f(1, t) + ε

∂

∂viα

(
f(1, t)

1
m

∂

∂riα

(
ϕ(int) + ϕ(ext)

))

+
∫ ∫ ∫ (

W (n;1′,2′;1,2)f(1′, t)f(2′, t) − W (n;1,2;1′,2′)f(1, t)f(2, t)
)
d2d1′d2′

(3.16)

We define an approximation for f in parallel with equation (3.10)

f(1, t) =
∞∑
i=0

εifi(�v1, �v2, ν1, x
{i}(�r1, �r2, σ1)) (3.17)

where x{0} is ρ, �Ui and T , collectively; x{1} denotes x{0} augmented by the first order

spatial derivatives, and so on.

3.2.1 The Zeroth Order of the Expansion

We insert equation (3.17) into equation (3.16) and notice that the zero order Taylor

expansion has no dependence upon the time derivatives of the macroscopic variables,

so we can state the equation produced by the zero-order coefficient immediately as

0 =
∫ ∫ ∫ (

W (n;1′,2′;1,2)f0(1′, t)f0(2′, t) − W (n;1,2;1′,2′)f0(1, t)f0(2, t)
)
d2d1′d2′

(3.18)

Grmela states [2] that in proving the H-theorem for the system through simi-

larities between ∂H
∂t and the right hand side of equation (3.18), a condition for the

solution of equation (3.18) is given by

δS
δf(1′, t)

+
δS

δf(2′, t)
=

δS
δf(1, t)

+
δS

δf(2, t)
. (3.19)

Inserting the form of S given in equation (3.2) subject to our simplifying assumptions

on L, we obtain

ln f0(1′, t) + ln f0(2′, t) = ln f0(1, t) + ln f0(2, t).
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Since the position co-ordinates are not changed by a collision we can expect some

change in �vi. The equation above implies that ln f0 is composed of expressions in

�vi that are conserved in collisions, namely a constant mass that has no dependence

on �vi, energy that is given by Grmela [2] as
(

v2
1+v2

2
2 + ν2

1

)
, and various forms of

momentum that should be linear in �vi. Thus these eight expressions should make

up ln f0.

In truth it could be argued that ν1, being a velocity-like component, should also

be included as a potential linear momentum component, but since its meaning is

just a little ambiguous and since its inclusion makes the next step impossible as

an assumption, it is left out. The only justification we have for this is the lack of

a macroscopic variable to accompany the momentum associated with ν1. Further

justification for this form will be given in Section 5.3. This gives us the form for

ln f0 as

ln f0(1, t) = A + �B.�v1 + �C.�v2 + D

(
v2
1 + v2

2

2
+ ν2

1

)
(3.20)

A, �B, �C and D are fields of the spatial variables (�r1, �r2, σ1). These fields can be set

by appealing to conditions (3.14) and (3.3). This gives f0 to be.

f0(1) =
343

64π
7
2

√
7
2
T− 7

2 ρe
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
(3.21)

By inserting f0 for f we get

∂f0(1, t)
∂t

+ viα
∂

∂riα
f0(1, t) + ν1

∂

∂σ1
f0(1, t) − ∂

∂viα

(
f0(1, t)

1
m

∂

∂riα

(
ϕ(int) + ϕ(ext)

))
= 0

(3.22)

Next, by applying density-like, momentum-like, and energy-like functionals

(3.14), (3.3) to equation (3.7) we get

∂ρ

∂t
= −∇�r1

·
(
ρ�U1

)
−∇�r2

·
(
ρ�U2

)
(3.23)
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∂

∂t
(ρUiα) = − ∂

∂rjβ
(ρUiαUjβ) − ∂

∂riα

(
2Tρ

7

)
− ρ

m

∂

∂riα

(
φ(int) + φ(ext)

)
(3.24)

∂

∂t

(
ρ

(
T +

1
2

(
�U2

1 + �U2
2

)))
= − ∂

∂riα

(
ρUiα

(
9
7
T +

1
2

(
�U2

1 + �U2
2

)))

+
ρ

m
Uiα

∂

∂riα

(
φ(int) + φ(ext)

) (3.25)

Rearranging (3.24) and (3.25) and appealing to (3.23), we get

∂Uiα

∂t
= −Ujβ

∂Uiα

∂rjβ
− 1

ρ

∂

∂riα

(
2Tρ

7

)
− 1

m

∂

∂riα

(
φ(int) + φ(ext)

)
(3.26)

∂T

∂t
= −Uiα

∂T

∂riα
− 2

7
T

∂Uiα

∂riα
+

2
m

Uiα
∂

∂riα

(
φ(int) + φ(ext)

)
(3.27)

By rearranging (3.23), (3.26) and (3.27), and appealing to the definition of the

total derivative Dt (also known as the material derivative) we get

Dtρ = −ρ∇r̄ · Ū (3.28)

DtŪ = −2
7

1
ρ
∇r̄ (Tρ) − 1

m
∇r̄

(
φ(int) + φ(ext)

)
(3.29)

DtT = −2
7
T∇r̄ · Ū +

2
m

Ū · ∇r̄

(
φ(int) + φ(ext)

)
(3.30)

These equations are analogous to the Euler equations.
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3.2.2 The First Order Expansion

The next set of derived equations would be akin to the Navier-Stokes equation and

its accompanying mass and energy conservation equations. We take the first order

term in the Taylor series of equation (3.16) to get

∂ρ

∂t ε=0

∂f0

∂ρ
+

∂Uiα

∂t ε=0

∂f0

∂Uiα
+

∂T

∂t ε=0

∂f0

∂T
= −viα

∂

∂riα
f0 − ν1

∂

∂σ1
f0

+
∂

∂viα

(
f0

1
m

∂

∂riα

(
ϕ(int) + ϕ(ext)

))

+
∫ ∫ ∫ (

W (n;1′,2′;1,2)
(
f1(1′)f0(2′) + f0(1′)f1(2′)

)
−W (n;1,2;1′,2′) (f1(1)f0(2) + f0(1)f1(2))

)
d2d1′d2′

(3.31)

The time derivative of macroscopic terms such as ∂ρ
∂t ε=0

subject to the condition

ε = 0 are necessarily the same as the values derived in equations (3.23), (3.26) and

(3.27) since the assumption used there was that only f0 contributes. Remaining

conditions are given by

∂f0

∂ρ
=

f0

ρ
,

∂f0

∂Uiα
=

7(viα − Uiα)f0

2T

∂f0

∂T
=

7((Ū − v̄)2 + 2ν2
1 − 2T )f0

4T 4
,

∂f0

∂viα
=

7(Uiα − viα)f0

2T

∂f0

∂riα
=
(

7(v̄ − Ū)
2T

· ∂Ū

∂riα
+

7((v̄ − Ū)2 − 2T + 2ν2)
4T 2

∂T

∂riα
+

1
ρ

∂ρ

∂riα

)
f0

∂f0

∂σ1
=
(

7(v̄ − Ū)
2T

· ∂Ū

∂σ1
+

7((v̄ − Ū)2 − 2T + 2ν2)
4T 2

∂T

∂σ1
+

1
ρ

∂ρ

∂σ1

)
f0

∂f0

∂ρ

∂ρ

∂t
= −f0

ρ
∇r̄ ·
(
ρŪ
)

∂Uiα

∂t

∂f0

∂Uiα
= −7(v̄ − Ū)f0

2T

((
Ū · ∇r̄

)
Ū +

1
ρ
∇r̄

(
2Tρ

7

)
+

1
m
∇r̄

(
φ(int) + φ(ext)

))

∂T

∂t

∂f0

∂T
= −7((Ū − v̄)2 + 2ν2

1 − 2T )f0

4T 4
×
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(
Ū · ∇r̄T +

2
7
T∇r̄ · Ū − 2

m
Ū · ∇r̄

(
φ(int) + φ(ext)

))

Inserting these and equations (3.23), (3.26) and (3.27) into expansion (3.31) gives

f0

4

(
7Kν1

T 2

∂T

∂σ1
+

(7K − 4T )(viα − Uiα)
T 2

∂T

∂riα
+

4ν1

ρ

∂ρ

∂σ
+

14KUiα

mT 2

∂

∂riα

(
φ(int) + φ(ext)

)

−2(K + 2T )
T

∂Uiα

∂riα
+

14ν1(viα − Uiα)
T

∂Uiα

∂σ1
+

14(viα − Uiα)(vjβ − Ujβ)
T

∂Uiα

∂rjβ

)
= Λ

=
∫ ∫ ∫ (

W (n;1′,2′;1,2)
(
f1(1′)f0(2′) + f0(1′)f1(2′)

)
−W (n;1,2;1′,2′) (f1(1)f0(2) + f0(1)f1(2))

)
d2d1′d2′

(3.32)

K = 2(ν2
1 − T ) + (v̄ − Ū)2 is used as a “short hand” and we introduce the simplifying

notation Ū = (�U1, �U2) and v̄ = (�v1, �v2), the adjoining of two 3-vectors into a 6-tuple

which, as it happens, also behaves as a vector. We could proceed to seek a solution

of equation (3.32) directly, but a further simplification suggests itself. If we make

the following substitution.

f1(1) = f0(1)ϕ(1) (3.33)

and insert this into equation (3.32), observing that because of the conditions by

which f0 was derived (namely equation (3.19)) in the collision integral, we may

perform the substitution f0(1)f0(2) = f0(1′)f0(2′) to obtain

Λ =
∫ ∫ ∫ (

W (n;1′,2′;1,2)f0(1′)f0(2′)
(
ϕ(1′) + ϕ(2′)

)
−W (n;1,2;1′,2′)f0(1)f0(2) (ϕ(1) + ϕ(2))

)
d2d1′d2′

= f0(1)
∫ ∫ ∫

f0(2)
(
W (n;1′,2′;1,2)

(
ϕ(1′) + ϕ(2′)

)
−W (n;1,2;1′,2′) (ϕ(1) + ϕ(2))

)
d2d1′d2′

Λ
f0(1)

=
∫ ∫ ∫

f0(2)
(
W (n;1′,2′;1,2)

(
ϕ(1′) + ϕ(2′)

)

−W (n;1,2;1′,2′) (ϕ(1) + ϕ(2))
)
d2d1′d2′
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Λ
f0(1)

=
∫ ∫ ∫ ((

W (n;1′,2′;1,2)f0(2)ϕ(1′) + W (n;1′,2′;1,2)f0(2)ϕ(2′)
)

−
(
W (n;1,2;1′,2′)f0(2)ϕ(1) + W (n;1,2;1′,2′)f0(2)ϕ(2)

))
d2d1′d2′

Λ
f0(1)

=
∫ ∫ ∫ ((

W (n;1′,2′;1,2)f0(2)ϕ(1′) + W (n;2′,1′;1,2)f0(2)ϕ(1′)
)

−
(
W (n;1,2;1′,2′)f0(2)ϕ(1) + W (n;1,1′;2,2′)f0(1′)ϕ(1′)

))
d2d1′d2′

Λ
f0(1)

= −ϕ(1)
∫ ∫ ∫

W (n;1,2;1′,2′)f0(2)d2d1′d2′+

∫ ∫ ∫ (
W (n;1′,2′;1,2)f0(2) + W (n;2′,1′;1,2)f0(2)

−W (n;1,1′;2,2′)f0(1′)
)
d2d2′ϕ(1′)d1′

(3.34)

This form may be re-written in terms of some appropriately defined functions A, B

and C,

A(1) = −B(n;1)ϕ(1) +
∫

C(n;1,1′)ϕ(1′)d1′, (3.35)

and further rearranged to give the standard form for a multidimensional inhomoge-

neous Fredholm equation of the second kind,

ϕ(1) = − A(1)
B(n;1)

+
∫

C(n;1,1′)
B(n;1)

ϕ(1′)d1′ (3.36)

3.3 Solving the Fredholm Equation for the First

Order Expansion

The study of Fredholm equations is expediently phrased in the language of Hilbert

spaces. Expressions and integrals, such as the ones we deal with here, can be ex-

pressed as operators and mappings on an infinite dimensional Hilbert space. Equa-
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tion (3.36) can be rewritten as follows:

ϕ = Φ + (A + B) ϕ = T ϕ. (3.37)

Φ is the infinite dimensional vector represented by − A(1)
B(n;1) , and (A + B) is the linear

operator given by the integral with kernel C(n;1,1′)
B(n;1) . This is written as two operators

as we expect C to contain some terms with Dirac delta functions such as δ(�r1 − �r ′
1)

due to the anticipated presence of similar terms in W . When these are simplified

we shall be left with two integral operators integrating over two different sets of

variables. Hence there will be times when it is necessary to consider these two

operators A and B as separate entities.

We have drawn extensively on various proofs and theorems found in Debnath’s

book [29] and have added our own generalisations and modifications where appro-

priate. One such generalised theorem is the following.

If A and B are bounded linear operators with bounds kA and kB then T is a

contraction mapping if kA + kB < 1. The proof follows directly from the equation

below,

‖T ϕ1 − T ϕ2‖ = ‖Aϕ1 −Aϕ2 + Bϕ1 − Bϕ2‖ � ‖Aϕ1 −Aϕ2‖ + ‖Bϕ1 − Bϕ2‖

= kA‖ϕ1 − ϕ2‖ + kB‖ϕ1 − ϕ2‖ = (kA + kB) ‖ϕ1 − ϕ2‖
(3.38)

It follows from the contraction mapping theorem that if T is a contraction mapping

then it has a unique fixed point given by

ϕ = T ϕ ⇒ ϕ =
∞∑

n=0

(A + B)n Φ.
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3.3.1 The Projection Operator Technique

Given a generic integral operator over a region Ω in multiple variables∫
Ω K(�x, �y)f(y) d�y a bound may be determined by observing the following inequal-

ity

∫
Ω

∣∣∣∣
∫

Ω
K(�x, �y)f(y)d�y

∣∣∣∣
2

d�x �
∫

Ω

∫
Ω
|K(�x, �y)|2 d�xd�y

∫
Ω
|f(�y)|2 d�y (3.39)

The bound is given by
∫
Ω

∫
Ω |K(�x, �y)|2 d�xd�y. It is tempting to think we could then

simply find a restriction on the form of A and B and use the contraction mapping

theorem to solve the equation for ϕ, but sadly it is totally unreasonable to imagine

that this equation has a unique solution. In the Chapman-Enskog expansion we

have a restriction on f1 (see equation (3.11)) and consequently on ϕ. In the specific

case of f1 and equation (3.7) and referencing our definitions for the macroscopic

variables (3.14), these conditions are

0 =
∫

f0φd�v1d�v2dν1 =
∫

343

64π
7
2

√
7
2
T− 7

2 ρe
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
φd�v1d�v2dν1

�0 =
∫

�vif0φd3�v1d
3�v2dν1

=
∫

343

64π
7
2

√
7
2
T− 7

2 ρ�vie
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
φd3�v1d

3�v2dν1

0 =
∫ (

(�v1 − �U1)2 + (�v2 − �U2)2

2
+ ν2

1

)
f0φd3�v1d

3�v2dν1

=
∫

343

64π
7
2

√
7
2
T− 7

2 ρ

(
(�v1 − �U1)2 + (�v2 − �U2)2

2
+ ν2

1

)

×e
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
φd3�v1d

3�v2dν1
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which simplify to the conditions

0 =
∫

e
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
φd�v1d�v2dν1

�0 =
∫

�vie
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
φd3�v1d

3�v2dν1

0 =
∫ (

(�v1 − �U1)2 + (�v2 − �U2)2

2
+ ν2

1

)
e
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
φd3�v1d

3�v2dν1

(3.40)

The observant reader will notice the similarity to inner-products. In fact, given

that all values are real (as opposed to complex), each of the above conditions can

easily be expressed as 0 = 〈y,x〉 where y represents various kernels of the expressions

above. Were this space finite, the conditions would be dot products set to zero and

thus define a hyper-plane through the origin, or to put it another way a subspace

of the Hilbert space. As it happens these conditions still describe a subspace in the

infinite dimensional case and it is expedient4 to construct a projection operator onto

this space. For a given condition 0 = 〈y,x〉 the corresponding projection operator is

x′ = x − ŷ 〈ŷ,x〉 (3.41)

A hat indicates a normalised vector (that is 〈ŷ, ŷ〉 = 1). This has two important

properties. First that if a vector x is in the subspace (0 = 〈y,x〉) then it acts as the

identity operator x′ = x. Secondly, that the operator maps onto the subspace as

proved by the equation

〈
ŷ,x′〉 = 〈ŷ,x〉 − 〈ŷ, ŷ 〈ŷ,x〉〉 = 〈ŷ,x〉 − 〈ŷ,x〉 〈ŷ, ŷ〉 = 〈ŷ,x〉 − 〈ŷ,x〉 = 0.

It is possible to define a generalised projection operator which has these properties by

construction in respect to the intersection of several subspaces defined by y0, · · · ,yn.

4In the sense of being a result we will need for later work
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These will be our conditions in equation (3.40).

x′ = x −
n∑

i=0

αiyi

αi is fixed by the condition 〈x′,yi〉 = 0 which implies

0 = 〈x,yj〉 −
n∑

i=0

αi 〈yi,yj〉

⇒

⎛
⎜⎜⎜⎜⎜⎝

α0

...

αn

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

〈y0,y0〉 · · · 〈yn,y0〉
...

. . .
...

〈y0,yn〉 · · · 〈yn,yn〉

⎞
⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎝

〈x,y0〉
...

〈x,yn〉

⎞
⎟⎟⎟⎟⎟⎠

⇒ x′ = x −

⎛
⎜⎜⎜⎜⎜⎝

y0

...

yn

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎝

〈y0,y0〉 · · · 〈yn,y0〉
...

. . .
...

〈y0,yn〉 · · · 〈yn,yn〉

⎞
⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎝

〈x,y0〉
...

〈x,yn〉

⎞
⎟⎟⎟⎟⎟⎠

In fact we could further generalise this by allowing skewed projections (where

the null space is not perpendicular to the projected plane) by defining our projection

to have the form

x′ = x −
n∑

i=0

ki 〈x,yi〉 (3.42)

in which ki is constrained by the condition 〈ki,yj〉 = δij.

