
 

University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

  
© University of Bradford. This work is licenced for reuse under a Creative Commons 

Licence. 

 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


The Development of Automatic and 

Solar Imaging Techniques for the 

Accurate Detection, Merging, 

Verification and Tracking of Solar 

Filaments 

 

 

Ibrahim Ali Ahmad Atoum 

 

 

PhD 

 

UNIVERSITY OF BRADFORD 

 

2012 



The Development of Automatic and 

Solar Imaging Techniques for the 

Accurate Detection, Merging, 

Verification and Tracking of Solar 

Filaments 

 

 

 

Ibrahim Ali Ahmad Atoum 

A thesis submitted for the degree of 

Doctor of Philosophy 

 

School of Computing, Informatics & Media 

University of Bradford 

 

2012 

 

 

 

 



 

 

 

 

 

 

October 2012 

University of Bradford 

Copyright © 2012 Ibrahim Ali Ahmad Atoum 

 

 

 

 

 

To My Beloved Wife Faten, My Daughters Sarah, 

Salma, Sadeen, and My Son Osama, 

For their endless love and continuous support. 

  



ii 

 

Abstract 

Based on a study of existing solar filament and tracking methods, a fully automated 

solar filament detection and tracking method is presented. An adaptive thresholding 

technique is used in a segmentation phase to identify candidate filament pixels. This 

phase is followed by retrieving the actual filament area from a region grown filament by 

using statistical parameters and morphological operations. This detection technique 

gives the opportunity to develop an accurate spine extraction algorithm. Features 

including separation distance, orientation and average intensities are extracted and fed 

to a Neural Network (NN) classifier to merge broken filament components. Finally, the 

results for two consecutive images are compared to detect filament disappearance 

events, taking advantage of the maps resulting from converting solar images to 

Heliographic Carrington co-ordinates. 

The study has demonstrated the novelty of the algorithms developed in terms of them 

now all being fully automated; significantly the algorithms do not require any empirical 

values to be used whatsoever unlike previous techniques. This combination of features 

gives the opportunity for these methods to work in real-time. Comparisons with other 

researchers shows that the present algorithms represent the filaments more accurately 

and evaluate computationally faster - which could lead to a more precise tracking 

practice in real-time.  

An additional development phase developed in this dissertation in the process of 

detecting solar filaments is the detection of filament disappearances. Some filaments 

and prominences end their life with eruptions. When this occurs, they disappear from 

the surface of the Sun within a few hours. Such events are known as disappearing 

filaments and it is thought that they are associated with coronal mass ejections (CMEs). 
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Filament disappearances are generally monitored by observing and analysing 

successive solar H-alpha images. After filament regions are obtained from individual H-

alpha images, a NN classifier is used to categorize the detected filaments as 

Disappeared Filaments (DFs) or Miss-Detected Filaments (MDFs). Features such as 

Area, Length, Mean, Standard Deviation, Skewness and Kurtosis are extracted and fed 

to this neural network which achieves a confidence level of at least 80%. Comparing the 

results with other researchers shows high divergence between the results. The NN 

method shows better convergence with the results of the National Geophysical Data 

Centre (NGDC) than the results of the others researchers. 
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CHAPTER ONE  

1 INTRODUCTION 

1.1 Background 

As the importance of forecasting space weather increases, the need for detecting 

solar features affecting space weather also increases. The increasing powers of 

computers, image processing and machine learning techniques offer opportunities to 

develop automatic detection methods for solar features and activities that may affect life 

on Earth.  

Solar flares and CMEs are the most important solar events that lie behind space 

weather; these solar eruptions release vast quantities of electromagnetic radiation and 

charged particles (Al-Omari et al., 2010). Solar flares are sudden, short lived, burst of 

energy on the Sun’s surface, lasting from minutes to hours as described in (Colak and 

Qahwaji, 2007) and shown in Figure 1.1. 

 

Figure 1.1. Solar flare recorded by the NASA Solar Dynamics Observatory on 

April 16
th

 2012. 
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The most important method for space weather prediction is the accurate detection 

and monitoring of the evolution of solar features affecting space weather. Detecting 

filaments can indicate the possible occurrence of CMEs. Hence, solar filaments are 

features that play a vital role in the study of space weather. 

In Hα images as shown in Figure 1.2, filaments appear as dark ribbons against 

brighter and hotter background. At the limb, they become bright features against the sky 

and are then called prominences.  

(a) 

 

(b) 

 

Figure 1.2. Solar filament (a) Hα solar image observed at the Meudon observatory 

on January 2
nd

 2001. (b) Solar filament as shown in (a).  

(http://bass2000.obspm.fr/home.php) 

 

Some filaments erupt and disappear within hours and are known as disappeared 

filaments as shown in Figure 1.3. Artificial neural networks (ANNs), usually called 

Neural Networks (NNs) are fairly simple automated models that simulate the neural 

structure of the brain. This new approach to computing provides a more attractive 

automatic processing compared to traditional methods, because computers can perform 

complicated problems but they still have problems in recognizing simple patterns. 
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(a) 

 

(b) 

 

Figure 1.3. Solar images illustrate a disappeared filament (a) Hα solar image observed at 

the Meudon observatory on January 2
nd

 2001. (b)  Hα solar image observed at the Meudon 

observatory on January 3
rd

 2001. 

In this research, the aim is to design a fully automated real-time system that can 

detect the disappearance of solar filaments by analysing solar images; the fundamental 

steps are shown in Figure 1.4. This system uses solar images for the segmentation 

phase, detecting solar filaments, merging broken filaments and finally tracking their 

disappearance. 

 

 

 

 

 

 

 

Figure 1.4. Suggested system for automatic detection of filament disappearances. 

Disappeared Filament 

H-alpha 

Images 
Detect Filaments 

Merge Broken 

Filaments 

Spine Detection 

Detect Filament 

Disappearances 
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1.2 Solar filament segmentation, detection, merging and tracking  

Solar images are obtained by ground and space observatories. There are plenty of 

public solar images that are obtained using different wavelengths. Solar features seen in 

those images could be used by scientists to observe and study solar events. However, 

there are many challenges facing solar imaging. The automated detection and tracking 

of solar features is one of these challenges. Solar image processing and feature 

extraction techniques are usually used to extract numerical features that can provide 

efficient representation for solar features, solar activities and/or general regions of 

interest in the solar images. Knowledge extraction and prediction of forthcoming 

activities can be achieved using machine learning.  

