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Abstract 
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The proliferation of modern wireless networks increases demand for high capacity and 
throughput in order to provide faster, more robust, efficient and broadband services to end users. 
Mobile WiMAX and LTE are examples of such networks in which for some cases they have 
exposed limited connectivity due to harsh environment. Relay stations are preferred to 
overcome problems of weak or no access for such network devices, that are placed in specific 
positions to maintain high quality of data transfer at low cost and provide the required 
connectivity anywhere anytime. These stations should be equipped with an antenna system 
capable of establishing communication between base station (backhaul link) and end users 
(access link). 
 
This thesis focuses on the design and development of a new antenna system that is suitable for a 
relay-based wireless network. Planar geometries of microstrip patch antennas are utilized. The 
antenna system comprises two antenna modules: a new design of a single antenna for access 
link and a new design of an antenna array for backhaul link realization. Both antenna 
specifications are compatible with the IEEE802.16j protocol standard. Hence, relay station 
should be capable of pointing its radiation pattern to the base station antenna, thus to achieve the 
desired radiation pattern of the relay station, a new beam-forming module is proposed, designed 
and developed to generate the proper radiation pattern. The beam-forming module incorporating 
digital phase shifters and attenuator chips is fabricated and tested. The optimization process 
using the Least Mean Square (LMS) algorithm is considered in this study to assign the proper 
phase and amplitude that is necessary to each radiation element excitation current, to produce 
the desired steered radiation pattern.  
 
A comprehensive study on the coupling effects for several relative positions between two new 
backhaul and access link antenna elements is performed. Two new antenna configurations for 
coupling reduction are tested and the simulated and measured results in terms of antenna 
radiation performances were compared and commented. 
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CHAPTER 1

INTRODUCTION 
 

 
 

1.1 BACKGROUND AND OBJECTIVES 
 
Modern wireless networks, such as mobile WiMAX (Worldwide Interoperability for 

Microwave Access) and LTE (Long Term Evolution), offer high capacity and 

throughput in order to provide efficient and broadband services to end users. In cases of 

limited connectivity, due to environmental circumstances, Relay Stations are chosen to 

overcome problems of weak or no access. Relay Stations are network devices put in 

specific positions to maintain high quality of data transfer at low cost and provide 

connectivity anywhere anytime. Such devices should be equipped with an antenna 

system capable of establishing communication with Base Station (backhaul link) and 

with end users (access link).  

In this thesis an antenna system suitable for a Relay based wireless network is designed 

and developed. The antenna system comprises two radiation modules: a single antenna 

for access link realization and an antenna array for backhaul link realization. Both 

antenna specifications are compatible with IEEE802.16j protocol. In addition the Relay 

Station should be capable of pointing its main lobe of radiation pattern to the Base 

Station antenna. In order to achieve the desired radiation pattern shape, a beam forming 

module is designed and developed to define proper radiation pattern. The beam forming 
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module incorporates digital phase shifters and attenuator chips. Least Mean Square 

(LMS) algorithm is generated and assigned proper phase and amplitude to each 

radiation element excitation current, to produce a pattern that points at Base Station.  

Another point of interest of this thesis is the coupling between access and backhaul 

antenna. Coupling is a phenomenon that degrades the performance of a radiating 

element due to the presence and interaction of another one in the close environment. 

Two new antennas for access and backhaul link are designed and developed in this 

thesis. Two antenna configurations are examined and coupling is measured in terms of 

frequency. Results are depicted and commented. 

To conclude, the main contributions of the present work can be summarized as follows: 

• New design of a single antenna element operating at 3.5GHz frequency band 

with average gain of 9dB for access link realization    

• New design of a beam steering antenna array for backhaul link realization  

• New design of the feeding network for the beam steering antenna array 

• New method for coupling reduction between the access antenna and the 

backhaul antenna 

Let us mention here that both access and backhaul antennas operate in the same 

frequency band thus making their utilization beneficial for network operators and that 

both antennas have been designed based on the air interface of IEEE802.16j standard in 

terms of gain and bandwidth. Standard’s specifications include 9dB gain and 500MHz 

bandwidth for access antenna and 18dB gain and 500MHz bandwidth for the backhaul 

antenna. The proposed antenna system aims to be incorporated with a Relay Station 

providing a flexible and easy to install network device.  
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1.2 MICROSTRIP ANTENNA FUNDAMENTALS 

In this chapter the basic structure and features of microstrip antennas together with 

some advantages and drawbacks are outlined. Feeding techniques of such antennas are 

described and a comparison is performed among them. The issue of matching between 

the antenna and the transmission line is also mentioned providing mathematical 

equations. Transmission line and cavity model are denoted for more accurate 

calculations of dielectric constant and antenna’s dimensions. Furthermore expressions 

of electric and magnetic field excited from a microstrip antenna are proved and outlined. 

In addition the radiating behavior of some basic antenna shapes and variations are 

depicted and commented. Methods of frequency tuning and circular polarization 

excitation are stated. Moreover chapter 1 includes advances in microstrip antennas in 

terms of bandwidth enhancement using stacked and fractal geometries. Patch shapes are 

also extensively investigated to provide broadband behavior. In addition mathematical 

formulas are provided where necessary to better support and prove the outlined results. 

Microstrip technology has been investigated in order to define possible shapes and 

configurations for the design and development of the new access and backhaul 

antennas. 

1.2.1 Basic concepts of microstrip antennas  

A microstrip patch antenna is consisted of a radiating element of arbitrary shape which 

is placed on a dielectric substrate. The last is mounted on a ground plane. Fig. 1.1 shows 

the case of a rectangle microstrip patch antenna. 
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Figure 1.1: Basic structure of a microstrip patch antenna. 

 
 
There is a specific relation between the patch’s dimensions and the wavelength in free 

space: If L is the length of the patch then 05.03333.0 λλο << L  where ολ  is the free 

space wavelength [1]. Also it is selected t<< ολ  (t is the patch thickness). The height h 

of the dielectric substrate takes values: 00 05.0003.0 λλ ≤≤ h and the dielectric constant 

varies between: 122.2 ≤≤ rε . 

A patch antenna can take many shapes such as rectangular, triangular, circular, and 

elliptical as shown in Fig. 1.2. 

 

 
Figure 1.2: Different shapes of patch elements. 

 
 

Feeding 
point 
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It is known that an antenna performs better if it is characterized by a thick dielectric 

substrate with low dielectric constant. Under these conditions the antenna has better 

efficiency and radiation but greater size. In order to reduce the size, materials with 

higher dielectric constant are used [2]. This leads to less efficiency and narrower 

bandwidth. So a compromise must be established between the antenna dimensions and 

operation performance. 

 
 

1.2.2 Advantages and disadvantages 

Microstrip antennas are widely used in wireless and satellite communications because 

they provide some excellent characteristics such as [2], [3]: 

 

 Light weight. 

 Planar configuration. 

 Low cost of fabrication. They can be produced in large quantities. 

 Support different types of polarization 

 They can be easily connected to microwave circuits. 

 Ability to operate in a variety of frequencies. 

 

However patch antennas endure from some drawbacks which can be summarized as [3], 

[4]: 

 Narrow bandwidth 

 Low gain and efficiency 
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 Surface wave excitation 
 
 

1.2.3 Feeding techniques 

Several feeding techniques have been introduced to provide effective antenna operation. 

A feeding technique is a method of supplying the antenna with power in order to 

efficiently radiate [2]. Discontinuities and mismatched elements provide high losses and 

should be taken into consideration. The most popular techniques are presented in the 

text that follows. 

 
 

I)  MICROSTRIP LINE 

As it is shown in Fig. 1.3, a conducting microstrip line is designed on the substrate and 

connected to the radiating element providing a planar structure. The width of the line is 

smaller than that of the patch. 

 

 
Figure 1.3 Feeding technique using a microstrip line. 
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In the point of connection between the microstrip line and the patch antenna, good 

matching should be provided in order to reduce losses. 

 

II) COAXIAL FEED 

In this case a coaxial cable is joined to the antenna. A coaxial cable is consisted of an 

inner conductor which is surrounded by a dielectric material. The last is covered by an 

outer conductor. The inner conductor is connected to the radiating element while the 

outer one is wrapped by an insulating material. The described feeding technique is 

depicted in Fig. 1.4. 

 
 

 
Figure 1.4: Coaxial cable fed patch antenna. 

 
An advantage of the aforementioned technique is that we can choose the point of 

connection between the cable and the antenna in order to succeed the best matching. On 

the other hand the above configuration appears difficulties in simulation and provides 

narrow bandwidth [3]. 

Another category of feeding techniques comprises non contacting methods. In this case 

the feeding process is achieved by electromagnetic coupling. These methods are 

described below. 
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III) APERTURE COUPLED FEED 

The scheme below shows the configuration of an aperture coupled feed microstrip 

antenna. The characteristic point here is the use of two substrates which are separated 

by a ground plane (Fig. 1.5). A microstrip line is placed on the bottom side of the lower 

substrate, while the upper substrate carries the radiating element. A slot is opened in the 

ground plane through which electromagnetic coupling is achieved. 

 
 

Figure 1.5: Aperture coupled feed; (a) Cross section (b) Top view. 
 
The size, location and shape of the slot, specifies the amount of coupling. This setup 

leads to increased thickness of antenna. According to the theory [2], better antenna 

operation is performed when the lower substrate has a high dielectric constant and the 

upper one is thicker and has a lower dielectric constant. 

 

Patch
Substrate 2 

Ground plane 
with slot 

Substrate 1 
(a) 

(b) 

Patch Slot 

Microstrip line 

Microstrip line 
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IV) PROXIMITY COUPLED FEED 

This method appears similarities with the previous one except that now the ground 

plane is missing. A microstrip line is designed on the lower substrate and the antenna 

element is mounted on the upper substrate (Fig. 1.6). 

 

 
Figure 1.6: Proximity coupled feed. 

 
 
The above methods are summarized in the table that follows [1]: 

 

Table 1.1: Comparison of feeding methods. 
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1.2.4 Impedance matching 

The point where the antenna is connected to the feeding cable introduces losses which 

degrade the amplitude of power that arrives at the antenna. The efficient power 

transportation to the antenna element means that these discontinuity losses are 

minimized. When losses are at a low level, the circuit and the antenna are well matched 

[5]. Below follows the condition of antenna matching. 

Let us consider that the antenna is equivalent to complex impedance AZ  where: 

 

                                                    AAA jXRZ +=                                                        1.1   

 

AR   is the resistive part of antenna impedance. 

AX  is the reactive part of antenna impedance. It represents the energy stored at the near 

field region of the antenna. 

 
                                                   LrA RRR +=                                                         1.2 

 
 

where rR  is the radiation losses (wanted) and LR  is the ohmic losses. 

For simplicity reasons let us assume that the antenna is lossless ( LR =0) and AX =0. 

The antenna is fed by a source gV which has real impedance gR  as shown in Fig. 1.7: 
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Figure 1.7: Source load circuit. 

 
The power absorbed by resistance rR (antenna) is: 

 

                                               )Re(
2
1 ∗⋅= IVP A                                                       1.3 
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Thus the power would be:   
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The transferred power would be maximum if: 

                                                           0=
∂
∂

rR
P                                                        1.5 

After calculations it is derived that: gr RR = .  

Generally if the source and the antenna have complex form, the equation for impedance 

matching is:  
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                                                              ∗= gA ZZ                                                         1.6 

1.2.5 Models of analysis 

There are some methods to analyze patch antennas in order to define useful parameters. 

The most popular of them are: The transmission line model and the Cavity model. 

1.2.5.1 Transmission line model 
 
The antenna is depicted as a transmission line of length L and width W, with two slots 

at its edges as shown in the Fig. 1.8. The slots abstain distance L. 

 

 

                                                  (a)     (b) 

Figure 1.8: Transmission line model; (a) Microstrip line structure (b) Field lines of 
strip conductor. 

 
Around the antenna is developed a fringing field because of the finite dimensions of the 

transmission line. This field presents the antenna to be electrically greater than it is.  

Fringing field is low if h/L <<1 but should be taken into consideration for the evaluation 

of the resonant frequency. The transmission line model leads to a more accurate 

expression for the dielectric constant that contains the fringing fields. The effective 

dielectric constant is defined as [2]: 
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Where reffε  is the effective dielectric constant 

            rε    is the dielectric constant of substrate 

             h    is the height of dielectric substrate 

             W  is the width of the patch  

 
 

 
Figure 1.9: Top view of microstrip antenna. 

 

 
Due to fringing fields, the patch antenna looks electrically larger by 2×ΔL as can be 

seen in Fig. 1.9. This length extension can be evaluated by the equation [6]: 
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ε
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So the effective length of the patch would be: 
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                                                   LLLeff Δ+= 2                                                        1.9 

 

The resonant frequency is connected to the effective length by [3]: 

 

                                                
reff

eff f
cL
ε02

=                                                      1.10 

 

James and Hall [7] gave an expression for the resonance frequency for a rectangular 

patch antenna for any mode. 
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reffε
                                      1.11 

 

where m and n are mode indicators. 

 

 

1.2.5.2 Cavity model 
 
In cavity model the area between the patch and the ground plane is represented as a 

cavity. The upper and lower sides are perfect electric walls which mean that no 

transverse component of magnetic field exists there. This assumption stands for thin 

substrates [4]. 
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Figure 1.10: Charge distribution on radiating elements and ground plane. 

 
As it is seen in Fig. 1.10, a charge distribution is formed on the upper and lower side of 

the radiating element and the ground plane. The charge movement is defined by the well 

known attractive and repulsive mechanisms [8]. A high concentration of charge is 

centered at the bottom surface of the patch while less charge is flowing on the top side. 

As result no magnetic field component is formed at the patch edges. Thus the region 

beneath the patch can be modeled as a cavity with its four sidewalls as perfect magnetic 

surfaces. The field lines are mostly concentrated in the area between the patch element 

and the ground plane. 

The effective loss tangent is defined as:  

 

                                                           
T

eff Q
1

=δ                                                          1.12 

where TQ  is the antenna quality factor expressed as: 

 

                                                  
rcdT QQQQ

1111
++=                                                 1.13 
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where dQ  is the quality factor of the dielectric, cQ  is the quality factor of the conductor, 

and rQ is the factor for radiation. The total effective loss tangent would be: 

                                               
Tr

r
eff W

P
h ω

δδ +
Δ

+= tan                                            1.14 

where ,
Q
1tan

d

=δ  ,
Q
1

h c

=
Δ  

rTr

r

Q
1

W
P

=
ω

 

 

Δ is the skin depth of the conductor , Pr is the power radiated from the patch, WT is the 

energy stored in the patch and ωr=2πfr where fr the resonant frequency. 

 

1.2.6 Field modes 

In this section the electric and magnetic fields excited in the area below a patch antenna 

are presented [2]. Fig. 1.11 represents a rectangle patch antenna of dimensions L and W 

placed upon a substrate of thickness h. 
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Figure 1.11 System coordination of a rectangular patch placed on dielectric substrate. 
 
 
The height of substrate is very small, so the electric field is perpendicular to the patch’s 

surface. Thus only TM modes are considered inside the substrate. 

 

In order to define the form of electromagnetic field in the region below patch antenna, 

the magnetic potential “A” needs to be evaluated. The evaluation will be considered at x 

axis. 

“A” satisfies the homogenous wave equation: 

 

                                           022 =+∇ xx AkA                                                    1.15 

 

The solution of the above equation has the form of: 

 

h 

L 

W
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)]sin()cos()][sin()cos()][sin()cos([ 332211 zkBzkAykBykAxkBxkAA zzyyxxx +++=   1.16                   

zyx kkk ,,  are wave numbers. Electric and magnetic field are related to xA through the 

following equations: 
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The boundary conditions would be: 
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Applying the boundary conditions into field equations it is derived that: 

 

01 =B  and 
h

mkx
π

= ,  m=0,1,2,… 
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02 =B  and 
L

nky
π

= , n=0,1,2,… 

 

03 =B  and 
W
pkz
π

= , p=0,1,2,… 

 

Thus the magnetic field equation would be: 

 

                                    )cos()cos()cos( zkykxkAA zyxmnpx =                                      1.19 

 

It is derived that zyx kkk ,,  satisfy the equation: 
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where: ε is the dielectric constant of substrate and µ the permeability of the material. 

 

It is known that 
k
2π

=λ  ,  2
z

2
y

2
x kkkk ++=  , 

λ
=

cf  where c is the speed of light, f the 

resonant frequency and λ the wavelength. 

The resonant frequency of the mnp mode would be: 

      
μεπ2

1
=mnpf 222 )()()(

W
p

L
n

h
m πππ

++                                                         1.21 

 

The electric and magnetic fields inside dielectric would then be: 
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1.2.7 Microstrip antenna: Operation in tunable frequency 

Patch antennas have the ability to emit at a range of frequencies by adding some special 

features to the configuration. The operation frequency of a patch antenna can be varied 

using the following methods: 

 

 Varactor diodes: It is a type of diode where its capacitance is dependent of the 

voltage applied to its edges. When voltage is increased, the capacitance is also 

enlarged and so the resonant frequency. It appears that voltage alteration affects 

the dielectric constant of substrate. Fig. 1.12 depicts a patch configuration 

together with diodes. Diodes are put in a way that connect patch and ground 

plane. 
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 Shorting pins: They connect patch and ground plane. They appear inductance 

affecting the effective dielectric constant. Fig. 1.13 below shows the format: 

 

 

 

 

 

 Air gap: The introduction of a air gap between the substrate and the ground 

plane, will change the effective dielectric constant. The main configuration is 

depicted in Fig. 1.14: 

 

shorting pins 

feed 

feed 

varactor diodes 

εr 

Figure 1.12: Patch antenna plus diodes. 

Figure 1.13: Patch antenna plus shorting pins. 
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Figure 1.14: Patch with air gap. 
 

effε decreases as Δ increases. So resonant frequency can be set to a desired value by 

varying air gap [7]. 

From theory it is derived that: 
eff

r
nm ff

ε
ε)0()( =Δ                                                     1.23 

where:                                           
)(
)(

r

r
eff t

t
ε

εε
Δ+
Δ+

=                                                       1.24 

and )0(nmf is the resonant frequency when Δ=0. 

 

It is shown that when Δ increases, effε lowers and nmf is raised. 

 

1.2.8 Advances in microstrip antennas 

Microstrip antennas suffer from narrow bandwidth which limits the ability for 

broadband emission. D. Yoharaaj, Raja Syamsul Azmir and Alyani Ismail proposed an 

antenna configuration in order to overcome the problem [9]. The configuration is shown 

in Fig. 1.15: 

ground plane 
coaxial feed 

air gap spacer 

substrate 

t
Δ 

εr

conducting patch 
d
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A stacked geometry including two patches and two substrates is designed. Coaxial cable 

is used for the excitation. 

 

The dielectric constant as a function of thickness is: 
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Where 21 dadt hhhh ++= and a2= 0.16605, a4=0.00761, b2= 0.09142 and k0=2π/λ 

 

The bandwidth would be: 
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Thickness of 
dielectric hd2 

Thickness of 
dielectric hd1 

Thickness of 
air gap ha 

Thickness of 
copper td2 

Thickness of 
copper td1 

Thickness of 
copper tg 

Figure 1.15: Experimental setup. 
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Simulations have shown that using an antenna of multiple substrates (Fig. 1.15), 

bandwidth is enhanced and the antenna acquires broadband features. 

 

Fairus, Yusof, Pohan and Chuan worked on fractal antenna and stacked configuration in 

order to provide a functional scheme with wide bandwidth [10]. This configuration is 

depicted in Fig. 1.16. An increase in thickness leads to unwanted surface waves, 

spurious radiation and cross polarization. Thus substrate’s thickness should be limited 

so that the antenna would operate efficiently. 

 

 

 

Low cross polarization can be achieved by using a lower dielectric of high constant and 

an upper dielectric of low constant. Such a configuration leads to low level of cross 

polarization. Driven and parasitic patches have fractal geometry. A fractal object is 

constructed of subunits and sub subunits that look like the whole object. Fig. 1.17 shows 

fractal geometry. 

 

 

(a) (c) (b) 

Upper dielectric 

Driven patch 

Lower dielectric 

Ground plane 

coaxial feed 

Parasitic patch 

Figure 1.16: Proposed setup. 

Figure 1.17: Patch Antenna; (a) with zero (b) first (c) second iteration. 
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Feed of parasitic patch is achieved by electromagnetic coupling. Fig. 1.18a and 1.18b 

below demonstrates the antenna performance with zero and one iteration. An increase in 

the number of iterations causes bandwidth increase. 

 

(a) 

 

(b) 

Figure 1.18: Return loss as a function of frequency for antenna; (a) with zero and (b) 
one iteration. 
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Microstrip antennas have the inherent drawback of narrow bandwidth [11]. Some 

methods to overcome this unwanted feature are: 

1) Using a higher dielectric constant. 

2) Meandering of the ground plane. 

3) Inserting suitable slots in the radiating patch. 

4) Using shorting stacked patches. 

Elkamchouchi and Abouelseoud [12] focused their research on fractal geometry of 

patch antenna and how it could provide larger bandwidth.  

 

Two types of antenna were simulated using FDTD method (Finite Difference Time 

Domain). A triangular patch and a Sierpinski patch were modelled (Fig. 1.19). 

 

 

 

                                        Stage 0                                          Stage 1                                               Stage 2 

 

Figure 1.19: Sierpinski gasket model. 
 

S11 parameter is derived for both cases (single triangular patch and Sierpinski gasket). A 

clear bandwidth enhancement is noticed proving that fractal geometry can increase 

bandwidth. S11 is -10dB at 23GHz for the case of the single patch antenna while the 

Sierpinski gasket model (stage 2) reaches -65dB. 
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Saksiri and Krairiksh proposed a serrated antenna in order to achieve a better quality of 

matching [13]. The experimental configuration is shown in Fig. 1.20. 

 

 

Figure 1.20: The proposed antenna; (a) upper (b) sidelong view (c) serration of fed and 
coupled patch. 
 
 
As it is clear from Fig. 1.20, there are two patches, the fed and the coupled one. The 

feeding is succeeded by electromagnetic coupling. The matching between the fed and 

coupled patch depends on the serration depth, number of serrations (n) and distance 

between serrations. Results have shown that by increasing the number of serrations; 

return loss reaches lower values which lead to better matching conditions. Moreover 

bigger distance between the patches leads to decreased return loss.  

 

Kumar and Bhooshan [14] focused their research on techniques to widen the bandwidth 

of a patch antenna. They used two antennas a driven and a parasitic one. The driven 

patch was fed and the parasitic one was stimulated by electromagnetic coupling.  
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The bandwidth of the antenna is given by the form:  

    

                                                
VSWRQ

1VSWRBW −
=                                                        1.27 

 where Q is the quality factor and: 
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=
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VSWR                                                           1.28 

   

where Γ is the reflection coefficient which is defined as the measure of the reflected 

waves at the feeding point of the antenna. 

Γ equals to:  

                                                
0

0
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Z
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+
−Ζ

=Γ                                                     1.29 

where 0Z is the characteristic impedance of the feed line and Zin the input impedance at 

the feeding point. 
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Figure 1.21: Proposed design and operation of two coupled patches; (a) Setup (b)VSWR 
diagram of two coupled radiators. 
 