Regardless of which of these projection operators we choose it will have the form

expressed in integral notation

ϕ′ = ϕ −
∫

P (1,1′)ϕd�v1d�v2dν1 (3.43)
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and in fact if we take the non-skew form equation (3.40) yield

343
√

7

8π
7
2 T

11
2

(
T 2 + 7T (v̄ − Ū) · (v̄′ − Ū) + 14

(
(v̄ − Ū)2 − T

2
+ ν2

)

×
(

(v̄′ − Ū)2 − T

2
+ ν ′2

))
e
− 7

2T

„
(v̄−Ū)2+(v̄′−Ū)2

2
+ν2+ν ′2

«
= P (1,1′)

(3.44)

However, for reasons that we will explore, the skew projection will be the better

choice. In that case P is

P =

(
k0 + kivi + k7

(
(�v1 − �U1)2 + (�v2 − �U2)2

2
+ ν2

1

))
e
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”

(3.45)

where ki is subject to

δi0 =
∫

kie
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
d�v1d�v2dν1

δij =
∫

ki�vje
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
d3�v1d

3�v2dν1

δi7 =
∫

ki

(
(�v1 − �U1)2 + (�v2 − �U2)2

2
+ ν2

1

)
e
− 7

2T

“
1
2(�v1−�U1)2

+ 1
2(�v2−�U2)2

+ν2
1

”
d3�v1d

3�v2dν1

(3.46)

We can then define a new operator with the projection operator (let us call it P)

and its complimentary projection operator (P⊥). We derive it thus. Consider the

equation that we must solve:

ϕ = Φ + ((A + B)ϕ

It may be reformulated thus, I being the identity operator:

(I − A− B)ϕ = Φ

However, ϕ is constrained to be in the image of the projection operators we have

defined. We may introduce a dummy variable ϕ′ in the operators kernel that we will
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later force to be 0:

(I − A− B)ϕ + ϕ′ = Φ, ϕ ∈ im(P), ϕ′ ∈ ker(P)

This allows us to rewrite the equation in terms of an unrestricted operator φ:

((I − A− B)P + P⊥)φ = Φ, φ = Pϕ + P⊥ϕ′, P + P⊥ = I

If this rewritten equation has a unique solution then we may have some hope of

finding it with a Neumann series. So we rewrite the equation in the standard form

of a Fredholm equation of the second kind

φ = Φ + (A + B)Pφ = T ′φ

The solution of φ is then given by

φ =
∞∑

n=0

((A + B)P)nΦ = T ′∞Φ

subject to afore mentioned assumptions about the properties of T ′. A consequence

of the definition of φ is

ϕ =
∞∑

n=0

((A + B)P)nΦ ⇔ 0 = P⊥
∞∑

n=0

((A + B)P)nΦ (3.47)

So, if a projection (probably a skew projection) operator on to the space specified

by our constraints can be found that has the property that P⊥
∑∞

n=0((A + B)P)nΦ

exists and is 0, we have solved our problem!

This method is analogous to that used to construct the Bott-Duffin inverse [33].

In fact if we were to approximate the kernel (A + B) and Φ as an arbitrary finite

sum of Hermite functions then the approximated equation can be re-expressed as a

matrix equation and the operator associated with the Bott-Duffin inverse (assuming
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it exists) would have exactly the form:

P((I − A− B)P + P⊥)−1 = P
∞∑

n=0

((A + B)P)n (3.48)

recalling that the inverse of an invertible matrix may also be given by Neumann

series.

In short, if T ′∞ is well defined and P conforms to the afore mentioned conditions

then we have found the solution for equation (3.36) subject to conditions in equation

(3.40). The logical way to proceed would be to plug in the most general P consistent

with equation (3.40) then see what restrictions are necessary upon it to ensure T ′∞

exists and, lastly, ask what further restrictions are necessary to ensure P⊥T ′∞ = 0

and in so doing seek a solution to the equation.

3.3.2 Comparison to Fredholm’s Method for Multiple Solu-

tions to Fredholm Equations

It is worth comparing the method we have outlined with other methods for solving

Fredholm equations to gauge the likelihood of success when real-world functions are

inserted for W . During the research we found no reference in the literature for the

method used here in. It is indeed possible, although by no means certain, that the

method is original. It has long been known that not all Fredholm equations have a

unique solution, and that in fact many have multiple solutions. Fredholm himself

described one method of finding them in his paper [27].

Fredholm considered only the equation for a single variable, integrating from 0

to 1 on the basis that this equation would generalise to a huge number of cases.

ϕ(x) +
∫ 1

0
f(x, y)ϕ(y)dy = φ(x)
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He defined a class of functions derived from the kernel

f

⎛
⎜⎝ x1, x2, · · · , xn

y1, y2, · · · , yn

⎞
⎟⎠ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x1, y1) f(x1, y2) · · · f(x1, yn)

f(x2, y1) f(x2, y2) · · · f(x2, yn)

· · · · · · · · · · · ·

f(xn, y1) f(xn, y2) · · · f(xn, yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
He then used this function to construct a functional of the kernel Df

Df =
∞∑

n=0

1
n!

∫ 1

0
· · ·
∫ 1

0
f

⎛
⎜⎝ x1, x2, · · · , xn

x1, x2, · · · , xn

⎞
⎟⎠ dx1dx2 · · · dxn

His reasoning was that a Fredholm equation could in a sense be seen as a group

operation, mapping the unknown function to the inhomogeneous part of the equa-

tion, as it happens a linear operator. Therefore if the inverse can be found, then the

solution can be directly stated by applying the inverse to the inhomogeneous part.

In this context Df can be seen as analogous to the determinant of a matrix since it

occurs that if Df is non zero then a unique inverse can be constructed. If not it may

still be possible to construct a set of solutions. Fredholm defined a generalisation of

Df

Df

⎛
⎜⎝ ξ1, ξ2, · · · , ξn

η1, η2, · · · , ηn

⎞
⎟⎠ =

∞∑
ν=0

1
ν!

∫ 1

0
· · ·
∫ 1

0
f

⎛
⎜⎝ ξ1 · · · ξn, x1 · · ·xν

η1 · · · ηn, x1 · · ·xν

⎞
⎟⎠ dx1 · · · dxν

It occurs that if

Df

⎛
⎜⎝ ξ1, · · · , ξn

η1, · · · , ηn

⎞
⎟⎠

is non zero and the lowest such function in terms of n for which it can be non zero

it is possible to construct a general solution for the equation with n undetermined

constants. The disadvantage of this technique is that it requires us to find the
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full set of solutions when we may only desire solutions for one set of restrictions.

However, it does demonstrate that Fredholm equations with multiple solutions exist

and can be found through processes of infinite successive integration. Therefore we

have every confidence that the proposed method will offer real and useful solutions

for a reasonably wide range of forms for W .

Fredholm’s methods have been generalised into a theory of operators with finite

dimensional solution spaces by Ruston who proved more generally that such oper-

ators will have finite solution spaces [28] assuming that the operators are what he

calls asymptotically quasi compact. We can present no proof here but our suspicion

is that the operators we address will not be asymptotically quasi compact since our

constraints seem sufficient to eliminate an infinite number of degrees of freedom.

However, in order to give a unique solution, the new operators A and B derived

by analogy with the constrained (Bott-Duffin) inverse have not been required to be

compact but only to have sufficiently small bounds. The process of demonstrating

sufficiently small boundedness would normally imply that it was a Hilbert-Schmidt

operator or its multidimensional analogue, and hence compact, but our boundedness

conditions fall short of that since they do not involve integration over all degrees of

freedom.

3.3.3 Application to the First Order Expansion

The new equation we must solve, ϕ = T ′ϕ, has the explicit form

φ(1) = − A(1)
B(n;1)

+
∫ (

C(n;1,1′)
B(n;1)

−
∫

C(n;1,1′′)
B(n;1)

P ′(1′′,1′)d1′′
)

φ(1′)d1′

= Φ +
∫

K(1,1′)φ(1′)d1′
(3.49)

57



CHAPTER 3. SEEKING A SOLUTION TO GRMELA’S EQUATION

We have defined P ′ as

P ′(1,1′) = δ(�r1 − �r ′
1)δ(�r2 − �r ′

2)δ(σ1 − σ′
1)P (1,1′)

Considering the kernel K, recall that after the elimination of terms like δ(�r1 − �r ′
1),

we will have two integrals or more. As we have demonstrated, if these are bounded

with bounds that sum to less than 1, then there is definitely a unique solution for

ϕ. Defining the new kernel

Kn(1,1′) =
∫

K(1,2) · · ·K({n − 1},n)d2 · · · d{n − 1}

where {n − 1} represents the n-1th 14-tuple not the difference of the nth and first

14-tuple. φ is given by the expression

φ =
∫ ∞∑

n=0

Kn(1,1′)Φ(1′)d1′ (3.50)

Recall again that this is actually more integrals than it would initially appear.

However, this result still is still dependent on our choices of ki which are set by

requiring 0 =
∫

P ′(1,1′)φ(1′)d1′. If we can do this we should have a solution ϕ = φ.

This still leaves a great many questions unanswered. What forms of W , if any,

admit such solutions and are any of them physically meaningful? And of those W ,

how many have forms which allow a reasonable chance of explicitly calculating Kn

and the expression to which the infinite sum converges? And, finally, given the

number of approximations undertaken from Grmela’s original model, even with a

good choice of W can this model still make useful predictions?
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3.4 Examples of the Projection Technique

It is a non trivial matter to establish whether the methods used in section 3.3.1

actually have any non trivial applications. We are also aware the method may have

confused some readers so here we demonstrate the constructions and solution of a

worked example. Consider an arbitrary two variable Fredholm equation.

ϕ(x, y) = φ(x, y) +
∫ ∞

−∞

∫ ∞

−∞
K(x, y, x′, y′)ϕ(x′, y′)dx′dy′ (3.51)

Now suppose that this equation has no unique solution but that we have the addi-

tional constraints on any solution given by

0 =
∫ ∞

−∞
J(y)ϕ(x, y)dy, 1 =

∫ ∞

−∞
J(y)L(y)dy (3.52)

L is the skewed projection kernel. The solutions of equation (3.52) can be seen as a

hyperplane in the Hilbert space and a projection operator onto it is given by

ϕ′(x, y) = ϕ(x, y) − L(y)
∫ ∞

−∞
J(y′)ϕ(x, y′)dy′ (3.53)

subject to the aforementioned condition on L. The analogue to the Bott-Duffin

equation is made by inserting equation (3.53) into the kernel part of equation (3.51)

giving

ϕ(x, y) = φ(x, y)

+
∫ ∞

−∞

∫ ∞

−∞

(
K(x, y, x′, y′) − J(y′)

∫ ∞

−∞
L(y′′)K(x, y, x′, y′′)dy′′

)
ϕ(x′, y′)dx′dy′

This can be seen as a Fredholm equation with the new kernel

K ′(x, y, x′, y′) = K(x, y, x′, y′) − J(y′)
∫ ∞

−∞
L(y′′)K(x, y, x′, y′′)dy′′ (3.54)
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We note that because we restrict all functions to being real, |K|2 = K2 and |K ′|2 =

K ′2. It is quite useful to derive the following identity

K ′2(x, y, x′, y′) = K2(x, y, x′, y′) +
(

J(y′)
∫ ∞

−∞
L(y′′)K(x, y, x′, y′′)dy′′

)2

−2K(x, y, x′, y′)J(y′)
∫ ∞

−∞
L(y′′)K(x, y, x′, y′′)dy′′

(3.55)

Finally, to make the problem tractable but at the same time retain a great deal of

generality, we consider the principal functions to be expansions of Hermite functions

invoking the Einstein summation convention to express this:

K(x, y, z, w) = κijklψi(x)ψj(y)ψk(z)ψl(w), J(y) = λiψi(y), L(y) = μiψi(y) (3.56)

Therefore, by applying equations (3.55) and (3.56), we have

∫
Ω

K ′2(x, y, z, w)dω = κijklκijkl + λlλlμmμnκijkmκijkn − 2λlμmκijklκijkm

dω is short hand for dxdydzdw and
∫
Ω is integration over all of R4. A sufficient

condition for solution via Neumann series is that this be less than one. Likewise∫
Ω K2dω = κijklκijkl must be greater than 1 otherwise equation (3.51) would have a

unique solution. We can use this to construct a kernel and condition that only offer

a solution together. One such construction is

K =
√

2ψ0(x)ψ0(y)ψ0(x′)ψ0(y′), J = 2ψ0(y) + ψ1(y), L = μ0ψ0(y) + · · ·

The kernel of the new equation only converges when 4−√
6

10 < μ0 < 4+
√

6
10 . This shall

be our worked example It’s kernel given by equation (3.54)

K ′(x, y, x′, y′) =
((√

2 − 2
√

2μ0

)
ψ0(y′) −

√
2μ0ψ1(y′)

)
ψ0(x)ψ0(y)ψ0(x′) (3.57)

60



CHAPTER 3. SEEKING A SOLUTION TO GRMELA’S EQUATION

To calculate the Neumann series it is expedient to define

K ′
n(x, y, x′, y′) =

∫ ∞

−∞

∫ ∞

−∞
K ′(x, y, x′′, y′′)K ′

n−1(x
′′, y′′, x′, y′)dx′′dy′′

We can find the form of K ′
n by appealing to proof by induction. Assume

K ′
n(x, y, x′, y′) =

(
Anψ0(y′) + Bnψ1(y′)

)
ψ0(x)ψ0(y)ψ0(x′)

It then follows that K ′
n+1 has the form

K ′
n+1(x, y, x′, y′) =

∫ ∞

−∞

(√
2 − 2

√
2μ0

) (
Anψ0(y′) + Bnψ1(y′)

)
ψ0(x)ψ0(y)ψ0(x′)

However, it follows that this, and the induction step K ′
1 = K ′, and the above state-

ment are satisfied if

An =
(√

2 − 2
√

2μ0

)n
, Bn = −

√
2
(√

2 − 2
√

2μ0

)n−1

giving a final form for K ′
n

K ′
n(x, y, z, w) =

(√
2 − 2

√
2μ0

)n
(

ψ0(y′) −
1

1 − 2μ0
ψ1(y′)

)
ψ0(x)ψ0(y)ψ0(x′) (3.58)

It is useful to apply the geometric series rule to the term “to the power of n” in

equation (3.58)
∞∑

n=1

(√
2 − 2

√
2μ0

)n
=

2 − 4μ0√
2 − 2 + 4μ0

(3.59)

It is likewise expedient to define a function R (sometimes called the resolvent) as

the infinite sum of all K ′
n and this is given by appealing to equation (3.59)

R(x, y, x′, y′) =
∞∑

n=1

K ′
n(x, y, x′, y′)

=
2 − 4μ0√

2 − 2 + 4μ0

(
ψ0(y′) −

1
1 − 2μ0

ψ1(y′)
)

ψ0(x)ψ0(y)ψ0(x′)

(3.60)
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We must define the inhomogeneous part to proceed and do so:

φ(x, y) = ζijψi(x)ψj(y)

The Neumann series can then be expressed using this and equation (3.60) as

ϕ(x, y) = φ(x, y) +
∫ ∞

−∞

∫ ∞

−∞
R(x, y, x′, y′)φ(x′, y′)dx′dy′

= ζijψi(x)ψj(y) +
2 − 4μ0√

2 − 2 + 4μ0

(
ζ00 −

ζ01

1 − 2μ0

)
ψ0(x)ψ0(y)

This will only be a solution of the original equation if the solution is confined to the

hyperplane defined by our condition (3.52)

0 =
∫ ∞

−∞
J(y)

(
ζijψi(x)ψj(y) +

2 − 4μ0√
2 − 2 + 4μ0

(
ζ00 −

ζ01

1 − 2μ0

)
ψ0(x)ψ0(y)

)
dy

=
∫ ∞

−∞
(2ψ0(y) + ψ1(y))

(
ζijψi(x)ψj(y) +

2 − 4μ0√
2 − 2 + 4μ0

(
ζ00 −

ζ01

1 − 2μ0

)
ψ0(x)ψ0(y)

)
dy

= 2ζi0ψi(x) + ζi1ψi(x) + 2
2 − 4μ0√

2 − 2 + 4μ0

(
ζ00 −

ζ01

1 − 2μ0

)
ψ0(x)

Clearly this implies 2ζi0 = −ζi1 if i �= 0 leaving the condition

0 = 2ζ00 + ζ01 + 2
2 − 4μ0√

2 − 2 + 4μ0

(
ζ00 −

ζ01

1 − 2μ0

)

This may be rephrased as a quadratic equation

0 = (2ζ00 + ζ01)
(√

2 − 2 + 4μ0

)
(1 − 2μ0) + 2 (2 − 4μ0) (ζ00 (1 − 2μ0) − ζ01)

that has the two solutions, μ0 = 1
2 or μ0 = 1

4

(
6 −

√
2 − 2

√
2l00

l01

)
. Only the second

solution is non trivial. Recalling that μ0 has a restricted range, the second solution

implies:

22 + 2
√

6 − 5
√

2
10

√
2

>
l00

l01
>

22 − 2
√

6 − 5
√

2
10

√
2
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Recalling the condition from equation (3.52)

1 =
∫ ∞

−∞
J(y)L(y)dy = 2μ0 + μ1 ⇒ 1 − 2μ0 = μ1

So, provided these conditions are met, a unique solution has been constructed. This

may seem a some what artificial and constructed example but it demonstrates proof

of concept if not perhaps usefulness.

3.5 Summary

In this chapter several key events have taken place.

• Grmelas equation for modelling polymers was introduced and its physical in-

terpretation expounded.

• A simplification to Grmelas equation was introduced.

• A set of operators for deriving macroscopic variables from Grmelas model was

postulated.

• A Chapman-Enskog expansion was applied to the simplified Grmelas equation

in terms of the aforementioned macroscopic variables.

• Utilising results by Grmela the zeroth order of the Chapman-Enskog expansion

was solved and used to derive polymer dynamics equations analogous to Euler’s

equations and also to create a foundation for solving the 1st order part of the

expansion.

• The first order of the Chapman-Enskog expansion was calculated, previous

results inserted and various manipulations were made allowing the problem to

be expressed in terms of solving a linear Fredholm integral equation.
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• The Bott-Duffin inverse was generalised to infinite dimensional Hilbert spaces

based on a very general ‘skew projection’ operator and the Neuman series

method for calculating the inverse.

• The relationship between the generalised Bott-Duffin inverse and methods

developed by Fredholm was explored.

• An example of a problem solvable with the generalised Bott-Duffin inverse but

not conventional Neuman series was constructed.
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Chapter 4

Seeking a Thermal Lattice

Boltzmann-Like Method from a

Linear Grmela-Like Equation

In seeking a model for the flow and behaviour of polymers we have started with

the most analytically complete model that we could make reasonable progress with.

However, rigour and analytical completeness will not necessarily lead to easy and

useable simulations.

If one is willing to accept a degree of linearization then it is possible to de-

rive a discreet analogue to Boltzmann-like equations, so called lattice Boltzmann

equations. These lend themselves to computer simulation and are very amenable

to parallelization. Code to implement these ‘lattice Boltzmann methods’ typically

assumes simple cellular automaton-like actions where a time step occurs and calcu-

lations are done for each cell and then passed in a direct fashion to other cells in

a neighbourhood, ready for the next time step. However, these models tend to be

isothermal.

For reasons that will be explained it seemed necessary to include an interpo-

lation step whereby results from each cell may be distributed to other cells in the
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neighbourhood in a dynamic way that will vary with temperature in order to achieve

good thermal simulation. Consequently, the method here is quite different and more

complex than typical ‘lattice Boltzmann methods’ but still relatively straightforward

to implement (and parallelise, even if necessarily more processor-hungry to run).