A successful integration between image processing and machine learning could 

provide automatic detection, tracking and even classification of filaments. In this case, 

the automated system could be used to represent the detected filaments using statistical 

and geometrical features (i.e., size, location, shape, orientation, etc.). 

Solar filaments are large regions of very dense, relatively cool ionized gases, held in 

place by magnetic fields. They are elongated structures and dark features appearing in 

H-alpha (Hα) solar images as shown in Figure 1.5.a.  

(a) 

 

(b) 

 

Figure 1.5. (a) Solar filament seen in the Hα solar image observed at the Meudon 

observatory on January 2
nd

 2001. (b) Solar prominence seen from the NASA/Solar 

Dynamics Observatory on September 8
th

, 2010.  
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Filaments appear dark because they are cooler than their surroundings, while they 

appear bright when they become visible on the edge of the solar disk and are then called 

prominences as shown in Figure 1.5.b. 

Despite the advances expressed in the previous works, machine learning has not been 

used for large-scale analysis of filaments during the detection or classification phases. 

Still one of the challenges that face this paradigm is the need to develop and implement 

a detection technique that could avoid the use of any empirical values to produce a fully 

automated technique.  

Additional requirements include producing a fully automated filament detection 

algorithm that is both fast and accurate. Time requirement is definitely a factor which 

would affect the ability to synthesize a filament detection and tracking system as part of 

a proposed real-time system. The successful real-time implementation of such a system 

would give the opportunity to produce timely space weather alerts and quick look-up of 

results. 

Solar filaments are characterized by its low intensity values in Hα images because 

they are darker in colour. This nature, being well separated from the background, gives 

the opportunity to use a thresholding segmentation technique. This is achieved by 

defining a range of brightness values in the original image, choosing the image pixels 

that fall in this range to be foreground and ignoring other pixels as they represent the 

background. The same technique has been used in this study without using any range of 

brightness value in segmenting unambiguous filaments whilst introducing minimal 

noise compared to the other techniques.    

This segmentation method is followed by a region growing technique developed by 

(Qahwaji and Colak, 2005). This method uses the foreground pixels as seeds; then it 

combines the adjacent pixels and the unwanted seeds are eliminated. A fully automated 

detection technique is developed in this study to retrieve the actual filament area from 
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these region grown filaments. This technique involves statistical parameters and 

morphological operations and avoids using any empirical values whatsoever. The shape 

of the detected features is represented by determining its spine geometry which gives 

the opportunity to extract all the filament morphological features. 

In some solar images, some filaments may be broken or segmented into several small 

filaments due to differences in intensity values or fail in the pre-processing parts of this 

phase. These filaments should be merged to get the correct filament numbers and to get 

the actual filament parameters like the spine length. An NN-based merging technique is 

used by extracting some of the filament characteristics and feeding it to an NN to 

classify filaments into two groups, merged or not merged.    

After obtaining the areas of individual filaments, the resultant filaments in two 

consecutive images are compared to detect the filament disappearances. Again a NN-

based tracking technique is followed by extracting a set of characteristics of individual 

filaments and feeding it to an NN to distinguish it from a miss-detected one. 

1.3 Motivation 

The importance of studying solar filaments comes from considering its 

disappearances as a significant indicator for possible occurrence of CMEs, which is 

considered as the major cause of geomagnetic storms. 

CMEs could be initiated from closed magnetic field regions such as filament regions 

and it is now almost certain that there is a close association between CMEs and filament 

disappearances (Gopalswamy et al., 2003, Moon et al., 2002, Pojoga and Huang, 2003, 

Jing et al., 2004, Gopalswamy, 2006, Schmieder, 2006, Alejandro 2008, Robbrecht et 

al., 2009, Al-Omari et al., 2010). 

CMEs are enormous bubbles of hot plasma (billions of tons of magnetized plasma) 

that propagate away from the solar corona into the interplanetary medium at a very high 

velocity (Alejandro, 2008). Figure 1.6 shows one CME. These bubbles which are 
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carrying a huge amount of energy can – if directed towards our planet – cause massive 

disruption in our communication networks, failures in navigational systems and 

satellites, and power outages and disruptions.  

 

Figure 1.6. Coronal Mass Ejections observed at SDO, the NASA Solar Dynamics 

Observatory, on January 27
th

, 2010. 

These CMEs have been observed in the images of the solar corona obtained by Solar 

Heliospheric Observatory (SOHO) mission’s Large Spectrometric Coronagraph 

(LASCO) since 1996. A coronagraph is a telescope that uses a disk to block the Sun’s 

direct light, while permitting light from surrounding sources; this light reveals the solar 

corona and a coronagraph could be regarded as a producer of artificial solar eclipses. 

SOHO has two coronagraphs on board; “C2” coronagraph and C3 coronagraph. C2 

coronagraph images are usually coloured red; C3 coronagraph images are blue as shown 

in Figure 1.7. 

There are three possible indicators of CME onsets, which are: filament 

disappearances, coronal dimming and solar flares. The coronal dimming phenomenon 

occurs when the intensity of the Sun corona decreases (Attril et al., 2006). 
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(a) 

 

 
 

(b) 

 

 
 

 
Figure 1.7. Two examples of coronagraph images. (a) SOHO LASCO C2 image taken on 

07
th

 April, 2002 at 16:36. (b) SOHO LASCO C3 image taken on 07
th

 April, 2002, 16:43. 

 

With the current huge development in Space instruments, computers and 

communications, the need becomes greater for quick alerts and warnings of the risks 

that threaten our planetary atmosphere and for forecasting space weather. Thus the need 

becomes more critical for developing a real-time CME prediction system. The work in 

this underlying study will stop at detecting filament disappearances and in future may 

be used for developing this CME prediction system. 

1.4 Research Aims and Objectives 

The main aims of this research were the accurate detection of solar filaments by the 

process of merging broken filaments to create an automated detection system for solar 

filament disappearances. The technique will receive the real-time solar images that are 

observed by different ground-based observatories and are available online. The 

development of this real-time system using machine learning algorithms will help in 

modelling a reliable tracking technique. The different objectives of this research are 

summarized as: 

http://soho.nascom.nasa.gov/data/realtime/c2/1024/latest.html
http://soho.nascom.nasa.gov/data/realtime/c3/1024/latest.html
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 Designing an automated computer platform for automatic detection of solar 

filaments. 

 Designing an automated tool for extracting different features of solar filaments. 