Fig. 1.21a represents the experimental disposition and Fig. 1.21b shows the results for 

individual and coupled resonators. It is clear that coupling provides larger bandwidth. 

An increase in substrate’s thickness could also lead to wider bandwidth but also to the 

development of unwanted surface waves and spurious radiation. 

 

A. K. Gautam and B. R. Vishvakarma, investigated a narrow band but frequency 

tuneable antenna. The microstrip antenna includes two MOS capacitors at its radiating 

edges [15]. The experimental disposition is described in Fig. 1.22: 

 

εr
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h
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f1 f2 

VSWR 
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Figure 1.22: View of proposed antenna. 
 
A MOS capacitor is consisted of a metal surface placed on an insulator which is 

mounted on a semiconductor as shown in Fig. 1.23: 

 

 

Figure 1.23: MOS capacitor configuration. 
 
It is proved that a change in voltage of the capacitor, differs the electrical length of the 

patch and hence the resonant frequency.  

 

From theory it is known that the capacity of a MOS capacitor equals to: 

 

                                           
2/1

2

)]
2

(1[
αεqN

CV
CC

ig

i
mos

+
=                                          1.30 

where iC is the insulator capacitance, ε is the permittivity of the semiconductor, AN  is 

the accepter concentration and q is the charge of electron. 
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Microstrip antenna has an equivalent RLC circuit described in Fig. 1.24: 

 

 

Figure 1.24: RLC equivalent circuit. 
 
where R,L,C describes the patch antenna and sC is the fringing capacitance. 

 

                                           es )W)(
h
L(01668.0C ε

λ
Δ

ω
=                                   1.31 

where W, L and h are dimensions denoted in Fig. 1.22, ΔL is the length extension due 

to fringing fields, εe is the effective dielectric constant. 

 

The total capacitance of the patch antenna plus the MOS capacitors would be:    

                                          CCCC smostotal ++= 2                                         1.32 

The resonance frequency is:  

                                     
)2(2

1
CCCL

f
smos

r ++
=

π
                                   1.33 

which clearly indicates the dependency of frequency from capacitance and thus voltage. 

 

J. A. Ansari, Satya Kesh Dubey, Prabhakar Singh, R. U. Khan, and Babau R. 

Vishvakarma suggested an H shaped microstrip antenna with dual frequency operation 

[16]. Fig. 1.25 shows the scheme of the antenna. 
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Figure 1.25: H shaped antenna. 
 
It is clear that the two non radiating edges are cut creating notches. Thus a change to 

surface current density occurs leading to variation in electric and magnetic fields along 

dimensions w and d. 

 

A rectangular patch corresponds to a parallel RLC circuit depicted in Fig. 1.26: 

 

 

Figure 1.26: RLC equivalent circuit. 
 

where   
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2
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and y o is the feed location, Qr is the quality factor, εe is the effective dielectric constant 

h the substrate’s thickness and L, W the dimensions of the patch element. 

 The input impedance of the above RLC circuit equals to: 

 

                                             
1

11

11
1

Cj
LjR

Z p

ω
ω

++
=                                        1.35 

The appearance of the notches, adds an inductance ΔL and a capacitance ΔC to the 

equivalent circuit as shown in Fig. 1.27.  

 

Figure 1.27: Equivalent circuit of H shaped patch antenna. 
 

                                      
c
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L
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ZL π
π tan(
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1

−
=Δ ),                            1.36a 

                                                  sC
w
dC )(=Δ                                               1.36b     
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 where sC is the gap capacitance between two side strips and Z1 is the characteristic 

impedance of a microstrip line of width w1. 

 

The new values of inductance and capacitance due to the introduction of notches would 

be:  

                                                     LLL Δ+= 212                                                1.37 

 

                                                   
CC

CCC
Δ+

Δ
=

1

1
2 2

                                               1.38 

And the input impedance: 

 

                                              
2

21

11
1

Cj
LjR

ZH

ω
ω

++
=                                     1.39 

 

From the above forms VSWR, Γ, and Return Loss are calculated. Return Loss diagram 

is carried out with d varying between 5 and 12mm. Diagrams depicted in Fig. 1.28, 

prove dual frequency operation. 

   

Figure 1.28: Return loss diagrams with varying d. 
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An increase in w affects the resonance frequency leading it to lower values as can be 

noticed in Fig. 1.29. 

 

 

Figure 1.29: Frequency vs. w dimension diagram. 
 

Many feeding mechanisms have been proposed in the literature in order to succeed 

wideband antenna properties [17], [18]. An L shaped microstrip feeding line, combined 

with a patch antenna has been investigated and can be seen in Fig. 1.30.  

 

                 

(a)                                                                    (b)    

Figure 1.30: Proposed antenna; (a) top view (b) side view. 
 
Antenna excitation is made by electromagnetic coupling since no contact occurs 

between antenna and feeding line [19]. Measurements and simulations of the 
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investigated setup showed 31% impedance bandwidth while gain appears to be 7dBi for 

operation frequency (615 MHz). 

Another antenna category that has gained special attention due to its broadband 

radiation capabilities, is the Planar Inverted F Antenna (PIFA) [20], [21]. A case of 

PIFA antenna can be seen in Fig. 1.31.  

 

Figure 1.31: PIFA antenna with slots. 
 
The specialty of this configuration is that it introduces slots in the radiating element and 

in the ground plane. These slots are responsible for multiband behavior and bandwidth 

enhancement. The slot variation on ground plane and patch element, makes the antenna 

radiate at different frequency bands [22]. A different case of U slot antenna is seen in 

Fig. 1.32(a) and (b). 

            

(a)                                                              (b) 

Figure 1.32: U slot antenna; (a) side view (b) top view. 
 
This type was investigated by putting a shorting pin connecting the radiating element 

with the ground plane and then FR4 substrate. For these cases different matching 

conditions and antenna efficiency were derived [23] and presented in Fig. 1.33. 
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Pramod Kumar [27] presented a method for developing wideband patch antennas 

following  a set of steps in order to succeed the desired antenna characteristics. These 

steps include the initial patch design, the introduction of slots and the introduction of an 

air substrate. Each step is combined with optimization procedures so that the patch 

would acquire the desired features in terms of operation frequency, bandwidth and gain. 

A prototype was designed, fabricated and depicted in Fig. 1.35: 

 

(a) 

 

(b) 

Figure1.35: Designed prototype; (a) top view (b) side view. 
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Simulations and measurements showed that gain is 6.3dB, bandwidth 18% and the 

range of operation is between 2 to 2.3GHz. 

 
Many microstrip antennas have been designed to produce circularly polarized radiation 

for satellite and radar applications. These studies include special feeding methods and 

antenna geometries [28] [32]. C Z. Zhou, G. Fu and Q.Chen suggested a complex 

design to achieve high axial ratio bandwidth. The proposed configuration includes FR4, 

foam substrate, an L shaped microstrip line and a parasitic patch [33] and is depicted in 

Fig. 1.36. 

                       

Figure 1.36: Antenna for circular polarization. 
 
The antenna depicted in Fig. 1.36 was simulated and fabricated achieving 44.4% of 

bandwidth and 3dB axial ratio bandwidth 44.9% at operation frequency 2.4GHz. A 

similar microstrip antenna was designed and fabricated by Ali K. Aswad, Lway Faisal 

Abdulrazak and Tharek Abd. Rahman [34]. This prototype has composite structure, 

with two truncated edges for circular polarization support (Fig. 1.37).  

 

Parasitic 
element 

Ground 
plane 

feedline

foam 

FR4 
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                                         (a)                                                     (b) 

 

Figure 1.37: Truncated patch antenna; (a) top view (b) side view 
 

 
Another case of wide bandwidth is achieved by introducing slots to ground plane 

combined with an U shaped antenna [35]. Such a configuration can be seen in Fig. 1.38. 

A U shaped patch is fed by a coaxial cable and separated by an air gap. Ground plane 

involves slots for bandwidth increase. 

 

(a) 

L ΔL 

ΔL 40 mm 

feed point 

ground plane 

SMA connector 50Ω 

h air  
substrate layer 
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(b) 

 

 

(c) 

Figure 1.38: The proposed wideband antenna; (a) top view (b) side view (c)S11 of the 
proposed patch antenna. 

 
 

S11 is derived for the antenna depicted in Fig. 1.38c and compared with the case were a 

planar ground plane without slots is introduced. Bandwidth is enhanced and shifted to 

lower frequencies. 

 

A similar design as the above was introduced by S. Vikan and J. A. Aas [36] to achieve 

broadband characteristics by adding slots in the radiation element and shorting pins 

connecting the patch element with ground plane. The suggested setup can be seen in 

Fig. 1.39: 
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                                          (a)                                                 (b) 

 

Figure 1.39: Slotted patch with shorting pins; (a) top view (b) side view. 
 
 

The proposed setup was simulated and fabricated showing 88% bandwidth from 

1.94GHz to 5.01GHz frequency band.  

 

Beside the ability of the patch antenna to radiate over a wide range of frequencies, beam 

steering features using MEMS switches; have also been investigated through literature 

[37],[40].

1.3 MICROSTRIP ARRAY FUNDAMENTALS 
 
An array is a set of radiating elements placed in proper position to produce a radiation 

pattern of increased gain and directivity. The direction of beam can be adjusted by 

phase shifter mechanisms. Below follows a description of the main characteristics of 

arrays together with mathematical equations that show the antenna’s attributes. Terms 

such as mutual coupling, array factor, grating lobes are mentioned and analyzed. 

Furthermore several types of arrays are presented including stacked, circular and 

conformal geometries, adaptive and dual band operation arrays. In addition a variety of 

y 
x y 

z 
ground plane feed 
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feeding networks is described including T junction and Wilkinson power dividers. Let 

us mention that recent advances in wireless networks require an antenna array of high 

functionality that is able to transmit and receive through any circumstance. 

 

1.3.1 Basic parameters of arrays 

Power density of an antenna S(θ,φ) is defined as [41]: 

 

                                               24
),(),(

R
DPS rad

π
φθφθ =                                                    1.40 

 

where D(θ,φ) is the antenna’s directivity, radP is the total radiated power and R is the 

distance. 

Fig. 1.40 depicts a linear array plus the coordinate system. 

 

Figure 1.40: Linear Array with coordinate system. 

 

From Equation 1.40, the directivity D(θ,φ) would be: 

 

y 
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radP
SRD ),(4),(

2 φθπφθ =                                                1.41 

 

It is known that:  

∫ ∫∫∫
ΩΩ

==Ω=
π π

φθθφθφθθφθφθ
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22 sin),(sin),(),( ddSRddRSdSPrad  
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and    =2R
Prad ∫ ∫

π π

φθθφθ
0

2

0

sin),( ddS          

 

So Equation 1.41 becomes:   

                                          
∫
Ω

Ω
=

dS
SD

),(
),(4),(

φθ
φθπφθ                                                         1.42 

Regarding Equation 1.42, both polarizations (co polarization and cross polarization) are 

taken into account in the evaluation of power density. 

Let us mention here that the radiated power radP  is less than the input one because of 

antenna losses and reflected signal. 

                                                     )1( 2Γ−= inLrad PP ε                                                 1.43 

 

where Lε is the efficiency factor and is related to circuit losses (feed network, phase 

shifters) and Γ is the reflection coefficient. 

Another important antenna parameter is the Gain G(θ,φ). It is defined as follows: 

 

                                             ),()1(),( 2 φθεφθ DG L Γ−=                                         1.44 

 

Actually gain is equal to directivity decreased by efficiency factor and reflection 

coefficient. For Γ=0 (perfect matching) and Lε =100% gain and directivity coincide. 

The multiplication of gain and input power gives the EIRP (Effective Isotropic Radiated 

Power), which expresses the amount of power radiated by an isotropic antenna to 

produce the peak power observed in the direction of maximum antenna gain.  

EIRP is defined as:   
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                                                    aCT GLPEIRP +−=                                          1.45 

 

 

 

 

where TP  is the transmit power in dBm, cL is the cable losses in dB and aG is the gain in 

dBi. 

For a planar array of M×N elements, the EIRP would be: 

 

                                               )1( 2Γ−= cellinL DPNEIRP ε                                           1.46 

 

where: N is the number of elements, Lε is the efficiency factor, cellD is the element 

directivity, Γ is the reflection coefficient. 

 

The above expression shows clearly the relation between EIRP, gain and directivity. 

The combination of Equations 1.44 and 1.46 gives: 

 

                                                 inPGEIRP ),( φθ=                                                     1.47 

 

In order to evaluate the far field radiation pattern of a linear array of N identical 

elements depicted in Fig. 1.41, the following equation is used: 
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Figure 1.41: Antenna array. 
 

                              ∑
=

=
N

n
xn undjkfE

1
0 )](exp[),(),( αφθφθ

rr
                                    1.48 

 

where u=sin(θ) cos(φ). 

na are weights given to each element, f(θ,φ) is the pattern of one element. 

 

Let’s evaluate the total field for φ=0. The weight na  is chosen to be: 

)exp( 00 undjkaa xnn −=  and 0u = 0sinθ . So the total field would be:   

 

                        ∑
=

−=
N

n
xn uundjkfE

1
00 )](exp[),(),( αφθφθ

rr
                               1.49 

 

The phase of each element changes by assigning weights to each of them. So there must 

exist a phase shifting mechanism.  
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1.3.2 Array architecture 

The basic array architecture combined with a mechanism of amplitude/phase control 

(phased array) is depicted in the following scheme: 

 

 

Figure 1.42: Phased Array configuration. 
 
As it is seen in Fig. 1.42 the antenna elements are first connected to a unit which 

performs phase shifting/amplitude adjustments. After that, the feeding network is 

included that performs proper power division. 

 

Phase shifters/attenuator modules, act as a beam forming system when a radiation 

pattern with specific attributes is needed. Beam forming system can assign each port an 

explicit beam to provide a desired radiation pattern. 

 

Array architecture involves T/R (Transmit/Receive) and TDU (Time Delay Unit) 

modules, such as phase shifters, to achieve a certain desired radiation shape. A T/R 

module performs the following activities:  

I) Separation of transmit and receive channel 

II) Low noise amplification of received signals 

III) Variable gain setting 

ELEMENTS

PHASE SHIFTERS/ ATTENUATORS

FEEDING NETWORK 
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                            (a) (b) 

Figure 1.43: T/R and TDU configuration. 
 
Fig. 1.43a shows that each radiation element can be connected to a different T/R and 

TDU module fed by a central point [41]. In Fig. 1.43b, elements are grouped and then 

each group is assigned a T/R and TDU module. Losses can be detected in the T/R 

module, the power divider and the phase shifting devices. 

 

Fig. 1.44 describes the case of an array architecture including a switch that aims to 

separate transmit and receive channel. The switch connects the transmitter/receiver to 

the power divider which performs power division/union [41].  

 

 
 

Figure 1.44: Array configuration incorporating a switch and a power divider. 
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1.3.3 Phase shifters 

A phase shifter is the most significant part of an phased array providing changes to the 

transmission phase angle [41]. They can be grouped into analog devices and digital 

ones. Analog devices produce a change in phase by altering the value of an analog 

parameter such as voltage. Digital devices include a number of binary states where each 

one corresponds to a specific phase change. Examples of phase shifters are mentioned 

below: 

i)  Ferrite phase shifters. 

ii) Diode phase shifters. 

iii) MMIC and MEMS shifters. 

iv) Ferroelectric phase shifters. 

 

1.3.4 Received signal   Array factor 

For a linear array of K elements depicted in Fig. 1.45a and 1.45b, assuming that: 

i) Equal distances of all elements to network 

ii) No additional phase shifting  

iii) No mutual coupling between elements 
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(a) 

 

(b) 

Figure 1.45: Array configuration; (a) an array connected to an aggregation network 
(b) an array receives a waveform. 

 

The total received signal is [42]: 

 

                                                         )()()( θθθ ae SSS =                                              

1.50 

where: )(θeS is known as “element factor” and )(θaS  is called “array factor”. 

 

                                                    ∑
=

−=
K

i

diKjk
a eS

1

sin)(0)( θθ                                              1.51 

k0 is the wavelength k0=2π/λ0 and λ0 the free space wavelength. 

The element factor expresses the radiation pattern of one radiator. The array factor 

states the radiation pattern of K isotropic radiators.  

 

In Equation 1.51, i denotes the ith radiator of the array depicted in Fig. 1.48a and 1.48b. 

Another form of array factor is: 
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π
θ d

kd

Sa =                                           1.52 

 

1.3.5 Grating lobes 

Equation 1.52 takes its maximum value when )sin(
0

θ
λ

π d becomes zero [42].  

Thus:                                            )sin(
0

θ
λ

π d =mπ                                                     1.53 

where m is an integer. 

 

If we want just one maximum and not a second one then: 

πθ
λ

π ≤)sin( max
0

d   

For 2/max πθ =  finally it is derived that: 

 

                                                      1
0

≤
λ
d                                                              1.54 

 

The appearance of a second, third etc. maximum peak in the radiation pattern of an 

array is an unwanted phenomenon. These lobes are called grating lobes and they be 

eliminated by defining the element’s distances to be less than one wavelength as 

Equation 1.54 implies. 
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1.3.6 Power dividers 

The power from a main source is divided in order to feed the elements of an array. A 

power divider has a form shown in Fig. 1.46. 

 

Figure 1.46: Power divider schematic. 
 
If P1 is the power that enters Port 1 and P2 and P3 the power that exits Ports 2 and 3 

respectively then P2 and P3 are related through the equation: 

                                                               2
2

3 PKP =                                                     1.55 

where K is defined by the designer. 

 

And 321 PPP += . 1.56 

Thus:                                    122 1
1 P
K

P
+

=  and  123 1
P

K
KP
+

=  1.57 

 

 

In the simple case where a power divider feeds two patch antennas (Fig. 1.47) the 

equivalent circuit is shown in Fig. 1.48. 
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Figure 1.47: A power divider connected to two patch antennas. 
 

 

Figure 1.48: Equivalent circuit of power divider. 
 
The scattering matrix from the circuit depicted in Fig. 1.48 would have the form: 
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                                     1.58 

where a1, a2, a3, b1, b2, b3 are complex voltage wave amplitudes and Γ2 and Γ3 are the 

reflection coefficients at the input of the antenna elements. 

The amplitudes of the incoming and out coming signals are related to the reflection 

coefficient through the form: 

 

                                              222 ba Γ=  and 333 ba Γ=                                           1.59 
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By substitution of Equation 2.27 in 2.26 the following expressions for 1b , 2b and 3b  are 

derived: 

                               1
323223333222

3132321333
2 )1)(1(

)1( α
ΓΓ−Γ−Γ−
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=

SSSS
SSSSb                               1.60a 

 

                              1
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2123231222
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α
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=
SSSS
SSSSb                                1.60b 

 

                                   331322121111 bSbSaSb Γ+Γ+=                                               1.60c 

 

 

 

Figure 1.49: Power divider with transmission length l denoted. 
 

If we take into consideration the transmission line’s length (Fig. 1.49), the input and 

output signals take the form: 
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1
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l
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)1(

3)1(
33

lebb γ−=                                               1.61c 

 

The reflection coefficients will vary as: 
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where γ is the attenuation factor 

1.3.7 Advances in planar antenna arrays 

 
Min Shi, Junwei Lu, and David J. Ireland introduced an adaptive patch antenna array for 

indoor mobile wireless network [43]. They investigated the use of hexagonal and 

circular shaped antennas.  

 

 

Figure 1.50: Schematic view of patch array. 
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The array of Fig. 1.50 can be used in WLAN networks to produce beam forming 

increasing the security level of the system. 

 

Figure 1.51: Hexagonal and circular array. 
 

The array is consisted of a main patch antenna denoted as “0” (Fig. 1.51) and a number 

of parasitic elements. Beam steering can be achieved by adjusting switches connected to 

the parasitic elements. A more precise view of the suggested configuration can be seen 

in Fig. 1.52 where each element is connected to a specific circuit to provide the desired 

behavior. 

                



 

58 
 

Figure 1.52: Description of array system with beam forming activity. 
 

In Fig. 1.53, 11S parameter can be viewed for the case of hexagonal patch elements and 

circular patch elements. 

 

     

                                           (a)                                                               (b) 

Figure 1.53: S11 vs. frequency; (a) hexagonal patch (b) circular patch (continuous line: 
measurement, dotted line: simulation). 
 
As it is seen from the above schemes a slight difference of measured and simulated 

curve is occurred, probably because of errors in antenna fabrication. 

 

Yazid Yusuf, and Xun Gong designed a planar phased array with a driven and two 

parasitic elements fed by mutual coupling [44] as can be seen in Fig. 1.54. An array 

system uses phase shifters to achieve beam steering and focus the radiation on the 

desired directions. These phase shifters have a high cost. The proposed configuration 

introduces a different and low cost, way of beam steering using capacitors to control 

phase.  
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Figure 1.54: Proposed phased array: W=35mm, L=28.3mm, Ws=3.8mm, S=6.0mm, 
d=41mm, l=6mm, y0=10mm. 
 
A change in reactive loads ( 2C and 3C ), produce a change in phase. Patches 2 and 3 are 

fed by mutual coupling. 

 

Let us consider the array of Fig. 1.54 as a 3 port network. The voltages are related to the 

currents through Z matrix as follows: 
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The complex impedances of 2C  and 3C  are 22 /1 CjZC ω= and 33 /1 CjZC ω=  

respectively. Voltages at ports 2 and 3 are described by the equations: 

222 IZV C−=  and 333 IZV C−= . 

Thus Equation 1.63 becomes: 

 

                              ⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

31

21
1

33332

23222

1

3

1

2

Z
Z

ZZZ
ZZZ

I
I
I
I

C

C                                1.64 



 

60 
 

 

 

The radiation pattern of the array is the multiplication of the pattern of a single element 

by the array factor. 

 

The array factor of the three elements of Fig. 1.54 is: 

 

                                         θθ cos

1

3cos

1

21 jkdjkd e
I
Ie

I
IAF ++= −                                      1.65    

 

 

 

Figure 1.55: Return Loss diagram with experimental and simulated results. 
 

Fig. 1.55 reveals a slight difference between the two curves due to fabrication errors. 

Fig. 1.56 depicts the radiation pattern of the proposed three element array. 
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Figure 1.56: Radiation pattern of proposed array. 
 
 
Anitzine, Argota and Pérez proposed an array configuration including a reflector to 

increase bandwidth and achieve better matching conditions decreasing return loss [45]. 

The suggested setup has the form depicted in Fig. 1.57: 

 

 

Figure 1.57: 2 patch antenna array with reflector. 
 
Two radiation elements are fed by microstrip lines. A horizontal orthogonal patch lies 

on the same substrate and as simulations show, decreases S11. Two cases were 

investigated. In the first the reflector is made of two discrete patches and in the second, 

of one patch. These cases are shown if Fig. 1.58. 

Reflector 
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        (a)                                                         (b)    

Figure 1.58: An array of two radiation elements (a) Reflector of 2 patches (b) Reflector 
of one patch. 
 
 
The characteristics of each case are presented in the table that follows: 

 

Table 1.2: Features of joined and not joined patch antennas. 
 

Joined BW (MHz) BW (%) Efficiency (%) S11 (dB) 

No 290 5.5 94.41  -40.06 

Yes 397 7.48 91.62  -42.16 

 

The condition presented in Fig. 1.58b has wider bandwidth and better matching 

conditions are obtained. 