4.1 A Priori Derivation of the Lattice Boltzman-

Like Equation

In their paper, He and Lou [6] were able to find a fairly direct method to derive

lattice Boltzmann equations. If we examine equation (3.7) we see that if we are

willing to neglect the fourth term for potential energy on the left hand side and

as just willing to linearize the right hand side collision integral, the new form of

equation (3.7) is like the one given in He and Lou’s paper,

Dtf = − 1
λ

(f − f0) (4.1)

Dt is the total derivative, in this case

∂

∂t
+ viα

∂

∂riα
+ ν1

∂

∂σ1

and f0 is as given in equation (3.21). It is expedient to re-express f0 with a change of

variables; a change of variables that we will shortly apply to all our working notation

(hopefully not confusing the Reader too much in the process).

f0(1) =
343

64π
7
2

√
7
2
T− 7

2 ρe
− 7

2T

“
(�v+−�U+)2

+(�v−−�U−)2
+ν2

1

”
(4.2)
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�v+ =
�v1 + �v2

2
, �v− =

�v2 − �v1

2

�U+ =
�U1 + �U2

2
, �U− =

�U2 − �U1

2

�r+ =
�r1 + �r2

2
, �r− =

�r2 − �r1

2

(4.3)

Following the course of He and Lou’s work we apply a formal integration over a time

interval δt to acquire the following equation

f(r̄ + v̄δt, v̄, t + δt) = e−
δt
λ f(r̄, v̄, t) +

1
λ

e−
δt
λ

∫ δt

0
e

t′
λ f0(r̄ + v̄δt, v̄, t + t′)dt′

We then promptly take the Taylor expansion upto the first order in δt, giving the

equation

f(r̄ + v̄δt, v̄, t + δt) − f(r̄, v̄, t) = −1
τ

(f(r̄, v̄, t) − f0(r̄, v̄, t)) , τ =
λ

δt
(4.4)

This is the discrete time version of the equation. It is at this point that we switch

our notation, and r̄ and v̄ that formally, in this chapter, represented (�r1, �r2, σ1) and

(�v1, �v2, ν1) will now represent (�r+, �r−, σ1) and (�v+, �v−, ν1) and so on. It should be

noted that this change of variables now means that the physical interpretation of f

requires some care and comparison to f as expressed in the original variables.

The next step in He and Lou’s method is to approximate f0 as a Taylor series

for Ū . He and Lou state that a second order expansion is sufficient for mass and

momentum conservation, but we also require energy conservation and so perform

a third order expansion (although we cannot swear that this will be sufficient for

an accurate and sensible set of conservation equations via the Chapman-Enskog

method). It is enough for the operator to conserve mass, momentum, and energy

locally in its present form though. The expansion gives
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f0 ≈ f (eq) =
343

64π
7
2

√
7
2
T− 7

2 ρe−
7

2T (�vi·�vi+ν2
1)

×
(

1 +
7
T

�Ui · �vi +
49
2T 2

(
�Ui · �vi

)2
− 7

2T
�Ui · �Ui −

49
2T 2

�Ui · �Ui
�Uj · �vj +

343
6T 3

(
�Ui · �vi

)3
)
(4.5)

The latin subscripts formally index over the values + and − for the purposes

of Einstein summation. Other studies have found that the function f (eq) can be

generalised to allow fluids with different shear and bulk viscosity to be modelled.

Thus we consider a generalised form of equation (4.5) and ask what restrictions it

must obey in order to conserve momentum, mass, and energy locally. First we allow

each term in the brackets to have an undetermined constant

f (eq) =
343

64π
7
2

√
7
2
T− 7

2 ρe−
7

2T (�vi·�vi+ν2
1)
(

a +
bij

T
�Ui · �vj +

cijkl

T 2
�Ui · �vj

�Uk · �vl

+
dij

T
�Ui · �Uj +

gijkl

T 2
�Ui · �Uj

�Uk · �vl +
hijklmn

T 3
�Ui · �vj

�Uk · �vl
�Um · �vn

) (4.6)

The condition for local conservation of mass, momentum, and energy is that the

right hand side of equation (4.4) is 0 when the operators that give mass, momentum,

and energy are applied, or in other words that f (eq) has values under those operators

identical to those of f0 (our adjustment of variables in f0 serves as a guide for the

physical interpretation of f). Applying the mass operator to equation (4.6) and

setting it equal to the result of the operator applied to f0 gives

ρ

(
1
8

(
a +

dij

T
�Ui · �Uj

)
+

T

56
cijkj

T 2
�Ui · �Uk

)
=

ρ

8

⇒
(

a +
1
T

(
dij +

cikjk

7

)
�Ui · �Uj

)
= 1
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⇒ a = 1, dij = −cikjk

7
(4.7)

Repeating this procedure with the momentum operator gives

ρ

(
T

56

(
bij

T
+

gklij

T 2
�Uk · �Ul

)
�Ui +

3T 2

392
hijkmlm

T 3
�Uk · �Ul

�Ui

)
=

ρ

8
�Uj

⇒
(

bij

7
�Ui +

1
7T

(
gklij +

3hijkmlm

7

)
�Uk · �Ul

�Ui

)
= �Uj

⇒ bij = 7δij , gijkl = −3hklimjm

7
(4.8)

Finally, repeating this calculation with the energy operator gives

ρ

(
T

8

(
a +

dij

T
�Ui · �Uj

)
+

9T 2

392
cijkj

T 2
�Ui · �Uk

)
=

ρ

8
(
T +
(
U2
− + U2

+

))

⇒
(

aT +
(

dij +
9
49

cikjk

)
�Ui · �Uj

)
=
(
T +
(
U2
− + U2

+

))

⇒
(

T +
2
49

cikjk
�Ui · �Uj

)
=
(
T +
(
U2

1 + U2
2

))

⇒ cikjk =
49
2

δij (4.9)

We have used equation (4.7). Taking equations (4.7), (4.8) and (4.9) and substituting

into equation (4.6) we get.

f (eq) =
343

64π
7
2

√
7
2
T− 7

2 ρe−
7

2T (�vi·�vi+ν2
1)
(

1 +
7
T

�Ui · �vi +
cijkl

T 2
�Ui · �vj

�Uk · �vl

− 7
2T

�Ui · �Ui −
3hklimjm

7T 2
�Ui · �Uj

�Uk · �vl +
hijklmn

T 3
�Ui · �vj

�Uk · �vl
�Um · �vn

) (4.10)

Whether we take this, or equation (4.5), or some higher order expression, the fol-

lowing steps are more or less the same.
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4.1.1 Quadrature on Cartesian Co-ordinates

In the process of deriving an equation with discrete rather than continuous velocities

we are guided by the process of quadraturing integrals over velocity since our oper-

ators for converting Boltzmann-like equations to ones more typically found in fluid

dynamics are all based around integrals. The equivalent operators for the discrete

equations must be based on sums. Quadrature is a logical choice for discretization

as it naturally converts integrals to sums. When applying these operators to f (eq)

and, basically, anything derived from it, we obtain expressions of the form

f̂ =
343

64π
7
2

√
7
2
T− 7

2 ρ

∫
R7

e−
7

2T (v̄·v̄+ν2
1)P (T, Ū , v̄, ν)d6v̄dν (4.11)

By substituting

v̄ =

√
2T

7
v̄′, ν =

√
2T

7
ν ′ (4.12)

into equation (4.11) we get

f̂ =
343

64π
7
2

√
7
2
T− 7

2 ρ

(
2T

7

) 7
2
∫

R7

e−(v̄′·v̄′+ν′21 )P

(
T, Ū ,

√
2T

7
v̄′,

√
2T

7
ν ′
)

d6v̄′dν ′

=
ρ

8π
7
2

∫
R6

e−v̄′·v̄′P

(
T, Ū ,

√
2T

7
v̄′,

√
2T

7
ν ′
)

d6v̄′dν ′

(4.13)

Treating each dimension of this integral as a single quadrature problem we imme-

diately see that Gauss-Hermite quadrature can be applied to this form. Applied to

the third order this gives

f̂ ≈ f̌ =
ρ

8π
7
2

1∑
ix,iy ,iz ,jx,jyjz ,k=−1

w�iw�jwkP

(
T, Ū ,

√
2T

7
v̄′�i,�j ,

√
2T

7
ν ′

k

)

The abscissae and weights are given by

v̄′�i,�j =

√
3
2
(�i,�j), ν′

k =

√
3
2
k, w�i =

8π
3
2

27(4)i2
, w�j =

8π
3
2

27(4)j2 , wk =
√

π

3
2

4k2
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By simple rearrangement and algebra we get

f̌ =
ρ

8π
7
2

1∑
ix,iy ,iz ,jx,jyjz ,k=−1

W�i,�j,kP
(
T, Ū , v̄�i,�j , νk

)

with the modified abscissae and combined weights

v̄�n =

√
3T

7
(�i,�j), νk =

√
3T

7
k, W�i,�j,k =

128π
7
2

2187(4)i2+j2+k2

Further modification, moving a constant out of the weights, achieves the final

quadrature expression

f̌ =
16ρ

2187

1∑
ix,iy ,iz ,jx,jyjz ,k=−1

W�i,�j,kP
(
T, Ū , v̄�i,�j , νk

)
(4.14)

with corresponding weights and abscissae.

v̄�n =

√
3T

7
(�i,�j), νk =

√
3T

7
k, W�i,�j,k = 4−(i2+j2+k2) (4.15)

These abscissae give us the points we must sum over when applying the discrete

equivalents of operators like those in equations (3.14), but equation (4.14) can be

immediately applied to f (eq) to give a discreet velocity by neglecting the sum and

instead considering each term of the sum as a different discrete component that,

when summed, will approximate to integration of the original expression.

It should be noted that this solution is the seven dimensional equivalent of the

D3Q27 lattice which actually could be expressed as D7Q2187. In any event since it

contains two D3Q27 lattices for the two velocity components we can expect order

six isotropy, which has shown to be necessary for thermal modelling [9].
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D3Q13 D3Q27 D3Q13

Figure 4.1: From left to right: a diagram of the velocities, subject to a scalar factor,
associated with the D3Q13 lattice. A similar diagram for the D3Q27 lattice. A
diagram of a section of a D3Q13 lattice with nearest neighbours connected by lines.
Note the black dots represent the �0 vector. Also notice the nomenclature, DxQy,
where x stand for the dimension of the space in which the lattice exists and y
the number velocities which make up the model. Obviously the seven dimensional
lattices cannot be displayed.

4.1.2 Quadrature on Spherical Co-ordinates

The D7Q2187 lattice drops quite neatly out of the Cartesian co-ordinate system.

Partly because of this and partly because we are interested in investigating lattices

that emulate sphere packing, we investigate quadrature by spherical co-ordinates.

A spherical version of equation (4.13) may be obtained directly giving

f̂ =
ρ

8π
7
2

∫ ∞

−∞

∫
S2×S2

∫ ∞

0
v′2+r

∫ ∞

0
v′2−re

−(v′2+r+v′2−r+ν′21 )

×P

(
T, Ū ,

√
2T

7
v̄′,

√
2T

7
ν ′
)

dv′−rdv′+rdΩv+dΩv−dν ′

(4.16)

S2 is the whole surface of a sphere (over which we integrate) and dΩv± is the differ-

ential solid angle for the two velocity vectors.
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4.1.2.1 Methods of Radial Quadrature

The radial parts of equation (4.16) having the form
∫∞
0 y2e−yg(y)dy do not have well

publicised quadrature schemes in the literature, at least not ones we could find. It

therefore fell to us to construct our own. Notice that if we perform the substitution

x = y2 and define the function g(y) = 2f(y2), then integrals of the form considered

are equivalent to the following integral

∫ ∞

0
x

1
2 e−xf(x)dx =

∫ ∞

0
y2e−y2

g(y)dy

This integral in x does have a well known quadrature, namely the Radau-Laguerre

quadrature formula. Applying it we find

∫ ∞

0
x

1
2 e−xf(x)dx ≈

(n − 1)!Γ(3
2)Γ(5

2)
Γ(n + 3

2)
f(0) +

n−1∑
k=1

wkf(xk)

wk =
Γ(n + 1

2)

(n − 1)!(n + 1
2)
[
L

( 1
2
)

n−1(xk)
]2 , L

( 3
2
)

n−1(xk) = 0

L is the associated Legendre polynomial and Γ the gamma function. Substituting

back in values for y this gives

∫ ∞

0
y2e−y2

g(y)dy ≈ (n − 1)!3π

Γ(n + 3
2)

g(0)
16

+
n−1∑
k=1

wk
g(yk)

2

wk =
Γ(n + 1

2)

(n − 1)!(n + 1
2)
[
L

( 1
2
)

n−1(y
2
k)
]2 , L

( 3
2
)

n−1(y
2
k) = 0

(4.17)

We take this as our radial quadrature rule. Of particular interest is equation (4.17)

for n = 1, ∫ ∞

0
y2e−y2

g(y)dy ≈
√

π

10
g(0) +

3
√

π

20
g

(√
5
2

)
(4.18)
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4.1.2.2 Spherical Quadrature Continued

Applying equation (4.18) to the appropriate integrals in equation (4.16) we obtain

the new expression

f̂ ≈ f̌ =
ρ

8π
7
2

∫ ∞

−∞
e−ν′21

∫
S2×S2

1∑
i,j=0

wiwj

×P

(
T, Ū ,

√
2T

7
(
v′+riv̂

′
+, v′−rj v̂

′
−
)
,

√
2T

7
ν ′
)

dΩv+dΩv−dν ′

(4.19)

The weights and abscissae are given by

v±ri =

⎧⎪⎨
⎪⎩

0 i = 0√
5
2 i = 1

, wi =

⎧⎪⎨
⎪⎩

√
π

10 i = 0

3
√

π
20 i = 1

=
(

3
2

)i √π

10
(4.20)

The issue of quadrature of the spherical integral requires some thought and

appeal to symmetry conditions. One obvious method is to pick a set of points on

the sphere and require that the set of rotations mapping this point set to itself

will also map the respective weights in such a way that weights in the same orbit

have the same value. One easy way to ensure this is to set the weights to be the

surface area of the points of Voronoi cells on the space of the surface of the unit

sphere. This gives consistency for quadrature of constant functions like 1, and gives

a high level of rotation symmetry to the quadrature. Even without appealing to

the Voronoi cells for the choice of points that gives the face centred cubic lattice

sphere packaging (since every point can be mapped to any other), all weights must

be the same. Consequently, for the spherical quadrature over Ωv± our weights and

abscissae are

w̃i =
4π

12
, v̂′±i = {· · · , 1√

2
(±1,±1, 0), · · ·}, i = 1 · · · 12 (4.21)

The abscissae are all vertices of a cuboctahedron on a unit sphere. Applying this
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quadrature to equation (4.19) we obtain

f̌ =
ρ

8π
7
2

∫ ∞

−∞
e−ν′21

12∑
k,l=1

1∑
i,j=0

wiwjw̃kw̃lP

(
T, Ū ,

√
2T

7
(
v′+riv̂

′
+k, v

′
−rj v̂

′
−l

)
,

√
2T

7
ν ′
)

dν ′

By performing some relatively simple algebraic manipulations on this, equation

(4.21), and equation (4.20), it is possible to recombine the angular and radial parts

and move some constants in and out of definitions to generate the following quadra-

ture formula for �v+i and �v−j!

f̌ =
ρ

3200π
1
2

∫ ∞

−∞
e−ν′21

13∑
i,j=0

Wi,jP

(
T, Ū , (�v+i, �v−j) ,

√
2T

7
ν ′
)

dν ′ (4.22)

The new weights and abscissae are given by

�v±i = {(0, 0, 0), · · · ,
√

5T

14
(±1,±1, 0), · · ·}, Wi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

64 i = j = 0

8 i = 0 �= j

8 i �= 0 = j

1 i �= 0 �= j

(4.23)

All that remains is to quadrature the ν ′ component, which may be done by applying

conventional Gauss-Hermite quadrature to the third order, giving the expression

f̌ =
ρ

3200π
1
2

13∑
i,j=0

Wi,j

1∑
k=−1

w̄kP

(
T, Ū , (�v+i, �v−j) ,

√
2T

7
ν ′

k

)

Associated weights and abscissae are given by

ν ′
k =

√
3
2
k, w̄k =

√
π

3
2

4k2

Again applying some algebraic re-arrangement to the weights and abscissae this
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gives us the final form of a spherical quadrature

f̌ =
ρ

4800

13∑
i,j=0

1∑
k=−1

Wi,jw̄kP
(
T, Ū , (�v+i, �v−j) , νk

)
(4.24)

Wi,j and �v±i are given by equation (4.23) and w̄k and νk by

νk =

√
3T

7
k, w̄k =

1
4k2 (4.25)

In the velocity components, this lattice is comparable to the D3Q13 lattice. In fact,

technically, it is a D7Q507 lattice. The D3Q13 lattice does not have order 4 isotropy,

which is usually necessary for recovering the Navier-Stokes equation. Efforts were

made to produce a model with a higher order isotropy by adding extra abscissae in

the radial quadrature, but this was ultimately unsuccessful.

Using this technique developed in He and Lou’s paper, it is possible to derive the

lattice Boltzmann equation from its continuous analogue analytically, and demon-

strate that for the case where temperature is inhomogeneous in space and time, an

interpolation step must be used to map the post collision event population distri-

bution to new nodes.