A geometrical-based approach is used for extracting the filament spine and 

determining its properties. These properties give the opportunity to accurately 

accomplish the subsequent processing tasks. 

 Designing an automated tool for merging the broken filaments structures. This 

method has exploited the findings of the initial extraction of the filament spine. 

 Designing novel techniques to effectively track the disappearances of solar 

filaments.  

1.5 Original Contributions 

 The main original contributions presented in this thesis can be summarised as 

 follows: 

 The development of an adaptive thresholding technique for segmenting 

Hα solar images in order to detect filaments as Regions of Interest (RoI) 

and discard everything else as background. These well-defined and visible 

filaments could be considered for further analysis by characterizing their 

features which may give the ability to provide suitable inputs for machine 

vision techniques. (Atoum et al., 2009). 

 Presentation and development of a fully automated technique for the 

detection of solar filaments by manipulating statistical parameters and 

morphological operations. The present detection process avoids using any 

empirical values whatsoever. This technique is described in Chapter four 

and in a submitted paper. 
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 Representation of the shape of the detected filaments by determination of 

its spine geometry. The algorithm gives the opportunity to extract the 

filament morphological features, such as: the filament length, filament 

centre, filament head-end points, filament tail-end points and the filament 

boundary. The algorithm is valuable as part of a real-time system for 

detecting and tracking solar filaments. This algorithm is presented in 

Chapter four and in a submitted paper. 

 The use of the NN classifier algorithm to achieve the merging of the 

broken filaments with a higher merging percentage than before. The 

algorithm avoids the use of empirical constant values for different 

filament merging attributes. This algorithm is described in Chapter five 

and also in a submitted paper. 

 Finally a solar filament tracking technique was implemented to detect 

disappearing filaments. The technique exploits the relatively small 

movements of the filaments over HCMs. It uses an NN classifier to 

distinguish between the actual disappeared filaments and the phenomenon 

of disappearing miss-detected filaments. This technique is presented in 

Chapter six and in a submitted paper.  

1.6  Outline of the Thesis 

This thesis is organized as follows: 

 Chapter Two provides a literature review of recent research on the 

automatic detection techniques for solar filaments. The methods used in 

each phase of the detection process are detailed. 

 Chapter Three explores the available sources of solar data that can be used 

in the research presented in this thesis. Some of these data are used for 



11 

 

solar filament segmentation, other solar data is used for automatic 

detection, spine  representation, merging algorithms and tracking 

techniques.  

 Chapter Four introduces an improved image segmentation algorithm; an 

automated detection algorithm which includes retrieving the approximate 

actual filament from the region grown one and the detection of the 

filament  boundary. Additionally, it describes the implementation of the 

filament spine representation. 

 Chapter Five describes and implements a merging technique that utilizes 

the findings of the spine extraction to merge the broken structures using a 

neural network. 

 Chapter Six describes the implementation of a tracking technique. It 

includes the filament detection stage and creating the Heliographic 

Carrington Map. A neural network is used then to categorize the detected 

disappearances as true or false.   

 Finally the concluding remarks and recommendations for future work are 

presented in Chapter Seven.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 Solar Filament Detection 

In image processing, the term feature detection refers to the methods that aim to 

make a decision at every image pixel on whether it is an image feature or not. The 

outcomes of these methods will be subsets of the image domain, often in the form of 

isolated points.  

In solar imaging, given a solar image, filament detection means to determine whether 

or not the specified filament is present, and, if present, determine its characteristics. 

These characteristics include properties such as: length, area, centre, head-start points, 

tail-end points and filament boundary points. Once these characteristics are found, they 

are utilized in trying to merge the broken filaments in order to approximately restore the 

actual size of the detected filaments. The image processing task also involves the very 

important task of detecting the filament disappearance - where studies have shown that 

filament disappearances are usually associated with the occurrence of CMEs. The 

filament detection process should also create algorithms which execute speedily.  

Filaments usually appear above the chromosphere as thin elongated structures in Hα 

solar images. Detecting and characterizing solar filaments is important for several 

aspects of solar activities because of their association with geomagnetic storms (Al-

Omari et al., 2010). An efficient detection system which is fully automated and further, 

works in real-time is highly desirable, which makes its implementation in software 

rather challenging. 

There have been a number of methods developed for detecting solar filaments, 

merging broken filaments and detecting the filament disappearances during the last 
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decade. Each of these methods is addressed in detail in the following sections. The 

detection methods are presented in Section 2.2, the detection techniques are presented in 

Section 2.3, the merging methods are described in Section 2.4, the techniques used for 

detection of filament disappearances are described in Section 2.5 and finally 

conclusions are given in Section 2.6. 

2.2 Detection methods 

The papers on the various stages of filament processing found in the literature are 

listed below.  Methods used for detecting solar filaments include: 

 Threshold and Region-based Technique (Gao et al., 2002) 

 Artificial Neural Networks (Zharkova and Schetinin, 2003) 

 Morphological Operations (Shih and Kowalski, 2003) 

 Adaptive Thresholding Method  and Support Vector Machine (SVM) (Qu et al., 

 2005) 

 Thresholding, Region Growing and Spine detection (Fuller et al., 2005) 

 Thresholding, Region Growing and Spine Tracing (Bernasconi et al., 2005) 

 Thresholding, Region Growing and Feature Verifications (Qahwaji and Colak, 

 2005) 

 Intensity and Size Threshold (Joshi et al., 2010) 

 Adaptive Thresholding Method (Yuan et al., 2011) 

Methods used for merging broken structures include: 

 Distance Criterion (Gao et al., 2002) 

 Implementation of Distance and Angle (Bernasconi et al., 2005) 

 Closing, Thinning, Pruning and Adaptive Edge Linking (Qu et al., 2005) 

 Morphological Closing Operation (Fuller  et al., 2005) 

 Grouping and Distance Criteria (Joshi et al., 2009) 
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 Closing Operation (Yuan et al., 2011) 

Methods used for tracking solar filaments include: 

 Comparison of Two Consecutive Images (Gao et al., 2002) 

 Component Matching (Qu et al., 2005) 

 Comparison of  Three Consecutive Images (Bernasconi et al., 2005) 

 Applying a region growing techniques over Carrington Maps (Aboudarham et 

al., 2008) 

 Labelling Criterion (Joshi et al., 2009) 

2.3 Detection Process 

In this section, all of the algorithms that were implemented and discussed in the 

literature are presented. There have been many successful attempts at designing 

algorithms for detecting solar filaments. Gao (Gao et al., 2002), combined thresholding 

and region growing techniques to achieve filament detection. Filament candidates were 

obtained using a thresholding technique. The region growing technique was then used 

for grouping the candidate pixels to form filament areas. The detection method includes 

three particular operations; deletion of any adjacent pixels that touch the solar limb, 

because these pixels could be part of filaments, so this avoids the detection of 

prominences; remove any filament area with less than half the median intensity value of 

the whole image; because it is considered noise;  an eighty-adjacency connection 

method is used to connect the adjacent pixels (eighty pixels around the central pixel are 

checked for connectivity) to avoid small errors in solar images. During the image 

processing, some large filaments could become broken into small fragments which 

could become excluded because they are now less than a 220 pixel area threshold. This 

method could not be considered a fully automatic detection technique because it uses 
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many different constant values in the detection process. Also it cannot handle low 

contrast filaments and thus produces unstable results. 