 

Cui WeiDong proposed a four element patch antenna with a taper microstrip feeding 

line for bandwidth enhancement [46]. The antenna is depicted below: 
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In both cases the cross polarization level is decreased compared with the case of the 

simple array, thus proving that EBG formation can effectively cause surface wave 

suppression. 

 

The case where an array is combined with proper modules in order to steer radiation 

pattern to desired direction has been widely investigated and presented in literature. 

MEMS switches [52] and RF PIN diodes [53] have been used in order to adjust main 

lobe of radiation to specific direction. A linear 8 element array comprising RF PIN 

diodes has been designed, presenting adjustable pattern and tunable operation frequency 

[54]. The proposed configuration can be seen in Fig. 1.61.  

 

              

(a)                                                                  (b) 

Figure 1.61: Proposed configuration; (a) T Junction Power Divider (b) modified 
Wilkinson Power Divider. 
 
 
Power is equally distributed to the radiation elements by the use of T junction (Fig. 

1.61a) or modified Wilkinson Power Divider (Fig. 1.61b). The designs and full features 

of these power dividers can be found in [55]. S1 and S2 are the RF PIN diode switches 

that are controlled by an external dc voltage. The state of these switches (ON/OFF) 

affect the radiation pattern emitted by the array. The block diagram of the switch used in 

this study can be seen below. 
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Figure 1.62: Block diagram of RF PIN switch. 
 
The proposed array comprises FR4 glass epoxy (εr=4.6, tanδ=0.03). The ON state of the 

switches activates 8 elements while the OFF state excites 4 elements. The radiation 

pattern of 4 and 8 element array is Fig. 1.63a and 1.63b respectively. 

 

            

                         (a)                                                                 (b) 

Figure 1.63: Radiation pattern; (a) 4 element array (b) 8 element array. 
 
The increase in the number of elements increases gain and reduces Half Power 

Beamwidth as expected. Let us mention here that the state of the PIN diodes affect the 

operation frequency as can be seen in Fig. 1.64. 
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Figure 1.64: Return loss of the designed array. 
 

4 patch array seems to operate at 4.58GHz, 5.25GHz and 5.8GHz while the 8 patch 

array resonates at 4.58Ghz, 4.9Ghz, 5.2GHz and 5.8 GHz. 

 

 

1.3.8 Array factor and electric field of a planar uniform array 

In this section the case of the array factor of a planar uniform array is derived and 

investigated. Electric field and directivity formulas are expressed in terms of the 

excitation amplitude and phase of each radiation element [56], [57]. 

 

Let us assume n elements lying on xy plane as can be seen in Fig. 1.65. The total 

electric field on P(r,θ,φ) would be:  
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Figure 1.65: Electric field evaluation on P(r,θ,φ) using Cartesian coordinate system. 
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By substitution of Equation 1.69 to Equation 1.66 it is derived: 
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The excitation of each element is described by the form: 
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where na is the amplitude of excitation,  

τn is the time delay, 

φn is the phase shift 
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For m=0 and τn=τ=constant, Equation 1.72 becomes: 
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If Equation 1.71 is substituted to Equation 1.70 for τ=0 and the antenna elements are 

identical then the field equation becomes: 
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By substitution of Equation 1.74 to Equation 1.75, we have: 
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If ω=ω0 and 0rr
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≠ the total electric field take the following form: 
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where r0 is the direction of maximization of E field. 

 

The radiation intensity at a direction r
r is given by the form: 
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where η is the free space impedance and r the distance of the point of interest. 

 

In logarithmic scale Equation 1.78 can be written as:  
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For the case of a planar array of M×L elements, the total electric field would be 

evaluated by the following procedure. 

                             

Figure 1.66: Planar array of M×L identical elements. 
 
It is: nnn rrr

rr
=ˆ  and ydlxdmrn ˆ)1(ˆ)1( −+−=

r . 

        zyxr ˆcosˆsinsinˆcossinˆ θφθφθ ++=  

So φθφθ sinsin)1(cossin)1(ˆ dldmrrn −+−=
r  

X 

Y 

nr
r

(1, 1) d 

d 



 

71 
 

 

Assuming identical elements, Equation 1.75 becomes:  
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Equation 1.81 can be written in a different form as: 
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AFx and AFy are known as array factors and 1== lmml aaa . 

 

AFx becomes maximum for specific values of θ and φ, when: 

                                              

00

00

cossin)1(

0cossin)1(

φθφ

φφθ

dmk
and

dmk

m

m

−=

=−−
                                       1.84 

 

For m=m+1, Equation 1.84 becomes:  
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The phase difference between two adjacent elements along x axis would be: 
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Following the same steps for the array factor AFy it is derived that the phase difference 

between two adjacent elements along y axis would be: 

                                                00 sinsin φθβ kdl =                                                          1.87 

 

Equations 1.83 can be written as a function of βm and βl as: 
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By setting ψ=kdsinθcosφ βm Equation 1.88 is now: 
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For small values of ψ the above expression is approximated to: 
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In a similar way it is proved that: 
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κ is a physical number. In a similar manner it is proved that: 

 

                                     κπφθβ
L

kdl
2sinsin 00 ±=                                                    1.92 

 

So the conditions for null occurrence are:   

 

                                              κπφθβ
Μ

±=
2cossin 00kdm   1.93a 

                                              κπφθβ
L

kdl
2sinsin 00 ±=                                             1.93b 

 

Maximum radiation will appear where:  

κπφθβ
κπβφθ

ψ

2cossin
2cossin

0)
2
1sin(

00

00

±=
±=−

=

kd
kd

m

m

 

In a similar way, it is proved that: 
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          1.94 

 

So the conditions for maximum occurrence are: 

 

                                                κπφθβ 2cossin 00 ±= kdm                                         1.95a 

                                                 κπφθβ 2sinsin 00 ±= kdl                                           1.95b 

 

1.4 SCOPE OF THIS WORK 

Summing up the preceding study in chapter 1, microstrip patch antennas were presented 

and described in terms of advantages/drawbacks and principles of operation. Microstrip 

antenna technology was chosen for the proposed antenna system because it provides 

planar geometry and ability to mount on surfaces. In this way, the proposed antenna 

system can be easily incorporated with a Relay Station to provide a configuration with 

reduced size and ease the installation procedure. A research regarding microstrip patch 

antennas recent advances was denoted and commented in order to identify patch shapes 

and substrate configurations for obtaining the IEEE802.16j air interface specifications 

in terms of gain and bandwidth. 

 

Moreover chapter 1 investigated several array concepts such as directivity, radiation 

intensity, gain and EIRP. Phased array configurations have been investigated with a 

special reference on power dividers and phase shifting mechanisms. Studies regarding 

switched beam arrays were presented and a mathematical analysis of the Array Factor 

term has been carried out, obtaining expressions of the phase step between radiation 

elements for maximum or minimum occurrence at specific angle. 

κπφθβ 2sinsin 00 ±= kdl
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The analysis of chapter 1 has been performed in order to define possible shapes and 

configurations of the access and backhaul antenna in order to meet the gain and 

bandwidth specifications of the IEEE802.16j protocol. 

 

In chapter 2, Relay Stations are presented as the devices that carry the proposed 

antennas system. Some scenarios of Relay Station application are analyzed and depicted 

where necessary. A simulation of Relay Station RF chain of transmission and reception 

is set up and generated. Results are depicted and commented.  

 

In chapter 3, a review regarding beam forming systems is presented. Beam forming 

module comprises a proper circuit for power distribution and an algorithm for defining 

the required radiation pattern shape. Several such algorithms are denoted and 

commented. The analysis and literature review of chapter 3 will be considered as the 

basis for the design of the new beam forming feeding circuit.   

 

In chapter 4, the proposed antenna system is fully described and analyzed. The single 

antenna for access link realization is designed and constructed. Its features are depicted 

and commented. Moreover the backhaul link array is designed and developed. Its 

characteristics are also outlined. In addition the new beam forming module in terms of 

circuit design and algorithm implementation is presented. Several scenarios of radiation 

pattern shapes are depicted and commented. Simulation and experimental curves show 

good agreement and are explained.  
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In chapter 5, the coupling phenomenon between antenna elements is discussed. 

Coupling is defined and expressed using mathematical formulas. Some studies 

regarding coupling evaluation are presented. Furthermore some antenna structures for 

reducing coupling are outlined. The chapter continues with the presentation and 

evaluation of two new antenna configurations for coupling reduction. Coupling 

measurements are denoted and commented proving the validity and efficiency of the 

proposed antenna setup.  

 

Finally chapter 6 includes a synopsis of the work presented and identifies a few points 

for further study and research. 
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CHAPTER 2 

RELAY STATIONS 

2.1 INTRODUCTION 

In this chapter Relay Stations are defined and described. Their advantages are denoted 

revealing that these devices can play a significant role improving the performance of a 

wireless network. Application scenarios are mentioned with corresponded schematic for 

better understanding. Furthermore types of Relay Stations depending on the usage 

scenarios are described. Moreover a presentation and description of the Relay Station 

Front End follows in terms of mixers, local oscillators, filters and power amplifiers 

utilized. Two types of simulations are performed and depicted: The transmission RF 

chain is presented and analyzed in terms of spectrum and time domain transmitted 

signal. The reception RF chain is also mentioned in terms of Signal to Ratio (SNR) and 

Receive Signal Strength (RSS). Major information outlined in this chapter has been 

taken from FP7 REWIND project deliverables. 

 

2.2 RELAY STATION OVERVIEW 

Relay Stations (RS) are network devices placed in between Base Station (BS) and 

Mobile Stations (MS) as intermediate links to ensure and enhance the quality of 

transmission. A Relay Station produces two links:  

• The backhaul link for connecting RS with BS and  
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• The access link for connecting RS with MS 

Relays can be used under a 4G wireless network such mobile WiMAX or LTE. 

Specifications about the air interface of a wireless network that incorporates Relays 

have been defined in IEEE 802.16j protocol [1], [2]. 

 

The introduction of RSs within a wireless network can be very profitable for the proper 

operation of the network as they present advantages which are summarized below: 

 Increase coverage 

 Increase throughput 

 Operation in case of RS and MS mobility 

 Low cost compared to BS installation 

Fig. 2.1 gives a general view of Relay’s applications which would be further 

investigated in this chapter. 

 

Figure 2.1: Overview of Relay Station use. 
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2.3 RELAY STATION APPLICATIONS 

In this section, the basic usage scenarios of Relays are outlined. Each scenario describes 

a specific weakness of a wireless network and shows that the introduction of an RS can 

overcome this weakness. 

2.3.1 Gap Filler 

In an urban area there are some places that provide low link quality. That is because 

buildings, trees and obstacles are located in between BS and that places, degrading the 

transmission link. The establishment of RSs on the top of buildings or houses can 

enhance transmission to coverage holes and provide connectivity to end users placed 

anywhere as described in Fig. 2.2. 

 

Figure 2.2: Use of RS as gap filler. 

2.3.2 Coverage increase 

Mobile users can be located in the area outside the range of a BS. Instead of installing a 

new BS, which is rather expensive, it would be more efficient to set up a RS in the limit 

of BS’s range, to establish an effective link.  
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Figure 2.3: Cases of coverage increase. 
 
An RS can also be put outside the coverage area of a BS extending the coverage 

capability of the network, as can be seen in Fig. 2.3b. 

 

Another way to extend connectivity could be the increase in the power of the 

transmitter. Such a solution would require more expensive amplifiers and also demand 

an increase in the power of the end user’s device. In that case the coverage of the 

network would be little extended. The use of RS would be much more efficient because 

it combines connectivity in remote areas at low cost.  

 

2.3.3 Capacity and Throughput increase 

Let us suppose that a Base Station transmits to a Mobile Station (User B) according to 

Fig. 2.4. The link quality is degraded due signal attenuation and interference. This 

degradation decreases the level of modulation and thus throughput. If a RS is placed 

between the BS and a MS (User A), then the level of modulation is maintained high, 

more data packets are successfully delivered to destination and so throughput is high. 

 

(a) (b) 
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Figure 2.4: RS for throughput increase. 
 
Capacity of a wireless channel is defined as [3]:  

 

                                              )1(log2 IN
SBC
+

+=                                                             2.1 

 

where C is the capacity in bits/sec, B is the channel bandwidth, S is the signal power, N 

is the noise and I the interference.  

The introduction of a RS creates a link of high SINR (Signal to Noise plus Interference 

ratio) which leads to increased channel capacity. 

 

2.3.4  In building Relay usage  

It has been found that an important percentage of the whole traffic generated by a 

wireless network takes place in the area inside buildings and houses. First and second 

walls or other obstacles cause serious signal attenuation. A BS should increase its level 

of power consumption in order to provide service to in building subscribers but only a 

few of them would be adequately served [4].  
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Fig. 2.5 shows that the difference in path loss between in and outdoor use is 

approximately 15dB. The introduction and placement of RSs in proper points could 

effectively solve the problem of indoor signal penetration. 

 

 

 

Figure 2.5: Path Loss between in building and outdoor MS. 
 
 

Fig. 2.6 shows a possible solution for establishing high quality transmission links. A RS 

could be mounted on the top inside wall of a building to connect MSs to the external 

BS. 

 

 

Figure 2.6: Possible configuration for sufficient indoor coverage. 
 
 

2.4 RELAYS IN CASE OF MOBILITY 

 
Relay has the ability to support end user mobility. In case of a car travelling, the 

connectivity can be ensured by placing many RSs along the streets and link one of them 

to the closest BS. Fig.2.7 depicts such a possible scenario [5]. 



 

88 
 

 

Figure 2.7: RS usage in case of end user mobility. 
 
Another possible scenario is the placement of RSs in tunnels to maintain connectivity 

and link quality. This application is depicted below. 

 

Figure 2.8: RS usage in case of tunnels. 
 
Depending on the size of the tunnel a sufficient number of RSs can be mounted at the 

start, end and along the passage to ensure service to end user. 

 

In case of high speed train, buses or boats, mobile Relays can be incorporated in the 

network to ensure connectivity under these circumstances. In such usage, RSs must be 

proper equipped to perform handover process, in order to find the closest BS, as can be 

seen in Fig. 2.9. 
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Figure 2.9: RS mobility scenario. 
 

2.5 TYPES OF RS 

In the text that follows Relays are categorized to some basic types whether they are used 

for channel capacity improvement or coverage extension. They are also divided whether 

the antennas of the Relay transmit/receive simultaneously or not. 

2.5.1 Transparent Relay 

In this case, MS is not aware of RS existence and receives all control data directly from 

the BS [6], [7]. Fig. 2.10 depicts a transparent Relay. 

 

Figure 2.10: Transparent Relay topology. 
 

Preamble, DL MAP, 
UP MAP, FCH 
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In Fig. 2.10, the MRBS (Multi Relay Base Station) can be connected to MSs and RSs,  

establishing two links. MS receives the control data information from MRBS. That 

information include preamble, FCH, UP and DL MAP. 

• Preamble – It is the 1st symbol. It allows MS to synchronize to the BS 

• FCH – It is a burst that enables BS to advertize the configuration of the system 

• UP and DL MAP – It is a burst that defines for the MS the location and size of 

the UP or DL subframe 

A transparent Relay configuration improves channel quality, increases the link capacity 

but it does not extend the coverage of the network. 

 

2.5.2 Non Transparent Relay 

In this case, MS does not know about any relaying operation and considers the Relay 

Station as it serving BS. Fig.2.11 depicts the operation of a non transparent topology. 

 

 

Figure 2.11: Non transparent Relay configuration. 
 
NTR Relay delivers all control data information to the MSs. This case is ideal for 

coverage extension and improvement of channel quality. 
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2.5.3 Time domain Relay operation 

The RS device can operate in two modes [6]: 

• Time Division Transmit Receive mode (TTR)  

Relay is equipped with two kinds of antennas: One for communicating with the 

end user (access link) and the other for establishing communication with the 

Base Station (backhaul link). Part of the time, the access link only operates and 

the other part backhaul link is active. 

 

In Fig. 2.12, MRBS creates communication with an RS and a CPE (Customer Premises 

Equipment) emitting in a frequency f1 [8], [9]. At a second time, Relay communicates 

with CPE in frequency f2. 

 

 

Figure 2.12: Relay based network operating in TTR mode. 
 
“MRBS” stands for: Multi Relay Base Station and refers to the ability of Base Station to 

establish communication with Relays and end users. Fig. 2.13 clearly shows the TTR 

mode performance. 
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Figure 2.13: TTR deployment. 
 
The above figure denotes the uplink and downlink communication in different time 

slots. The first time period, MRBS and RS transmit data at CPE, realizing the access 

downlink connection. The second time period, MRBS transmits information to RS at 

backhaul downlink connection. The third time period, RS transmits to MRBS, 

establishing the backhaul uplink communication. Finally in the fourth time period, CPE 

transmits and MRBS/RS receives data. 

 

• Simultaneously Transmit Receive mode (STR) 

In this case two kinds of antennas are used by RS: One for the access and the 

other for the backhaul link as before. But now both antennas operate as the 

same time. Proper isolation between the antenna elements is required in this 

case. 

 

In Fig. 2.14, the STR mode is active. In this case, MRBS simultaneously communicates 

with RS and CPE. Also RS enables access and backhaul links concurrently. 

 



 

93 
 

 

Figure 2.14: Relay based network operating in STR mode. 
 
The exact performance of STR mode is described below: 

 

 

Figure 2.15: STR deployment. 
 
Fig. 2.15 clearly shows that for the first time slot, RS transmits data to both CPE and 

MRBS. In the second time slot, the RS receives data from CPE and simultaneously 

transmits to the MRBS. In the case of STR mode the access and backhaul antennas of 

the RS should be well isolated in order to cause minimum interference to each other. 
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2.6 RELAY DESCRIPTION 

2.6.1 Hardware Subsystem 

Under the REWIND project (FP7, project number: 216751), a Non Transparent Relay 

prototype was fabricated, measured and is depicted in Fig. 2.16. In this chapter the 

Relay characteristics in terms of RF front End are outlined. The final Relay prototype, 

excluding the antennas has dimensions: 33cm×24.5cm×12cm [10]. 

  

 

Figure 2.16: Relay prototype. 
 
The top level architecture of the Relay prototype is shown in Fig. 2.17. 
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Figure 2.17: Relay top level architecture. 
 
The parts of Relay architecture are explained below: 

• The Relay processor is a unit that performs advanced routing processing used 

for management. 

• The Access and Backhaul Relay modems perform operations defined by the 

IEEE802.16j MAC and PHY specifications. 

• The Relay Front End unit executes switching, filtering and amplification 

process. 

• The power supply module transforms AC power to DC and allocates power to 

the other modules. 

The Relay architecture that was designed and tested under REWIND project has the 

following hardware structure. It comprises two modules: The Relay Front End and the 

RF processor. These two units are described in Fig. 2.18 [11], [12]: 

 
 
 

 
 
 

Power Supply 

Relay 
Processor 

Relay Front End (RFE) 

Access Relay modem Backhaul Relay modem 



 

96 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 2.18: Relay hardware. 

 

Fig. 2.18 shows that Relay architecture includes two sub units:  

• The Relay Front End which executes amplifying, filtering and switching 

operations. 

• The RF processor which performs analog to digital conversion and provides the 

interface to BB process. 

 

2.6.2 Relay Front End 

The Technological Educational Institute of Athens in collaboration with Ubiqam 

Company, as part of the REWIND consortium, designed and simulated the Relay Front 

End using the commercial software ADS2009. The design includes two RF chains. One 

that is connected to the access antenna and is used for transmission and the other RF 

chain is connected to the backhaul antenna and receives data. Fig. 2.19 describes the 

proposed configuration [13]. 
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Figure 2.19: RF transmission and reception chain. 
 

• Transmission chain 

The transmission chain of the Relay Front End is depicted in Fig. 2.20. Chain is 

consisted of separate blocks each of them performing a specific operation. 

 

 

Figure 2.20: Transmission RF chain. 
 

The first block of the transmission RF chain is depicted in Fig. 2.21. 

 

 

Figure 2.21: 1st block of transmission RF chain. 
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The 3.5GHz modulated WiMAX signal arrives and is down converted to 480MHz. It is 

then passed through a Low Pass Filter (LPF) and amplified using an SBB 1000 MMIC 

amplifier. The signal then passes through a BPF and a LPF filter for discarding 

unwanted harmonics and finally it is up converted to 3.5GHz.   

 

The second block of transmission RF chain is depicted in Fig. 2.22. The signal subsists 

filtering and amplifying process. 

 

 

Figure 2.22: 2nd block of transmission RF chain. 
 
The Band Pass Filter was simulated using microstrip coupled lines. Next a 

HMC716LP3 Low Noise Amplifier (LNA) enhances the signal. Gain (S21) and 

reflection coefficient (S11) of LNA was simulated providing results depicted in Fig. 

2.23. 
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Figure 2.23: 2nd block of transmission RF chain. 
 
Fig. 2.23 shows that S21 is 18.77dB and S11 is -22.956dB for 3.5GHz. Onwards signal 

passes through a second BPF and then through a high linearity amplifier MGA 30316. 

Gain and reflection coefficient of the amplifier are drawn in Fig. 2.24. 

 

 

Figure 2.24: MGA amplifier properties. 
 
S21 of the amplifier is estimated to be 11.64dB while S11 is -19.940dB. After MGA 

amplifier, a controllable attenuator PE4309 from Peregrine Semiconductor follows. This 

module covers a band from 0 to 31.5dB with a step of 0.5dB.  
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The final stage of RF transmitter chain involves a power amplification unit. This unit is 

depicted in Fig. 2.25.  

 

 

Figure 2.25: 3rd block of transmission chain. 
 

AP562 amplifier of TriQuint Semiconductor was modeled in ADS2009. Power 

amplification unit comprises a power divider which splits input power in two half parts 

which are then amplified using the AP562 model. Then these two parts are further 

divided and amplified. Finally the four power signals are united using a Wilkinson 

power combiner. The performance of the proposed amplifier is depicted in Fig. 2.26. 

 

 

 (a) (b) 

Figure 2.26: Performance of power amplifier; (a) gain and (b) reflection coefficient. 
Blue line corresponds to the overall amplification performance of 3rd block of chain. 
Red line corresponds to the performance of the AP562 amplifier. 
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Fig. 2.26a shows that the gain that the 3rd block provides is 22dB while the gain of the 

AP562 is estimated 11dB. The use of a combination of AP562 model with power 

dividers and combiners increases gain at about 11dB. 

 

Finally a 2×2 switch matrix [14] module is used that determines the active links. The 

designed matrix has the form of Fig. 2.27: 

                                           

Figure 2.27: 2×2 switch matrix. 
 
 

 

Switch matrix operates in two modes [14]. The first one refers to the solid black lines of 

Fig. 2.27. This state allows transmission of RS to MS and reception of RS from BS. The 

second mode is represented by the dot line in Fig. 2.27. In this state RS transmits to BS 

and RS receives data from MS. Switch matrix can operate in both 

TTR and STR mode. The switch matrix depicted in Fig. 2.28, uses PIN diodes and 

microstrip lines placed on Nelco N4350 13 substrate (εr=3.5, tanδ=0.0065, dielectric 

thickness d=0.508mm). 
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Fig. 2.29a depicts the operation of the designed switch in transfer mode. Power is 

transferred from port 1 to port 3 while ports 2 and 4 are terminated. Return Loss varies 

below  14dB for the frequency range of 3.3 to 3.8GHz. Insertion Loss is approximately  

2dB for the same frequency range. Regarding Fig. 2.29b, the isolation is presented 

between ports 1 and 4, while ports 2 and 3 are terminated. Return Loss is below  12dB 

for the frequency range of 3.3 to 3.5GHz while isolation is around  80dB for the same 

frequency range [15]. 