Regardless of which quadrature method is used, the discrete velocity equation is

given by taking equation (4.4) and inserting f (eq) for f0 as an approximation, then

approximating f (eq) with f
(eq)
i terms for the ith abscissa in its quadrature expression.

f is approximated by fi = f |(v̄)=(v̄i)
which gives the equation

fi(r̄ + v̄iδt, t + δt) − fi(r̄, t) = −1
τ

(
fi(r̄, t) − f

(eq)
i (r̄, t)

)
(4.26)

We define r̄ to include σ component and v̄ the ν component for brevity.
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4.2 Chapman-Enskog Expansion

The Chapman-Enskog expansion for discrete Boltzman equations is well known and

understood and varies little in its application to equation (4.4) or (4.26), both of

which it can be applied to without any real difference in method. Because of this

and because it gets in the way of preferred notation, we omit the subscript i for these

calculations. In the following calculation we employ the variation of the Chapman-

Enskog expansion also employed by Lou in his thesis [15]. One begins by defining

an expansion in a small parameter as in the continuous case. Only in this case the

small parameter is taken to be the discrete time step. In addition a range of different

time variables are introduced for different time scales.

f = f0 + δtf1 + δ2
t f2 + δ3

t f3 + · · · , ∂

∂t
=

∂

∂t0
+ δt

∂

∂t1
+ δ2

t

∂

∂t2
+ δ3

t

∂

∂t3
+ · · · (4.27)

f0 is not the f0 defined earlier but instead is a convenient notation for f (eq). As

before we seek a Taylor expansion in the small parameter. For the first term this

takes the form

f(�r+ + �v+δt, �r− + �v−δt, σ1 + ν1δt, �v+, �v−, ν1, t + δt)

≈
∑

i1,···,i8
δ

P
j ij

t

vi1
+xvi2

+yv
i3
+zv

i4−xvi5−yv
i6−zν

i7
1∏

j (ij !)
∂

P
j ijf(�r+, �r−, σ1, �v+, �v−, ν1, t)

∂ri1
+x∂ri2

+y∂ri3
+z∂ri4−x∂ri5−y∂ri6−z∂σi7

1 ∂ti8

(4.28)

For brevity and consistency with notation used in literature, we define ē = (�v+, �v−, ν1)

x̄ = (�r+, �r−, σ1) (with which we will mostly use the Einstein notation). Using this

notation, and inserting equation (4.27) into the right hand side of equation(4.4) or
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(4.26) gives

f0 − f

τ
= δt

(
ei

∂f

∂xi
+

∂f

∂t

)
+ δ2

t

(
eiej

2
∂2f

∂xi∂xj
+ ei

∂2f

∂xi∂t
+

1
2

∂2f

∂t2

)

+δ3
t

(
eiejek

6
∂3f

∂xi∂xj∂xk
+

eiej

2
∂3f

∂xi∂xj∂t
+

ei

2
∂3f

∂xi∂t2
+

1
6

∂3f

∂t3

)
+ · · ·

(4.29)

Inserting equations (4.28) and (4.29) into equations (4.4) or (4.26) and equating

coefficients of δt, gives an infinite sequence of equations that may be used to build

successively better approximations for f . The first three of them are given below:

−f1

τ
= ei

∂f0

∂xi
+

∂f0

∂t0
(4.30)

−f2

τ
=

∂f0

∂t1
+
(

1 − 1
2τ

)(
∂f1

∂t0
+ ei

∂f1

∂xi

)
(4.31)

−f3

τ
=
(

6τ2 − 6τ + 1
3τ (2τ − 1)

)(
ei

∂f2

∂xi
+

∂f2

∂t0

)
+
(

6τ2 − 6τ + 2
3τ (2τ − 1)

)
∂f1

∂t1
+

∂f0

∂t2
(4.32)

Here, for generality, we introduce the operator O. In the case of continuous velocities

this would be an integration over these velocities. In the discrete case it is a sum.

We define some fields with this operator, n, ui, and E which have well defined

relationships to ρ, Ui and E acquired by observing the effect of O on equation (4.2),

along with the condition, analogous to the continuous case, that only f0 contributes

to the macroscopic functions which are defined by

O [fi] = δ0in, O [ejfi] = δ0inuj , O [ejejfi] = δ0inE (4.33)

When we apply O to equations (4.30), (4.31), and (4.32), and apply conditions (4.33)

we get

0 =
∂nui

∂xi
+

∂n

∂t0
, 0 =

∂n

∂t1
, 0 =

∂n

∂t2
(4.34)
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Likewise if we repeat the same procedure but this time multiply both sides of our

equations by ej, we obtain

0 =
∂

∂xi
O [eiejf0] +

∂nuj

∂t0
, 0 =

∂nuj

∂t1
+
(

1 − 1
2τ

)
∂

∂xi
O [eiejf1] ,

0 =
6τ2 − 6τ + 1
3τ (2τ − 1)

∂

∂xi
O [eiejf2] +

∂nuj

∂t2

(4.35)

If we yet again repeat the procedure but now multiply both sides by ejej we obtain

0 =
∂

∂xi
O [eiejejf0] +

∂nE

∂t0
, 0 =

∂nE

∂t1
+
(

1 − 1
2τ

)
∂

∂xi
O [eiejejf1]

0 =
6τ2 − 6τ + 1
3τ (2τ − 1)

∂

∂xi
O [eiejejf2] +

∂nE

∂t2

(4.36)

At this point we set δt = 1 and note that this allows us to employ the relation

∂
∂t =

∑
i

∂
∂ti

from equation (4.27). Summing the equations (4.34), (4.35), and (4.36),

respectively, and applying the aforementioned relations we get

∂nui

∂xi
+

∂n

∂t
= 0 (4.37)

∂nuj

∂t
+

∂

∂xi
O
[
eiej

(
f0 +

(
1 − 1

2τ

)
f1 +

6τ2 − 6τ + 1
3τ (2τ − 1)

f2

)]
= 0 (4.38)

∂nE

∂t
+

∂

∂xi
O
[
eiejej

(
f0 +

(
1 − 1

2τ

)
f1 +

6τ2 − 6τ + 1
3τ (2τ − 1)

f2

)]
= 0 (4.39)

These are conservation equations for the mass, momentum, and energy-like variables,

respectively. The functions that would normally define the macroscopic behaviour

of a fluid, the stress strain tensor for instance, are contained or related to the terms

still expressed in terms of O and are in terms of the functions f0, f1, etc, so that

the behaviour of the medium is defined in terms of f0, which is our f (eq). These

objects may be redefined in simpler terms by introducing new functions χ, Π and �Q
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as follows

χ = f0 +
(

1 − 1
2τ

)
f1 +

6τ2 − 6τ + 1
3τ (2τ − 1)

f2, Πij = O [eiejχ] , Qi = O [eiejejχ] (4.40)

The continuity equations are then given by

∂n

∂t
+ ∇ · (n�u) = 0 (4.41)

∂n�u

∂t
+ ∇ · Π̄ = 0 (4.42)

∂nE

∂t
+ ∇ · �Q = 0 (4.43)

These equations may be reformulated in a form more reminiscent of fluid dynamics,

namely

∂n

∂t
+ �u · ∇n = −n∇ · (�u) (4.44)

n

(
∂�u

∂t
+ �u · ∇�u

)
= ∇ ·

(
n�u�u − Π̄

)
(4.45)

n

(
∂E

∂t
+ �u · ∇E

)
= ∇ ·

(
n�uE − �Q

)
(4.46)

By this method, macroscopic equations such as those of fluid dynamics can be

recovered to aid physical interpretation of the variables with which we define the

model’s behaviour. For this reason and as proof of concept we endeavoured to

derive χ, Π, and �Q for the continuous velocity case for f (eq) given in equation (4.10).

However, the calculation proved too difficult to do by hand. Finding conventional

computer algebra systems unequipped to cope with the kind of tensor manipulations

required we attempted to write a program using the open source GiNaC algebra

manipulation library for C++ to do the computation for me but due to the partially

developed nature of the library this program either failed to terminate or crashed

the system. Consultation was undertaken with the GiNaC development team and

several patches were applied but to no avail. A copy of this code can be found in the
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Figure 4.2: Above: A face centred cubic
packing of spheres which is identical to the
D3Q13 lattice in geometry. Middle: The
octahedrons and tetrahedrons that repre-
sent the different cells that tessellate space
interpolating values to the lattice points
at the vertices. Below: The rhombic do-
decahedral honeycomb tessellation that is
given by the Voronoi cells of the D3Q13
lattice.

attached disk. Due to the lack of success and time constraints no attempt was made

to calculate any discrete velocity Chapman-Enskog expansions. However as we will

mention later algorithms for the simplification of tensor expressions exist [34] and

could be implemented by a determined programer.

4.3 Interpolation

Because the post collision transport of material in the lattice Boltzmann equations

we have derived is no longer guaranteed to land on a well defined lattice point, it

is necessary to define how this result is mapped to the lattice points. It is possible

to tessellate space with octahedrons and tetrahedrons so that the vertices of these

shapes are the lattice points. The values of the result of a collision can then be

distributed to the vertices of the cell in which it has ‘landed’. One simple condition

that ensures continuity is that the ratio of distribution between the vertices of op-

posite faces, in the case of an octahedron, or the vertexes a face and its opposite

vertex in a tetrahedron, is the ratio of the distances of the landing point to those
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places. To be specific

ai,0,0 + a0,j,0 + a0,0,k =
�x · (i, j, k) + 1

2
, i, j, k = ±1 (4.47)

for the octahedron where ai,j,k is the proportion distributed to vertex (i, j, k)

a i
2
, j
2
, k
2

=
�x · (i, j, k)

2
+

1
4
, i, j, k = ±1

For the tetrahedron, remembering that the tetrahedron may be oriented two ways,

there are eight possible places a vertex could occur.

This leads to the immediate result for interpolating in tetrahedral cells

(
(�x − �q) · �p +

1
4

)
fa(�x + �ξaδt) = f (contribution)

a (�q + �p) (4.48)

�q is the cell centre and �p is the vector from the centre to the vertex. Using this

fa(�x+�ξaδt) the result of our collision calculation is redistributed to f
(contribution)
a (�q+�p)

for the various permissible value of �p. Note that f
(contribution)
a (�q + �p) is not the new

pre-collision lattice value. It is merely a contribution to it. There still needs to be

an adjustment to account for contributions from other collision events near by.

For the octahedron, the condition (4.47) is not enough to give conditions for a on

its own. a is required to be invariant under the symmetries of the octahedron that

fix its vertex and the other vertex distributions are taken to be given by symmetries

that map vertices to each other. Even this is not enough to firmly fix a. If we

require it must be linear and allow for the inclusion of the absolute values we do get

a unique solution.

a1,0,0 =
x − |x|

2
+

1 − |x| − |y| − |z|
6

We do not claim that this is in any way optimal, only that it meets the condition

(4.47), is consistent with equation (4.48) on the cell boundaries, is non negative in
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the cell, and has the logical property of being 1 at (1, 0, 0) and 0 on the cell faces that

don’t adjoin (1, 0, 0). In short it is an expedient choice. So the general statement of

this distribution for the octahedral cell is

(
1 − |x − qx| − |y − qy| − |z − qz|

6
+

(�x − �q) · �p + |(�x − �q) · �p|
2

)
fa(�x + �ξaδt)

= f (contribution)
a (�q + �p)

(4.49)

In all of this we have assumed a face centred cubic lattice with a distance between

neighbours of
√

2. Consequently, rescaling will be necessary in applying the tech-

nique.

An alternative way to interpolate the face centred cubic lattice is to interpolate to

the cubic lattice and remove the lattice points not present in the face centred cubic

lattice, redistributing the contributions to their values evenly to the un-removed

nearest neighbours of which there are six. Any technique for distributing values to

a cubic lattice can be applied in this case. For example

f (contribution)
a (�q) =

⎧⎪⎪⎨
⎪⎪⎩

cos2 (x − qx) cos2 (y − qy) cos2 (z − qz) fa(�x + �ξaδt) |xi − qi| < 1

0 otherwise

(4.50)

This has the property of being not only continuous in the variation of its redis-

tribution but also differentiable. Whether this is computationally advantageous is

unclear and for ease of calculation we feel the simpler solution will suffice.

4.3.1 Interpolation of Contributions

Given that multiple lattice points with different lattice speeds may now make a

contribution to the same population, it is necessary to have a formula for merging

the contributions. That is, to produce a new combined value for two contributions

that preserves the total mass, momentum, and energy of the two. Since every

lattice point now has its own locally defined velocities we must interpolate for this
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too. For this calculation we define v̄ = (�v+, �v−, ν) etc. Beginning with the condition

for momentum conservation.

v̄afa(r̄ ′) + v̄ ′
af

′
a(r̄

′) = v̄ ′′
a f ′′

a (r̄ ′)

where v̄a and v̄′a are the velocities of the two contributing lattice points and v̄′′a is the

new velocity of the combination, likewise fa(r̄ ′) and f ′
a(r̄

′) are the two contribut-

ing populations and f ′
a(r̄

′′) the combined one. This is for population index a for

contributions at lattice point r̄. Given v̄a ∝ v̄ ′
a this implies.

|v̄a| fa(r̄ ′) +
∣∣v̄ ′

a

∣∣ f ′
a(r̄

′) =
∣∣v̄ ′′

a

∣∣ f ′′
a (r̄ ′) (4.51)

The correct expression for the energy of a pseudo particle or polymer chain segment if

you prefer is, subject to some consideration of mass that will factor out, 1
2�v

2
1 + 1

2�v
2
2 +ν2

which by equations (4.3) is �v 2
+ + �v 2− + ν2 = v̄2. Consequently the equation for the

energy conservation of the pseudo particle is

v̄ 2
a fa(r̄ ′) + v̄ ′2

a f ′
a(r̄

′) = v̄ ′′2
a f ′′

a (r̄ ′) (4.52)

On dividing equations (4.52) by (4.51) we get

v̄ 2
a fa(r̄ ′) + v̄ ′2

a f ′
a(r̄

′)
|v̄a| fa(r̄ ′) + |v̄ ′

a| f ′
a(r̄ ′)

=
∣∣v̄ ′′

a

∣∣ (4.53)

Substituting equation (4.53) into equation (4.51) we get

(|v̄a| fa(r̄ ′) + |v̄ ′
a| f ′

a(r̄
′))2

v̄ 2
a fa(r̄ ′) + v̄ ′2

a f ′
a(r̄ ′)

= f ′′
a (r̄ ′) (4.54)

With equations (4.53) and (4.54) we have expressions for combining contributions

that respect momentum and energy. Sadly they do not conserve mass (fa(r̄ ′) +

f ′
a(r̄

′) �= f ′′
a (r̄ ′), a small amount of mass is lost in this process. This mass deficit
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can be calculated exactly and an equivalent amount of mass can be added the the

0 velocity component population that would normally receive no contribution from

neighbouring lattice points. The expression for this is

fa(r̄ ′) + f ′
a(r̄

′) − f ′′
a (r̄ ′) =

(|v̄a| − |v̄ ′
a|)

2 fa(r̄ ′)f ′
a(r̄

′)
v̄ 2
a fa(r̄ ′) + v̄ ′2

a f ′
a(r̄ ′)

= f
(contribution)
0 (r̄ ′) (4.55)

These expressions (4.53), (4.54) and (4.55) are commutative and transitive. So

for each time step populations can be set to 0 and built up by a process of successive

contributions.

4.3.2 Rescaling the Velocities

After combining contributions, each lattice point’s populations have a variety of

velocity magnitudes that are not in line with the velocities they are assumed to

have for the purposes of the collision step, whose velocities are a function of a

temperature-like field. Consequently the velocities of the population must be ad-

justed to those expected of the temperature in such a way that the mass, momentum,

and temperature-like components remain unchanged. At the same time we want the

rescaling to in some sense be minimal or optimal. Because of this we turned to the

technique of Lagrange multipliers. The function chosen for minimisation was not

obvious though, or rather there are at least three obvious choices:

1. minimise the redistribution of mass by taking the sum of squares of the differ-

ence in populations before and after,

2. minimisation of redistribution of momentum by looking at squares of the dif-

ference in the populations multiplied by velocities or

3. minimise the redistribution of energy by multiplying by the squares of veloci-

ties instead.
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In short we have three potential choices for the function for minimisation as follows.

M =
∑

i

(fi − f ′
i)

2
∑

i

(v̄ifi − v̄ ′
i f

′
i)

2
∑

i

(v̄ 2
i fi − v̄ ′2

i f ′
i)

2 (4.56)

At the same time we must preserve mass, momentum, and energy-like values so

we have a set of constraint functions (that give the constraints when set to 0) given

by

C0 =
∑

i

f ′
i − n, �C =

∑
i

v̄ ′
i f

′
i − nū, C8 =

∑
i

v̄ ′2
i f ′

i − nE (4.57)

From expression (4.56) where we have decided to take the weighted sum (using

weights α, β, and γ) of all three possibilities and constraints (4.57) one can construct

the Lagrange function

L = α
∑

i

(fi − f ′
i)

2 + β
∑

i

(v̄ifi − v̄ ′
i f

′
i)

2 + γ
∑

i

(v̄ 2
i fi − v̄ ′2

i f ′
i)

2

−λ0

(∑
i

f ′
i − n

)
− λ̄ ·

(∑
i

v̄ ′
i f

′
i − nū

)
− λ8

(∑
i

v̄ ′2
i f ′

i − nE

) (4.58)

The extrema of the function subject to the constraints is then given by solving

the equation

∇λ̄,f ′i
L = �0 (4.59)

Differentiation of the lambda components recovers the constraints

C0 = 0, C̄ = 0̄, C8 = 0 (4.60)

Meanwhile differentiation of the fi yields

∂L

∂f ′
i

= −2Kifi + 2Jif
′
i − λ0 − λ̄ · v̄ ′

i − λ8v̄
′2
i = 0 (4.61)
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where we have defined symbols Ki and Ji for brevity

αv̄ ′
i · v̄i + βv̄ ′2

i v̄ 2
i + γ = Ki, αv̄ ′2

i + βv̄ ′4
i + γ = Ji (4.62)

With this we can write an expression for fi

2Kifi + λ0 + λ̄ · v̄ ′
i + λ8v̄

′2
i

2Ji
= f ′

i (4.63)

Inserting this into equation (4.60), recalling equation (4.57), we get a series of linear

expressions for the lambdas. First, for condition 0,

0 =
∑

i

2Kifi + λ0 + λ̄ · v̄ ′
i + λ8v̄

′2
i

2Ji
− n

=
∑

i

Kifi

Ji
− n +

∑
i

1
2Ji

λ0 +
∑

i

v̄ ′
i

2Ji
· λ̄ +

∑
i

v̄ ′2
i

2Ji
λ8

(4.64)

For conditions 1 through 7

�0 =
∑

i

v̄ ′
i

2Kifi + λ0 + λ̄ · v̄ ′
i + λ8v̄

′2
i

2Ji
− nū

=
∑

i

v̄ ′
i Kifi

Ji
− nū +

∑
i

v̄ ′
i

2Ji
λ0 +

∑
i

v̄ ′
i v̄

′
i

2Ji
· λ̄ +

∑
i

v̄ ′
i v̄

′2
i

2Ji
λ8

(4.65)

Lastly, for the 8th constraint,

0 =
∑

i

v̄ ′2
i

2Kifi + λ0 + λ̄ · v̄ ′
i + λ8v̄

′2
i

2Ji
− nE

=
∑

i

v̄ ′2
i Kifi

Ji
− nE +

∑
i

v̄ ′2
i

2Ji
λ0 +

∑
i

v̄ ′2
i v̄ ′

i

2Ji
· λ̄ +

∑
i

v̄ ′2
i v̄ ′2

i

2Ji
λ8

(4.66)

By defining a new family of tensors A and B we can simplify the expressions

∑
i

v′i,j · · · v′i,k
2Ji

= Aj···k,
∑

i

v′i,j · · · v′i,kKifi

Ji
= Bj···k (4.67)
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v′i,j is the jth component of v̄′i. This leads to a simple set of eight linear equations in

eight variables. Equations (4.64), (4.65), and (4.66) may be re-expressed as

0 = B − n + Aλ0 + Aiλi + Aiiλ8

0 = Bi − nui + Aiλ0 + Aijλj + Aijjλ8

0 = Bii − nE + Aiiλ0 + Aiijλj + Aiijjλ8

(4.68)

Solving this system gives values for the lambdas that can then be inserted into

equation (4.63) to give the new populations. There are several questions outstanding

with this method. Notably, what choices should be made for α, β and γ? Can we

guarantee that f ′
i will always be non negative?