A feed-forward ANN technique is used by Zharkova (Zharkova and Schetinin, 

2003); this network is composed of two hidden and one output neurons to extract solar 

filaments automatically from Hα solar images. In total 55 filament fragments were 

selected depicting filaments with different backgrounds; one is used for training the 

network and the other 54 are used for testing. The main aim of the proposed ANN is to 

remove a contribution of the variable background elements which is defined as a 

background function. The technique is based on a standard sliding window technique as 

follows: The given image is transformed into columns; with each column representing a 

set of pixels taken from a sliding window width of size 3×3. The output neuron makes a 

decision on whether the central pixel is a filament or non-filament pixel. The results of 

this technique were not validated nor optimized.    

A superposition of morphological closing operations was applied by Shih (Shih and 

Kowalski, 2003) to separate filaments from the granular background. The process  used 

eight directional linear 11×11 structuring elements with 90°, 0°, 45°, 135°, 67°, 112.5°, 

22.5°, 157.5° slopes, respectively as shown in Figure 2.1. An additional closing 

operation with a 3×3 structuring element was applied to eliminate spurious features. The 

dark features obtained are used as seeds for a region growing process. This checks the 

neighbourhoods of the detected features and compares them against the original pre-

processed image. All connected black points in the pre-processed image neighbouring 

the detected filament are marked as belonging to the filament. Using 8-neighbor 

connectivity, all connected black points in the pre-processed image neighbouring the 

detected filament are marked as belonging to the filament. This detection method uses 

an extensive set of morphological operations in detecting solar filaments which could 

thus consume significant computational time. 
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Figure 2.1. Eight directional linear 11×11 structuring element with 90°, 0°, 45°, 

135°,  67°, 112.5°, 22.5°, 157.5° slopes, respectively. 

The Sobel operator was applied by Qu (Qu et al., 2005) to detect the edges of the 

filaments. This operator emphasizes the regions of high spatial gradient that correspond 

to edges by performing a two dimensional spatial gradient measurement on an image. 

Then, two thresholding operations are performed; a global one for the whole image to 

select filaments that have high contrasts relative to the background. A second local one 

is performed for sub-images of size 100×100 pixels to select filaments that have locally 

high contrasts relative to the background. Initially, a set of adaptive thresholds ranging 

from zero to the median of pixel intensities of the image are chosen for segmenting dark 

regions.   The global threshold is computed by dividing the result of applying the Sobel 

operator over the segmented region by the number of the pixels in the same region. 

When the new expanded region meets the edges of filaments then the threshold value 

reaches the maximum which then represents the best global threshold for segmenting 

solar filaments. The local threshold is computed according to two criteria; firstly, the 

local threshold equals the optimal global threshold plus or minus 30 and secondly; the 

size of the region obtained by the local threshold is less than three times that of the 
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region obtained by the global threshold. Additionally, any small regions with area less 

than 10 pixels are considered noise and removed. Finally, a SVM classifier is used to 

discriminate sunspots from filaments, where the sunspots are represented by nine 

features representing the input of the SVM, which are extracted from a window of size 

100 ×100 pixels. This method cannot be considered a fully automatic detection 

technique because several constant values have been utilized for computing the local 

threshold and for removing the noisy pixels. 

The detection process by Fuller (Fuller et al., 2005) is started by detecting the seed 

regions that need to be grown. Primarily, the image is divided into local square windows 

with size 1/6 of the image size and then any pixel value less than the mean value in this 

window is discarded from the calculation. The threshold for each sub-image is then 

computed by using a local quiet Sun intensity minus a constant value multiplied by the 

standard deviation as shown in equation 2-1. The constant value was chosen to be 3.7.  

                                                                                                              (2-1) 

     is the threshold for each sub image,       is the local quiet Sun intensity,   is the 

constant value and      is the standard deviation for each sub image. Any remaining 

spurious seeds were removed by keeping only seeds whose size is more than 20 pixels. 

A region growing technique is then applied to group pixels together; the upper and 

lower limits of the growing process are identified by threshold values; the lower 

threshold is set to be zero while the upper threshold is computed by multiplying the 

standard deviation of the bounding rectangle of this seed region by 1.5. Then this value 

is subtracted from the quiet Sun intensity of the bounding rectangle. To fill in small 

holes and to merge nearby regions a closing operator is applied. The spine detection 

process is also achieved using multiple morphological operators. They have applied an 

iterative thinning method to produce the skeleton of the region followed by a pruning 

process to remove the branches of the skeleton tree. This method cannot be considered a 
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fully automatic detection technique because several constant values are used for 

computing the threshold for each sub-image, for removing the spurious pixels and in 

calculating the threshold that is used in the region growing technique. 

The detection process by Bernasconi (Bernasconi et al., 2005) starts by creating a 

binary filament mask in which pixels labeled one are considered part of a filament and 

the background is filled by zeros. Then the process searching for filaments is limited to 

within a latitude circle of 60° heliocentric from the Sun center. Secondly, sunspots are 

removed from the mask according to the thresholding method that was introduced by 

Shih (Shih and Kowalski, 2003). The resulting pixels are then used as seeds for a 

region-growing operation using upper and lower threshold values to avoid detecting too 

large spots and too small spots. After that a new threshold value is assumed to extract 

the filament mask; this threshold extracts not only the required filaments but also 

spurious pixels which then should be removed; this is done by applying a morphological 

filtering operation that was introduced by Shih (Shih and Kowalski, 2003). The 

resulting pixels are now used as seeds for a region growing operation that extends the 

filament size to an adopted threshold. After all filaments are detected to their full shape, 

a threshold is again used to exclude the too small filaments or the false detection results. 