 
Using ADS2009 the RF chain previously presented is simulated. A WiMAX 802.16e 

RF signal enters the chain. This signal has the following characteristics: Carrier 

frequency is 3.5GHz and channel bandwidth is 10MHz. The input power is 10dBm and 

frame duration 5msec. The transmitted spectrum from RS to MS is depicted in Fig. 2.30 

[16]. 

 

Figure 2.30: Spectrum transmitted from Relay to end user. 
 
The transmitted spectrum falls within the defined WiMAX specifications. The emitted 

signal in time domain is presented in Fig. 2.31: 
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Figure 2.31: WiMAX transmitted signal. 
 
Time domain obviously shows that signal power is approximately 32.2dBm. This 

clearly denotes a power amplification produced by the RF transmission chain as input 

power is  10dBm. The estimated power gain is 42dBm. 

• Reception chain 

The RF receiver chain is described in Fig. 2.32 [12]: 

 

Figure 2.32: RF chain in receiver. 
 
 
The first block in Fig. 2.32 is depicted below: 

 

Figure 2.33: First block of RF receiver. 
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The first block of RF receiver includes the following components: 

• A Band Pass Filter (BPF) in the frequency range of 3.4 to 3.6GHz. 

• A Low Noise Amplifier providing 18dB Gain (LNA model HMC716LP3) 

• A controllable attenuator that provides 0 to31.5dB magnitude with a step of 3dB 

(model PE4309) 

• An MGA model amplifier (model MGA30316) 

For the BPF filter, the mixer (HMC) and the Local Oscillator (LO), parts from 

ADS2009 library were used. 

 

The second RF receiver block is depicted in Fig. 2.34. 

 

Figure 2.34: 2nd RF receiver block. 
 
The block depicted in the previous figure includes: 

• Low Pass Filter (LPF), Band Pass Filter (BPF), ADL (mixer) and LO (Local 

Oscillator) were chosen from ADS2009 libraries 

• An IF SBB amplifier was used to enhance the intermediate frequency of 

480MHz 

• A SAW Band Pass Filter (BPF) was used to discard the unwanted received 

signals 

• A controllable attenuator that provides 0 to31.5dB magnitude with a step of 3dB 

(model PE4309) 
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• SBB1000 MMIC amplifier was selected operating in 480MHz frequency 

• An MGA amplifier was chosen (model MGA62563 chip)

 

The BS to RS link was simulated (backhaul link). The input data is outlined below: 

i. Carrier frequency is 3.5GHz 

ii. The Power of the received signal is 30dBm 

iii. Channel bandwidth is 10MHz 

iv. The frame duration was set to 5msec 

Received signal strength (RSS), Signal to Noise ratio (SNR) were obtained for different 

modulation schemes. The results are depicted in the table that follows: 

 

Table 2.1: Simulated parameters for different modulation. 

 

 

 

 

 

 

 

The increase in the level of modulation causes raise to RSS and SNR. 

2.7 CONCLUSIONS 
 
Chapter 2 presented Relay Stations in terms of modes of operation and usage scenarios. 

These network devices provide capacity and throughput increase together with coverage 

Modulation RSS(dBm) SNR 
(dB) 

QPSK  88 2.9 
QPSK  84 6.3 
16QAM  82 8.6 
16QAM  78 12.7 
64QAM  77 13.8 
64QAM  74 16.9 
64QAM  73 18 
64QAM  71 19.9 
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extension, improving the quality of the transmitted signal and the performance of the 

wireless network. Relay Station should be equipped with a highly operational and 

flexible antenna system, providing access and backhaul connectivity. This antenna 

system is developed and tested in chapter 4. 
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CHAPTER 3 

BEAM FORMING

3.1 INTRODUCTION

Beam forming (BF) refers to the ability of an antenna system to steer the main lobe of 

radiation to a specific/desired direction, produce nulls in the directions of interference, 

cause side lobe suppression and in general shape radiation pattern based on some 

requirements. Such a system can be realized using a proper low loss circuit that includes 

transmission lines, power dividers, phase shifters and attenuators to distribute and 

process signal power to antenna elements. It also comprises a suitable algorithm for 

assigning appropriate phases and amplitudes to each antenna element.

Figure 3.1: Beam forming topology.
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Fig. 3.1 depicts a single case of a two element array. Each radiation element is 

connected to a phase shifter and an attenuator for assigning proper phase Δφ and 

amplitude Δα respectively. The circuit also comprises a power divider for suitable 

power distribution. Phase shifters and attenuators are connected to a processor which 

incorporates algorithm for proper phase and amplitude assignment. From the above it is 

clear that a beamforming module includes the following: 

 

• Power divider circuit design 

• Beam steering algorithm  

In this chapter two planar microstrip circuits for power division are presented and 

depicted. T junction and Wilkinson power divider are described and relevant 

mathematical equations that clarify their principles of operation are outlined and 

commented. Also a common beam forming architecture is depicted, giving special 

attention to the errors introduced by phase shifters and proposing a method for 

compensating these errors. In addition two beam forming algorithms, the Least Mean 

Square (LMS) and the Constant Modulus Algorithm (CMA) are presented for beam 

forming and pattern shaping. Their operation is denoted together with mathematical 

equations based on relevant references. In addition a second type of algorithms called 

Direction of Arrival Estimation (DOA) is outlined. This type performs estimations for 

identifying the direction of optimal signal reception. DOA and BF algorithm can be 

many times utilized together to provide an adaptive and smart antenna system. 
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3.2 POWER DIVIDER CIRCUIT DESIGN 

A power divider circuit is used to distribute input power to all radiating elements. The 

schematic of a three port power divider [1] has the form depicted in Fig. 3.2: 

 

Figure 3.2: Power divider configuration. 
 
Input power P1 is divided into P2 and P3 extracted from ports 2 and 3 respectively. It is 

easily noticed that: 

                                                         P1=P2+P3                                                3.1 

 

 The division of power is determined by the equation: 

 

                                                          P3=K2P2                                                  3.2 

 

By combining Equations 3.1 and 3.2, the output power can be written as: 

 

                                       122 1
1 P
K

P
+

=   and  12

2

3 1
P

K
KP
+

=                               3.3 

 

where K is a constant defined by the manufacturer. 
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The configuration depicted in Fig. 3.2 is called T junction power divider. Let us 

consider the case of the following 3 port planar circuit [2].  

                                    

Figure 3.3: 3 port Power divider. 
 
 
The S parameter of the 3 port divider is: 

 

                                   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣
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T* ==                             3.4    

 

Regarding Fig.3.3, considering that ports 1 and 2 are symmetrical to port 3, the 

following equations are valid: 

                                                2211 SS =  and 3231 SS =                                       3.5 

Several types of T junctions have been investigated and presented. Some common types 

[3] are depicted in Fig. 3.4. The following shapes have been designed on substrate with 

εr=2.5 and thickness h=0.1524cm. In Fig. 3.4b and 3.4c, widths have been adjusted in 

order to achieve dB5.2SS 2131 =− . 

W1 W2 

W3 

Port 1 Port 2 

Port 3 
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                                         (a)                                                              (b) 

 

                                        (c)                                                               (d) 

Figure 3.4: T junction power divider types. 
 
A special case of power division configurations is the Wilkinson power divider [4] 

which is depicted in Fig. 3.5. Signals exited from ports 2 and 3 are of equal magnitude 

and phase. Quarter wave transformers are incorporated to match the common port to the 

split ones. The resistance also matches all three ports and isolates ports 2 and 3.  

 

Figure 3.5: Wilkinson power divider. 
 
Let us suppose that ports 1, 2 and 3 of Fig. 3.5 are terminated in Z0=50Ω impedance. 

Total impedance at ports 2 and 3 is resulted by parallel addition of the relevant 

impedances: 

W W 

W 

W W 

W 

W1 
W2 

W1 W1 

W 

W2 W1 W1 

W 
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00t Z

1
Z
1

Z
1

+=                                                   3.6 

Equation 3.6 finally becomes: 

                                                      
2

ZZ 0
t =                                                          3.7 

A quarter wave transformer should be added between Z0 of port 1 and Zt of ports 2 and 

3 to succeed matching: 

                                       00t0q Z2Z
2
22ZZ2Z2 ===                                    3.8 

 

Several forms of Wilkinson power dividers that provide unequal power distribution 

have also been presented in the literature [5]-[8]. 

 

3.3 BEAM FORMING ARCHITECTURES AND TECHNIQUES 

Many beam forming architectures have been presented and studied in literature 

incorporating different circuit styles and methods of beam steering. Y. H. Chen et al [9] 

presented a beam forming circuit connected to a linear 8 element array, operating at 

2.6GHz. The proposed configuration is depicted in Fig. 3.6: 

 

Figure 3.6: Schematic of beam forming network. 
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Each radiation element is connected to a phase shifter and then power is combined to 

the output. Phase shifters incorporate digital step attenuators, RF switches and 900 

hybrid couplers. An error is introduced each time a phase and attenuation is assigned to 

the system. This error is caused by losses and inability of the system to adopt the 

specified values of amplitude and phase. 

 

The attenuation and phase errors are depicted in Fig. 3.7: 

 

 

                                            (a)                                                                     (b)  

Figure 3.7: Types of errors; (a) angle and (b) amplitude deviation. 
 

The angle deviation can reach 30 at 490 and amplitude error varies from  0.5 to 0.5dB.  

Aliakbarian et al [10] presented a circularly polarized array with a digital beam forming 

unit. A calibration formula is described to overcome imbalance phenomena and RF 

impairments. Signal is processed by an FPGA module where I and Q component signals 

are distinguished. A matrix is assigned through calibration phase in order to remove all 

imbalances: 

                                ⎥
⎦

⎤
⎢
⎣

⎡
φφβ

β
×⎥
⎦

⎤
⎢
⎣

⎡
θθ−
θθ

=
)cos(/1)tan(

0
cos()sin(

)sin()cos(
aM 0                       3.9 
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where β and φ are amplitude and phase deviations between I and Q components of one 

element. a0 and θ are the amplitude and phase deviations of the I component between 

antenna 1 and antenna 2.  

 

Measured and simulated radiation pattern are depicted in Fig. 3.8 utilizing Equation 3.9 

for imbalance compensation. 

 

Figure 3.8: Simulation and measurement for θ=00 and θ= 300. 
 
Even if Equation 3.9 is used for taking into consideration imbalances, steering main 

lobe to  300 leads to maximum at  210. This discrepancy is caused by mutual coupling 

effect between radiation elements. 

 

 

3.4 BEAM FORMING ALGORITHMS 

Beam forming refers to the production of a radiation pattern with specific desired 

characteristics. This is achieved by additive contribution of phases in the preferred 

direction and destructive contribution of phases in the direction of interferences. A 
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beam steering pattern is resulted by multiplying the signal emitted by each radiation 

element with a weight. For a linear array of N elements, the angular response for all 

angles ( 900<θ<900) is [11], [12]: 

 

                                                     )(S)n(W)(R H θ=θ                                                 3.10 

 

where: WH(n) is the hermitian of the weight vector W and S is the steering vector. 

The steering vector is equal to: 

                                               T)1N(j2jj ]e,...,e,e,1[)(S θ−−θ−θ−=θ                                    3.11 

 

In this section the Least Mean Square (LMS) algorithm is described. It is used for the 

estimation of the phases and amplitudes of the signals that will enter the array giving the 

proper characteristics to radiation pattern. LMS algorithm was proposed by Widrow and 

Hoff in 1959 [13]. It evaluates the optimum value for the desired variable, trying to 

minimize the mean square error. This algorithm will be fully analyzed in the text that 

follows. 

 

Figure 3.9: LMS beamforming network. 
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Fig. 3.9 describes a beamformer which through iterative process, it computes the 

optimum values of W in order to minimize the mean square error of e(t).  

The weight vector equation described in [14] is: 

                                )]}]([{[
2
1)()1( 2 neEnwnw w−∇+=+ μ                                          3.12   

where: µ represents the convergence of the algorithm, )(2 ne denotes the mean square 

error between the reference signal d(n) and the beamformer output y(n) and is equal to: 

                                     2H*2*2 )]n(xw)n(d[)]n(y)n(d[)n(e −=−=                                     3.13 

The gradient of the above equation is:  

                                              wR2r2)]}n(e[E{ 2
w +−=∇                                                  3.14 

where: )]()([ * nxndEr =  is called cross correlation matrix. It is a measure of how 

similar is x(n) and d(n). )]()([ nxnxER T=  represents the auto correlation matrix. 

 

Equation 3.12 can be written as:  

                            
)n(e)n(x)n(w)1n(w

)]n(w)n(x)n(d)[n(x)n(w)1n(w
*

H*

μ+=+

−μ+=+                                    3.15 

We set to the algorithm an initial arbitrary value, let us say w(0) and then through 

iterations the mean square error is minimized and the desired weight vector is obtained. 

The µ parameter seen in Equation 5.12 expresses the level of convergence. According to 

the LMS theory, it takes values: 0<µ<1/λmax. λmax is the maximum value of correlation 

matrix R. If values of λ are widespread, the convergence is slow. 

 

Many papers have been presented in literature, describing arrays and beam forming 

units that incorporate LMS algorithm to steer radiation lobe to desired directions. 

Guerreiro et al [15] have presented a planar array where the LMS algorithm is applied 
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to steer the main lobe of radiation to the desired direction and produce nulls in the 

interference directions. The paper investigates the efficiency of the beam steering 

algorithm for a varying number of iterations showing satisfactory results. Al Ardi et al 

[16] have studied the case of LMS application to a linear antenna array and varied 

parameters such as number of elements, spacing between the array elements etc. Some 

results are depicted in Fig. 3.10: 

 

Figure 3.10: LMS application to a linear array; (a) 5 elements (N=5) and (b) 10 
elements (N=10). 

 
An element increase leads to Half Power Beam width (HPBW) decrease and gives rise 

to array directivity. It does not seem to affect the direction of radiation. 

 

Element spacing is also studied, giving the following results shown in Fig. 3.11. 
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Figure 3.11: Effects of varying spacing between the array elements; (a) d=0.2λ (b) 
d=0.5λ. 

 
By placing the array elements closely (d<λ0/2) coupling become dominant and distorts 

radiation pattern. By increasing space at half of the wavelength, lobes of high directivity 

are appeared. 

 

LMS algorithm is often combined to Direction of Arrival Estimation algorithms (DOA) 

[17]. These algorithms estimate the direction of a desired signal and then a beam 

forming algorithm is applied (LMS) to steer radiation to the specific direction. Many 

DOA algorithms can be found in literature. MUSIC (Multiple Signal Classification) is a 

widely used DOA algorithm [17], [18]. This algorithm provides information regarding 

the angle of arrival, the strengths and the number of signals. The application of MUSIC 

for the case of a planar 8×8 gives the following results depicted in Fig. 3.12: 

 

 

Figure 3.12: MUSIC algorithm implementation. The angles in azimuth of signal 
reception are: φ=13.400, 100.1800 and 160.3600. 
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A disadvantage of MUSIC is that if two or more signal sources are very close to each 

other then MUSIC cannot distinguish them. 

 

A second commonly used DOA algorithm is ESPRIT (Estimation of Signal Parameters 

via Rotational Invariance Techniques). It requires less computational power and storage 

regarding MUSIC [19]. ESPRIT has been examined for the case of a linear array of 8 

elements giving results depicted in Fig. 3.13: 

 

 

Figure 3.13: ESPRIT algorithm implementation. The angles in azimuth of signal 
reception are: φ=74.2600, 140.4600, 158.4200 and 10.9400. 

 
 
Susmita Das has published a research in smart antennas where a comparison is 

performed between different beam forming algorithms [20]. Besides LMS algorithm, 

Constant Modulus Algorithm is described (CMA). It does not require reference signal 

and it needs time to converge. This property limits the efficiency of CMA algorithm in a 

rapidly changing environment. 

 

Weight update is performed using the equation: 
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                                               )()()()1( * nenXnWnW μ+=+                                      3.16 

where: µ is the step size, X(n) represents the input vector,  

))n(YR)(n(Y)n(e 2
2 −=  and 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= 2

4

2
)n(X

)n(X
ER  

Y(n) is the array output at the nth iteration. 

 

Another beam forming algorithm described in [20], is the Recursive Least Square 

algorithm, (RLS). In this case weight update is performed by the equation: 

 

                                                 )n()n(K)1n(W)n(W *ξ+−=                                       3.17 

where: K(n) is the gain vector and ξ(n) is an error estimation defined as: 

 

                                               )n(U)1n(W)n(d)n( H −−=ξ                                         3.18 

 

RLS algorithm converges faster than the simple LMS. The last is proved to be simple 

and provides ease of computation. 

 

3.5 CONCLUSIONS 
 
Chapter 3 handled the beam forming property in terms of array configuration and 

algorithm implementation. The presented literature review will be taken into 

consideration during the design procedure of the phased array for the backhaul link. The 

aforementioned survey will be used as the basis for the development of the phased array 

feeding circuit and the beam forming algorithm that is going to be applied.  
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CHAPTER 4  

ANTENNA SYSTEM DESIGN AND 
EVALUATION  
 

4.1 INTRODUCTION 

An new antenna system for a Relay Station is designed, simulated and fabricated. It 

includes a single antenna element for connecting Relay Station to Mobile Station 

(access link) and an antenna array for communication between Relay Station and Base 

Station (backhaul link). Specifications of the antennas have been provided by the Air 

Interface of IEEE 802.16j protocol. The single antenna element has high gain, broad 

main lobe and wide bandwidth for end user access while the array provides high gain 

and low Half Power Beam width. Moreover the array is equipped with beam forming 

features so that Relay Station can point its main lobe to the Base Station, put nulls in 

direction of interference and suppress side lobes for gain enhancement. A Relay Station 

should be able of radiation pattern control so that it can communicate with Base Station 

regardless of the position in which it is placed. For this reason a new beam forming 

circuit is designed, simulated and constructed, including power dividers and chips for 

proper amplitude and phase assignments. Least Mean Square (LMS) algorithm is 

generated to evaluate the phase and amplitude excitation currents to steer radiation 

pattern to desired direction, where Base Station is positioned. Several beam forming 

scenarios of Base Station’s position are considered. For each of these scenarios, 

experimental and simulated radiation pattern is extracted, depicted and results are 

commented.  
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4.2 ANTENNA SYSTEM DESIGN 

An antenna system for a Relay based wireless network is presented. The proposed setup 

is depicted below: 

 

  

Figure 4.1: Antenna system setup. 
 
It includes a backhaul antenna array for connecting Relay Station with Base Station 

(backhaul link) and an access antenna for connecting Relay Station with end users 

(access link). The configuration also comprises a beam forming module that splits 

power to a number of paths equal to the radiation elements. Each of these paths 

incorporates phase shifters and attenuators. Phase shifters and attenuators assign proper 

phases and amplitudes to the signals in order to steer the radiation emitted by the array 

to the desired direction. Phase and amplitudes are controlled by a beam steering control 

unit. A proper algorithm is embedded to this unit that give specific and desired 

characteristics to the radiation pattern of the array. 
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4.3 ACCESS AND BACKHAUL ANTENNA DESIGN 

4.3.1 Access antenna design 

The text that follows describes the configuration of a 2 substrate E-shaped patch 

antenna. The initial design of the antenna is a rectangle patch. The patch’s dimensions 

are [1]: 

                         LLL eff Δ−=          4.1 

where: Leff is the effective length of the antenna equal to: 

                                                           
reff0
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=                             4.2a 
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εreff is the effective dielectric constant of the substrate,  

h is the substrate’s thickness  

W is the width of the patch 

εr is the relative dielectric constant 

f0 is the resonant frequency 

 

The width of the patch is equal to: 

                            
1

2
f2
cW

r0 +ε
=                4.3 
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An inherent drawback of patch antennas is their narrow bandwidth [2]. Limited 

bandwidth is caused because the space under the patch behaves like a resonant cavity 

with high quality factor. For this reason stacked geometry is preferred for bandwidth 

enhancement [3]. 

 

As described in [3], the bandwidth of a microstrip antenna is equal to: 

 

         %100
VSWRQ

)1VSWR(B •
−

=                                       4.4 

 

where B represents bandwidth, VSWR is the Voltage Standing Wave Ratio and Q is the 

Quality factor.  

 

Q is reduced when thicker or lower permittivity substrates are used. A reduction of Q 

gives raise to B as can be noticed in Equation 4.4. In [4] and [5] is also proved that a 

stacked geometry configuration can lead to wider bandwidth. Relevant equations are 

denoted below: 

             
r

r
t hh

hh
ε

εε
21

21 )(
+
+

=           4.5 

where 21t hhh += . εt is the total dielectric permittivity of a structure comprising two 

substrates. h1 and h2 are the thickness of the utilized substrates. 

 

Bandwidth of the stacked patch antenna would then be: 
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where  

2
02

4
04

2
0

2 )Lk)(
10
1(b)Wk)(

560
3()Wk(

20
1p +α+

α
+=  

α2 =  0.16605 

α4= 0.00761 

b2 =  0.09142 

ko= 2π/λ 

L is the length and W the width of the patch element 

 

An increase in substrate thickness leads to surface wave excitation which distorts 

radiation pattern and reduced radiation efficiency. Also higher order cavity modes with 

field dependency on z axis are excited and affect radiation pattern and impedance 

characteristics [2]. In conclusion a balance should be kept for bandwidth enhancement 

and substrate’s thickness to provide a broadband antenna with low surface waves. 

Further bandwidth widening can be achieved using an E shaped patch antenna.  

 

A rectangle patch antenna has the form depicted in Fig. 4.2a: 
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Figure 4.2: Patch antennas with equivalent circuits; (a) rectangle patch antenna (b) LC 
equivalent circuit of rectangle patch antenna (c) E shaped patch antenna (d) LC 
equivalent circuit of E shaped patch antenna. 
 
A single rectangle patch element can be represented as an LC circuit depicted in Fig. 

4.2b [6], [7]. The current entered the antenna by the feeding point is moved to the patch 

edges and resonates the element at a frequency. The introduction of slots makes part of 

the current to be moved at an additional path as depicted in Fig. 4.2c. The current that 

runs through the additional path makes the antenna resonate at a second lower 

frequency and adds a series inductance and capacitance to the equivalent LC circuit 

(Fig. 4.2d). The slots introduced in the patch element can be represented as a zero 

thickness transverse magnetic wall into the antenna [7].  
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The patch antenna is fed by a 50Ω coaxial cable. The feeding point has been 

investigated for obtaining 3.5GHz resonant frequency. From [8] the input impedance at 

the point ( 00, yx ) of a rectangular patch, shown in Fig. 4.3 can be written as: 

 

Figure 4.3: Input impedance evaluation. 
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where: n0 is the free space impedance 

k0=2π/λ0 is the wave number in free space 

h is the substrate’s thickness 
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kmn is the wave number of m, n mode 
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If k0=kmn the denominator of Equation 4.7 becomes 0 and the Zin is infinite. A loss 

mechanism should be introduced in Equation 4.7 so that the antenna could emit. This 
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loss mechanism is expressed in terms of the effective loss tangent. The expression for 

input impedance becomes: 

                          hkjnZin 00−= mn
n mneffr

mn

m
G

kkj
yx∑∑
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=
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= −−0
22

0

00
2
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),(

δε
ψ      4.11 

 

The final composite structure of the E shaped patch antenna has been optimized in terms 

of patch length, width, slot length and width and substrate thickness in order to present 

resonance at 3.5GHz and adequate bandwidth. 