4.4 Reintroduction of Non Local Force and Mul-

tiple Components

Up until now our models have been bereft of the force terms dropped when consid-

ering equation (4.1). However, in their papers Shan and Chen [17, 18] devise a way

of introducing a force into the model by creating a pseudo velocity used to calculate

the collision step. They effectively nudge the velocity with a force field-like so

ρŪ ′ = ρŪ + τ
dp̄

dt
(4.69)

dp̄
dt can be defined locally for each lattice point, effectively making it a force field.

In physics force fields are typically described by their potentials with the force

being given by the gradient −∇φ. In the continuous equation there were continuous

potential functions defined over �r1 and �r2. We will now require a discreet analogue

defined over �r+ and �r− and a discreet analogue of the gradient. So, by argument of
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similarity (dp̄
dt ∼ −∇φ) we take

dp̄

dt
= −ω

n∑
i=1

φ(r̄ + ēi)ēi

ē2
i

(4.70)

This can be seen as an obvious generalisation of the discreet derivative δf
δx =

f(x+h)−f(x−h)
2h but only makes sense subject to the conditions

I = ω

n∑
i=1

ēiēi

ē2
i

, 0 =
n∑

i=1

ēi

ē2
i

(4.71)

I is the identity matrix. Here ēi are not velocity related vectors but vectors represent-

ing the displacement between nearby lattice points neglecting the 7th σ component.

Considering the D7Q507 lattice with the 7th dimension neglected the conditions

are met for nearest neighbour displacements with ω = 1
28 . The Reader will recall in

equation (3.7), which we are attempting to emulate, that there were two potential

fields in the fourth term. The first field represents the internal potential energy of

a polymer chain under some sort of tension or extension. This was dependent only

upon the length of the difference of the �r1 and �r2 co-ordinates. The second field was

a term for interactions with the bulk of the rest of the polymer and depended not

only upon �r1 and �r2 but also upon n, the density-like field. Consequently we suggest

the forms of the discreet analogues are

φ(int) (|�r−|) , φ(ext) (ρ, r̄) (4.72)

The ρ in φ(ext) (ρ, r̄) is taken to mean that the function may be a value of all the

values of ρ on all lattice points, although in practise it is likely only lattice points

with nearby �r+ co-ordinates will be considered. Recall also that the continuous form

of φ(ext) (ρ, r̄) was subject to a rule (3.4) and it remains to be determined just what

the discreet analogue of equation (3.4) is. Also of note is the introduction of that

φ(int) will tend to limit the achievable magnitude of �r− thus making a fairly limited
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array of lattice values for �r− physically valid. Also by redefining the velocity used in

the collision step we have essentially redefined f (eq) to a non local function. It may

be possible to generalise the Chapman-Enskog method to such equations and derive

full macroscopic models from these discrete ones where the continuous equation are

resistant to such analysis.

The original purpose of Shan and Chen’s paper [17] was to determine how fluids

with different parameters, essentially immiscible fluids, could be made to interact in

a lattice Boltzmann method. It is highly desirable to generalise this method to the

seven dimensional polymer lattice where interactions with air in an injection mould

or water or gas in assisted injection moulding. However, such fluids are implemented

with three dimensional lattices, not seven, and it is necessary to reconcile this when

generalising Shan and Chen’s method. It is fairly simple to define the effect of

our three dimensional fluid on the polymer. We simply equate the fluid’s polymer

lattice to the �r+ polymer co-ordinate and with a set of displacement vectors for

nearby neighbours in the 3D lattice �e+i. Making the reasonably straightforward

assumption that the fluid exerts no force on the orientation of polymer chains, one

defines the force exerted on the polymer to be

dp̄p

dt
= −ψp(ρ(r̄, σ))Gpf

n∑
i=1

ψf (ρ̃(�r+ + �e+i))(�e+i,�0) (4.73)

The question of the force that the polymer exerts on the fluid is less straightforward.

Since all the polymer lattice points with identical values of �r+ have equal proximity

to given fluid lattice points it seems reasonable to sum the density-like values of

those lattice points over �r− and σ

d�pf

dt
= −ψf (ρ̃(�r+)Gfp

n∑
i=1

ψp

⎛
⎝∑

�r−,σ

ρ(�r+ + �e+i, �r−, σ)

⎞
⎠�e+i (4.74)

Here ρ̃ is the density of the fluid and Gfp and Gpf are constants. Note that equation
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(4.73) expresses the force of a few lattice points on many, whereas equation (4.74)

expresses the effect of many on few. It would seem likely that Gfp will have quite

different values to Gpf in order to compensate for this.

4.5 Boundaries and Dealing with the Parameter

Sigma

Lastly, for this chapter, having developed a model one must consider its boundary

conditions and the ranges of its variables. Assuming that a transport event crosses

a boundary given by the surface B, then for some values of r̄′ and λ the following

equation must be satisfied:

r̄ + λv̄iδt = B(r̄′), 0 < λ � 1 (4.75)

A common condition for the no slip boundary method is the so called bounce back

condition where every transport event that crosses to a lattice point outside the

boundary is returned in the same time step to the lattice point that sent it. This is

perfect for boundaries exactly between lattice points but can not represent curved

surfaces in a smooth way. Since we are no longer limited to considering transport

events that end on the lattice points, one simple way to implement the bounce

back condition is to calculate at what point the trajectory of the event intersects

the boundary and then ‘bounce back’ the remainder of the trajectory from the

boundary. This new ‘landing point’ for the bounced back transport event is given

by

r̄ + λv̄iδt − (1 − λ)v̄iδt = r̄ + (2λ − 1)v̄iδt (4.76)
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So, if f̃ (contribution) is some transport event that crosses the boundary, its bounced

back contribution is given by

f (contribution)(r̄ + (2λ − 1)v̄iδt,−v̄i, t + δt) = f̃ (contribution)(r̄ + v̄iδt, v̄i, t + δt) (4.77)

Because our models of the polymer are not isothermal, it is desirable to have a

mechanism where by energy can be lost through the boundary where as here it

would normally be conserved. An easy way to do this is to consider a situation

in which a given particle bounces back with proportionally less speed. This new

landing point is easily calculated as

r̄ + λv̄iδt − (1 − λ)μv̄iδt = r̄ + (λ − μ + λμ) v̄iδt, 0 < μ � 1 (4.78)

This would give rise to a bounce back contribution of

f (contribution)(r̄ + (λ − μ + λμ) v̄iδt,−μv̄i, t + δt) = f̃ (contribution)(r̄ + v̄iδt, v̄i, t + δt) (4.79)

The issue here is we can no longer expect the no slip condition to hold. The net

momentum on the boundary is 0 only because an equal amount of momentum is

bounced back every time giving no net momentum at the bounce back point. By

reducing the speed we have not only lessened the returning kinetic energy but also

the momentum. One way to compensate would be to increase the returning popu-

lation artificially but then we must compensate for the extra mass by either taking

some contribution from the original lattice points f0 population or by interpolating

a hypothetical negative f0 contribution to lattice points receiving the bounce back.

In our opinion the best way to approach this problem is as yet unresolved. However,

if it could be resolved by varying μ over the boundary we could simulate varied

heating or cooling over the mould surface.

The final problem regarding the boundary is how it should be constructed. It
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is after all an object defined in seven dimensions that represents an object in our

conventional three. The obvious solution is to divide the boundary into two 3-

component 2-parameter surfaces and nforce a 7th condition on the sigma coordinate.

So our boundary in seven dimensions might be written as ( �B+(u, v), �B−(u′, v′), ?)

where �B+(u, v) is simply the geometry of our mould. Ideally the internal potential

φ(int) will ensure that it never or rarely makes contact with �B−(u′, v′). We suggest

a sphere of suitable radius would be ideal. However, it is not clear how, if at all,

to bound the sigma parameter. There does not seem to be any firm break in the

equations themselves that would stop large values of sigma being reached. If they

are the lengths of polymer chains as suggested in Grmela and Carreau’s paper [2]

then we might expect them to have ends, but nothing in the continuous equations

suggests this. If such ends exists we think they would have to be enforced by the

collision integrals somehow. There are basically two options. Set up bounce back

conditions for sigma as a pair of values. Alternatively, the method we favour is to

let sigma be periodic. This gives us the option of curling sigma up till it is quite

small, possibly only a single layer. No doubt such choices will dramatically affect

the simulation results. We suspect that the interpretation and handling of the 7th

dimension is the big challenge to be overcome in any theory derived from equation

(3.1).

The question of inlets and outlets is easily resolved by defining a set of lattice

points with constant post collision population outputs and no actual processing of

any inputs they may receive. Unlike other inlets there is a question of considering

the inlet temperature and orientation. The post collision populations can be defined

using the equilibrium function f (eq)

A guide and illustration to the techniques described in this chapter are outlined

in Appendix A which contains pseudocode for an implementation of the D7Q2187

velocities on a D7Q507 based lattice spacing.
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4.6 Summary

In this chapter we have seen several key developments. Among them:

• A linearized analogue of Grmela’s equation was postulated.

• We explored how an equation such as the linearized analogue could be used

to generate a lattice Boltzmann like equation and noted that inhomogeneous

temperature implied that the equation could never be naively matched to a

regular lattice geometry.

• We explored numerical quadrature based on spherical geometry in the process

but discover this quadrature does not offer the desired level of isometry for

deriving lattice Boltzmann like equation.

• We derived an unfamiliar numerical quadrature while exploring the radial

aspect of numerical quadrature with spherical coordinates.

• We explored numerical quadrature based on Cartesian coordinates, that is a

grid geometry, and found it did have a good level of isometry.

• We explored how, once derived, a discrete analogue of the Chapman-Enskog

method could be applied to the lattice Boltzmann like equation to derive mass,

momentum, and energy transport equations comparable to the NavierStokes

equation and its associated mass and energy equations.

• We explored how lattice Boltzmann like equations could be implemented on

arbitrary grid geometry’s using interpolation.

• We explored how internal potential energies such as those in the simplified

Grmela equation could be reintroduced into the derived lattice Boltzmann

like equation.
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• We explore how curved boundaries might be applied to the derived lattice

Boltzmann like equation in a physically consistent was and speculate about

condition that could be applied to bound sigma.

Taken collectively these studies suggest a second prong in our attempt to better un-

derstand polymer dynamics. It is a prong that is particularly applicable to creating

computer simulations of polymer dynamics.
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Chapter 5

Miscellaneous Investigations

In this section we explore several disparate approaches that have not greatly elu-

cidated or contributed to our understanding of polymer dynamics but that may

possibly be of consequence in further work.

5.1 The Kirkwood Approach

Early on in our research we were inspired by some of the early work on applying

statistical mechanics to chemistry by Kirkwood, especially the paper by Irving and

Kirkwood on deriving equations for transport processes from first principles [32]. So

we attempted to construct our own transport equations for polymers by analogy,

closely copying his work at most stages. We considered our basic element not to be a

molecule but a polymer monomer. So the numerous polymer chains in a melt would

be indexed with one variable, say i, and the individual monomers in a polymer chain

with another say j in sequence from 0 to ni. This would require considering a more

complex potential energy function than Kirkwood considered, where neighbouring

monomers on a chain would have potential energies different to all others to bind

them together.

It was then necessary to define a set of functionals that had a reasonable chance
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of relating to things we could usefully observe or guess from observations.

ρ(�r1, �r2, t) = m
∑
i,j

〈
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

ρ(�r1, �r2, t)�u1(�r1, �r2, t) =
∑
i,j

〈
�pijδ(�Rij − �r1)δ(�Rij+1 − �r2)); f

〉

ρ(�r1, �r2, t)�u2(�r1, �r2, t) =
∑
i,j

〈
�pij+1δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

ρ(�r1, �r2, t)E(�r1, �r2, t) =
∑
i,j

〈(
p2

ij + p2
ij+1

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

We typically use
∑

i,j as a short hand for
∑

i

∑ni−1
j=0 . We chose ρ to be density-like,

�u1 and �u2 to be velocity-like, and E to be energy-like. The total potential energy of

the system we define to be

U =
1
2

∑
i,j,k,l

Vijkl(�Rij , �Rkl), Vijij(�R, �S) = 0

V is the potential energy between two given particles, which is of course zero for any

particle with itself. The key tool of Kirkwood’s method is to consider f , the vector

in the Hilbert space of probability distributions over possible states, and note that

it has the property

∂

∂t
〈α; f〉 =

〈∑
i

ni∑
j=0

(
�pij

mij
· ∇�Rij

−∇�Rij
U · ∇�pij

)
α; f

〉
(5.1)

or if preferred expressed in Einstein summation notation

∂

∂t
〈α; f〉 =

〈
pijk

m

∂α

∂Rijk
− ∂U

∂Rijk

∂α

∂pijk
; f
〉
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5.1.1 Mass Conservation

We adopt the convention of only applying the summation convention to Greek sub-

scripts. That being the case we have the identity

〈(
pθφψ

m

∂

∂Rθφψ
− ∂U

∂Rθφψ

∂

∂pθφψ

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

=
〈

pθφψ

m

∂

∂Rθφψ
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

=
〈
−
(

pijψ

m

∂

∂r1ψ
+

pij+1ψ

m

∂

∂r2ψ

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

Applying equation (5.1) and this identity to the operator α = δ(�Rij −�r1)δ(�Rij+1−

�r2) we get ∑
i,j

∂

∂t

〈
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉
=

∑
i,j

(
− 1

m

∂

∂r1ψ

〈
pijψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

− 1
m

∂

∂r2ψ

〈
pij+1ψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉)

⇒ ∂ρ

∂t
= −

(
∂ρu1ψ

∂r1ψ
+

∂ρu2ψ

∂r2ψ

)

This is precisely what we would expect the mass conservation equation to be.
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5.1.2 Momentum Conservation

As a precursor to attempting to derive the momentum conservation equation, we

derived the following identities

〈(
pθφψ

m

∂

∂Rθφψ
− ∂U

∂Rθφψ

∂

∂pθφψ

)
pij+ξkδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

= −
〈

pij+ξk

m

(
pijψ

∂

∂r1ψ
+ pij+1ψ

∂

∂r2ψ

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

−
〈

∂U

∂Rij+ξk
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

= − 1
m

∂

∂r1ψ

〈
pij+ξkpijψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

− 1
m

∂

∂r2ψ

〈
pij+ξkpij+1ψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

−
〈

∂U

∂Rij+ξk
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

(5.2)

∂U

∂Rijk
=

1
2

∑
l

nl∑
m=0

(
∂Vijlm

∂Rijk
(�Rij , �Rnl

l,m=0) +
∂Vlmij

∂Rijk
(�Rlm, �Rij)

)

=
∑

l

nl∑
m=0

∂Vijlm

∂Rijk
(�Rij , �Rlm)

(5.3)

∑
ij

m
〈(pij+ξk

m
− uξ+1k

)(pij+ζψ

m
− uζ+1ψ

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

=
∑
ij

1
m

〈
pij+ξkpij+ζψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉
− uξ+1kuζ+1ψρ

(5.4)

By considering the operator
∑

i

∑ni−1
j=0 pij+ξkδ(�Rij −�r1)δ(�Rij+1−�r2) = α and applying

equation (5.2)
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∂

∂t

∑
i

ni−1∑
j=0

〈
pij+ξkδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

= − ∂

∂r1ψ

∑
i

ni−1∑
j=0

1
m

〈
pij+ξkpijψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

− ∂

∂r2ψ

∑
i

ni−1∑
j=0

1
m

〈
pij+ξkpij+1ψδ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

−
∑

i

ni−1∑
j=0

〈
∂U

∂Rij+ξk
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

A combination of algebraic manipulation and the application of equations (5.3) and

(5.4) allows the right-hand side to be expressed as

− ∂

∂r1ψ

∑
i

ni−1∑
j=0

m
〈(pij+ξk

m
− uξ+1k

)(pijψ

m
− u1ψ

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

− ∂

∂r2ψ

∑
i

ni−1∑
j=0

m
〈(pij+ξk

m
− uξ+1k

)(pij+1ψ

m
− u2ψ

)
δ(�Rij − �r1)δ(�Rij+1 − �r2); f

〉

− ∂

∂r1ψ
uξ+1ku1ψρ − ∂

∂r2ψ
uξ+1ku2ψρ

−1
2

∑
i,l

nl−1∑
m=1

ni−1∑
j=1

〈
∂Vijlm

∂Rijk
(�Rij , �Rlm)

(
δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2)

−δ(�Rlm−ξ − �r1)δ(�Rlm+1−ξ − �r2)
)

; f
〉

−
∑
i,l

ni−1∑
j=1

〈(
∂Vijl0

∂Rijk
(�Rij , �Rl0) +

∂Vijlnl

∂Rijk
(�Rij , �Rlnl

)
)
×

δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2); f
〉

−(1 − ξ)
∑
i,l

nl∑
j=0

〈
∂Vi0lj

∂Ri0k
(�Ri0, �Rlj)δ(�Ri0 − �r1)δ(�Ri1 − �r2); f

〉

−ξ
∑
i,l

nl∑
j=0

〈
∂Vinilj

∂Rinik
(�Rini ,

�Rlj)δ(�Rini−1 − �r1)δ(�Rini − �r2); f
〉
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It is expedient to define some new variables

R̄ijlmξ = (�Rlm−ξ − �Rij−ξ, �Rlm+1−ξ − �Rij+1−ξ), r̄ = (�r1, �r2)

Using these we can take the Taylor series of δ(�Rlm−ξ −�r1)δ(�Rlm+1−ξ −�r2) for variable

(�Rlm−ξ, �Rlm+1−ξ) around the point (�Rij−ξ, �Rij+1−ξ) and so redefine the expression

δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2) − δ(�Rlm−ξ − �r1)δ(�Rlm+1−ξ − �r2)

= −
∑
ā>0̄

∏
k

Rak
ijlmξk

ak!
∂

P
k ak∏

k ∂ak(�Rij−ξ, �Rij+1−ξ)k

δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2)

∼= −
∑
|ā|>0

R̄ā
ijlmξ

ā!
∂ā

r̄ δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2)

where ∼= signifies that the expressions are equivalent when placed inside the inner-

product and ā is a multi index. We also assume Vijlm(�Rij , �Rlnl
) = Vijlm(R̄ijlm0).