Thereafter the filament boundary is extracted as an array of Cartesian co-ordinates of 

each pixel along the outline of the filament. Finally a principal curve algorithm uses a 

multi-step iterative technique to determine the filament spine. This detection process has 

limited the searching process within a latitude circle of 60° which means it will not be 

able to detect filaments outside this. Several constant values are used to implement the 

detection process which prevents it being considered a fully automatic detection 

technique.  

The detection process by Qahwaji (Qahwaji and Colak, 2005) starts by detecting 

seed pixels using an intensity filtering technique. This technique uses the standard 
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deviation, the mean value and a constant value in a thresholding equation to detect the 

seeds pixels for the desired solar filaments. A region growing algorithm is then applied 

to detect the RoIs (Regions of Interest) which have not been detected by the previous 

filtering algorithm; this process involved two main stages: firstly combining the 

adjacent seed pixels and secondly eliminating the unwanted seeds. The results of these 

calculations are then fed to a neural network to verify the detected regions and minimize 

the false acceptance rate. This method uses constant values in the statistical equations 

for detecting the solar filament, thus it cannot be considered as a fully automated 

detection technique.    

Joshi (Joshi et al., 2010), applied an intensity threshold based on a variable local 

thresholding method introduced by Shih (Shih and Kowalski, 2003) to identify when a 

pixel value is related to a filament and not to the background. The method starts by 

calculating the median at every pixel in the image using a 19×19 pixel neighborhood 

centred on the pixel. Two cut-off values are used, a lower cut-off value which is 10% of 

the intensity range of the image and a higher cut-off value which is 90% of the intensity 

range of the image. The threshold is equal to the lower cut-off value if the median value 

at a pixel is less than or equal to this value. If the threshold is equal, the higher cut-off 

value is chosen if the median filter at the pixel is less than or equal to this value. This 

threshold value, thereafter, is used to extract the solar filaments. Then a fixed threshold 

value is then applied to eliminate some non-filament features, this is set to 12 pixels in 

size. Finally, dark sunspots are removed by selecting a threshold to be 30% of the disc-

centre intensity of the normalized images (Shih and Kowalski, 2003). A constant value 

was used to remove the non-filament features; this prevents the algorithm from being 

considered as a fully automated detection process. 

An adaptive segmentation procedure is presented by Yuan (Yuan et al., 2011). It 

consists of five different stages; convolving the solar image by a high-pass Laplacian 
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filter; using the median and standard deviation to create a series of thresholds by 

generating an arithmetic progression method; segmenting the solar image using these 

threshold values to obtain the segmented  regions and the difference regions; the 

segmented regions and the difference regions are then used to calculate a series of 

thresholds; and the final threshold value is then chosen to be the maximum one. After 

this segmentation method, the filaments are removed if they are too small (3.5% of the 

radius of the solar disk), then a closing operation is applied to connect the broken 

filaments using a disk structuring element with size of 0.5% of the radius of the solar 

disk.  A shape-based threshold is then adopted to remove the sunspots. The area and 

perimeter were used to create a shape measurement value, these values will be within 

the [0, 1] interval. The larger value is more likely if it is a sunspot; an experimental 

value of 0.7 is chosen; so if the shape measurement of an object is more than 0.7 then it 

is removed. A morphological reconstruction operation is then applied to fill in the holes 

inside each filament. An iterative morphological thinning is applied after that to obtain 

the skeleton of the filament. The image is initially thinned by the left SE as shown in 

Figure 2.2 and then by the right SE as shown in Figure 2.2 and followed by the 

remaining six 90° rotations of the two mentioned structure elements.  

 

0 0 0 

x 1 x 

1 1 1 

 

x 0 0 

1 1 0 

x 1 x 

 

Figure 2.2. The two basic structural elements used in the morphological thinning 

process, (x indicates do not care). 

 

 

 

The process is repeated until none of the thinning processes produces any further 

changes. A graph theory approach is then implemented to remove the skeleton branches. 
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The adjacent matrix representation for each filament is created; for each pixel on the 

skeleton a vertex that represents it is created; all the vertices and connectivities of the 

vertices are then created. If the pixels of the skeleton are 8-connected, an edge 

connecting the two vertices corresponding to the two pixels is then created. After that, 

two graph algorithms are implemented to find the main skeleton; the first one; finding 

the shortest path between all pairs of vertices and the path with the maximum length is 

the main skeleton. The second is finding all the end vertices by searching over the 

shortest paths between each pair of the end vertices. The part with the maximum length 

is the main skeleton. A constant value was used for creating a shape measurement 

value; this prevents it from being a fully automated detection process. 

 

2.4 Merging Process 

In some solar images, some filaments may be broken or segmented into several 

smaller filaments. In order to detect the correct numbers of filaments and to extract the 

correct characteristics of these merged filaments, such as length, starting end-points and 

ending end-points, a merging algorithm is needed to combine these broken filaments. 

Most of these broken structures are large ones; large dark filaments that disappear 

generally produce larger interplanetary atmospheric disturbances that are capable of 

having an impact on Earth. So, merging and detecting these large filaments is a 

significant measure in detecting filament disappearances. There are two criteria 

specified in the literature to merge broken elongated objects (Cheng et al., 2007 and 

Ingrid et al., 2002): the broken features should be close enough and they should satisfy 

some relative orientation requirements.  

In one of the early studies in this area by Gao (Gao et al., 2002), a distance constant 

value to be 40 pixels is adopted as a merging threshold; if the distance between each 

two filaments is less than this threshold then they are considered as one filament. A 
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constant value is used for the distance between the filaments to achieve the merging 

process, again it cannot be considered as a fully automatic merging technique. 

The two mentioned merging rules were used in (Bernasconi et al., 2005) by 

estimating two constant values for the two criteria; one for the distance (d) of each spine 

end-point of each filament to all other filaments and one for the angle (θ) between the 

last two segments of the two spines relative to the line connecting the two end-points as 

shown in Figure 2.3. If d<25 pixels then the two filaments are merged. If d>25 pixels 

and d<100 pixels then the θ is calculated, if for both segments θ1 and θ2 are both <22.5° 

then they are merged. This merging technique is considered imperfect as stated by the 

author.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The angles between the last two segments and the line connect the two end-

points of the two filaments. 