 

4.3.2 Access antenna simulation and fabrication 

Starting from a rectangle patch antenna, the initial shape has been optimized with the 

introduction of a second substrate, slots and by varying the dimensions of the radiation 

element in order to achieve 500MHz bandwidth and 9dB gain based on the 

specifications of the IEEE802.16j standard. 

The proposed antenna has been designed, simulated in HFSSv.11 and fabricated and has 

the following form: 

 

                                    

                                              (a)          (b) 
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(c) 

Figure 4.4: Access antenna; (a) simulation design (b) constructed design (c) cross 
section view. 
 
The simulated antenna is depicted in Fig. 4.4a. The constructed one is shown in Fig. 

4.4b. A cross section of the proposed antenna structure is viewed in Fig. 4.4c. 

 

An E-shaped patch antenna is designed and mounted on foam substrate (εr=1, 

tanδ=0.0025, h=0.5cm). Foam substrate is placed on Rogers Ro 3006 (εr=6.15, 

tanδ=0.0025, h=1.28mm). Rogers Ro 3006 dielectric is then placed on ground plane 

(h=35μm). Dimensions of the E shape antenna are depicted in Fig. 4.5. 

 

 

Figure 4.5: Dimensions of e shape antenna. 
 
Measured and simulated S11 are depicted in Fig. 4.6. Measured S11 is estimated to be: 

S11= -31.93 dB for 3.4GHz. 
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Figure 4.6: S11 vs. frequency. 
 
Bandwidth of the proposed antenna is 520MHz or 15.2%. Radiation pattern in terms of 

norm. Power is depicted in Fig. 4.7a and 4.7b.    
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 (b) 

 

(c) 

Figure 4.7: Radiation pattern of E shaped antenna; (a) xz plane (b) yz plane (c) 3D 
radiation pattern. 

 
Radiation pattern features are denoted in Table 4.1, together with the air interface 

specifications of IEEE802.16j standard. 

Table 4.1: Features of access antenna and comparison with the desired specifications. 
 Gain (dB) for 

3.4GHz  

HPBW xz 

plane (deg) 

HPBW yz 

plane (deg) 

Bandwidth 

(MHz) 

Access 
antenna  

10 75 42 520 

Specifications 9 (sectorial) 60 (sectorial) 50 500 
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Let us mention here that the inter element spacing (center to center) is 0.87λ0. The 

purpose is to place radiation elements in such a distance to prevent grating lobes and 

maintain mutual coupling and side lobe levels as low as possible. Grating lobes can be 

prevented by adjusting the inter element spacing to be smaller than λ0. Strong mutual 

coupling can also be prevented by adjusting distance between patches to be more than 

λ0/2 [8]. So the distance should be: 

                                                             0
0 λd

2
λ

≤≤                                                4.12 

After successive simulations it has been found that patches should abstain 0.87λ0. It has 

been found that this distance gives high gain, a broad main beam and low side lobe 

levels. 

Radiation pattern in terms of power distribution can be seen below: 

 

(a) 
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 (b) 

 

 (c) 

Figure 4.10: Radiation pattern of 16 element array; (a) yz plane (b) xz plane (c) 3D 
radiation pattern. 

 
 
 

 

The features of the 16 element array together with air interface specifications of the 

IEEE802.16j standard. 

 



 

139 
 

Table 4.2: Features of backhaul antenna and comparison with the desired specifications. 
 Size 

(cm) 

Gain (dBi) 

for 3.4GHz 

HPBW xz 

plane (deg) 

HPBW yz 

plane (deg) 

Bandwidth 

(MHz) 

Backhaul 

antenna 

32.6×30 21.2 14 14 424 

Specifications  18 15 15 500 

 

The proposed antenna presents higher gain and lower HPBW than the commercial one. 

Both access and backhaul antennas would be mounted on a Relay Station. A proposed 

setup could be the following: 

 

                                

Figure 4.11: Proposed Relay Station with antenna setup. 
 
Backhaul antenna is mounted on one side of the Relay while access antenna can rotate 

using a proper mechanism as can be seen in Fig. 4.11. 

 

4.4 BEAMFORMING MODULE 

4.4.1 Beamforming circuit 
 
Beamforming circuit comprises the microstrip power dividers that split and distribute 

the signal power to each of the radiation elements. Phase shifters and attenuators have 

ω

Backhaul antenna 

Access antenna 

Relay Station 
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been adjusted to microstrip lines for beam steering realization. Side view of the 

proposed beamforming circuit is depicted in Fig. 4.12. 

                                 

Figure 4.12: Side view of the beam forming circuit. 
 
Microstrip lines of copper (h=35µm) are placed on Rogers Ro 4003 substrate (εr=3.55, 

h=0.508mm). A second Rogers Ro 4003 is mounted beneath the first, on the top of 

which ground plane of copper (35μm) is placed. On the bottom side of the 1st and 2nd 

Rogers Ro substrates, lines of digital information are designed. Both substrates are hold 

with vias. Microstrip lines are designed with length equal to [9]: 

                    
2

NL gλ=                                       4.13 

and        
r

0
g ε

λ
=λ                        4.14 

N is a physical number, λg is the wave length in substrate, λ0 is the wave length in free 

space and εr is the relative dielectric constant of the substrate. Microstrip lines form a 

1:8 Wilkinson power divider [10] for accurate power division and transfer to the 

radiation elements. A Wilkinson power divider splits an input signal into equal 

amplitude and phase output signals. It incorporates a 100Ω chip resistor that isolates and 

matches ports. The widths of the microstrip lines have been defined using the formulas 

[11]: 

)Aexp(2)Aexp(
8

h
W

−−
=  for 2h/W ≤               4.15a 

Ground plane 
1st Rogers RO 4003 

Microstrip line 

2nd Rogers RO 4003 

Vias 
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]61.039.0)1B[ln(
2

1)1B2ln(1B{2
h
W

rr

r

ε
−+−

ε
−ε

+−−−
π

=  for 2h/W ≥            4.15b 

where:  

Z2
B

)/11.023.0(
1
1Z)1(2A

r

0

r
r

r
r

0

ε
πη

=

ε+
+ε
−ε

++ε
η
π

=

 

η0=377Ω is the impedance of free space 

Initial values for length L and width W are:  

L=1.13cm for N=1 

W=1.12mm for Z=50Ω characteristic impedance 

The above values have been used for the initial beam former circuit design. Then 

optimization has been performed to improve circuit’s dimensions to better operate at 3.3 

to 3.8GHz frequency range. Layout of the final design is depicted in Fig. 4.13. 

 

 

Figure 4.13: Beam forming circuit. 
 
The size of microstrip lines in each bracket is denoted below: 

 

 

 
1 

 
2 

 
3 

L=10 cm 
W=1.271mm 
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(a) 
 
 
 
 
 

 

(b) 

L=1.018 cm 
W=1.69mm 

L=2.341 cm 
W=1.76mm1 

L=1.291 cm 
W=1.69mm 

L=1.927 cm 
W=1.271mm

L=0.3 cm 
W=1.271

L=0.3 cm 
W=1.271mm

2 
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(c) 

Figure 4.14: Length and width dimensions of microstrip lines of the 1:8 Wilkinson 
power divider. 
 
In Fig. 4.15 the top side view of the designed circuit is drawn together with the phase 

shifters, attenuators and resistor chips. 

 

Figure 4.15: Microstrip power divider circuit. 
 
The power divider designed and presented above is fabricated and depicted in Fig. 4.16: 

L=2.6 cm 
W=1.7mm

L=0.287 cm 
W=1.271m

L=0.87 cm 
W=1.271m

L=1.4 cm 
W=0.64mm 

L=1.52 cm 
W=1.165m

3 

P1 
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Figure 4.16: 1:8 Wilkinson Power Divider. 
 

 

The above scheme shows a 1:8 Wilkinson power divider. Phase shifters [12], 

attenuators [13], capacitors, resistors [14] and connectors are mounted on the 

corresponded positions. Two such dividers are going to excite a 16 element array. This 

array will establish the backhaul link connecting Relay Station and Base Station. 

The dimensions of the Wilkinson power divider (Fig. 4.16) are 21.2×21.8cm. Fig. 4.17 

depicts the S11 at the input of the 1:8 power divider.  

 

Phase shifter 

Attenuator 

Chip resistors 

Chip capacitors 

Connectors 

Microprocessor 
input 

Microprocessor 
input 
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Figure 4.17: S11 vs. frequency. 
 
Measurements of S11 parameter have been carried out using Anritsu MS6036A VNA.  

The designed beam forming circuit operates in 3.3GHz to 4GHz frequency range 

presenting 700MHz bandwidth (S11< -10dB). The minimum value of S11 is -27,112dB 

for 3.38GHz. The simulated and experimental curves depicted in Fig. 4.17 are in good 

agreement. Their differences are caused due to ohmic, dielectric and conductor losses 

and microstrip line coupling. The designed beam forming circuit presents adequate 

bandwidth that covers the operation frequencies of the array presented in the previous 

section. Thus the array and the beam forming circuit can be efficiently combined. 

Fig. 4.17 has been derived assigning 0 dB attenuation and 0o phase shift at each 

attenuator and phase shift correspondingly.  

 

The schematic that describes the total configuration of the beamforming circuit that 

feeds the 16 element array is depicted below:  
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Figure 4.18: Total experimental setup of beam forming circuit with the array. 
 

Signal 
Generator

1:2 Power 
Divider 
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4.4.2 LMS Algorithm  

Least Mean Square algorithm was applied by beam steering control unit (Fig. 4.1) to 

steer the main lobe of radiation to desired direction, put nulls and suppress side lobes. 

Using Mathcad v.14, a mask that represents the ideal radiation pattern with the desired 

characteristics is depicted. Then LMS is applied in order to derive the attenuation and 

phase of signals that enter each radiation element and produce an array pattern that 

approximates mask. 

                                        

Figure 4.19: 16 element array and coordinate system. 
 

Fig. 4.19 shows a planar array of 16 elements with a Cartesian coordinate system. 

Angles of interest (θ,φ) are also denoted. 

The array factor used for the above planar array has the following form [15]: 

∑∑
= =

−ϕθ−+ϕθ−=ϕθ
4

1m

4

1n
mnmn ]}bsinsind)1n(kcossind)1m(k[(iexp{a)b,a,,(AF      4.16 

where: 

amn is a 4×4 matrix that represents the magnitude of the signal that enters mn radiation 

element 

y

x

z P

θ

e11 e14

e41 e44

φ
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bmn is a 4×4 matrix that represents the phase of the signal that enters mn radiation 

element 

k=2π/λ0 is the wave number equal to 73.3 

m, n are physical numbers 

d=7.45cm is the distance between two adjacent elements (center to center) 

 

The radiation pattern of a rectangle patch element is approximately [15]: 

                                    )sin
2

kLcos(
cos

2
kh

)cos
2

khsin(
)(E e

e θ
θ

θ
=θ                                    4.17 

where k=2π/λ0 is the wave number equal to 73.3 

λ0=8.57cm for 3.5GHz 

h=8.47mm is the total substrate thickness of the array 

Le is the effective length of the patch 

The total far field electric field produced by the array is: 

                                          )(E)b,a,,(AF
r

e),(E e

jkr

t θϕθ=ϕθ
−

                                     4.18 

 

A reference signal is formed based on required radiation pattern characteristics. 

Requirements include specific angle of maximum, angle of null and side lobe level 

suppression. The studied scenario involves the following demands: Maximum at: (θ, 

φ)=(40, 0), Null at (θ, φ)=( 30, 0) and side lobe SLL<-10dB. Angles are in degrees. The 

resulted reference signal has the form depicted in Fig. 4.20: 
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Figure 4.20: Reference signal for maximum in (40ο, 0ο), minimum in (-300, 00),  
SLL< -10dB. 

 
After applying the algorithm, the amplitudes and phases of signals that excite radiation 

elements and produce a radiation pattern that approximates reference signal are 

calculated. Amplitude and phase matrices are: 
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Let us mention here that attenuation matrices a and b have a quantized range of values 

which is: a=[0, -3, -6, -9, -12, -15, -18, -21, -24, -27, -30, -33, -36, -39, -42, -45] dB 

and b=[0, 0, 5.625, 11.250… 354.375] in deg with angle step of 5.6250. 
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Matrices 4.19a and 4.19b are introduced in Equation 4.16 and 4.18 giving the total field 

depicted in Fig. 4.21: 

 

 

 

Figure 4.21: Radiation pattern of 4×4 array with reference signal. 
 
Two patterns of Fig. 4.21 present 78.43% convergence and 31.1sec convergence time. 

 

4.5 BEAMFORMING ANTENNA TESTING 

The LMS algorithm presented in the previous section was applied in the testing board 

described in Fig. 4.18. Three scenarios of beam forming have been considered and 

presented below: 

a. Maximum at (-180,00), null at (340, 00) and Side Lobe level SLL<-10dB.  

The algorithm gives the following results in terms of amplitude and phase: 
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Figure 4.22: Simulated and experimental radiation pattern of 16 element array for 
scenario (a). 

 
Fig. 4.22 shows that scenario requirements are met. Side lobe levels on all three curves 

are below -10dB. Angle of null is 340 while angle of maximum is -180. LMS algorithm 

considers an array of rectangle patches with no mutual coupling. On contraire in 

simulation curve, E-shaped radiation elements have been considered with mutual 

coupling. That is why these two curves do not coincide. The experiment curve 

comprises ohmic, dielectric and conductor losses, line coupling and imbalance 

phenomena of attenuators and phase shifters. Imbalance phenomena are relevant to the 

weakness of attenuator and phase shifter to adjust precise values of amplitude and 

phase. In spite of these imbalances and losses the radiation pattern has the desired form. 

 

b. Maximum at (22,00), null at (800, 00) and Side Lobe level SLL<-10dB.  
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For scenario (b) the same procedure as above has been performed. LMS algorithm gives 

the following results: 
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Relevant curves are depicted in Fig. 4.23. 

 

Figure 4.23: Simulated and experimental radiation pattern of 16 element array for 
scenario (b). 

 
Blue line of Fig. 4.23 meets the specified requirements set by scenario (b) except from 

maximum of main lobe. The simulation curve presents θmax=200. This slight difference 

may be caused by E-shaped antenna elements and mutual coupling effects. 
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The experimental line presents maximum at θmax=180. This 40 deviation compared to the 

ideal radiation pattern (LMS curve) is caused by losses in power divider and imbalance 

phenomena.  

 

c. Maximum at (-22,00), null at (200, 00) and Side Lobe level SLL<-10dB.  

For scenario (c) the LMS algorithm gives the following results: 
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Figure 4.24: Simulated and experimental radiation pattern of 16 element array for 
scenario (c). 
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In this case simulation and experiment agree at high level and differ from the LMS 

curve. The last one presents maximum at -22 deg while the experiment curve seems to 

be maximized at -21 deg. 

4.6 FIELD MEASUREMENTS 
 
In order to examine the beam forming features of the designed array, the experimental 

setup depicted in Fig. 4.18 is realized. Experiments take placed inside anechoic 

chamber, where the investigated antenna is set to the opposite side of a receiver antenna. 

Radiation pattern of the array takes several forms dependent on the amplitude and phase 

definitions. Signal generator is set to emit a sinusoidal wave of 3.5GHz. For each 

radiation pattern case a spectrum analyzer connected to the receiver antenna records the 

received signal strength in terms of distance l. The l parameter is connected to angle θ 

(theta) through the expression: 

                                                              
s
ltan =θ                                                         4.23 

Finally the diagram of the normalized received power is expressed as a function of the 

angle θ (theta). 

 

The orientation of the array inside anechoic chamber is depicted below. Figure clearly 

shows the angle of interest θ (theta). 
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Figure 4.25: 16 element array with coordination system. 
 
The experimental gain of the array is derived using the formula [1]: 

 

                                 )dB(Gr)
Pt
Prlog(10)R4log(20)dB(Gt −+

λ
π

=                             4.24 

 

where Gt is the gain of the array, Gr is the gain of the antenna receiver, R is the distance 

between the two antennas, λ is the wavelength, Pr is the power transmitted by the array 

and Pt is the power accepted by the receiver antenna. 

Fig. 4.26 and 4.27 describe the experimental setup during the procedure of evaluating 

the radiation pattern of the tested antenna for the scenarios denoted in section 4.5. 

 

θ
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z
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Figure 4.26: Side view of field measurements configuration. 

 

                     
Figure 4.27: Top view of field measurements configuration. 

 

The Amplitude/Phase control unit is described in Fig. 4.28. It includes the  

• AVR EVK 1100 microcontroller of Atmel,  

• 74HC154 chip (4 to 16 line decoder/demultiplexer),  

• 74VHC139 chip (Dual 2 to 4 decoder/demultiplexer) 

• 74LS164 chip (serial in parallel out shift register) 
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Both decoders are used for the addressing phase shifters and attenuators while shift 

register transforms a serial to parallel bit stream to forward it to the proper device. 

 

Figure 4.28: Amplitude/Phase control unit. 
 

Shift registers depicted in Fig. 4.28 are further connected to phase shifters and 

attenuator chip as described in Fig. 4.29. Physical realization of Fig. 4.28 is depicted in 

Fig. 4.29. 

 

Figure 4.29: Configuration of Amplitude/Phase control unit. 

74HC154 

74VHC139 

74LS164 
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Figure 4.30: Amplitude/Phase control unit together with beam forming circuit. 
 
 
Shift register (Serial to parallel chip) 74LS164 is used to provide the required 

information to the phase shifters and attenuators depicted above. Fig. 4.30 shows that 

each shift register is directly connected to each phase shifter individually. Digital bit 

information enters serial to parallel chip in serial form and then is transferred to phase 

shifter in parallel from.  
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Regarding attenuators, one shift register can serve four attenuators as can be seen in Fig. 

4.30b. So four shift registers are needed to support 16 attenuators. The latter receive a 

four bit word to assign proper amplitude. The operation is similar to the previous one 

but now the attenuators are equipped with Latch Enable property (LE). When LE1 is 

HIGH (logic one), the corresponded attenuator is able to receive information. When 

LE1 is LOW (logic zero), the attenuator does not receive any data. 

 

The state of the attenuator is controlled, besides LE feature, from Power Up 1 (PUP1) 

and Power Up 2 (PUP2) options. According to datasheet of the attenuator PUP1 and 

PUP2 should be kept at high state so that the device could provide the whole attenuation 

range. 

4.7 CONCLUSIONS 
 

Chapter 4 presented the design, simulation, fabrication and evaluation of a new access 

and backhaul antenna to be incorporated with a Relay Station. Both antennas are based 

on microstrip technology which provides advantages outlined in chapter 1. The access 

antenna provides gain 10dB and bandwidth 520MHz while the backhaul antenna 

provides gain 21dB and bandwidth 424MHz for the frequency band of 3.4GHz. These 

features are compliant with the air interface specifications of the IEEE802.16j protocol 

which is referred to the Relay based mobile WiMAX. Let us mention here that both 

antennas are operating in the same frequency band and thus making their utilization by 

network operators very advantageous. Regarding backhaul antenna, a new feeding 

network design was presented and tested, providing sufficient behavior in terms of the S 

parameters for the frequency range of interest. Moreover the backhaul antenna which is 

actually a phased array was tested regarding its beam forming features. Some radiation 



 

160 
 

pattern scenarios were considered where the experimental results were satisfactory and 

accepted. The work done in chapter 4, proved the proper operation of the access and 

backhaul antenna under a Relay based network. 
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CHAPTER 5  

COUPLING EFFECTS AND 
MEASUREMENTS 
 

5.1 INTRODUCTION 

A definition of coupling together with mathematical formulas is denoted in this chapter. 

Equation for mutual voltage and impedance are derived and methods of extracting 

coupling coefficient are stated and proved. In addition chapter 5 also mentions some 

studies regarding coupling estimation and reduction methods including Electromagnetic 

Band Gap (EBG) structures for surface wave and coupling degradation. Such structures 

are depicted and commented. 

In chapter 5, two new designs of access and backhaul antenna are presented and their 

features are depicted and commented. Both antennas are based on low cost FR4 

substrate and they operate in the same frequency. Two new antenna configurations are 

proposed and tested in terms of coupling. The purpose of these tests is to achieve low 

interaction between the antenna elements and combine the corresponding antenna 

configuration with the Relay Station. 

 

5.2 BASIC TERMS OF COUPLING 

The interaction between two or more antenna elements can be described by coupling 

coefficient. The latter can be defined in two ways dependent of whether the antenna 
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elements emit or receive power [1]. In the case of emission of two radiation elements 

placed closed to each other, coupling coefficient is described as: 

                                                               
1

2

P
PCe =                                                          5.1 

where P2 is the power accepted by antenna 2 and P1 is the power carried by antenna 1. 

In the case of reception coupling coefficient is expressed as: 

 

                                                             
1

2

P
PCr =                                                            5.2 

 

where P2 is the power impinged on antenna 2 due to antenna 1 and P1 is the power 

accepted by antenna 1 due to external field. 

 

It is derived that Ce and Cr can be written in terms of scattering parameters. 

 

                                                         2
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                                                        2
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=                                                       5.4 

The phenomenon of coupling can also be measured by the form [2]:  

                                             )
)(

2log(20 2
12

2
12

ZRZ
RZC

Nr

N

−+
=                                          5.5 

 

where Z12 refers to the mutual impedance interaction between the antennas 1 and 2, Zr is 

the input impedance and RN the normalization resistance. 
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Coupling affects the pattern of an array [3]. Let us consider the case of an M×N planar 

array of identical elements placed at equal distance between them (Fig. 5.1). 

                                       

Figure 5.1: Planar array of M×N identical elements. 
 
The voltage appeared in the mnth element due to current in pqth element is equal to: 

 

                                                  ,mn mn pq pq
p q

V Z I=∑∑                                            5.6 

where Zmn,pq is the impedance that presents the mnth element due to the current in the pq 

element. Ipq is the current of the pqth element. The impedance of the mnth element would 

then be: 

 

                                           ,I
pqmn

mn mn pq
p qmn mn

IVZ Z
I

= =∑∑                                       5.7 

 

Total impedance of an element would be the addition of the self impedance of the 

element (mn=pq) plus the mutual impedances ( mn pq≠ ). 
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A method of computation the mutual impedance has been proposed by Newman, 

Richmond and Kwan [4] using Method of Moments. Let us consider the case of two 

patch antennas placed nearby (Fig. 5.2). Both patches lie on a substrate of dielectric 

constant εr and thickness h. The one patch is excited through coaxial cable by current of 

density Ji. Js is the current that rises on both patches. 