Considering this we may rewrite the equation we have defined so far for

momentum-like conservation in the form

∂

∂t
uξkρ +

∂

∂r1ψ
uξ+1ku1ψρ +

∂

∂r2ψ
uξ+1ku2ψρ

= − ∂

∂r1ψ
σξk1ψ − ∂

∂r2ψ
σξk2ψ

+
1
2

∑
i,l

nl−1∑
m=1

ni−1∑
j=1

〈
∂Vijlm

∂Rijk
(�Rij , �Rlm)

∑
|ā|>0

R̄ā
ijlmξ

ā!
∂ā

r̄ δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2); f

〉

−
∑
i,l

ni−1∑
j=1

〈(
∂Vijl0

∂Rijk
(�Rij , �Rl0) +

∂Vijlnl

∂Rijk
(�Rij , �Rlnl

)
)

×δ(�Rij−ξ − �r1)δ(�Rij+1−ξ − �r2); f
〉

−(1 − ξ)
∑
i,l

nl∑
j=0

〈
∂Vi0lj

∂Ri0k
(�Ri0, �Rlj)δ(�Ri0 − �r1)δ(�Ri1 − �r2); f

〉

−ξ
∑
i,l

nl∑
j=0

〈
∂Vinilj

∂Rinik
(�Rini ,

�Rlj)δ(�Rini−1 − �r1)δ(�Rini − �r2); f
〉

σ represents that expression in the equation that bears resemblance to the stress
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strain tensor in gas kinetics. This leaves the remaining terms on the right hand

side that would normally be associated with the effect of inter molecular forces and

in our case inner molecular forces on the stress strain tensor. Normally, following

Kirkwood’s strategy, we would introduce an integral and Dirac delta function that

would allow us to move unwieldy elements out of the inner product, eventually

allowing us to make the approximation

g(�r1, �r2, �r
′
1, �r

′
2, t)ρ(�r1, �r2, t)ρ(�r ′

1, �r
′
2, t)

≈ m2
∑

i�=l,j �=m

〈
δ(�Rij − �r1)δ(�Rij+1 − �r2)δ(�Rlm − �r ′

1)δ(�Rlm+1 − �r ′
2); f
〉

for some g yet to be defined, allowing us to remove all explicit reference to the

co-ordinates of individual monomers. However, in this case it is not clear how to

perform manipulations to perform this approximation and due to the difficulty of

the manipulations and the limitations of time and the promises displayed by other

methods this was not pursued further. Possible future approaches to producing a

Kirkwood style model for polymer dynamics is discussed in the recommendations

for further work.

5.2 Analysis of the Form of W

In the analysis of gas kinetics the form of the kernel function representing the col-

lision of molecules can be further restricted by considering what must be conserved

in such collisions and then simplified still further by making assumptions about

properties such as the elasticity or inelasticity of collisions. We sought some helpful

set of restrictions on the kernel function with limited success. These are after all

assumptions and their validity is not without ambiguity. The first assumption is

that the collisions are more or less instantaneous; an assumption we have used in

102



CHAPTER 5. MISCELLANEOUS INVESTIGATIONS

earlier chapters and that is explicitly stated in Grmela’s paper [2]. This is to say

�ri = �r ′
i , σi = σ′

i

where we use the prime superscript to denote states after collision as opposed to

states before. This implies

W ∝ δ(�r1 − �r ′
1) · · · δ(�r4 − �r ′

4)δ(σ1 − σ′
1)δ(σ2 − σ′

2).

The second potential assumption considered was the need for physical intersec-

tion of the ‘dumbbells’ modelling sections of polymer chain. If we consider them as

straight lines between two points, this requirement would be to say the lines meet

between these two points. Thus we can write the point of intersection as

�Pi = �r1 + s1(�r2 − �r1), 0 � s1 � 1

If we assume the second polymer chain segment intersects with orientation k̂ we can

write �r3 and �r4 as

�r3 = k̂s2s3 + �Pi, �r4 = −k̂(1 − s2)s3 + �Pi, s3, s4 � 0

Suppose we wanted to rewrite this expression so �r3 and �r4 could have any value, we

could do so by allowing si to vary freely and introducing a new term in expressions

like so:

�r3 = k̂s2s3 + �Pi + �̂r2 − �r1 × �ks4, �r4 = −k̂(1 − s2)s3 + �Pi + �̂r2 − �r1 × �ks4

In effect we could rewrite �r3 and �r4 in terms of new variables, introduce a change of
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�r1

�r2

�r3

�r4

�Pi

s3

k̂

A

B

s1 = A
A+B

C

D

s2 = C
C+D

Figure 5.1: Here we see diagrammati-
cally some of the key variables intro-
duced in our intersection assumption.
k̂ a unit vector pointing to �r3 from the
point of intersection �Pi. s1 the fraction
of the length of the part the section from
�r1 to �Pi composes of the whole ‘dumb-
bell’ and s2 the fraction of length that
the section between �r3 and �Pi composes
of its ‘dumbbell’. s3 is merely the length
of the indicated ‘dumbbell’.

variables into the integral and then require that

W ∝ δ(s4)H(s1)H(s2)H(s3)H(1 − s1)H(1 − s2)

where H is the Heaviside function.

The third approximation is to assume conservation of momentum. We call it an

approximation because it requires some assumptions about how the total momentum

of a chain segment is defined. The problem that is the variable ν, which is interpreted

as the chain segments motion through the dumbbells two end points. We have chosen

to think of this as being like a thread drawn through the eye of two needles. While

the eye of each needle may have its own momentum there is also momentum from

the thread being pulled through them. This suggests the momentum for each chain

segment is

mi
�Ui = mi�v2i−1 + mi�v2i + 2mi

̂�r2i − �r2i−1νi

mi is a mass-like variable. However, we have no guarantee that mi is a constant. It

might rely on the length of the chain segment (|�r2i − �r2i−1|) for instance. Conserva-
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tion of momentum would then be written as

m1
�U1 + m2

�U2 = m1
�U ′

1 + m2
�U ′

2

The fourth assumption is that the chain segment is like a rubber band and that

there is the same amount of material, and hence mass stretched between two given

end points. This is consistent with the term φint, a potential energy contribution,

being dependent only on |�r2 − �r1|. Under this assumption, mi = m and

�U1 + �U2 = �U ′
1 + �U ′

2

⇒ �v1 + · · · + �v4 + 2�̂r2 − �r1ν1 + 2�̂r4 − �r3ν2 = �v ′
1 + · · · + �v ′

4 + 2�̂r2 − �r1ν
′
1 + 2�̂r4 − �r3ν

′
2

⇒ 0 =
(
�v ′

1 − �v1

)
+ · · · +

(
�v ′

4 − �v4

)
+ 2�̂r2 − �r1

(
ν ′
1 − ν1

)
+ 2�̂r4 − �r3

(
ν ′
2 − ν2

)

The fifth assumption is that the momentum is exchanged in the collision only at

the point of intersection, this value being defined as.

�Ut = −
(
�v ′

1 − �v1

)
−
(
�v ′

2 − �v2

)
− 2�̂r2 − �r1

(
ν ′
1 − ν1

)

=
(
�v ′

3 − �v3

)
+
(
�v ′

4 − �v4

)
+ 2�̂r4 − �r3

(
ν ′
2 − ν2

)

The sixth assumption is that the effect of this momentum exchange is distributed

between the momentum of the two end points according to the ratio of the dis-

tance of the end points from the intersection, giving equations for the differences of
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momentum for the collision as

−s1
�Ut + s1s5�̂r2 − �r1�̂r2 − �r1 · �Ut = �v ′

1 − �v1

−(1 − s1)�Ut + (1 − s1)s5�̂r2 − �r1�̂r2 − �r1 · �Ut = �v ′
2 − �v2

−s5�̂r2 − �r1 · �Ut

2
= ν ′

1 − ν1

s2
�Ut − s2s6�̂r4 − �r3�̂r4 − �r3 · �Ut = �v ′

3 − �v3

(1 − s2)�Ut − (1 − s2)s6�̂r4 − �r3�̂r4 − �r3 · �Ut = �v ′
4 − �v4

s6�̂r4 − �r3 · �Ut

2
= ν ′

2 − ν2

(5.5)

s5 and s6 quantify the amount of momentum absorbed into the ν components, which

is unknown at this moment. Our next step involves no assumptions. We have already

referred to Grmela’s definition of energy, and the fact that that it is conserved in

collisions has been an important point in his proofs [2]. Energy conservation in

collisions may be expressed as

�v 2
1 + · · · + �v 2

4 + 2ν2
1 + 2ν2

2 = �v ′2
1 + · · · + �v ′2

4 + 2ν ′2
1 + 2ν ′2

2

Inserting our previous equations (5.5) for the change in velocities we obtain the

equation

−�Ut ·
(

�Ut

(
s2
1 + s′21 + s2

2 + s′22
)

+ 2
(
s2�v3 − s1�v1 − s′1�v2 + s′2�v4

))
+r̂21 · �Ut

(
2r̂21 ·

(
�Ut

(
s2
1 + s′21

)
− s1v1 − s′1v2

)
+ ν1

)
s5

+r̂43 · �Ut

(
2r̂43 ·

(
�Ut

(
s2
2 + s′22

)
+ s2v3 + s′2v4

)
− ν2

)
s6

−1
4

(
r̂21 · �Ut

)2 (
1 + 4s2

1 + 4s′21
)
s2
5 −

1
4

(
r̂43 · �Ut

)2 (
1 + 4s2

2 + 4s′22
)
s2
6 = 0

�rij = �ri − �rj and s′i = 1 − si are convenient short hands. Assuming this equation

admits solutions, it’s general case can be categorised as elliptical in s5 and s6 and
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mapped to a circle using the substitutions

s5 = 2

(
2r̂21 ·

(
�Ut

(
s2
1 + s′21

)
− s1�v1 − s′1�v2

)
+ ν1

)
r̂21 · �Ut

(
1 + 4s2

1 + 4s′21
)

+
2s7√(

r̂21 · �Ut

)2 (
1 + 4s2

1 + 4s′21
)2 (1 + 4s2

2 + 4s′22
)

×
√
−�Ut ·

(
�Ut

(
s2
1 + s2

2 + s′21 + s′22
)
− 2s1�v1 − 2s′1�v2 + 2s2�v3 + 2s′2�v4

)

×
(
1 + 4s2

1 + 4s′21
) (

1 + 4s2
2 + 4s′22

)
+
(
1 + 4s2

2 + 4s′22
) (

2r̂21 ·
(

�Ut

(
s2
1 + s′21

)
− s1�v1 − s′1�v2

)
+ ν1

)2

+
(
1 + 4s2

1 + 4s′21
) (

2r̂43 ·
(

�Ut

(
s2
2 + s′22

)
+ s2�v3 + s′2�v4

)
− ν2

)2

s6 = 2
2r̂43 ·

(
�Ut

(
s2
2 + s′22

)
+ s2�v3 + s′2�v4

)
− ν2

r̂43 · �Ut

(
1 + 4s2

2 + 4 + s′22
)

+
2s8√(

r̂43.�Ut

)2 (
1 + 4s2

1 + 4s′21
) (

1 + 4s2
2 + 4s′22

)2
×
√
−�Ut.

(
�Ut

(
s2
1 + s2

2 + s′21 + s′22
)
− 2s1�v1 − 2s′1�v2 + 2s2�v3 + 2s′2�v4

)

×
(
1 + 4s2

1 + 4s′21
) (

1 + 4s2
2 + 4s′22

)
+
(
1 + 4s2

2 + 4s′22
) (

2r̂21.
(

�Ut

(
s2
1 + s′21

)
− s1�v1 − s′1�v2

)
+ ν1

)2

+
(
1 + 4s2

1 + 4s′21
) (

2r̂43.
(

�Ut

(
s2
2 + s′22

)
+ s2�v3 + s′2�v4

)
− ν2

)2

Giving s2
7 + s2

8 = 1, we could then define s7 = cos(θ), s8 = sin(θ). However, the

substitution contains square roots so as a condition we would require that their

arguments were non negative. Also, we may wish to adopt a seventh assumption,

0 � s5 � 1, 0 � s6 � 1. Values outside this range imply that momentum is being

transferred around within the chain segment in the collision as opposed to only

between chain segments. It is difficult to then impose these values on θ. As an

alternative we considered the substitution �Ut = aÛt which gives the equation for
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energy conservation

1
4
a2

(
−4
(
s2
1 + s2

2 + s′21 + s′22
)
−
(
r̂21 · Ût

)2
s5

(
4s2

1 (s5 − 2) + 4s′21 (s5 − 2) + s5

)
−

(
r̂43 · Ût

)2
s6

(
4s2

2 (s6 − 2) + 4s′22 (s6 − 2) + s6

))
+

a
(
−2Ût ·

(
−s1�v1 − s′1�v2 + s2�v3 + s′2�v4

)
+ r̂21 · Ûts5

(
−2r̂21 ·

(
s1�v1 + s′1�v2

)
+ ν1

)
+

r̂43 · Ûts6

(
2r̂43 ·

(
s2�v3 + s′2�v4

)
− ν2

))
= 0

Only the non-zero solution is meaningful as we are considering collisions, and a zero

result represents a non collision. Thus energy conservation sets a at

−
8Ût ·

(
r̂21. (s1�v1 + s′1�v2) r̂21s5 − r̂43 · (s2�v3 + s′2�v4) r̂43s6 − 1

2 r̂21s5ν1 + 1
2 r̂43s6ν2

Ût ·
(
4Ût

(
s2
1 + s2

2 + s′21 + s′22
)

+ r̂21 · Ûtr̂21s5

(
4s2

1 (−2 + s5) + 4s′21 (−2 + s5) + s5

)
· · · −s1�v1 − s′1�v2 + s2�v3 + s′2�v4)

+r̂43 · Ûtr̂43s6

(
4s2

2 (−2 + s6) + 4s′22 (−2 + s6) + s6

)) = a

Note the special case where transferred momentum is perpendicular to both dumb-

bells Ût · r̂21 = Ût · r̂43 = 0

2Ût · (s1�v1 + s′1�v2 − s2�v3 − s′2�v4)
s2
1 + s2

2 + s′21 + s′22
= a

Deriving these conditions is not too difficult but carrying them through into the

analysis of solutions did not seem helpful1 and is left for others to consider (see the

section on recommendations for further work).

5.3 Quasi Equilibrium Manifolds

In deriving equation (3.20) we had to make some non-trivial assumptions about what

quantities should be conserved in collisions. We now show that the same expression

can be derived from independent means by physical argument. Because Grmela

1Inserting these conditions into the collision integral would give a less symmetrical form of the
integral all be it with fewer variables
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has demonstrated [1, 2] that entropy tends to a maximum as in the second law of

thermodynamics, it is not unreasonable to suppose the Chapmen-Enskog expansion

might be an expansion around maximum entropy subject to certain constraints. We

can use the Volterra functional derivative [30] to find the extrema of a functional

such as entropy, and which can also be modified to find the extrema subject to

constraints. Our entropy-like functional as defined in equation (3.2), and simplified

by taking ωrept = ω = L = 0, takes the form

S(f(x, v, t)) =
∫

f(x, v, t) ln f(x, v, t)d6r̄dσd6v̄dν (5.6)

The Volterra functional derivative is given by considering an arbitrary small change

in the function δf multiplied by a scalar. It’s explicit form for a functional over

d6r̄dσd6v̄dν is given by

d

dλ
S(f + λδf)

∣∣∣∣
λ=0

=
∫

δf
δS
δf

d6r̄dσd6v̄dν (5.7)

To add constraints we first consider restrictions to δf to force the mass momentum

and energy fields to stay constant as we vary λ. These conditions are

∫
f + λδfd6v̄dν −

∫
fd6v̄dν = 0 = λ

∫
δfd6v̄dν

∫
v̄f + λv̄δfd6v̄dν −

∫
v̄fd6v̄dν = 0 = λ

∫
v̄δfd6v̄dν

∫ (
1
2
v̄2 + ν2

)
(f + λδf) d6v̄dν −

∫ (
1
2
v̄2 + ν2

)
fd6v̄dν

= 0 = λ

∫ (
1
2
v̄2 + ν2

)
δfd6v̄dν

(5.8)

So, it is possible to add expressions to the inside of the integral of equation (5.7) that

will evaluate to zero because of the restrictions given in equation (5.8). Therefore

it is possible to insert these into equation (5.7) and then insert our definition of S
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(equation (5.6)) to give

d

dλ
S(f + λδf)

∣∣∣∣
λ=0

=
∫

δf

(
δS
δf

+ A(r̄, σ, t)

+B̄(r̄, σ, t) · v̄ + C(r̄, σ, t)
(

1
2
v̄2 + ν2

))
d6r̄dσd6v̄dν

=
∫

d

dλ
((f + λδf) ln (f + λδf))

∣∣∣∣
λ=0

d6r̄dσd6v̄dν =
∫

δf (1 + ln f) d6r̄dσd6v̄dν

(5.9)

Due to the arbitrary nature of δf , subject to constraints, this implies

1 + ln f =
δS
δf

+ A(r̄, σ, t) + B̄(r̄, σ, t) · v̄ + C(r̄, σ, t)
(

1
2
v̄2 + ν2

)

To find the extrema we set δS
δf = 0 giving

ln f = A(r̄, σ, t) − 1 + B̄(r̄, σ, t) · v̄ + C(r̄, σ, t)
(

1
2
v̄2 + ν2

)

Consequently this expression has the same form as equation (3.20) except that we

must first absorb −1 into the field A. This therefore tends to validate our original

choice of f0.

5.4 Summary

Several notable endeavours have taken place in this chapter including

• An attempt to formulate a variation on Kirkwood’s method for deriving the

hydrodynamic equations, a variation that attempts to include the orientation

dynamics of polymer chains by defining it’s macroscopic variables using pairs

of bonded monomers.

• This variation is not successfully concluded in momentum or energy conserva-

tion equations although a mass conservation equation is obtained.

• An investigation into the allowable and likely forms of the function W which
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describe probabilistically the outcome of collision events yielded several in-

sights. This included an anzats reducing W s degrees of freedom by 25 from 56

to 31.

• An analysis determining, subject to the constraint of having given macroscopic

variables, what distribution function has maximum entropy for the simplified

Grmela equation. The answer obtained is the same as the result for the the

zeroth order Chapman-Enskog expansion which tends to validate that result.
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Chapter 6

Summary, Conclusions, and

Recommendations

6.1 Summary of Major Results

In summarising the work we have had to consider how best to categorise it’s parts,

no easy task when so many aspects of this work touch upon others. We have decided

to present the work in two sections: one based upon the attempts to treat things

analytically, looking for general results derived from the models considered, and

the other section composed of our attempts to hammer the models in hand into

something tractable for computer implementation.

6.1.1 Analytical Results

An architecture for deriving a seven dimensional continuum model of polymer flow,

where the four extra dimensions relate to internal aspects of the polymeric fluid, from

both conventional continuous and linearized discretized Boltzmann like models, has

been described. The major aspects and important ancillary results of this process

are laid out below.

First it is important to consider the steps taken which, while not novel, are
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fundamental to the rest of our results. These preliminary steps were as follows:

• Simplifications were applied to the modelling equations in the paper by Grmela

and Carreau [2] leading to the simplified equation (3.7) which we found more

amenable to treatment.

• In line with standard methods in the theory of Boltzmann equations we de-

rive a linearized equation (4.1) based upon the solution to the zeroth order

Chapman-Enskog expansion (4.2), subject to the application of a useful vari-

able substitution (4.3).

• In line with He and Lou’s paper [6] a discrete time equation (4.4) is derived with

the equilibrium function f0 approximated by function (4.5) and the equation

further approximated based upon quadrature methods to give a discrete time

and velocity equation (4.26).

This sets the stage for the following results relating our attempts to apply a

Chapman-Enskog method to the continuous equation (3.7).