 

It must be noted that this merging process is implemented after characterizing the 

solar filament by Bernasconi. Two constant values have been used for the distance and 

the angle in order to implement the merging process. This prevents the algorithm from 

being an automatic merging process.  
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A set of mathematical morphological operations that includes: closing, thinning and 

pruning and adaptive edge linking methods were undertaken by Qu (Qu et al., 2005). A 

closing operation is used to eliminate the small gaps. A thinning operation is then used 

to determine the skeleton of the filaments; this process is repeated using a sequence of 

eight structuring elements until no further changes can occur. A pruning operation is 

then used to determine the spines of the filament; this operation also uses eight 

structural elements. Even after using the previous set of morphological operations there 

could be big gaps in broken filaments which could not be merged. Therefore, an 

adaptive edge linking method was used to connect edges based on the orientation of the 

filament spines (Shih and Cheng, 2004). In this method, an adaptive dilation 

morphological operation is applied at each endpoint with an adaptive elliptical 

structuring element (SE). The size and orientation of the SE are adjusted according to 

local properties, such as curvature and slope. Some post-processing operations are 

applied, such as, thinning and pruning to remove noisy edge segments. This extensive 

use of morphological operations in extracting the filaments spine could require 

significant computational time. 

A morphological closing operation was implemented by Fuller (Fuller et al., 2005) to 

merge closed regions. A simple morphological closing operation to achieve the merging 

process is useful for the filaments that are close to each other. To get a more efficient 

and accurate result for this operation and to fill in the big gaps in broken filaments, a 

larger structuring element or multiple dilations followed by the same numbers of 

erosions is utilized. This will, however, destroy the structural integrity of the underlying 

filament. Thus this algorithm is not suitable for widely disjointed broken filaments.  

Joshi (Joshi et al., 2009) have employed a grouping criterion to identify the 

fragments that belonged to the same single filament. The largest filament is labeled ‘1’ 

and is compared with all the other fragments of the same image that lie within a 40 pixel 
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distance (Gao et al., 2002). According to this criterion, any filament fragment found 

close to the one labeled ‘1’ is also labeled ‘1’. Again this fragment is compared with all 

other remaining fragments to check their distances. Once this fragment ‘1’ is compared 

with all other fragments, the next largest fragment is labeled ‘2’. The process is repeated 

until all the fragments are finished. The spatial relationship between the regions that 

need to be merged is important but the orientation relationship between these regions is 

also important and it is not considered here. Additionally the algorithm has used a 

constant value for the distance between the fragments; thus it is not considered as fully 

automated.    

Mathematical morphology closing is used in (Yuan et al., 2011) to connect broken 

filaments using a disk-shaped SE; the size of the SE used was 0.5 percent of the radius 

of the solar disk according to their experiments. Again using a simple morphological 

closing operation to achieve the merging process could be useful for the filaments that 

are close to each other.  

These previous merging methods could be classified into two groups. The first group 

has adopted the spatial (distance) and orientation (angle) criteria and uses a few constant 

values. The shortcoming of the second group is the extensive use of morphological 

operations which could consume additional computational time. None of these current 

state of the art techniques can be said to be suitable for fully automated use. 

2.5 Tracking Process 

Object tracking is a general imaging term which represents an important task in the 

field of computer vision. Tracking can be defined as the problem of estimating the path 

of a moving or moved object in the image plane as needed for further analysis (Yilmaz 

et al., 2006). The lack of automatic tracking catalogues and the need for automatic 

object analysis and representation; the increasing power of computers and the 

availability of high quality instruments, and the need to know the reasons behind the 
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occurrences of CMEs - these offer a reason or an opportunity to develop automatic 

tracking methods for solar features and activities that may affect life on Earth. Thus the 

accurate tracking of solar filaments is imperative for the reliable prediction of 

geomagnetic storms and the near-earth space weather as they affect the communication 

networks and power grid systems of our increasingly networked planet. 

The majority of current tracking methods that I have looked at appear to have some 

deficiencies in that they do not offer a complete study which indicate and explain the 

stages of tracking and the evaluation of the tracking results accurately. Some of the 

filaments that are classified as being disappeared have actually not disappeared, but 

have simply not been detected because the applied detection technique is not sensitive 

enough. These classes of miss-detected filaments have not been considered in the 

majority of previous research (Gao et al., 2002,Shih and Kowalski, 2003,Qu et al., 

2005,Fuller et al., 2005,Bernasconi et al., 2005,Qahwaji and Colak, 2005, Aboudarham 

et al., 2008, Joshi et al., 2009 and Yuan et al., 2011).  

One of the early studies in the area of detection of filament disappearances was made 

by Gao (Gao et al., 2002). In this study, the results of two consecutive images are 

compared after the filament areas are obtained in individual images. The method takes 

into consideration the rotation of the Sun during the time elapsed between the two solar 

images when they were taken. Solar rotation can take the disappeared filaments behind 

the limb, so in this method any filament that was out of the view is excluded from the 

detection process. Also an extra threshold is set to control the vertically movement of 

the solar filaments. A “size threshold” for disappeared filament area is set to 750 

arcsec
2
. Additionally a “size threshold” for filament area is set to 250 arcsec

2
 to exclude 

small filaments from detection. Many constant values are used to control the vertically 

movement of solar filaments, for restricting the size of the disappeared filaments and the 

size of the small filaments that should be excluded. 
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A component matching method was used by Qu (Qu et al., 2005) to detect filament 

disappearances. The results of two consecutive images were matched after considering a 

differential solar rotation correction (Freeland and Handy, 1998). After dilating the 

spine with a 20×20 structuring element, a matching process is implemented according to 

the size of the spines and the intensity of the filaments. If the spine size of the current 

day filament is greater than 40% of the previous day and the mean intensity value of the 

current day filament is less than 1.5 times of the previous day, then the filaments are 

considered as matched. Unmatched filaments are reported as disappeared. Constant 

values were used in the method to control the size of the filament spine. 

Another filament tracking scheme was developed by Bernasconi (Bernasconi, et al., 

2005). This method is based on tracking the day-by-day evolution of the filaments and 

then composing a filament tracking table that includes all the relative attributes of a 

tracked filament. The method uses two main thresholds for achieving the comparison 

process while comparing the tracking tables for three consecutive days. The first limits 

the search area and the second bounds the possible final search region. The process 

starts by reading the location (latitude and longitude) of each filament in the first table 

and compares that with the entries in the second table within a 5° circle from the 

predicted location. If no match is found then the search process continues in the third 

table. The search process is extended up to three days or until the predicted locations 

falls beyond the 60° filament detection limit. If after three days the filament is not 

found, it is considered as disappeared. Two latitude circles have been adopted to restrict 

the search results between the tables of the different days within 5° circle and to restrict 

the search process to a latitude circle of 60° which will prevent the detecting of the 

disappearance of prominences.  