 

                                              

Figure 5.2: Two patches excited by currents Ji and Js. 
 

If N current shapes are developed on both patches, the integral equation that associates 

Ji and Js is: 

                                       

                                         s m i m
S L

J E ds J E dl− =∫∫ ∫ ,             m=1,2,…N                  5.8 

where S is the surface of the patches and L the length of the feeding line. 

Current density Js can be written as: 

 

                                                       
1

N

s n mn
n

J I J
=

=∑                                                      5.9 
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Ji εr h 
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x 
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where In are unknown coefficients and Jmn are known current functions. 

 

By substitution of Equation 5.9 to Equation 5.8 it is derived that: 

 

                                                       
1

N

m n mn
n

V I Z
=

=∑                                                     5.10 

 

where m i m
L

V J E dl= ∫   and   mn s m
S

Z J E ds= −∫∫  

 

As current density functions for the rectangle patch are chosen: 

 

                                            
ˆsin[ ( )]

sin( )m

k h x x
J

w kh
−

=                                                     5.11       

 

where k=2π/λ, h is the thickness of substrate and w the width of the patch.     

          

A way to evaluate and depict mutual coupling effect to radiation pattern was described 

by Steyskal and Herd [5]. For a linear array of receiving elements depicted in Fig. 5.3, 

the total array pattern would be: 



 

167 
 

                           

Figure 5.3: Linear array with coupling effect. 
 

        sin( ) sin( ) sin( )( ) ( ) ( ) ( )jnkd a jnkd jnkd
n n n n n

n n n
F a f e f a e a f eθ θ θθ θ θ δ θ= = +∑ ∑ ∑          5.12 

where nj
n na e ϕα = is the complex weight of the incident wave in terms of the excited 

amplitude and phase. Fn(θ) is the array pattern, fa(θ) is the isolated element pattern, and 

δfn(θ) is the element pattern due to coupling.  

 

Total array pattern from a specific direction (θ) is the summation of the element pattern 

plus a term that expresses the coupling effect. 

 

Total voltage induced at the mth element can be written as: 

 

                                                 ( ) ( )i
m mn mu c E fθ θ=                                                  5.13 

 

where cmn is the coupling matrix that expresses the interaction of the m element from n. 

Em expresses the field that impinges on the mth element and fi(θ) represents the isolated 

element pattern. 

θ Em En 

cnmEnfn(u)

Vm
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Equation 5.13 can be written in matrix form as:  

 

                                                   

'
1 1

'

( ) ( )

( ) ( )
mn

N

u u
c

u u

θ θ

θ θΝ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

M M                                             5.14 

 

where the matrix on the left represents the voltages at the output of the elements and the 

matrix on the right includes the voltages without mutual coupling consideration. 

Coupling coefficient cmn can be derived solving the equation: 

 

                               5.15 

 

Equation 5.15 finally gives: 

                                         ∫
π

π
−

θ−

θ
θ

π
=

kd

kd

)sin(jnkd
i
m

nm e
)(f
)(g

2
1c                                              5.16 

where gm(θ) is the voltage output from the mth element, k is the wavelength and d is the 

distance between the elements. 

 

Another way to evaluate the coupling coefficient is to write the field created by a linear 

array in the following form: 

                                 ( ) ( )
jkr jkr

i i
m n n

n n

e eu f f u
r r

θ θ
− −

Ε = =∑ ∑                                   5.17 

Element m is excited and all the others are terminated. The voltage appeared in the 

element n is:  

∑ θθ=θ
n

)sin(jnkd
nm

i
m ec)(f)(g
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                                                    ( )n nm nm mu s aδ= +                                                   5.18  

where δnm is the delta of Kronecker defined as: 

1
0nm

n m
n m

δ
=

=
≠

K

K
 and snm is scattering matrix 

 

By substitution of Equation 5.18 to Equation 5.17, the radiated field becomes: 

                                 sin( )( ) ( )
jkr

jkni
m m nm nm

n

ea f s e
r

θθ δ
−

Ε = +∑                             5.19 

 

Or in matrix form:                                      C=I+S                                                      5.20  

where C is the coupling matrix, I stands for the unitary matrix and S scattering matrix. 

 

In [8] and [9], the relation between mutual coupling and the surface/reflected waves 

occurred in the substrate of a patch array, were investigated. 

 

 

Figure 5.4: Surface and reflected waves between two patches. 
 
In Fig. 5.4, the excitation of patch 1, leads to the creation of surface and reflected waves 

that travels from one patch to another through the substrate. It is claimed that: 

 

• High values of dielectric constant εr, lead to enhanced reflected waves 

Patch Patch 
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• For small values of loss tangent tan(δ), the reflected waves have constant 

magnitude, regardless distance between patches and frequency 

• If the distance between patches is: gd λ
7
5

≥ , where gλ is the wave length in the 

substrate, then surface wave occur.  gλ  is dependent of dielectric constant and 

thickness of the substrate. 

5.3 MUTUAL COUPLING ESTIMATION AND REDUCTION 

METHODS  

Coupling between antenna elements is an unwanted phenomenon which degrades the 

performance of the system and needs to be reduced. One technique to achieve mutual 

coupling reduction is the introduction of electromagnetic band gap (EBG) structures 

among radiation elements. EBG configurations are periodic metallic constructions 

placed between antennas which introduce additional capacitance and inductance to the 

system and reduce the level of interaction among antenna elements. The shape of EBG 

structure varies and depends on substrate’s thickness and operation frequency.   

 

Pynttäri, Mäkinen, Heikkinen, Kivikoski [13] proposed a novel EBG configuration for 

reducing surface waves and mutual coupling (Fig.5.5). 
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Figure 5.5: Two patches separated by EBG construction. 
 
The construction depicted in Fig. 3.11 leads to a clear reduction of S21 parameter which 

implies a mutual coupling degradation. Fig. 5.6 shows that S21 is reduced because of the 

introduction of EBG structure.  

 

Figure 5.6: S21 parameter as a function of frequency. 
 
Let us mention here that Jing Liang and Hung Yu David Yang [14] have investigated 

the EBG structure characteristics and shown that the resonant frequency of a patch 

antenna is affected by the presence of EBG structure. 
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Figure 5.7: EBG and antenna configuration. 
 
In Fig. 5.7 a first substrate includes the periodic metallic fabrication. Upon the first 

substrate is placed a microstrip line which feeds the configuration. A second substrate is 

then mounted above microstrip line, on the top of which lies the antenna. The table that 

follows includes the variations of operation frequency when EBG is used and when it is 

not used. 

Table 5.1: Patch antenna operating frequency. 
 

 

 

 

 

 

It is clear that the use of EBG structure alters the resonant frequency which takes lower 

values. 

 

Fan Yang and Yahya Rahmat Samii [15] investigated the coupling effect between two 

patch antennas. First two patch antennas were placed close to each other in a thick and 

Patch 
Dimension 
(mm2) 

Plain Antenna  
Resonant Freq 
(GHz) 

EBGAntenna  
Resonant Freq 
(GHz) 

10×10 6.29 2.92 
20×20 3.32 2.15 
30×30 2.25 1.67 
40×40 1.71 1.27 
50×50 1.38 1.03 
60×60 1.15 0.85 
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high permittivity substrate. The latter broadens the bandwidth of the antenna system but 

also produces surface waves which lead to strong mutual coupling. The introduction of 

rows of mushroom like EBG structure between the antenna elements suppresses the 

coupling effect, by producing a frequency band gap. That gap forbids waves which fall 

within a certain frequency range to propagate. Fig. 5.8 shows the experimental 

configuration. 

 

Figure 5.8: M1 and M2 is patch antenna separated by a three row EBG structure. 
 
The EBG structure is depicted below and it is consisted of metallic plains placed on the 

substrate and connected with vias to the ground plane (Fig. 5.9). 

 

 

Figure 5.9: EBG structure. 
 
The additional inductance and capacitance that the EBG structure introduces is: 

 

 5.21 

   

          5.22 

 

hL 0μ=

)
g

gW2(coh)1(WC 1r0 +
π

ε+ε
= −
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where μ0 is the free space permeability,  

εr is the free space dielectric constant,  

g is the width of the gap,  

h the substrate’s height,  

W the patch width 

The additional inductance comes from the current that flows through vias and the 

capacitance because of the adjacent patches. Finally the bandwidth of the gap is 

determined by the equation: 

 

                                                  
C
LBW

η
1

=                                                             5.23 

 

where η is the impedance of free space equal to 120π. 

 

Another work that proves the efficiency of EBG structure to reduce coupling has been 

published by F. Caminita et. all [18]. This study presents two patch elements separated 

by a “cactus” shaped EBG structure including stubs as can be seen in Fig. 5.10a and 5 

.10b.  

 

              

  (a)                                                                     (b) 
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Figure 5. 10: Proposed patches with EBG structure; (a) Experimental setup (b) EBG 
structure. 

 
All structure is placed on a substrate of εr=2.33 and height h=1.524mm.  

 

               

                                                  (a)                                                                                     (b)                                         

Figure 5. 11: Scattering parameters of patch elements; (a) S12 with and without EBG 
structure (b) S11 with and without EBG structure. 

 
The use of EBG structure clearly increases the value of S11 parameter for 9.2GHz but 

also reduces the level of coupling for about 5dB (Fig. 5.11). 

 

Another method for mutual coupling reduction is the Defect Ground Structure (DGS). It 

is realized by etching shapes on ground plane. These shapes change the capacitance and 

inductance of ground plane, affecting the current distribution [19]. Salehi et. all [20] 

presented a DGS configuration and compared it with other methods of coupling 

reduction. The DGS setup they proposed can be seen in Fig. 5.12. 
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Figure 5.12: Two patches separated by a DGS configuration. 
 
Fig. 5.12 depicts two patch antennas placed on a substrate with permittivity 10.2. The 

two patches are probe fed. In between the two patches, a dumbbell is etched on the 

ground plane. The above case is simulated in order to obtain coupling. Besides the 

configuration seen in Fig. 5.12, other setup are tested and depicted below. 

 

 

Figure 5.13: Two patch elements; (a) separated by EBG structure (b) with removed 
substrate (c) with cavity back. 

 
 
Simulations are performed and S21 is derived and depicted. 
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Figure 5.14: S21 in terms of frequency. 
 
Table 5.2 includes all the S21 values for all coupling reduction methods at the frequency 

of 6GHz. 

Table 5.2: Coupling reduction method comparison. 
 
Method Substrate 

removal 
Cavity 
back 

EBG DGS Conventional

Coupling 
reduction 
(dB) 

 12  12.5  12.8  26.3  10 

 

The comparison of all methods of coupling reduction reveals that for the frequency of 6 

GHz, the DGS methods performs better and proves to be the most efficient way of 

eliminating the mutual coupling.  

 

Many methods of mutual coupling calculation and measurements have been presented 

in the litetature [21] [24]. Kara in [25] has made a comparison between some methods 

of coupling estimation. Let us consider an array of rectangular identical patches 

coaxially fed. According to Modified Volume Equivalence Theorem, coupling 

coefficient Cpe can be written as: 
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5.24 

where R0 is the resistance of vacuum,  

εeL is the effective dielectric constant of the substrate,  

h is the height of substrate,  

λ0 is the wavelength in free space,  

S is the separation between the edges of the patches  

Lef is the length of the patch taking into consideration fringing fields 

R0 is the resistance of free space 

RT is the input resistance of the isolated patch 

eLε is the effective constant expressed as a function of the length of the patch 

 

A second method of coupling evaluation considers the same expression as above with 

the substitution of εeL by εr. This method is referred to as Volume Equivalence Theorem 

combined with Green’s Function. 
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A third empirical formula has the following form: 
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where q is a factor which is equal to:  

                                                         )2exp(
0λ
επ eLhq =                                                  5.27 

 

 

For an array of 2 rectangular patch elements, placed on substrate with εr=2.55, the 

above formulas were tested and compared to measured results. Fig. 5.15 includes all the 

described methods of coupling estimation together with measurements. The coupling 

coefficient has been expressed in terms of the distance S between the two radiating 

elements. 

 

 

Figure 5.15: Coupling as a function of distance between radiating elements. 
 
Measured results converge with Equation 5.24 for all values of distance S.  

 

5.4 COUPLING MEASUREMENTS 
 
Relay Stations (RS) are network element devices, designed to fill holes in the Base 

Station (BS) coverage. They receive, enhance and then retransmit the signal after digital 

processing [26]. The antenna system is critical to the operation of the Relay Station 

(RS). It aims to connect RS with BS realizing the backhaul connection and RS with user 

Cpe (dB) 

S/λ0

Measured  
Reference [20] 
Reference [21] 
Equation (5.24) 
Equation (5.25) 
Equation (5.26) 
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subscribers, realizing the access link. Relays can be used in many wireless networks. 

The present study refers to a WiMAX wireless network in the range of 3.3 to 3.8 GHz. 

                           

Figure 5.16: Relay Station operation. 
 
Fig. 5.16 summarizes the operation of an antenna system showing that Relay Station 

can be an intermediate link between Base Station and end user. Such a topology can 

ensure high quality of data transmission using an antenna system that can efficiently 

receive and transmit information. 

 

Many antennas have been proposed for use in the WiMAX frequency range, such as U 

and C slot antennas [27], [28], U-shaped patches [29], and PIFA [30]. Another 

important issue associated with the antenna, is coupling.  Coupling is a phenomenon 

that expresses the level of interaction between radiation elements. It is necessary to 

maintain coupling as low as possible to prevent distortion of the transmitted signal. 

Several studies have been carried out, investigating methods to predict and evaluate 

mutual coupling [31] [34]. Also special attention has been given to mutual coupling 

reduction, by placing resonators between radiating elements [35] or by using planar 

EBG structures [36], [37]. 
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In the text that follows, two simple, low cost microstrip antennas, based on microstrip 

technology, one for the access link and one for backhaul link are designed and 

presented. These antennas are compared to commercial ones and their features are 

outlined. The two proposed antennas are positioned together and are examined in terms 

of coupling. Experimental and simulated results of S21 are presented and compared. A 

clear relation between coupling and the angle between the access and backhaul antenna 

is found. Finally a coupling comparison between the suggested and commercial 

antennas is performed and corresponded results are depicted. 

 

 

5.4.1 Access antenna 
 
An access antenna was simulated and fabricated and the relevant results are depicted 

below. Four patches (radiating elements) fed by microstrip lines are placed on FR4 

substrate (εr=4.4, h=1.6mm). The excitation is realized by a coaxial cable which is 

connected to microstrip line. The simulated antenna is depicted in Fig. 5.17a, while the 

fabricated one can be seen in Fig. 5.17b. Access antenna’s dimensions are 

12.5cm×10cm. Simulations have been performed using Ansoft HFSS v.12. 

Measurements of S11 and radiation pattern have been taken in an anechoic chamber.  

 

                                             (a)                                                                        (b)                                                 

x 

z 

y

d1=3.2 cm 
d2=2.8 cm 
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Figure 5.17: Antenna geometry and measurements; (a) antenna design, (b) antenna 
prototype. 

 
  The S11 parameter as a function of frequency is depicted in Fig. 5.18. 
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Figure 5.18: S11 parameter for simulated and fabricated antenna. 
 
For the experimental estimation of S11, a Vector Network Analyzer was used (Anritsu 

VNA MS2036A). Before measurements, calibration was performed in order to take into 

consideration the cable losses and increase the level of experiment accuracy. The 

excitation of access antenna is realized by a coaxial cable which feeds the microstrip 

line. In the connecting point between cable and microstrip line, losses are introduced 

that reduce the amount of power that enters the antenna. That is why this antenna 

presents narrow bandwidth [38]. 

 

Access antenna presents S11= -14.3dB for 3.5GHz. The impedance bandwidth of the 

antenna is estimated to be 31.8MHz (S11<-10dB [39]). The radiation pattern of the 

simulated and fabricated antenna is illustrated in Fig. 5.19a for yz plane at 3.5GHz with 

Half Power Beam width (HPBW) 36o. The radiation pattern in xz plane is depicted in 

Fig. 5.19b, presenting HPBW=51o. The antenna presents Gain G =7.9dB in the direction 

of maximum emission. Let us mention here that FR4 substrate has an increased loss 
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tangent (tanδ=0.02) which means low quality factor and thus increased dielectric losses. 

That is why the antenna gain is appeared to be less than what is expected but high 

enough to support the access link. 

 

 

(a) 

 

(b) 
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(c) 

Figure 5.19: Radiation pattern of access antenna for 3.5GHz; (a) yz plane (b) xz plane 
(c) 3D radiation pattern.  

 

Fig. 5.19a and 5.19b also depict the simulated cross polarization level of the access 

antenna. Cross polarization expresses the amount of power emitted orthogonal to the 

desired direction and it has to be as low as possible. Surface waves are dependent of the 

substrate and give rise to cross polarization. For minimizing these waves, materials with 

low dielectric losses could be chosen. 

5.4.2 Backhaul antenna 
 
An antenna array intended to be used for connecting the Relay with the Base Station is 

presented in this section. The simulated and constructed antenna can be seen in Fig. 

5.20a and 5.20b, respectively. Backhaul antenna’s dimensions are 25.5cm×21.5cm.  
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                                          (a)                                                       (b)                                                                     

Figure 5.20: Backhaul antenna geometry and measurements; (a) backhaul antenna 
model (b) backhaul antenna prototype. 

 
 
The S11 parameter for the simulated and fabricated antenna is shown below (Fig. 5.21) 

where a slight difference is attributed to the imprecise process of construction. 
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Figure 5.21: S11 parameter for backhaul antenna. 
 
Backhaul antenna presents S11= -17.9dB at 3.5GHz and impedance bandwidth equal to 

84MHz. A second resonance frequency is appeared at 3.9GHz where S11= -14.2dB. The 

gain of the backhaul antenna has been found 11.4dB for 3.5GHz. Gain could be greater 

if a substrate of lower dielectric losses was used.  

 

x 
y 

z d2=2.8 cm 

d1=2.8 cm
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The radiation pattern is presented in Fig. 5.22a and 5.22b where a narrow beam is 

noticed due to the increase in the number of radiation elements compared to the case of 

the access antenna. HPBW for yz plane has been measured 18o. 

 

 

(a) 

 

The radiation pattern in xz plane is presented in Fig. 5.22b. In this case HPBW=25.5o.

  

 

 

(b) 
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(c) 

Figure 5.22: Radiation pattern of the backhaul antenna for 3.5GHz; (a) yz plane (b) 
xz plane (c) 3D radiation pattern (c) 3D radiation pattern. 

 

 

Fig. 5.22a and 5.22b also represent the cross polarization level which is appeared to be 

increased due to the FR4 substrate. 

 

 

Measured access and backhaul antenna characteristics are denoted in Table 5.3.  

Table 5.3: Access and backhaul antenna features. 
 S11 (dB) 

for 3.5GHz 
Gain  (dB) HPBW (degrees) 

xz plane 
HPBW (degrees) 

yz plane 
Bandwidth 

(MHz) 

Access antenna  -14.3 7.9 51 36 32 

Commercial 
access antenna 
(1SKF 
333808W) 

 -16 8 68   500 

Backhaul 
antenna 

 -17.9 11.4 25.5 18 84 

Commercial 
backhaul 
antenna 
(TSWL315177)

 -18.5 18 17   400 
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Gain and bandwidth is increased in the case of the backhaul antenna due to the larger 

number of radiation elements (16 elements) compared to the access antenna (4 

elements). Also Half Power Beamwidth (HPBW) is decreased in the backhaul antenna. 

In addition a comparison is performed between the proposed antennas and relevant 

commercial ones. Regarding access antenna, model 1SKF 333808W is a panel antenna 

presenting HPBW=68o, gain 8dB and bandwidth 500MHz. The proposed access 

antenna gives similar gain but less HPBW and bandwidth due to FR4 substrate. 

Bandwidth could be enlarged by using a substrate of lower loss tangent such as Rogers 

RO 3006 (εr=6.15, tanδ=0.0025) or Rogers RT Duroid 5880 (εr=2.2, tanδ=0.0009). 

Wider bandwidth could also occur using stacked geometry including two or more 

substrates separated by air gaps. FR4 substrate was chosen because of its low cost and 

ease of fabrication. Regarding backhaul antenna, the commercial one presents enhanced 

bandwidth and gain. The proposed backhaul antenna uses low cost FR4 substrate which 

has high loss tangent that leads to limited gain, bandwidth and high side lobes. The 

design of access and backhaul antenna has been made maintaining low cost of 

fabrication and low complexity level. Both antennas can be improved in terms of gain, 

bandwidth by using stacked geometries and dielectrics of low losses. 

 

Since both proposed antennas have the same resonant frequency and the Relay Station 

performs in the Simultaneously Transmit Receive (STR) mode, it is necessary to 

examine the coupling phenomenon between the antennas. 
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5.5 COUPLING EFFECTS STUDY 

Two cases of configuration between the proposed antennas are examined. These 

configurations are shown in Fig. 5.23. Coupling between the two antennas in terms of 

S21 is measured using Anritsu VNA MS2036A and results are depicted below. 

 

(a)                                                                    (b) 

Figure 5.23: Antenna arrangements under test; (a) configuration 1 (b) configuration 2. 
 
 
Coupling measurements have been taken in anechoic chamber to achieve precision and 

validity of results. Fig. 5.24 show the experimental setup. The distance between two 

adjacent radiation elements of access and backhaul antennas is 0.52λo. This distance is 

adequate for low mutual coupling [20] and maintaining the total size of the antenna 

system as small as possible. 

 

Figure 5.24: Access and backhaul antenna setup during coupling measurements. 
 

0.52λo

0.52λo 
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Study of configurations 1 and 2 due to the relative position of antennas can be consider 

as coupling investigation in E plane and H –plane respectively. 

 

5.5.1 Configuration 1 

In the first case (configuration 1), the two antennas are put in such a way, so that the 

angle between them is ω=1800 and then ω increases with a step of 100 and final reaches 

2700.The scheme that specifies the proposed setup can be seen in Fig. 5.25. 

                                 

Figure 5.25: The investigated setup. 
 
Together with the experimental measurements, simulations of S21 as a function of the 

angle ω have been carried out. Simulation and measurement of S21 for the case of 

ω=1800 is depicted in Fig. 5.26b. 

 

(a)                                                                       (b) 

Figure 5.26: S21 for ω=1800; (a) simulation design (b) simulation and measurement. 
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Fig. 5.26b shows that simulation and experimental curve of S21 is located below -40dB 

for the frequency range of 3.4 to 3.6 GHz. 

 

For ω=1900 the experimental setup is depicted in Fig. 5.27a and the corresponded 

results in Fig. 5.27b.                    

 

                                    (a)                                                                                                                            (b)       

Figure 5.27: S21 for ω=1900; (a) simulation design (b) simulation and measurement. 
 
 
For ω=2000 the experimental setup is depicted in Fig. 5.28a and the corresponded 

results in Fig. 5.28b. 

 

                           (a)                                                                (b) 

Figure 5.28: S21 for ω=1900; (a) simulation design (b) simulation and measurement. 
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The experiment continues for ω=2100 till 2700 with a step of 100. Coupling can change 

the operation frequency of an antenna and distort the radiation pattern. That is why it is 

necessary to maintain coupling at a low level. Coupling effect is mainly caused by space 

waves that end up from one antenna to another (Fig. 5.29). It is also dependent on 

surface waves that travel through dielectric [40]. From the analysis performed for 

configuration 1 it is derived that increasing the angle ω seems to reduce the density of 

field lines that end up from one antenna to the other thus reducing coupling effect.  