1. The zeroth order in the Chapman-Enskog expansion is calculated giving the

equation (3.19) the solution for which is found to be the function (3.21). This

result is further validated as physically sensible by the techniques explored in

Section 5.3.

2. The solution to the zeroth order expansion is used to calculate equations for

mass (3.23), generalised velocity (3.26), and temperature (3.27) that are com-

parable to the Euler equations that can be derived by similar methods.

3. The first order of the Chapman-Enskog expansion is calculated using the previ-

ous results giving (3.32). This is further simplified through a suitable substitu-

tion giving the equation (3.34), which we are able to rearrange to demonstrate

that it is a Fredholm integral equation (3.36).
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In the process of attempting to solve the Fredholm equations we were presented

with, we developed several techniques for solving Fredholm equations that we have

not been able to find reference to in literature and so suspect to be original.

1. A rather obvious generalisation of the contraction mapping theorem to equa-

tions composed of multiple linear operators as proved by equation (3.38), which

slightly expands the number and type of equations upon which Neumann series

can be used.

2. A method of solving Fredholm equations with multiple solutions subject to

constraints using the expression (3.48) based upon the skew projection op-

erator (3.42) constructed from our constraints, validity of the solution being

ensured by certain variable functions being subject to the constraint derived

in equation (3.47). A worked example is constructed in Section 3.4.

3. We derived the correct form for the skew projection operator (3.45) that could

be used in an attempt to solve the equation produced in the continuous case

of the first order part of the Chapman-Enskog expansion. This is subject to

the constraints (3.46).

We also attempted a Chapman-Enskog expansion on the linearized, discrete (in

both time and velocity) equation.

1. We introduced a generalisation of the equilibrium function (4.10) that we hope

will encompass a greater range of useful material behaviours having demon-

strated it’s physical consistency.

2. From the Chapman-Enskog expansion we derived a ‘ladder’ of equations up to

the third order given in equations (4.30), (4.31), and (4.32) used to construct

the idealised solutions.

3. Using the ‘ladder’ equations we constructed equations for mass (4.41), mo-

mentum (4.42), and energy (4.43) from who’s terms are derived the idealised
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solutions as described by equations (4.40).

6.1.2 Algorithmic Results

We developed the linearized discrete time equation into a model with discrete but

temperature dependant velocity and then showed how it can be mapped into a

set of stationary lattice points with more or less arbitrary boundaries by applying

various approximations. We further expand it to include force derived from an

approximation of a potential field over the lattice.

• We followed He and Lou’s method [6] using a simple quadrature formula (4.14)

with abscissae and weights (4.15) to prescribe a way to convert the linearized

equation to one with discrete velocities having the necessary isotropy condi-

tions.

– We develop a new quadrature rule (4.17) for the the radial part of spher-

ical co-ordinates and in particular use its first order form (4.18) to effect.

We derive a quadrature rule (4.24) based on spherical co-ordinates with ab-

scissae and weights given in expressions (4.23) and (4.25) which is quite suited

to our preferred lattice but lacks the level of isotropy desired.

• In efforts to match discrete velocity schemes to disparate lattices we developed

a number of interpolation techniques.

1. We derived two methods of interpolating physical variables at arbitrary

points in our space to nearby FCC lattice points in a way that ensures

consistency over the whole lattice. The first involves distributing values

at points within the cells of the dual of the Voronoi diagram to the vertices

of these cells which are lattice points (see figure 4.2). This is given by

equation (4.49) for octahedral cells and equation (4.48) for tetrahedral

cells. The second is a smoother mapping to the related lattice points of
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the cubic lattice given by equation (4.50) where the values assigned to the

extraneous lattice points are then redistributed to the nearest neighbours.

2. We developed a method of merging the contributions from the different

lattice points in the previous time step into a single population for a

given discrete velocity with the proviso that that velocities’ magnitude

must change. The new population is given by equation (4.54) and the

new velocity by equation (4.53). A small addition to the discrete velocity

with zero magnitude must also be made, given by equation (4.55). In

this way mass, momentum, and energy are conserved.

3. Having altered the magnitude of various discrete velocities it is necessary

to bring them back in line with the proper magnitude as prescribed by

the lattice point temperature. The method of Lagrange multipliers is

used to ensure that the minimum amount of change is made while con-

serving mass, momentum, and energy. This is achieved by solving the

liner system of equations (4.68) where functions A and B are given by

expressions (4.67), and K and J by expressions (4.62). The solution is

then given by inserting this result into equation (4.63).

• Based on the work of Shan and Chen [17,18] we incorporate a force term into

our equilibrium function by substituting velocity with a pseudo velocity given

by equation (4.69) and defining a discrete gradient-like operator on a discrete

potential given a force contribution defined by equation (4.70), subject to

conditions (4.71). We also generalise Shan and Chen’s work [17] on interacting

fluid components to the action of a continuum fluid over three dimensions upon

our seven dimensional ‘fluid’ in equation (4.73) and vice versa in equation

(4.74).

• We also generalise existing bounce back conditions to work on arbitrary curved

boundaries, the method given in equation (4.77).
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6.2 Work in Progress

6.2.1 Analysis of the Continuous Case

In the initial work in analysing the collision operators we sought to follow the meth-

ods used in gas dynamics where the restrictions on the values allowed by W can be

well understood as restrictions on the geometry of the quadrilateral composed of �v1,

�v2, �v ′
1 and �v ′

2. However, in the case of Grmela’s model we must consider all eight

velocity-like vectors and four speed-like scalars; in addition we must consider the

position-like vectors and scalars before the collision as we can no longer model the

dynamics as point-like. In spite of numerous sketches of outlandish geometry we

were not able to follow through with this approach. At last we fixed upon the idea

of a point of transfer where the two polymer chains could interact and a transfer of

momentum and energy could take place. However, the result was not satisfactorily

simplified and concerns remain that approximations made may prove invalid. No

analysis of the transfer of angular momentum was made for example. In any event,

after such considerations as were made, we had one unit vector and four scalars

so essentially six degrees of freedom over which a function varies to determine the

characteristic properties of W . This is a lot compared to the two scalars in the gas

dynamic case. It would be desirable to find a formulation that took arbitrary scalars

rather than a unit vectors as an argument at least. Possibly Ût · r̂21 and Ût · r̂43 in

this approximation would give the collision process invariance under reflection per-

pendicular to the plane of the colliding polymer chains.

Even when the exact relationships have been determined it is another matter to

frame them in a form that facilitates and simplifies the Chapman-Enskog process.

Ideally we would like something that allows the mostly symmetrical form of the first

order expansion to remain quite symmetrical after the necessary substitutions and

simplifications via Dirac delta functions are made. Hopefully that would facilitate

an attempt to finish the Chapman-Enskog procedure for the most general form of
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W allowable, or possibly some large (probably dense) subset conducive to the skew

projection method.

It may also be necessary to perform a more detailed analysis of φ(int) and φ(ext)

to ensure that the inhomogeneous part of the first order expansion is of a form that

is solvable and that is also physically meaningful.

6.2.2 Analysis of the Discrete Case

The work on the discrete case and the lattice Boltzmann like models was able to pro-

ceed much further than the continuous case. However, there are still some important

unresolved issues. It would be very desirable to complete the Chapman-Enskog pro-

cedure for some very general form of f (eq). The particular issue was the unwieldiness

of the procedure (in attempting to do it by hand many mistakes would invariably

occur). Computer algebra systems, on the other hand, could not properly handle the

tensors. Given that there is one redundant equation in our version of the procedure

we would expect to simplify to 0 = 0 with reference to the other equations. If not it

may impose an additional condition on f (eq).

On the other hand we never fully investigated what forms φ(int) and φ(ext), as

defined over the lattice points, might take. That is what might be physically al-

lowable and tractable. Since the effect of these potential energy fields is to cause

a pseudo-velocity to replace the standard velocity in our time evolution equation,

the new equation might still be possible to be analysed with the Chapman-Enskog

procedure. This is an interesting possibility for future research.

Further research on heat exchange through boundaries would also be useful.

Ideally we would like a system whereby a boundary can allow a certain amount

of heat to escape or indeed enter the fluid but also conserve mass and the no slip

condition consistently with the curved boundary.
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6.2.3 Construction of Kirkwood Models

The nature of our adaptation of Kirkwood’s work to this new problem is so ex-

perimental and novel that it is really not clear how to proceed in attempting to

derive useful results from the model. It requires an inspired leap, not merely hard

work. However, one way to proceed might be to change the definition of the oper-

ators to make them only dependent upon �Rij rather than �Rij and �Rij+1, and add

internal variables for orientation, extension, and so on. In short we could think of

the monomers in a polymer chain as stretchy rods and give them potential energy

functions dependent on internal variables that compel monomers to line up end to

end.

If some insight could be gained, and a suitable approximation found, it might be

possible to take the model to its next logical step and link the ends of the ‘chains’ to

each other by modifying potentials at the end points giving them attractive poten-

tials to two or more other end points thus creating a branched polymer. If whatever

inspired approximation we might find for the first model also applied to this one,

we would have a very general model of branched polymers, a model that included

polymer chain orientation and extension as a factor on the most fundamental level.

6.2.4 Comparison to Existing Models

If we had progressed further in the work we might have had opportunity to improve

the conceptual understanding of aspects of the discrete and continuous models,

namely f (eq), φ(int), φ(ext), W and the functions derived from them, that typify the

behaviour of the material modelled. Ideally we would like to link their functions

to the functions appearing in fluid dynamics. That was very much the direction

of Grmela’s work [2] and we would attempt to refine it further. Likewise in the

case of the discrete, lattice Boltzmann like model we could attempt to construct a

Chapman-Enskog expansion relating models (possibly using an equilibrium function
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f (eq) augmented by a potential function φ as shown in equations (4.69) and (4.70)) to

models of the conventional four dimensions of space and time so recovering equations

like those of standard fluid dynamics. This would give us a set of expressions relating

normal fluid dynamics to our models and hopefully allow us to make deductions

about the physical significance of functions that concern us as well as offering us

existing forms of functions in fluid dynamics, functions like the stress strain tensor

for instance, as guidelines and sanity tests for constructing equivalent functions for

the same materials in our models.

Of course, if all such analytical methods proved ineffectual it would still be

possible to make comparisons by building up a large body of simulations in both

our models and standard fluid dynamics for a standard set of boundary and initial

conditions, but varying the values of the key functions we seek to examine. By

looking for similar ‘points’ in our two ‘spaces’ of data results an empirical mapping

from one to the other might be obtained.

6.2.5 Coding, Simulation, Experimental Validation

Initially attempts were made to implement some of the ideas used in the lattice

Boltzmann like model in a traditional 3 dimensional fluid simulation. Some effort

was put into programming os x based cocoa applications to define initial conditions

and mould geometry’s and also to actually perform the simulation. It was our

hope that development in cocoa would make it easy to subsequently parallelise the

simulation by distributing objects over different processors. Indeed since then several

extra tools have been added to cocoa to make this easier. We were inspired to use

cocoa by the creation of the macintosh G5 based “system x” computer in Virginia

and our familiarity with the cocoa language. However, while the application for

defining the mould geometry was completed, the simulating code required extensive

debugging and further developments made much of this code obsolete long before

debugging could be finished.
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The lattice Boltzmann like simulation lends it self quite neatly to easy paral-

lelization and it would seem quite natural to code a simulator with parallel archi-

tecture in mind. The obvious and versatile choice would be a linux based system

running c++ code with open MPI. However, specialist architectures were consid-

ered quite seriously as candidates. As previously mentioned cocoa now supports

a more robust parallel processing framework called “Grand Central Dispatch” for

parallel processing on multi core machines and “Xgrid” for cluster computing. This

would substantially accelerate the development phase. This would have been our

first choice. We also considered a Cell Broadband Engine based simulation pos-

sibly based on an cluster of repurposed PS3s or a system built from components

cannibalised from them but comparatively little work was done on this as imple-

mentation would be work intensive and dependent upon the willingness to devote

resources and manpower to building a CBE based super computer for the general

use of the department.

Adapting the algorithm to run efficiently on a parallel processing system will be

an interesting challenge that should ideally be closely wedded to the hardware used.

Presumably the full spectrum of fluid dynamic simulation methods will be applica-

ble to the continuous case the vast majority of these amenable to parallelization.

However, this remains a totally unexplored problem since we made less progress in

the analysis of the continuous case.

Assuming that a body of simulation software for the continuous, discreet and

possibly Kirkwood models was created, or even if some very simple analytical so-

lutions were found, one has to give thought to exactly what body of simulation

data should accumulated to test the validity of the model. This remains very much

an open question but one possibility that comes to mind is a phenomenon where

a polymer melt disk spun at high speed will solidify with two phases, one mostly

randomly oriented and another on the other side of a certain radius where the poly-

mer chains are mostly oriented. It is worth considering further experimental set
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ups and corresponding simulations that will hopefully facilitate the calibration and

validation of the models through experimental testing, although realistically it may

be more effective to cannibalise previous experimental data to make the necessary

comparisons.

6.2.6 Optimisation

We were and are strongly aware that this project was (tasked) with the hope of

progressing towards better optimisation methods for micro-injection moulding. To

that end it was of concern to us how improved modelling might be used to optimise

the process. Our reasoning was that it is typically far easier to move forwards from

initial conditions to result rather than backwards from results to initial conditions.

So, although the possibility of using the models to make some sort of backwards

analysis was not ruled out, the most logical way to proceed seemed to be the use of

heuristic techniques such as genetic algorithms and neural nets. In these schemes a

number of parameters relating to the moulding process are allowed to vary and the

simulation repeated over and over, a number of criteria are set to judge the level of

effectiveness of a set of parameters. Thus the heuristic technique ‘homes in’ on a

good set of parameters. These parameters might be non essential (for the intended

function) mould features, the speed, temperature, density, and polymer orientation

of injected material, the rate at which the polymer melt is allowed to loose heat

through the mould surface (probably by active heating or cooling of sections of the

mould).

This step would represent the final development of the research to the stage of

application.
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6.3 Critical Assessment

Nobody is perfect is a long repeated maxim and we must not be blind to the short-

comings of our own work any more so than to its merits. Here we explore the

strengths and weaknesses of the work presented beginning with the negative as-

pects.

6.3.1 Weaknesses and Limitations

The principal weakness of the research is most likely the lack of physical validation.

No calculation has been carried through to the point where it could be compared to

existing models either through direct mathematical analysis or by running parallel

simulations.

This is in part why we do not have any definitive data on the functions (W , φ(ext),

φ(int) and f (eq)) that determine the modelled behaviour of different polymers, thus

characterising the materials. As the Chapman-Enskog calculation was never fully

completed in either the continuous or lattice model there is at present no mechanism

to compare these functions to the stress strain tensor and heat flux tensor of fluid

dynamics, which could act as a guide for their determination. Likewise, because a full

analysis of the characterising functions based on the microscopic interactions of the

polymer was is incomplete, it is not possible to relate the characterising functions

to the known microscopic dynamics of a given polymer material. A completed

simulation code would allow us to run an extensive series of simulations against

known experimental data using a heuristic algorithm to ‘home in’ on the correct

functions.

The last major issue is inherent to the model from which our work was taken.

Grmelas model had to be substantially simplified for our purposes yet in it’s initial

form it seemed to be conceptually based on interactions of unbranched polymers.

That does not necessarily mean it is incapable of modelling branched polymers.
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Some times in mathematical modelling you ‘get lucky’ and models with a few func-

tions tweaked here and there provide good approximations for systems they were

not conceived for. Had we been able to complete the work on an unbranched model

inspired by the work of Kirkwood it would have been easy to formulate a branched

version.

After all of these weaknesses of the model are considered it must still be admitted

that the model is not easy to implement. In the continuous case we have a seven

(or perhaps six if we can somehow dispense with sigma) dimensional fluid flow

simulation. In the discreet case we have a situation where each cell has 506 adjacent

neighbours and 2187 important values plus ancillary values used in the calculation.

Granted, if you take more than a few steps in most of those 506 directions you will

hit a boundary but the load on a computer must be significant.

Even when implementation is perfect there may be an issue with usability. There

is an old joke about physicists and engineers: that the physicist’s approximation is

that all infinite series converge and the engineer’s that they all converge to the first

term. Levity aside, engineers are not traditionally comfortable with research level

mathematics and while academic research engineers might cope, there are concerns

about how easily industrial engineers will ‘wrap their heads around’ the model.

In summary we have a model that is not yet linked to known materials or mod-

els, and for which no simulation data exists, that is in addition computationally

demanding and hard to understand and that has only our intuition to vouch for its

validity1.

6.3.2 Strengths, Assets, and Advantages

In spite of the conclusion in the previous section, this work has a great deal to rec-

ommend it. Fundamentally, by construction it incorporates very fully the notion of

the range of polymer orientations being a factor in the dynamics. That includes the

1Clearly we are putting a lot of weight on our intuition.
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effect of a potentially quite anisotropic distribution on viscosity and heat transport

as well as the potential for polymer chains with different orientations to be effected

differently by those properties. We are not aware of any other fluid-like model, as

opposed to Boltzmann-like or microscopic models, of polymer dynamics that can

boast that.

On the other hand the discrete, lattice based, model has the virtue of being

highly parallelizable. By simply dividing nodes of a simulation of this model be-

tween different processors of a parallel computer, lattices of arbitrary size are easily

handled, provided that a sufficiently large parallel system is available.

Also many lattice Boltzmann-like simulations are unable to implement curved

boundaries but our model has incorporated some of the latest theories on bound-

ary methods in lattice Boltzmann methods therefore making the implementation of

curved boundaries fairly simple.

In both the continuous and discreet case our models can be linked fairly directly

to the behaviour of the components of a fluid on the microscopic level. In this sense

the model could be seen as a useful bridge between microscopic and macroscopic

fluid dynamic. It may allow us to build up models from their most basic elements

or possibly to infer things about the dynamic of those elements from the behaviour

of larger systems.

I believe that the biggest possible asset, and our biggest hope, is that this research

will find application beyond polymer physics. In so much as this thesis may make a

contribution to the theory of integral equations it could potentially have application

to the range of mathematical physics. More specifically, the theory of Bolzmann-

like equations has a huge application, to plasma physics, biology, and potentially to

material science. We would like to think that the work might be used as a guide

by others, further publicising the techniques we have acquired from the work of

others as well as those we’ve developed. If nothing else we feel that the techniques

for interpolating in lattice Boltzmann methods may lead to better thermal lattice
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Boltzmann simulations and the techniques for introducing potentials might open up

new possibilities.

6.4 Recommendations

As the final duty, it falls to us to recommend how this work might best be continued

in future research. As well as recommendations on how the theoretical work could

be further developed, we’ve also seen fit to include some ideas regarding engineering

developments that might facilitate the exploitation of the theory.

6.4.1 Theoretical Work

The first and most important line of inquiry in both the discreet and continuous

case must be to finish the Chapman-Enskog expansion. Interestingly the obstacles

are quite different in each case so we will treat them separately.