Carrington maps are used to achieve the tracking process by Aboudarham 

(Aboudarham et al., 2008) where all the detected filaments during each solar rotation 
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are plotted by applying a region growing technique on those plots. This study needs to 

be validated as expressed clearly by the authors themselves. 

An automatic tracking method based on a labelling criterion has been described by 

Joshi (Joshi et al., 2009). Filaments of the new images are compared with filaments of 

the previous images; if they are found to lie within a distance of 15 pixels from each 

other, the filament label of the original image is assigned to the corresponding filament 

of the new image. This 15 pixel search area was the major limitation of Joshi's work. 

2.6 Conclusions 

Although there have been tremendous efforts over the past decade in the area of 

automatic detection of solar filaments, it can be shown from the previous description of 

the three fundamental classes of digital image processing operations that there still exist 

key challenges in all these classes. These include: achieving fully automatic system 

implementation for filament detection, merging broken structures and detecting filament 

disappearances; consideration of the existence of miss-detected filaments that still need 

to be identified and detected correctly; the implementation of a real-time system; the use 

of spatial and orientation considerations for the merging process instead of simple 

morphological closing operations; a faster implementation of the filament spine process 

than previous methods; finally, the extensive use of morphological operations for 

achieving a more optimal merging process. To reach the ultimate goal of this research,  

which is implementing an automated filament tracking system, the process should run 

through several related phases: image pre-processing; image segmentation; solar 

filament detection; characterizing these filaments; merging broken structures; and 

detecting filament disappearances. Many filament studies during the last decade have 

covered these phases by using different image processing techniques, including (Gao et 

al., 2002, Shih and Kowalski, 2003, Qu et al., 2005, Fuller et al., 2005, Bernasconi et 

al., 2005, Qahwaji and Colak, 2005, Aboudarham et al., 2008, Joshi et al., 2009 and 
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Yuan et al., 2011). However, for the last phase few investigators have actually 

implemented a fully automatic detection of filament disappearances: (Gao et al., 2002, 

Qu et al., 2005, Bernasconi et al., 2005, Aboudarham et al., 2008 and Joshi et al., 

2009).  

Regardless of the number of studies undertaken; all of them look to solve the two 

main challenges of implementing an automated system and achieving this in real-time. 

This makes their implementation and development more difficult.  

The following chapters discuss the stages involved in implementing a fully 

automated filament detection system in real-time. Chapter Four introduces an improved 

image segmentation algorithm and describe the implementation of the filament spine 

representation. Chapter Five describes the merging technique that utilizes the findings 

of the spine extraction to merge the broken structures using a NN. Chapter Six describes 

the implementation of a tracking technique which includes the filament detection stage 

and the creation of an HCM. A NN is used to categorize the detected filaments as DFs 

or MDFs.   
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CHAPTER THREE 

3 SOLAR DATA 

3.1 Introduction 

This chapter reviews the two data types that were used in the practical work of this 

thesis. These types include solar images that are downloaded online from observatories 

such as the Meudon Observatory
1
, included in the Global High Resolution H-alpha 

Network (GHN)
2
 that is operated by the Space Weather Research Lab (SWRL)

3
. These 

images are used throughout the different phases of the present algorithms. The last 

phase, filament tracking, makes use of another type of solar data. These are taken from 

the data catalogues: the NGDC
4
 and filament disappearance catalogue of SWRL. 

This chapter is organized as follows: Section 3.2 identifies the solar images used in 

the different methods of this thesis. The catalogues of filament disappearances are 

described in Section 3.3.  Conclusions on the contents of the different observatories and 

catalogues are discussed in Section 3.4.  

3.2  Solar Images 

Generally, solar images are obtained from many ground-based and space-based 

observatories. Although the space-based observatories being above the Earth's 

atmosphere avoid the effects of atmospheric turbulence and instability, they can more 

specifically be used to observe at particular wavelengths of the electromagnetic 

spectrum (like infrared, ultraviolet, x-ray, and gamma rays) that are impossible or 

difficult to observe using ground-based observatories. This is because they are either 

                                                 
1
 http://www.obspm.fr/ 

2
 http://swrl.njit.edu/ghn_web/ 

3
 http://swrl.njit.edu/ 

4
 http://www.ngdc.noaa.gov 
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absorbed by the Earth’s atmosphere or are blocked by some other mechanism. However, 

ground-based observatories are cheaper to build and easier to maintain than space-based 

observatories. They have also been improved to get clearer solar images using adaptive 

optical compensation techniques to combat the turbulence of the atmosphere. These 

ground based observatories are used to monitor the Sun in specific segments or 

windows of the electromagnetic spectrum (like radio and visible light). 

All the solar images that were used in this research are full-disk solar images 

(spectroheliograms) which were observed at the Meudon observatory and downloaded 

from the Global High Resolution H-Alpha Network observatories. The 

Spectroheliogram is an instrument designed to produce monochromatic images of the 

Sun in various wavelengths. The Meudon spectroheliograms include Hα images, Ca II 

K1 images, Ca II K3v images and Ca II K3p images. The Spectroheliograph provides 

images of the solar photosphere via the K1v images and of the solar chromospheres via 

the K3 and H-alpha solar images. These data are acquired once a day. The four types are 

shown in Figure 3.1. The Ca II K observations are very sensitive to the presence of 

regions with very strong magnetic fields like active regions and sunspots (Qahwaji, et 

al., 2005), (Ermolli et al., 2009). 

The chromosphere can be observed using the very narrow spectral band of light 

known as the hydrogen-alpha line. The Hα line is a strong spectral line (high 

absorption) which has a wavelength of 656.3 nm (red light). In this line we can see up to 

1700 km above the visible layer (National Solar Observatory, 1996). 

 

  

 

 

 



31 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.1. The four types of Meudon Spectoheliohraphs observed on 30
th

 September 2001. 

(a) Hα spectroheliogram observed at 06:43:00. (b) K1v spectroheliogram observed at 

09:45:00 (c) K3 spectroheliogram observed at 07:04:00. (d) K3 (prominence) 

spectroheliogram observed at 07:15:00. 