 

 

 

 

 
 

Figure 5.29: Field lines that cause coupling effect. 
 

 

5.5.2 Configuration 2 

In this case the access and backhaul antenna are positioned as shown in Fig. 5.30. 

                                     

Figure 5.30: The investigated setup. 
 
 

Together with the experimental measurements, simulations of S21 against angle ω for 

configuration 2 have been performed. The case of ω=1800 is depicted in Fig. 5.31a. 

ω

Field lines

Backhaul antenna Access antenna



 

193 
 

 

                              (a)                                                         (b) 

Figure 5.31: S21 for ω=1800; (a) simulation design (b) simulation and measurement. 
 

Fig. 5.31b represents the simulation and experimental curve for S21. Coupling is at an 

acceptable level (S21<-40dB) for the frequency range 3.4 to 3.6GHz.    

 

For ω=1900, the corresponded results can be seen in Fig. 5.32b. 

 

 

 

 

 

 

 

 

                 (a)                                                     (b) 
 

Figure 5.32: S21 for ω=1900; (a) simulation design (b) simulation and measurement. 
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For ω=2000 the experimental setup is depicted in Fig. 5.33a and the corresponded 

results in Fig. 5.33b. 

 

                  (a)                                                             (b)  

Figure 5.33: S21 for ω=2000; (a) simulation design (b) simulation and measurement. 
 

The experiment continues for ω=2100 up to 2700 with a step of 100.  

 

In configuration 2 the coupling effect is weaker compared to configuration 1 as it 

produces S21 that varies from -48 dB to -68dB. 

5.6 RESULTS  

In the tables that follow, the maximum value of experimental S21 is denoted in the 

frequency range of 3.4GHz to 3.6GHz, for each value of angle ω. 

Table 6.4: S21 variation for configuration 1. 
 

Configuration 1 ω 
(degrees) 

S21 
max(dB) 

 180  -47,67 
190  -46,84 
200  -49,15 
210 -50,46 
220  -50,3 
230  -50,56 
240  -50,83 
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250  -54,94 
260  -54,92 
270  -53,94 

 

The maximum value of S21 as a function of the angle ω is depicted in Fig. 6.34. 

 

 

 

 

 

 

 

 

 

Figure 5.34: S21 as a function of angle ω for configuration 1. 
 

The table for configuration 2 follows together with the corresponded S21 diagram. 

Table 6.5: S21 variation for configuration 2. 
 

Configuration 2 ω 
(degrees) 

S21 
max(dB) 

 180  -55,56 
190  -54,7 
200  -57,34 
210  -61,01 
220  -60,26 
230  -58,36 
240 -59,1 
250  -63,02 
260  -65,35 
270  -60,68 

 

The maximum value of S21 as a function of the angle ω is depicted in Fig. 5.35. 
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Figure 5.35: S21 as a function of angle ω for configuration 2. 
 
Both configurations 1 and 2 provide a low level of coupling (S21 < -40dB). Coupling 

appears to decrease non linearly while ω increases. Configuration 2 is more acceptable 

because S21 takes values lower than 50dB for all angles of ω. The best case is occurred 

for configuration 2 at ω=260deg where S21= -65.35dB. 

 

A comparison in terms of coupling between the proposed antennas and the commercial 

ones presented in table 6.3 has also been performed. Both commercial and proposed 

antennas have been measured in terms of coupling for ω=270o. The Relay set up 

including the suggested access and backhaul antenna can be seen in Fig. 5.36. 
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Figure 5.36: Relay Station with the proposed antennas. 
 
Fig. 5.37 shows coupling variations for commercial antennas and the proposed ones for 

configurations 1 and 2 at ω=270o. 

 

Figure 5.37: Coupling comparison. 
 

As it is noticed from the above figure, the commercial antennas provide S21 from -

30dB to  -45dB, the configuration 1 from  -55dB to -91dB and configuration 2 from  -61 

to  -73dB. Thus configuration 2 proves to be the best setup for the frequency range of 

interest. 

5.7 CONCLUSIONS 
 
Concluding the preceded work, chapter 5 handled the issue of antenna coupling. For this 

reason coupling was defined in terms of Scattering (S), Impedance (Z) and voltage (V) 

parameters. Onwards some methods and techniques for reducing the interaction 

between antenna elements were presented and commented, including EBG and DGS 
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designs. Empirical formulas regarding coupling estimation in terms of the size and 

geometry of the antennas were also mentioned in order to clarify the relation between 

coupling and the antenna’s dimensions. The aforementioned analysis was used as the 

basis for proposing two new antenna configurations for reducing coupling. More 

precisely, two new designs of access and backhaul antennas were presented utilizing 

lost cost FR4 substrate. These two new designs, operating in the same frequency, were 

put into two configurations that were tested in terms of S21 parameter. Results showed 

S21< -45dB in all tested cases, proving the efficiency of the proposed configurations. 
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CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 
FOR FURTHER WORK 
 

6.1 CONCLUSIONS 
 
Relay Stations (RS) are network devices used under a 4G network, such as mobile 

WiMAX or LTE, to extend network’s coverage and throughput [1]. Relays are adaptive, 

small size and low cost devices which can be mounted on buildings, light poles, even in 

moving vehicles, to provide high quality signal and connectivity [2].  

 

In this thesis, a novel antenna system was designed, fabricated and tested to be 

incorporated with a Relay Station, to provide links with the Base Station (backhaul link) 

and with end users (access link). The antenna system comprises two radiation modules: 

A single antenna element, based on microstrip technology [3] for access link realization 

and an antenna array, based on the same technology for backhaul link realization. Both 

radiation module specifications are compatible with the IEEE 802.16j air interface 

protocol. In addition the antenna array is capable of pointing its main lobe of radiation 

to the direction of Base Station, presenting at the same time low side lobe levels for gain 

maximization and null at the direction of interference. The beam forming feature is 

realized utilizing a proper circuit including two 1:8 Wilkinson power dividers [4], 

attenuator and phase shifter chips. 
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A Relay Station should have beam steering abilities in order to communicate with the 

Base Station regardless of the RS backhaul antenna orientation or the Relay Station’s 

position. In this way, the beam forming feature adds flexibility during the RS 

installation process. Beam steering is achieved controlling the amplitude and phase 

excitation current of each radiation element. The control of two parameters (amplitude 

and phase) significantly increases the degrees of freedom giving the ability to steer the 

main lobe of radiation almost anywhere. Beam forming is achieved utilizing Least 

Mean Square (LMS) algorithm [5] which efficiently evaluates the amplitude and phase 

of all excitation currents, obtaining the required radiation pattern. 

 

Furthermore the coupling phenomenon [6] of two new designs of access and backhaul 

antenna was measured and depicted in relevant figures. In the case where both access 

and backhaul antennas operate in the same frequency, the interaction between them can 

significantly distort their radiation patterns and cause signal degradation. For that reason 

two new configurations between access and backhaul antennas were investigated and 

coupling coefficient was derived and commented. The antenna orientation that provides 

the lowest coupling is highlighted and preferred. 

 

The antenna system designed and fabricated in this thesis is based on microstrip 

technology. Thus in chapters 1, the main concepts of microstrip patch antennas were 

discussed. The patch antenna configuration was outlined together with feeding 

techniques references and some basic models for deriving electric and magnetic field 

expressions. Patch antennas provide narrow bandwidth due to their configuration and 

surface waves excitation [7]. In order to provide a radiation element with a bandwidth 

wide enough based on IEEE802.16j specification, an extensive literature review was 
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performed on bandwidth enhancement techniques. These techniques include stacked 

geometry utilization [8], fractal shaped patches [9], parasitic elements introduction [10], 

inhomogeneous substrates [11], H shaped [12], U slot [13], E-shaped patch [14]. 

 

The designed antenna system presented in this thesis comprises an array of high gain, 

directivity and enhanced bandwidth for backhaul link realization. Thus in chapter 1, the 

main principles of arrays and phased arrays [15] were presented. Concepts such as the 

directivity of a linear array, the total radiated power, gain, EIRP and total radiated field 

were clearly stated. The phased array architecture was depicted and described as the 

combination of many radiation elements with a proper circuit of power division and 

signal excitation control in order to provide the required radiation pattern. Furthermore 

the Array Factor term (AF) was expressed and described in terms of inter-element 

distance and angle of received signal with a reference on grating lobe prevention [16]. 

Onwards power dividers were presented and investigated in relation to input and output 

power and S parameters. The section of advances in planar arrays followed, included 

several techniques and configurations for bandwidth maximization, methods for low 

mutual coupling between radiation elements and surface wave suppression. Also some 

special cases of arrays including RF PIN diodes, switches and capacitors for beam 

forming applications were mentioned and described. In the final section of chapter 1, 

the total electric field of an M×N planar array was expressed in terms of element 

pattern, excitation and inter element spacing. The expressions of phase difference 

between adjacent radiation elements for main lobe or null occurrence at specific angle 

direction (θ, φ) were proved and denoted [17].  
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The antenna system proposed in this thesis is going to be integrated with a Relay Station 

(RS). For that reason in chapter 2 Relay Stations were defined and described in terms of 

usage scenarios and RF front end structure [18]. Its advantages were outlined and 

included throughput increase, coverage extension, low cost of fabrication and mobility 

support [19]. Applications of RS were clearly mentioned and supported by relevant 

schemes, comprising fixed and mobile RS state. A categorization of RS was performed 

depending on the usage scenarios and network requirements. In addition RS architecture 

was depicted and described, giving special attention to the RF front end schematic. The 

latter was simulated using ADS2009, including transmission and reception RF chain, 

showing the components utilized with figures where necessary. Transmission RF chain 

simulation comprises OFDM spectrum and time domain representations, where efficient 

and proper operation of RS were proved. The reception RF chain description followed 

showing RSS and SNR parameters for several modulation schemes. 

 

Beam forming is necessary for the designed phased array in order to steer the main lobe 

of radiation to the direction of Base Station, produce suppressed low side lobe levels for 

gain maximization and nulls at the direction of interference. Thus in chapters 3, the 

main concepts of beam forming technique were outlined in terms of circuits and 

algorithms. Basically a beam forming module includes a power divider circuit and a 

beam steering algorithm [17]. The power divider circuit is responsible for power 

division/distribution to transmission lines connected to radiation elements, with 

attenuator and phase shifter chips incorporated. In addition an algorithm applied by a 

control unit defined specific amplitudes and phases to the excitation currents. Onwards 

some types of power divider circuits were investigated and described in terms of S 

parameters and characteristic impedances [16]. Furthermore special attention was given 
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to the imbalance phenomena caused by phase shifters. A matrix was proposed to 

overcome such problems and results were depicted and commented. Chapter 3 ended 

with a beam forming algorithm reference including Least Mean Square Algorithm 

(LMS) [20] and Constant Modulus Algorithm (CMA) [21], performing a comparison 

between them. Also two common Direction of Arrival Estimation (DOA) Algorithms 

were presented and could be used in collaboration with beam forming algorithm to 

provide a full adaptive and smart antenna array. 

 

In chapter 4, the new design of antenna system in terms of the access antenna and 

backhaul phased array was fully described and analyzed. The access antenna was 

designed, simulated and fabricated, presenting S11= -43.62dB for 3.4GHz, bandwidth 

520MHz or 15.2% and gain 10dB. A comparison has been performed between the 

access antenna with the IEEE802.16j specifications, proving that the proposed one 

provides higher gain, wider bandwidth but HPBW in yz plane is 80 lesser. Moreover the 

backhaul phased array was designed and tested, presenting gain 21.2dB, bandwidth 

424MHz and HPBW around 140 in both planes. The proposed phased array has 

dimensions 32.6×30cm and was also compared with a similar commercial one, showing 

higher gain, almost the same HPBW and about 80MHz lesser bandwidth. Both 

presented antennas comply with the IEEE802.16j specifications in terms of gain, 

bandwidth and HPBW and thus can be utilized as part of a Relay based wireless 

network. Let us mention that both access and backhaul antennas have the same structure 

which is an advantage that may simplify and accelerate the antenna fabrication process. 

In addition the planar geometry of both access and backhaul antenna make it easy to be 

mounted on the RS surface and thus reduce the RS volume and facilitate the RS 

installation procedure. Chapter 4 continued with the presentation and analysis of a new 
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design of beam forming circuit. The last comprises two 1:8 Wilkinson power dividers, 

including attenuator and phase shifter chips for amplitude/phase assignment. A two 

substrate Wilkinson power divider configuration was chosen to decrease the circuit’s 

dimensions in order to be incorporated within the RS. The 1:8 Wilkinson power divider 

has dimensions 21.2×21.8cm and presented S11= -27.112dB for 3.38GHz with 700MHz 

bandwidth from 3.3GHz to 4GHz. The specific measurement has been derived 

considering 0dB attenuation and 00 phase for excitation currents. 

 

Onwards a beam forming scenario was implemented using field equations derived from 

literature [15]. A set of requirements were defined demanding maximum in (θm, φm), 

null at (θn, φn) and SLL<-10dB. The algorithm was activated and gave two 4×4 matrices 

of amplitudes and phases. Although amplitude and phase take quantized values based 

on the datasheets of the utilized chips [22], [23], a good agreement between reference 

signal and radiation pattern is achieved (78.13% convergence). In addition the phased 

array was tested considering three scenarios. For each scenario, three curves were 

derived. The first corresponded to LMS algorithm considering a rectangle patch with no 

mutual coupling, the second one to the simulation of the phased array and the third one 

to the measurement of the array. In all scenarios the three curves show good agreement 

in terms of maximum occurrence, null and side lobe levels. Any other pattern difference 

is due to beam forming circuit losses and errors because of the attenuator and phase 

shifter chip operation (imbalance phenomena). In general the LMS algorithm seems to 

operate efficiently and satisfactorily for the considered scenarios. The experimental 

radiation pattern did not seem to be significantly affected by circuit losses and 

imbalances and meets the beam forming requirements. In conclusion the proposed 

phased array effectively steers radiation pattern and meets the IEEE802.16j air interface 
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specifications and thus can be utilized for backhaul link realization in a RS based 

wireless network. Let us mention here that access and backhaul antenna operates in the 

same frequency band which is very beneficial for network operators due to the high cost 

of frequency spectrum. 

 

Antennas placed close to each other, operating at the same time and in the same 

frequency produce distorted radiation pattern due to their interaction. The interaction 

between radiation elements is called coupling and affects the operation of a system 

including two or more antennas. In chapter 5, coupling phenomenon was defined and 

expressed in terms of S parameters [24]. The total electric field of a linear array was 

written as a function of the isolated element pattern plus the element pattern due to 

coupling, showing in this way the coupling effect in the array pattern. The analysis of 

chapter 5 was continued, mentioning the relation between surface waves and mutual 

coupling [25] and proposing methods of reduction based on literature. Several EBG and 

DGS structures have been proposed for minimizing the interaction between adjacent 

antennas and some empirical coupling formulas were denoted and compared. 

 

 

 

 

Continuing with chapter 5, coupling analysis and measurements were performed to 

evaluate and minimize the antennas interaction. If the RS operates in STR mode then 

the coupling phenomenon between access and backhaul antenna becomes significant 

and needs to be minimized. Two new low cost and easy to fabricate designs of access 

and backhaul antenna were presented and tested in terms of coupling. The new access 
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antenna presented S11= -14.3dB for 3.5GHz, bandwidth 32MHz, gain 7.9dB with 

HPBW equal to 360 and 510 in yz and xz plane respectively. Furthermore the new 

backhaul link array presented S11= -17.9dB for 3.5GHz with bandwidth 84MHz and a 

second resonant frequency at 3.9GHz (S11= -14.17dB). The gain of the array is 11.4dB 

for 3.5GHz and HPBW is equal to 180 and 25.50 in yz and xz planes respectively. Both 

antennas have limited bandwidth and especially the backhaul one presents inadequate 

gain due to high loss substrate (FR4 epoxy, εr=4.4, tanδ=0.018) utilized by both 

antennas. Regarding coupling the antennas were put together in two configurations and 

S21 parameter was measured. The results provided low coupling (S21< -40dB) and the 

best case was in configuration 2 for angle ω=2600 (S21= -65.35dB). The experiments 

showed that the examined configurations presented low level of antenna interaction and 

can be used in real environments. Finally S21 parameter for the frequency range from 

3GHz to 4GHz for two commercial antennas with angle ω=2700 between them were 

measured and compared to configurations 1 and 2 for the same angle. The comparison 

showed that configuration 2 proved to be the best one due to the lowest values of S21 it 

provided. 

 

 

6.2 SUGGESTIONS FOR FURTHER WORK 

 

This work could be extended for further research regarding the following topics: 

 

• The dimensions of the proposed phased array are 32.6×30cm while the RS 

size is 33×24×12cm. It is clear that the phased array cannot be inserted in the 
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RS box due to larger size. Further work could be done to provide a new 

modified design of the phased array with reduced size which could be 

incorporated within the RS device. In this way the total volume of RS with 

the antenna system would be decreased and the RS installation process would 

be facilitated. 

 

• Coupling measurements of the E-shaped access and backhaul antenna could 

be performed to define the level of interaction between them, for the 

configurations described in section 6.6. If significant coupling is occurred, 

then some techniques for coupling reduction could be implemented such as 

EBG of DGS structure introduction. 

 

• LMS algorithm provided satisfactory results for a variety of theta (θ) angles 

but maintaining phi (φ) equal to zero. A wider range of phi (φ) angles could 

be examined and investigate how close is the resulted radiation pattern with 

the reference signal. The limits of LMS algorithms could be studied by the 

introduction of two or three nulls with a specific HPBW angle for the main 

lobe and side lobe suppression below -20dB.  

 

• LMS algorithm was chosen because of low complexity and quick 

convergence. Other beam forming algorithm could be tested such as RLS and 

CMA and a comparison could be performed regarding the level and time of 

convergence. 
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• The analysis in chapter 4 assumes that the direction of RS and the 

interference are known. In the case where these two directions are not known, 

a DOA algorithm is needed to scan the area for the desired signal and 

interferences and then a beam forming algorithm is applied for proper shaping 

radiation pattern. So a step forward could be the combination of DOA and 

beam forming algorithm to produce a fully adaptive and smart antenna 

system. 

 

• Regarding coupling measurements presented in section 5.6, although the 

configurations provided satisfactory results, the antennas have narrow 

bandwidth and less gain. These antenna designs could be improved by 

utilizing a substrate of lower tanδ, maybe some Rogers RO material and 

adding a second substrate of lower dielectric constant. In this way the 

bandwidth and gain could grow.  

 

• The antenna system presented in this thesis refers to a fixed, STR Relay 

Station. The work could be continued and examine the case of a mobile STR 

Relay Station where a fully adaptive antenna system is required. 

 

• Both E-shaped antenna and array could be tested in real environment in terms 

of RSS and SNR to examine their performances in the presence of obstacles. 

 

• The access antenna includes one radiation element. The substitution of the 

single element by a phased array for access link realization could be also 

studied. The introduction of many radiation elements could enhance gain 
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while a beam forming algorithm would provide a broad main lobe focused on 

high populated areas. MIMO techniques could be investigated for access link 

improvement. 
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Abstract 
 
A Relay Station (RS) is a smart transceiver used under a 4G wireless network in order to extend network’s 

coverage and capacity. It uses an antenna system that includes an antenna for connecting the Relay with the 

end users (access link) and the RS with the Base Station (backhaul link).  In this paper a 7.9 dBi access and 

11.4 dBi backhaul antenna are presented for the frequency range of 3.3 to 3.8 GHz. The antennas are 

simulated and fabricated and relevant measured results in terms of return loss and radiation pattern are 

presented and analyzed. Considering that the planes of those two antennas are positioned in an angle ω 

(omega), two antenna configuration geometries are tested in terms of coupling. The experimental results of S21 

for several values of the angle ω show that the interaction between the radiating elements is dependent on 

their relative position. Simulated and experimental results are in good agreement, showing coupling typically 

less than  40 dB. A comparison in terms of coupling between the proposed antennas and commercial ones 

proves that the suggested antennas provide 10 dB lower coupling.  

 

 
1. Introduction 

      Relay Stations (RS) are network element devices, designed to fill holes in the Base 
Station (BS) coverage. They receive, enhance and then retransmit the signal after digital 
processing [1]. The antenna system is critical to the operation of the Relay Station (RS). 
It aims to connect RS with BS realizing the backhaul connection and RS with user 
subscribers, realizing the access link. Relays can be used in many wireless networks. 
The present study refers to a WiMAX wireless network in the range of 3.3 to 3.8 GHz. 
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Figure 1: Relay Station operation 
 

Figure 1 summarizes the operation of an antenna system showing that Relay Station 
can be an intermediate link between Base Station and end user. Such a topology can 
ensure high quality of data transmission using an antenna system that can efficiently 
receive and transmit information. 

Many antennas have been proposed for use in the WiMAX frequency range, such as 
U and C slot antennas [2], [3], U-shaped patches [4], and PIFA [5]. Another important 
issue associated with the antenna, is coupling.  Coupling is a phenomenon that 
expresses the level of interaction between radiation elements. It is necessary to maintain 
coupling as low as possible to prevent distortion of the transmitted signal. Several 
studies have been carried out, investigating methods to predict and evaluate mutual 
coupling [6] [9]. Also special attention has been given to mutual coupling reduction, by 
placing resonators between radiating elements [10] or by using planar EBG structures 
[11], [12]. 

 In this paper, two simple, low cost planar antennas are presented, based on microstrip 
technology, one for the access link and one for backhaul link. These antennas are 
compared to commercial ones and their features are outlined. The two proposed 
antennas are positioned together and are examined in terms of coupling. Experimental 
and simulated results of S21 are presented and compared. A clear relation between 
coupling and the angle between the access and backhaul antenna is found. Finally a 
coupling comparison between the suggested and commercial antennas is performed and 
corresponded results are depicted. 

 
 

2. Access antenna 
An access antenna was simulated and fabricated and the relevant results are depicted 

below. Four patches (radiating elements) fed by microstrip lines are placed on FR4 
substrate (εr=4.4, h=1.6mm). The excitation is realized by a coaxial cable which is 
connected to microstrip line. The simulated antenna is depicted in Figure 2a, while the 
fabricated one can be seen in Figure 2b. Access antenna’s dimensions are 
12.5cm×10cm. Simulations have been performed using Ansoft HFSS v.12. 
Measurements of Return Loss (S11) and radiation pattern have been taken in an anechoic 
chamber.  
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                   (a)                                                                                (b)                                                        

Figure 2: Antenna geometry and measurements; (a) Antenna model, (b) Antenna prototype 
 
The S11 parameter as a function of frequency is depicted below.  
 

 

                                
 

Figure 3: S11 parameter for simulated and fabricated antenna. 
 
For the experimental estimation of S11, a Vector Network Analyzer was used (Anritsu 

VNA MS2036A). Before measurements, calibration was performed in order to take into 
consideration the cable losses and increase the level of experiment accuracy. The 
excitation of access and backhaul antenna is realized by a coaxial cable which feeds the 
microstrip line. In the connecting point between cable and microstrip line, losses are 
introduced that reduce the amount of power that enters the antenna. That is why this 
antenna presents narrow bandwidth [13]. 