• There is a certain sequence to the problems that must be solved to achieve a

Chapman-Enskog expansion of the continuous equation (3.7), namely:

1. A suitable anzats for W must be found. As mentioned, the analysis never

included the possibility that angular momentum might be transferred

between elements during collisions. More importantly it is not at all

clear what anzats for W will give a tractable kernel in the Neumann series.

Ideally we want the kernel C(n;1,1′)
B(n;1) (see equation (3.36)) when applied as

an integral operator on the left of our projection operator P (see equation

(3.47)) to give an operator with a kernel expressed as a finite sum of

orthonormal basis functions multiplied by scalars. This makes a solution

of the Neumann series tractable via matrix diagonalisation. At present it

is unclear just how this would be achieved. This is particularly difficult

when you consider the scalars by which these orthonormal functions will
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be multiplied are themselves functionals of the macroscopic variables.

Whether or not it is possible to approximate the kernel and retain this

dependency upon the macroscopic variables in a meaningful way should

also be investigated.

2. It is necessary to find a good anzats for ϕ(int) and ϕ(ext). In particu-

lar ϕ(ext) must be consistent with equation (3.4). However, this is not

expected to be very difficult.

3. Most importantly the Neumenn series must be constructed for a suffi-

ciently general projection operator and solved. The variable parameters

of the solution set must then be constrained to satisfy equation (3.47)

which will hopefully give us a unique solution.

4. This solution must be reinserted into previous equation of constraint

(3.40), as previously described, to derive a first order result of the

Chapman-Enskog expansion, namely those equations that are analogues

of the NavierStokes equation and its mass and energy counterparts.

• The Chapman-Enskog procedure can be carried out on on the discrete time

equation (4.4) using integration over velocity or the discrete time and velocity

equation (4.26) using a summation over the discreet velocities. Performing so

many integrations or summations over complicated tensor expressions is too

difficult to do by hand. A computer algebra application is needed. Unfor-

tunately, the existing products were not suitable or capable of handling sim-

plifications of complex tensor expressions. There are two likely options. One

would be to take the existing computer algebra manipulation C++ library

GiNaC and improve its tensor simplification subroutines. The other would be

writing a tensor manipulation package for the computer algebra system math-

ematica. Either way we suggest that a good place to start might be Portugal’s

paper [34]. Once the Chapman-Enskog procedure has been completed it may
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be worth trying to substitute the pseudo velocity given by equation (4.69) into

the equilibrium function and using a continuous potential function re-perform

the Chapman-Enskog procedure.

Once the Chapman-Enskog procedure is completed it will be possible to write a sim-

ulation for that model, like those used in fluid dynamics with additional dimensions.

Irrespective of that it should be possible to write code for a lattice Boltzmann like

simulation based on the work in this report. Right now it is impossible for us to

quantify the level of computing resources this would need to run feasibly, although

we expect it to be significant. However, the code should definitely be written with

parallelization in mind and with careful thought with regard to the hardware it will

run on2.

Having devised a simulation package we suggest further work into optimisation

code based upon heuristic methods, as previous described, by varying a number of

parameters including but not limited to mould geometry, rates of cooling on the

mould surface, and the initial orientation of injected polymer material.

6.4.2 Engineering Investigations

Traditionally a number of factors have been investigated when trying to optimise

injection moulding including the heat, density, and choice of the injected material,

the circumstances of its injection, and not least the mould geometry. Here we

suggest that the greater complexity of injection moulding on a micro scale warrants

investigation into methods of controlling conditions of the process even more tightly,

that is, in attempting to control aspects of the process that have not typically been

addressed. We present two ideas regarding how this might be achieved:

• By studying the dynamics of polymers in the injection mechanism it may be

possible to construct an injection mechanism which can control, as a parame-

2The School of Engineering, Design and Technology may wish to carefully consider what pro-
visions if any for high performance computing it would like to make in the next few years.
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ter, the degree of orientation (orientation as opposed to a random distribution)

in the polymer. We would expect polymers that are different in this respect

to behave differently in the way they fill the mould.

• One of the major characteristics that we expect polymer orientation to affect

is heat transport through the polymer. Consequently we can expect localised

differences in cooling, combined with the fact that it may sometimes be de-

sirable to effect mould filling by modifying viscosity with local temperature

differences. It is worth investigating how the temperature of the mould surface

could be controlled both locally and varied over time. One solution might be

to incorporate a separate system of channels into the mould in close proximity

to the mould surface. The distinct channel systems could then be pumped

with heated or cooled fluids as needed.

• Obviously the order in which different parts of the mould are filled, and the

direction of flow that fills them, is going to have an effect upon the final quality

of the part. We suggest incorporating a mechanism into the mould allowing

retractable pins or blocks to be moved in and out of the mould void in a fast

controlled manner acting as valves. In this way the flow of polymer in a given

section of mould could be blocked, begun, redirected, or reversed in the middle

of the filling process thereby hopefully improving part quality.
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Appendix A

Thermal Polymer LBM

Pseudocode

What follows in this chapter is pseudocode outlining how the techniques, particularly

those in chapter 4 could be implemented. It represents implementation on a non

parallel single core system beginning with this main function loop.

repeat

PostCollisionFrame:=DoForce:PreCollisionFrame

ForCoFluid:FluidCollisionFrame;

FluidCollisionFrame:=DoFluidLBM:FluidCollisionFrame;

PostCollisionFrame:=DoCollision:PostCollisionFrame;

PostCollisionFrame:=DoTransport:PostCollisionFrame;

PostCollisionFrame:=DoScaling:PostCollisionFrame;

Push:PostCollisionFrame onto:TimeStack;

PreCollisionFrame:=PostCollisionFrame;

until we are done

function SpreadBetweenCellsForPoint(P̄ )

(�P+, �P−, Pσ):=P̄ ;
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PlusInterpolatingCellsAndWeights:=SpreadBetweenCellsForPoint3:�P+;

MinusInterpolatingCellsAndWeights:=SpreadBetweenCellsForPoint3:�P−;

Clσ:=SigmaLowerInterpolatingCell:Pσ mod SigmaWidth;

Cuσ:=SigmaUpperInterpolatingCell:Pσ mod SigmaWidth;

Wlσ:=SigmaLowerInterpolatingWeight:Pσ;

Wuσ:=SigmaUpperInterpolatingWeight:Pσ;

repeat

repeat

W+:=GetWeightInList:PlusInterpolatingCellsAndWeights;

W−:=GetWeightInList:MinusInterpolatingCellsAndWeights;

C+:=GetCellInList:PlusInterpolatingCellsAndWeights;

C−:=GetCellInList:MinusInterpolatingCellsAndWeights;

I+:=GetInversionInList:PlusInterpolatingCellsAndWeights;

I−:=GetInversionInList:MinusInterpolatingCellsAndWeights;

CurentTarget:InterpolatingCellsAndWeights:=

ConvertTo7CellFromPlus:C+ Minus:C− AndSigma:Clσ;

CurentWeigh:InterpolatingCellsAndWeights:=W+W−Wlσ;

CurentInversion:InterpolatingCellsAndWeights:=I+;

CurentPsudoInversion:InterpolatingCellsAndWeights:=I−;

AppendList:InterpolatingCellsAndWeights;

CurentTarget:InterpolatingCellsAndWeights:=

ConvertTo7CellFromPlus:C+ Minus:C− AndSigma:Cuσ;

CurentWeigh:InterpolatingCellsAndWeights:=W+W−Wuσ;

CurentInversion:InterpolatingCellsAndWeights:=I+;

CurentPsudoInversion:InterpolatingCellsAndWeights:=I−;

AppendList:InterpolatingCellsAndWeights;

ProgressList:MinusInterpolatingCellsAndWeights;

until Minus List End
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ProgressList:PlusInterpolatingCellsAndWeights;

ToStartOfList:MinusInterpolatingCellsAndWeights;

until Plus List End return InterpolatingCellsAndWeights;

end function

function SpreadBetweenCellsForPoint3(�P )

�P ′:=L(�P -PolyhedronCentre:�P );

if IsInOctahedron:�P then

for i=1 to 6 do

AppendList:InterpolatingCellsAndWeights;

CurentWeight:InterpolatingCellsAndWeights:=

1−|P ′x|−|P ′y|−|P ′z |
6 +

�P ′·�p oct
i +|�P ′·�p oct

i |
2 ;

CurentTarget:InterpolatingCellsAndWeights:=OctCellFor:�P

Offset:i;

CurentInversion:InterpolatingCellsAndWeights:=false;

end for

else if IsInLeftTetrahedron:P then

for i=1 to 4 do

AppendList:InterpolatingCellsAndWeights;

CurentWeight:InterpolatingCellsAndWeights:=�P ′ · �p ltet
i + 1

4 ;

CurentTarget:InterpolatingCellsAndWeights:=LTetCellFor:�P

Offset:i;

CurentInversion:InterpolatingCellsAndWeights:=false;

end for

else if IsInRightTetrahedron:P then

for i=1 to 4 do

AppendList:InterpolatingCellsAndWeights;

CurentWeight:InterpolatingCellsAndWeights:=�P ′ · �p rtet
i + 1

4 ;
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CurentTarget:InterpolatingCellsAndWeights:=RTetCellFor:�P

Offset:i;

CurentInversion:InterpolatingCellsAndWeights:=false;

end for

else

you’re using non Euclidian geometry, ... don’t;

end if

RunningWeightTotal:=0;

ToStartOfList:InterpolatingCellsAndWeights;

repeat

if NOT IsFluid:GetCellInList:InterpolatingCellsAndWeights then

RunningWeightTotal:+=

GetWeightInList:InterpolatingCellsAndWeights;

RemoveThisListEntry:InterpolatingCellsAndWeights;

else

ProgressList:InterpolatingCellsAndWeights;

end if

until end of list

ToStartOfList:InterpolatingCellsAndWeights;

if RunningWeightTotal¿0 then

Adjustment:=RunningWeightTotal/(RunningWeightTotal-1);

repeat

CurentTarget:TempInterpolatingCellsAndWeights:=

GetCellInList:InterpolatingCellsAndWeights;

CurentWeight:TempInterpolatingCellsAndWeights:=

Adjustment*GetWeightInList:InterpolatingCellsAndWeights;

CurentInversion:TempInterpolatingCellsAndWeights:=true;

AppendList:TempInterpolatingCellsAndWeights;
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ProgressList:InterpolatingCellsAndWeights;

until end of list

Append:TempInterpolatingCellsAndWeights

ToList:InterpolatingCellsAndWeights;

end ifreturn InterpolatingCellsAndWeights;

end function

function DoForce(CollisionFrame, FluidCollisionFrame)

Potential:=CalculatePotential:CollisionFrame;

for all Cell do

for i=1 to 168 do

φ (r̄ + ēi):=Potential[CellToPlusAndMinus:Cell+offset6[i]];

end for

for i=1 to 12 do

ρ̃ (�r+ + �e+i):=

FluidCollisionFrame[CellToPlus:Cell+offset3[i]].density;

end for

dp̄p

dt :=− 1
28

∑168
i=1

φ(r̄+ēi)ēi

ē2
i

;

ρ(r̄, σ):=CollisionFrame[Cell].density;

dp̄p

dt :+=−ψp(ρ(r̄, σ))Gpf
∑12

i=1 ψf (ρ̃(�r+ + �e+i))(�e+i,�0);

CollisionFrame[Cell].force:=dp̄p

dt ;

end for

for all FluidCell do

for all MinusCell & SigmaCell & i=1 to 12 do

ρ (�r+ + �e+i, �r−, σ):=

CollisionFrame[ConvertTo7CellFromPlus:(FluidCell+offset3[i])

Minus:MinusCell AndSigma:SigmaCell].density;

end for
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ρ̃(�r+):=FluidCollisionFrame[FluidCell].density;

d�pf

dt :=−ψf (ρ̃(�r+)Gfp
∑12

i=1 ψp

(∑
�r−,σ ρ(�r+ + �e+i, �r−, σ)

)
�e+i;

FluidCollisionFrame[FluidCell].force:=d�pf

dt ;

end for

return CollisionFrame;

end function

function DoCollision(CollisionFrame)

for all Cell do

if IsFluid:Cell then

NewCell:=DoCellCollision:CollisionFrame[Cell];

else if IsInlet:Cell then

NewCell:=CollisionFrame[Cell];

else

NewCell:=Zero;

end if

NewCollisionFrame[Cell]:=NewCell;

end for

return NewCollisionFrame;

end function

function DoCellCollision(Cell)

NewCell:=zero;

for all −1 � ix, · · · , jz, k � 1 do

T :=Cell.temperature;

�v+ =
√

3T
7
�i;

�v− =
√

3T
7

�j;

νk =
√

3T
7 k;
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f :=Cell.populations[ix, · · · , jz, k];

Ū :=Cell.velocity;

ρ:=Cell.density;

dp̄
dt :=Cell.force;

Ū := Ū + τ
ρ

dp̄
dt ;

f (eq) :=
16ρ4−(|�i|2+|�j|2+k2)

2187

(
1 +

7
T

�Ui · �vi +
cijkl

T 2
�Ui · �vj

�Uk · �vl

− 7
2T

�Ui · �Ui −
3hklimjm

7T 2
�Ui · �Uj

�Uk · �vl +
hijklmn

T 3
�Ui · �vj

�Uk · �vl
�Um · �vn

) ;

f ′ = f − 1
τ

(
f − f (eq)

)
;

NewCell.populations[ix, · · · , jz, k]:=f ′;

end for

return NewCell;

end function

function DoTransport(CollisionFrame)

NewCollisionFrame:=zero;

for all cell do

if IsFluid:Cell or IsInlet:Cell then

for all −1 � ix, · · · , jz, k � 1 do

if (�i,�j, k) = (�0,�0, 0) then

NewCollisionFrame[Cell].population[(�0,�0, 0)]:+=

CollisionFrame[Cell].population[(�0,�0, 0)];

Skip rest of this time through the loop;

end if

P̄ :=PositionOfCell:Cell;

T :=CollisionFrame[Cell].temperature;

�v+ =
√

3T
7
�i;

�v− =
√

3T
7

�j;

ν =
√

3T
7 k;
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|v̄a|:=
√

v̄2
+ + v̄2− + ν2;

fa:=CollisionFrame[Cell].population[(�i,�j, k)];

λ:=BounceBackOf:�v+ From:P̄ ;

μ:=PsudoBounceBackOf:�v− From:P̄ ;

P̄ ′ := P̄ + ((2λ − 1)�v+, (2μ − 1)�v−) δt;

InterpolatingCellsAndWeights:=SpreadBetweenCellsForPoint:P̄ ′;

repeat

TargetCell:=GetCellInList:InterpolatingCellsAndWeights;

TargetWeight:=

GetWeightInList:InterpolatingCellsAndWeights;

TargetInversion:=

GetInversionInList:InterpolatingCellsAndWeights;

PsudoTargetInversion:=

GetPsudoInversionInList:InterpolatingCellsAndWeights;

if λ > 0 XOR TargetInversion then

�i′:=−�i;

else

�i′:=�i;

end if

if μ > 0 XOR PsudoTargetInversion then

�j′:=−�j;

else

�j′:=�j;

end if

|v̄ ′
a|:=NewCollisionFrame[TargetCell].speed[(�i′,�j′, k)];

f ′
a:=TargetWeight

*NewCollisionFrame[TargetCell].population[(�i′,�j′, k)];

|v̄ ′′
a |:=

v̄ 2
a fa+v̄ ′2a f ′a

|v̄a|fa+|v̄ ′a|f ′a ;
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f ′′
a := (|v̄a|fa+|v̄ ′a|f ′a)2

v̄ 2
a fa+v̄ ′2a f ′a

;

f0:=
(|v̄a|−|v̄ ′a|)2faf ′a

v̄ 2
a fa+v̄ ′2a f ′a

;

NewCollisionFrame[TargetCell].speed[(�i′,�j′, k)]:=|v̄ ′′
a |;

NewCollisionFrame[TargetCell].population[(�i′,�j′, k)]:=f ′′
a ;

NewCollisionFrame[TargetCell].population[(�0,�0, 0)]:+=f0;

ProgressList:InterpolatingCellsAndWeights;

until ListExhasted:InterpolatingCellsAndWeights

end for

end if

end for

return NewCollisionFrame;

end function

function DoScaling(CollisionFrame)

for all Cell do

if IsFluid:Cell then

NewCell:=DoCellScaling:CollisionFrame[Cell];

else if IsInlet:Cell then

NewCell:=CollisionFrame[Cell];

else

NewCell:=Zero;

end if

NewCollisionFrame[Cell]:=NewCell;

end for

return NewCollisionFrame;

end function

function DoCellScaling(Cell)
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for all −1 � ix, · · · , jz, k � 1 do

v̄�i,�j,k:=Cell.speed[(�i,�j, k)]* ̂(�i,�j, k);

f�i,�j,k:=Cell.population[(�i,�j, k)];

end for

ρ:=
∑

�i,�j,k f�i,�j,k;

ρŪ :=
∑

�i,�j,k v̄�i,�j,kf�i,�j,k;

ρE:=
∑

�i,�j,k v̄2
�i,�j,k

f�i,�j,k;

Ū :=ρŪ
ρ ;

E:=ρE
ρ ;

Ū ′:=(U1, · · · , U6);

T :=E − Ū ′2;

NewCell=Zero;

NewCell.density:=ρ;

NewCell.velocity:=Ū ′;

NewCell.temperature:=T ;

for all −1 � ix, · · · , jz, k � 1 do

v̄′�i,�j,k:=
√

3T
7 (�i,�j, k);

K�i,�j,k:=αv̄ ′
�i,�j,k

· v̄�i,�j,k + βv̄ ′2
�i,�j,k

v̄ 2
�i,�j,k

+ γ;

J�i,�j,k:=αv̄ ′2
�i,�j,k

+ βv̄ ′4
�i,�j,k

+ γ;

end for

for all 1 � ξ · · · ζ � 7 such as needed do

Aξ···ζ :=
∑

�i,�j,k

v̄′�i,�j,k;ξ
···v̄′�i,�j,k;ζ

2J�i,�j,k
;

Bξ···ζ :=
∑

�i,�j,k

v̄′�i,�j,k;ξ
···v̄′�i,�j,k;ζ

K�i,�j,kf�i,�j,k

J�i,�j,k
;

end for

SolveSystem:

0 = B − ρ + Aλ0 + Aiλi + Aiiλ8

0 = Bi − ρU ′
i + Aiλ0 + Aijλj + Aijjλ8

0 = Bii − ρE + Aiiλ0 + Aiijλj + Aiijjλ8

For:(λ0, �λ, λ8);

for all −1 � ix, · · · , jz, k � 1 do
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f ′
�i,�j,k

:=
2K�i,�j,kf�i,�j,k+λ0+λ̄·v̄′�i,�j,k

+λ8v̄ ′2�i,�j,k

2J�i,�j,k
;

NewCell.population[
(
�i,�j, k

)
]:=f ′

�i,�j,k
;

NewCell.speed[
(
�i,�j, k

)
]:=
∣∣∣v̄ ′

�i,�j,k

∣∣∣;
end for

return NewCell;

end function
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