Access antenna presents S11= -14.23dB for 3.5GHz. The impedance bandwidth of the 
antenna is estimated to be 31.8MHz (S11<-10dB [14]). The radiation pattern of the 
simulated and fabricated antenna is illustrated in Figure 4a for yz plane at 3.5GHz. Half 
Power Beamwidth (HPBW) is 35.96o. The antenna presents Gain G =7.94dBi in the 
direction of maximum emission. Let us mention here that FR4 substrate has an 
increased loss tangent (tanδ=0.02) which means low quality factor and thus increased 
dielectric losses. That is why the antenna gain is appeared to be less than what is 
expected but high enough to support the access link. 
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Figure 4a: Radiation pattern of access antenna in yz plane for 3.5GHz 
 
The radiation pattern in xz plane is depicted in Figure 4b, presenting HPBW=51.07o.  
 

 
Figure 4b: Radiation pattern of access antenna in xz plane for 3.5 GHz 

 
     Figures 4a and 4b also depict the simulated cross polarization level of the access 
antenna. Cross polarization expresses the amount of power emitted orthogonal to the 
desired direction and it has to be as low as possible. Surface waves are dependent of the 
substrate and give rise to cross polarization. For minimizing these waves, materials with 
low dielectric losses could be chosen. 
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3. Backhaul antenna  
An antenna array intended to be used for connecting the Relay with the Base Station 

is presented in this section. The simulated and constructed antenna can be seen in 
Figures 5a and 5b, respectively. Backhaul antenna’s dimensions are 25.5cm×21.5cm. 
Figure 5c shows the radiation pattern measurements of backhaul antenna taken in an 
anechoic chamber.  

 
                                                          (a)                                                                        (b)                                                                    

Figure 5: Backhaul antenna geometry and measurements (a) Backhaul antenna model (b) Backhaul 
antenna prototype 

 
 
The S11 parameter for the simulated and fabricated antenna is shown below (Fig. 6) 

where a slight difference is attributed to the imprecise process of construction. 
 

                                   
 
 

Figure 6: S11 parameter for backhaul antenna 
 
Backhaul antenna presents S11= -17.88dB at 3.5GHz and impedance bandwidth equal 

to 83.9MHz. A second resonance frequency is appeared at 3.9GHz where S11=-
14.17dB. The gain of the backhaul antenna has been found 11.4dBi for 3.5GHz. Gain 
could be greater if a substrate of lower dielectric losses was used.  

The radiation pattern is presented in Figure 7a where a narrow beam is noticed due to 
the increase in the number of radiation elements compared to the case of the access 
antenna. HPBW has been measured 18.2o. 
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Figure 7a: Radiation pattern of backhaul antenna in yz plane for 3.5GHz 

 
The radiation pattern in xz plane is presented in Figure 7b. In this case 

HPBW=25.45o.  

 
 

Figure 7b: Radiation pattern of backhaul antenna in xz plane for 3.5GHz 
 
 
 
Figures 7a and 7b also represent the cross polarization level which is appeared to be 

increased due to the FR4 substrate. 
Measured access and backhaul antenna characteristics are denoted in Table 1.  
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Table 1: Access and backhaul antenna features 
 S11 (dB) 

for 3.5GHz 
Gain  
(dBi) 

HPBW 
(degrees)   xz 
plane 

HPBW (degrees) 
yz plane 

Bandwidth 
(MHz) 

Access antenna  -14.23 7.9 51.07 35.96 31.8 
Commercial 
access antenna 
(1SKF 
333808W) 

 -15.08 8 68   500 

Backhaul 
antenna 

 -17.88 11.4 25.45 18.20 83.9 

Commercial 
backhaul 
antenna 
(TSWL315177)

 -18.48 18 17   400 

 
Gain and bandwidth is increased in the case of the backhaul antenna due to the larger 
number of radiation elements (16 elements) compared to the access antenna (4 
elements). Also Half Power Beamwidth (HPBW) is decreased in the backhaul antenna. 
In addition a comparison is performed between the proposed antennas and relevant 
commercial ones. Regarding access antenna, model 1SKF 333808W is a panel antenna 
presenting HPBW=68o, gain 8dBi and bandwidth 500MHz. The proposed access 
antenna gives similar gain but less HPBW and bandwidth due to FR4 substrate. 
Bandwidth could be enlarged by using a substrate of lower loss tangent such as Rogers 
RO 3006 (εr=6.15, tanδ=0.0025) or Rogers RT Duroid 5880 (εr=2.2, tanδ=0.0009). 
Wider bandwidth could also occur using stacked geometry including two or more 
substrates separated by air gaps. FR4 substrate was chosen because of its low cost and 
ease of fabrication. Regarding backhaul antenna, the commercial one presents enhanced 
bandwidth and gain. The proposed backhaul antenna uses low cost FR4 substrate which 
has high loss tangent that leads to limited gain, bandwidth and high side lobes. The 
design of access and backhaul antenna has been made maintaining low cost of 
fabrication and low complexity level. Both antennas can be improved in terms of gain 
and bandwidth by using stacked geometries and dielectrics of low losses. 
Since both proposed antennas have the same resonant frequency and the Relay Station 
performs in the Simultaneously Transmit Receive (STR) mode, it is necessary to 
examine the coupling phenomenon between the antennas. 

 
4. Coupling effects study 

Two cases of configuration between the proposed antennas are examined. These 
configurations are shown in the figures that follow. Coupling between the two antennas 
in terms of S21 is measured using Anritsu VNA MS2036A and results are depicted 
below. 



 

224 
 

 
(a)                                                                                     (b) 

                         
Figure 8: Antenna arrangements under test; (a) Configuration 1(b) Configuration 2 

 
Coupling measurements have been taken in anechoic chamber to achieve precision 

and validity of results. Figure 9a and Figure 9b show the experimental setup. The 
distance between two adjacent radiation elements of access and backhaul antennas is 
0.52λo. This distance is adequate for low mutual coupling [15] and maintaining the total 
size of the antenna system as small as possible. 
 

 
        (a)                                                                                (b) 

Figure 9: Access and backhaul antenna setup during coupling measurements 
 
Study of configurations 1 and 2 due to the relative position of antennas can be 

consider as coupling investigation in E-plane and H –plane respectively. 
 
 

 4.1 Configuration 1 
In the first case (configuration 1), the two antennas are put in such a way, so that the 

angle between them is ω=1800 and then ω increases with a step of 100 and final reaches 
2700.The scheme that specifies the proposed setup can be seen in Figure 10. 

                              
 

Figure 10: The investigated setup 

ω 

0.52λo

0.52λo 
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Together with the experimental measurements, simulations of S21 as a function of the 

angle ω have been carried out. Simulation and measurement of S21 for the case of 
ω=1800 is depicted in Figure 11b. 

 

 
Figure 11a: Simulation of access                     Figure 11b: Simulation and experiment S21 for ω=1800 
and backhaul antenna system   
for configuration 1  (ω=1800)                                      
 
 

Figure 11b shows that simulation and experimental curve of S21 is located below -
40dB for the frequency range of 3.4 to 3.6 GHz. 

For ω=1900 the experimental setup is depicted in Figure 12a and the corresponded 
results in Figure 12b. 

 

 
                    

 Figure 12a: Configuration for ω=1900                                                                       Figure 12b: S21 for ω=1900

       
 

 
 
 
For ω=2000 the experimental setup is depicted in Figure 13a and the corresponded 

results in Figure 13b. 
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      Figure 13a: Configuration for ω=2000                               Figure 13b: S21 for ω=2000 

 
The experiment continues for ω=2100 till 2700 with a step of 100. Coupling can 

change the operation frequency of an antenna and distort the radiation pattern. That is 
why it is necessary to maintain it at a low level. Coupling effect is mainly caused by 
space waves that end up from one antenna to another (Fig. 14). It is also dependent on 
surface waves that travel through dielectric [15]. From the analysis performed for 
configuration 1 it is derived that increasing the angle ω seems to reduce the density of 
field lines that end up from one antenna to the other thus reducing coupling effect.  

 
 

                                                                                        
 

Figure 14: Field lines that cause coupling effect 
 
 
4.2 Configuration 2 
In this case the access and backhaul antenna are positioned as shown in Figure 15. 
 

                                       
 

Figure 15: The investigated setup 
 
Together with the experimental measurements, simulations of S21 against angle ω for 

configuration 2 have been performed. The case of ω=1800 is depicted in Figure 16b. 
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Figure 16a: Simulation of access and      Figure 16b: Simulation and experiment S21 ω=1800 
backhaul antenna for configuration 2  
(ω =1800)   

 
 
Figure 16b represents the simulation and experimental curve for S21. Coupling is at an 

acceptable level (<-40dB) for the frequency range 3.4 to 3.6GHz.    
                                                                                        
For ω=1900, the corresponded results can be seen in Figure 17b. 

   
    Figure 17a: Configuration for ω=1900 Figure 17b: S21 for ω=1900 

 
 
For ω=2000 the experimental setup is depicted in Figure 18a and the corresponded 
results in Figure 18b. 
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Figure 18a: Configuration for ω=2000                Figure 18b: S21 for ω=2000 
 

 
The experiment continues for ω=2100 up to 2700 with a step of 100.  
In configuration 2 the coupling effect is weaker compared to configuration 1 as it 

produces S21 that varies from -48 dB to -68dB. 
 
 

5. Results  
In the tables that follow, the maximum value of experimental S21 is denoted in the 

frequency range of 3.4GHz to 3.6GHz, for each value of angle ω. 
 

Table 2: S21 variation for configuration 1 
Configuration 1 ω 

(degrees) 
S21 

max(dB) 
 180  -47,67 

190  -46,84 
200  -49,15 
210  -50,46 
220  -50,3 
230  -50,56 
240  -50,83 
250  -54,94 
260  -54,92 
270  -53,94 

 
The maximum value of S21 as a function of the angle ω is depicted in Figure 19. 
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Figure 19: S21 as a function of angle ω for configuration 1 

 
The table for configuration 2 follows together with the corresponded S21 diagram. 
 

 
Table 3: S21 variation for configuration 2 

Configuration 2 ω 
(degrees) 

S21 
max(dB) 

 180  -55,56 
190 -54,7 
200  -57,34 
210  -61,01 
220  -60,26 
230  -58,36 
240  -59,1 
250  -63,02 
260  -65,35 
270  -60,68 

 
The maximum value of S21 as a function of the angle ω is depicted in Figure 20. 
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Figure 20: S21 as a function of angle ω for configuration 2 

 
Both configurations 1 and 2 provide a low level of coupling (S21 <-40dB). Coupling 

appears to decrease non linearly while ω increases. Configuration 2 is more acceptable 
because S21 takes values lower than -50dB for all angles of ω. The simulated coupling 
results provide some confidence that the levels will remain low between the angles at 
which measurements were performed.  

A comparison in terms of coupling between the proposed antennas and the 
commercial ones presented in table 1 has also been performed. Both commercial and 
proposed antennas have been measured in terms of coupling for ω=270o. The Relay set 
up including the suggested access and backhaul antenna can be seen in Figure 21. 

 

                                
 

Figure 21: Relay Station with the proposed antennas 
 
Figure 22 shows coupling variations for commercial antennas and the proposed ones 

for configurations 1 and 2 at ω=270o. 
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Figure 22: Coupling comparison 

 
It is clear that both proposed configurations give lower values of S21 compared to the 

commercial antennas proving the efficiency and competence of the suggested setup. 
 
 

6. Conclusions 
This paper describes the design, simulation and testing of two microstrip antennas 

(access and backhaul). Antenna characteristics in terms of gain, bandwidth and beam 
width (HPBW) in xz and yz plane are approximately 8dBi, 32 MHz, 51° and 36° for the 
access antenna and 11.4 dBi, 84 MHz, 25.5° and 18° for the backhaul antenna 
respectively. S11 parameters and radiation pattern in xz and yz plane level for simulated 
and fabricated antennas were presented. The comparison between measured and 
simulated results shows good agreement. Access and backhaul antennas were put 
alongside and their interaction is investigated. Two configurations are presented for 
which measured and simulated S21 are given. Coupling (S21) is investigated against the 
angle between the antenna planes for the two configurations. Maximum values of S21 
against ω were presented for the frequency range of 3.4 to 3.6 GHz in which the 
antennas operate. Coupling is typically below -40 dB. Diagrams of S21 against ω show 
that coupling decreases with angle increase. Measurements and simulations show that 
the presented antennas could be used in both configurations under a Relay based 
network as they present an acceptably low level of interaction for all values of ω. The 
comparison between the proposed patch antennas and the commercial ones prove that 
the suggested antennas provide 10 dB lower coupling providing low interaction and 
high isolation.  
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Abstract 
Relay Stations are devices that increase throughput and capacity of a wireless network. They communicate with Base 
Station (backhaul link) as well as end users (access link). For backhaul link, Relays are equipped with special beam 
steering arrays. This work presents a phased array with beam steering features that is designed and fabricated for 
backhaul link realization in a 4G Relay based wireless network. The proposed phased array operates at 3.42 GHz, 
providing 21.17dBi gain and 424MHz bandwidth. The phased array comprises modified E shaped patch elements and 
a beam forming circuit for power division and signal processing. Least Mean Square algorithm (LMS) is applied to 
provide steerable main lobe, nulls at predefined directions and side lobes suppression below desirable levels. LMS 
algorithm controls both amplitudes and phases of antenna elements excitation currents. Several simulations of beam 
forming scenarios show efficient operation of LMS algorithm.  
 
Keywords: Relay Stations, phased array, beam forming, LMS algorithm 
 
 
I. Introduction 
Phased arrays are widely used in wireless networks from Base Stations to steer radiation 
to desired directions where end users stand and place nulls in direction of interference 
[1], [2]. Many beamforming algorithms have been proposed and studied in literature for 
beam steering realization such as Least Mean Square Algorithm (LMS), Constant 
Modulus Algorithm (CMA) and Recursive Least Square Algorithm (RLS) [3], [4]. 
These algorithms provide different convergence time and complexity level. Moreover, 
many antenna shapes and configurations have been proposed for achieving bandwidth 
and gain enhancement [7], [8]. 
In this paper a phased array is designed, simulated and fabricated to be incorporated in a 
prototype WiMAX Relay Station [9] in order to establish backhaul link, which is the 
link between Relay Station and its super ordinate Base Station.  
The proposed phased array includes a 4×4 microstrip modified E shaped patch array 
[10] based on stacked geometry [11]. In addition a beam forming circuit is designed and 
fabricated for power division, signal processing and array excitation. LMS algorithm is 
used to properly assign phases and amplitudes to each radiation element and thus steer 
the main lobe of radiation to the direction of a Base Station. MathCAD v.14 is used to 
generate LMS algorithm. When phases and amplitudes are obtained, they are introduced 
in simulated and fabricated phased array. The simulation and experimental radiation 
pattern is derived, depicted and commented. Figure 1 shows the application of the 
proposed phased array design. 
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Figure 1: Proposed phased array configuration 

 
In section II, the array design is analyzed in terms of configuration, scattering parameter 
S11 and radiation pattern. The proposed setup is compared to a similar commercial 
antenna in order to prove the efficiency of the designed one. In section III the beam 
forming module is described in terms of structure. Simulated and experimental S11 is 
derived, depicted and commented. In section IV the beam forming algorithm (LMS) is 
applied using MathCADv.14, requiring specific radiation pattern characteristics and 
obtaining values of phase and amplitude current excitations. These values are assigned 
to the radiation elements of the array and the radiation pattern is steered properly. 
Several beam forming scenarios are considered and relevant simulated and experimental 
radiation patterns are obtained and commented. Section V includes all conclusions from 
the analysis that has proceeded. 
 
II. Antenna array  
The 4×4 antenna array comprises modified E Shaped radiation elements with 
dimensions denoted in figure 2.     
       

 
Figure 2: E shape antenna scheme 

 
 
The modified E-shaped elements are placed on foam substrate (εr=1) with height 
h=0.5cm. Foam substrate is then placed on Rogers RO 3006 (εr=6.15) with thickness 
h=1.28mm. Rogers RO 3006 substrate is then mounted on ground plane of 35µm 
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Figure 6: S11 simulation and measurement for E shape antenna 

 
Both curves of figure 6 are in good agreement proving that the proposed antenna 
operates at 3.418GHz with a bandwidth of 424MHz (S11<-10dB) or 12.4%. S11 
measurements have been obtained using the Anritsu MS2036A VNA instrument.  
Simulation and experimental radiation pattern of the 16 element array is shown in figure 
7. 
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(b) 

Figure 7: Radiation pattern of 16 element array in terms of theta (θ) for: (a) φ=00 (xz plane) and (b) φ=900 (yz 
plane) 
 
Angle theta and xyz planes are denoted in figure 4a. Measurements have been 
performed in anechoic chamber. 
The currents that excite each radiation element have the same amplitude and phase. The 
produced pattern presents a main lobe at θ=0deg and side lobes lower than 10dBi. The 
radiation patterns depicted in figure 7 are obtained for the frequency of 3.418GHz. The 
characteristics of the proposed array together with the properties of a commercial 
antenna operating at 3.5GHz are denoted in table 1.  
 

 
Table 1: Proposed 16 element array and commercial backhaul antenna 

Antenna model Gain (dBi)  HPBW yz plane 
(deg) 

HPBW xz plane 
(deg) 

Bandwidth 
(MHz) 

4×4 phased array 21.17 14.44 14.25 424 
Commercial 
backhaul antenna 
Rfwel 
(TSWL315177) 

18 15 15 500 

 
 
The proposed array presents enhanced gain and low Half Power Beam width (HPBW) 
proved to be suitable for point to point communication. The designed array satisfies the 
requirements of the IEEE802.16j protocol for WiMAX and can be used for backhaul 
link realization between the Relay Station and the Base Station.  
 
 
III. Beam forming module 
Beam forming module is a two substrate planar circuit that includes two 1:8 power 
dividers. The proposed circuit has been designed and simulated in ADS2009 and then 
fabricated. The circuit has the following form: 
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(a) 

 
(b) 

 
 
 

                            
(c) 

Figure 8: Beam forming unit (a) Top view (b) bottom view (c) cross section 
 
The circuit includes Wilkinson power dividers [13], chip resistors 100Ω and capacitors, 
commercial digital attenuators (HITTITE HMC629LP4) and digital phase shifters 
(HITTITE HMC648LP6). The microstrip line circuit is placed on Rogers RO4003 
substrate (εr=3.55, h=0.508mm). A second Rogers RO4003 substrate is placed beneath 
the first, on the top side of which the ground plane is positioned. Amplitudes and phases 
of each radiation element enter the circuit from digital information inputs and are 
assigned to specific attenuators and phase shifters respectively. Figure 8c depicts the 
cross section of the proposed beam forming circuit where both substrates are hold with 
vias. The microstrip line length on the top of the circuit is integer multiple of λ0 
(f0=3.5GHz) while the width is defined using the formula in [14]. Layout of the beam 
forming design can be seen in figure 9. 
 

Ground plane 
Rogers RO 4003 

Microstrip line 

Rogers RO 4003 
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Figure 9: Layout of the beam forming module 

 
S11 parameter of the simulated and fabricated beam forming circuit is depicted in figure 
10. 

 
Figure 10: S11 of 1:8 Wilkinson power divider 

 
Measurements of S11 parameter have been carried out using Anritsu MS2036A VNA.  
The designed beam forming circuit operates from 3.3GHz to 4GHz frequency range 
presenting 700MHz bandwidth (S11<-10dB). The minimum experimental value of S11 is 
-27,112dB for 3.38GHz. The simulated and experimental curves depicted in figure 10 
are in good agreement. Their differences are caused due to ohmic, dielectric and 
conductor losses and microstrip line coupling. The designed beam forming circuit 
presents adequate bandwidth that covers the frequency band of the array presented in 
the previous section. Thus the array and the beam forming circuit can be efficiently 
combined. Total phased array configuration including the array together with the beam 
forming circuit is depicted in figure 11. 
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The above results are assigned in each radiation element in simulation and experimental 
setup. Figure 12 depicts radiation pattern of the simulated and fabricated phased array.  
 

 
Figure 12: Simulation and experimental radiation pattern for scenario (a) 

 
Figure 12 shows that scenario requirements are met. Side lobe levels on both curves are 
below -10dB. Angle of null is 340 while angle of maximum is -180. The two curves 
depicted in figure 12 are in good agreement. The experimental curve comprises ohmic, 
dielectric and conductor losses, line coupling and imbalance phenomena of attenuators 
and phase shifters. Imbalance phenomena are relevant to errors in attenuation and phase 
assignment to excitation currents due to circuit losses. In spite of these imbalances and 
losses the radiation pattern has the desired form and approximates the simulated curve 
sufficiently. 
 
b. Maximum at (22,00), null at (800, 00) and Side Lobe level SLL<-10dB.  
For scenario (b) the same procedure as above has been performed. LMS algorithm gives 
the following results: 
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Relevant curves are depicted in figure 13. 
 
 

 
Figure 13: Simulation and experimental radiation pattern for scenario (b) 

 
Blue line of figure 13 meets the specified requirements set by scenario (b) except from 
maximum of main lobe. The simulation curve presents θmax=200. 
The experimental line presents maximum at θmax=180. This 40 deviation from the 
scenario requirements may be caused by losses in power divider and cable losses. 
 
c. Maximum at (-24,00), null at (200, 00) and Side Lobe level SLL<-10dB.  
For scenario (c) the LMS algorithm gives the following results: 
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Figure 16: Simulation and experimental radiation pattern for scenario (c) 

 
In this case the curves produced by simulation and experiment satisfy the requirements 
set by scenario (c). Blue and green lines coincide at high degree. The differences 
between simulation and experiment are probably caused because of losses in power 
distribution on beam forming circuit. 
 
 
V. Conclusions 
A phased array antenna system for connecting a Relay Station to a Base Station suitable 
for 4G networks at the frequency of 3.5GHz is designed and presented. The proposed 
system comprises two modules: The antenna array for transmit/receive data and a beam 
forming module for proper power division and weight (amplitude/phase) assignment. 
The array module is a 4×4 microstrip modified E shaped patch array of 21.17dBi Gain, 
424MHz bandwidth based on stacked geometry. It is designed and simulated using 
electromagnetic simulator HFSSv.11. The proposed array is compared to a commercial 
one intended for similar use. Comparison proves the efficiency of the proposed array as 
it offers increased gain and narrower beam width. The beam forming module includes 
two 1:8 Wilkinson power dividers comprising chip resistors and capacitors, attenuators 
and phase shifters. Simulation set up on ADS2009 and measurement of scattering 
parameter S11 of the beam forming circuit are performed, showing good agreement. The 
circuit operates from 3.3GHz to 4GHz. Least Mean Square (LMS) algorithm using 
MathCAD v.14 is used for obtaining amplitudes and phases that give desired 
characteristics to radiation pattern. Three scenarios are defined. LMS algorithm is 
applied for each scenario and two 4×4 matrices of amplitude and phase are obtained. 
The values of amplitude and phase are introduced in simulated and experimental setup. 
Radiation patterns are extracted. The difference between simulation and experiment 
curve is caused by beam forming circuit losses and amplitude and phase imbalances.  
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