 

The spectroheliograms in which filaments are best seen are Hα images, as shown in 

Figure 3.2.a, so that these are used in this study. Figure 3.2.b shows a synoptic map 

manually constructed at the Meudon Observatory to record the locations of the observed 

filaments. 
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(a) 

 

 
 

(b) 

 

 
 

 

Figure 3.2. (a) Hα image observed at Meudon Observatory on 02-Jan-2001 08:50:00. 

(b) The synoptic map for the solar image of (a). 

In the segmentation phase of this system, a False Acceptance Rate (FAR) (Hong and 

Jain, 1997) is estimated by comparing the detected filaments with those detected 

manually and recorded in the synoptic maps. Figure 3.3 illustrates the different layers of 

the Sun: the corona, the chromosphere and the photosphere.In addition to filaments, Hα 

images show other solar features such as: plages, short-lived solar flares, sunspots and 

elongated filaments. Filaments in these images appear obviously as dark ribbons against 

their brighter background.  

 

Figure 3.3. Layers of the Sun. NASA. 
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The general format of solar image filenames from the Meudon Observatory
5
 is 

composed of three parts, image type, date and time. An image filename is shown in the 

example below.  

Example:   mh010102.085000.gif 

Starting from the left, the first two characters, mh, represent the type of the image  

(mh for Hα images (chromosphere), mk for Ca II K1 images (wing of the line, 

photosphere) and for Ca II K3 images (centre of line, chromosphere) and mp for Ca II 

K3 prominences). The second part, 010215.082336, corresponds to the image date and 

time  (the first part of it is the date in the format (YYMMDD); note that the first two 

numbers are the last two digits of the year, whilst the second part is for the time, with 

the format (HHMMSS)). The last part of the image filename, gif, is the image file 

format. 

The global high resolution H-alpha network includes the set of H-alpha stations 

which are managed and maintained by the SWRL. These stations include: the Big Bear 

Solar Observatory (BBSO) in California, the Kanzelhöhe Solar Observatory (KSO) in 

Austria, the Catania Astrophysical Observatory (CAO) in Italy, Meudon and Pic du 

Midi Observatories in France, the Huairou Solar Observing Station (HSOS) and the 

Yunnan Astronomical Observatory (YAO) in China, the Mauna Loa Solar Observatory 

in Hawaii, and the Uccle Solar Equatorial Table (USET) in Belgium. These stations 

monitor the solar activity of the chromosphere twenty four hours a day. The data set 

used here is mainly collected from the: BBSO, Kanzelhöhe solar observatory (KNZ) 

and Observatoire De Paris, Section De Meudon (MEUDON) observatories. 

The SWRL was established in September, 2008 by the New Jersey Institute of 

Technology (NJIT)
6
. SWRL focuses scientific research in the area of space weather. Its 

mission is to understand the magnetic activities of the Sun and their effects on the near-

                                                 
5
 http://bass2000.obspm.fr/data_guide.php?what=all#spectro_general 

6
 http://www.njit.edu/ 
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Earth environment. Its tools are being developed to monitor, understand and forecast 

solar activity and its geomagnetic effects. The reason behind the use of this network in 

the present study is the availability of successive images from its different observatories 

that gives benefit in the process of tracking. 

The SWRL network follows the SOHO convention for file naming
7
, except that the 

observation time will have six characters with the format HHMMSS instead of four 

characters and the miscellaneous info code will be modified to represent different 

spatial resolution and calibration data. The file name will consist of 33 characters 

(including four underscore characters and a dot) as shown in the example below. 

 

Example:   bbso_halph_fr_20010216_164558.jpg    

 

Reading from left to right: the first four characters, bbso, are the institution code, the 

next five characters, halph, are the image type code, the next two characters, fr, are the 

miscellaneous info code (all such codes are shown in Table 3.1), the next eight 

characters, 20010216, are the observation date in yyyymmdd format (16/02/2001), the 

next six characters, 164558, are the observation time in hhmmss format (16:45:58) and 

the last three characters, jpg, represent the file type. 

Table 3.1. BBSO Miscellaneous Info Code. 

Code Description 

FI Full disk raw image (Singer or photometric telescope). 

FL Full disk image dark subtracted and flat field corrected. 

FR Full disk image limb darkening subtracted. 

FF Full disk flat field frame. 

FD (Full disk dark frame). 

                                                 
7
 http://www.mssl.ucl.ac.uk/grid/iau/extra/local_copy/BBSO_SOHO_filenames.html 



35 

 

The Singer telescope mentioned in Table 3.1 was built by Boller and Chivens under 

contract to the Link Division of Singer-General Precision in New York; it is from here 

the name Singer originates (Denker, et al. 1998). Corrections to the raw sensor data are 

required because the camera pixels have non-zero responses to no light (dark) and 

different sensitivities to light (flat field). Separately, the brightness of the solar disk 

decreases towards the limb due to increased absorption of light in the solar atmosphere 

(limb darkening). In the work presented here, BBSO images with the FR miscellaneous 

info code, which are corrected for dark, flat-field and limb-darkening have been used. 

3.3 Data Catalogues 

Solar catalogues are lists or tabulation displays which have been produced for several 

aspects of solar activities over many years. Most of these catalogues are available online 

in electronic format and can be freely downloaded. Solar filament catalogues are 

intended to provide values for the features of these filaments. A related type is 

catalogues of solar filament disappearances, which are the subject of the discussion in 

the next subsection. They are available in two existing online catalogues, which are 

dependent on the NGDC and SWRL ground-based observatories.  

3.3.1 Filament Disappearances Catalogues 

Two different catalogues were used in this study for filament tracking, the last phase 

of this research. These are the NGDC
8
 and the SWRL

9
 catalogues. The former 

catalogue provides near complete detail about different solar features and activities; in 

particular, it tabulates the Solar Filament Disappearances as text files, like that shown in 

Table 3.2. This table lists all DF events detected in January 2001. The results of 

filament disappearances detected by the algorithm were evaluated against the contents 

                                                 
8
 ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FILAMENTS/, last access: 2012. 

9
 http://swrl.njit.edu/ghn_web/ 

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FILAMENTS/
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of the NGDC manual catalogue. The contents of this catalogue are classified and 

arranged based on human observation of the filaments.  

Table 3.2. The solar filaments and prominences as tabulated by NGDC for January, 2001. 

 

 

 

The source images used in this catalogue are from the Solar Observing Optical 

Network (SOON) in Boulder, Colorado, USA. This network is an American Air Force 

Global Network for ground-based solar observatories (U.S. Air Force Fact Sheet, 2010). 

The first column of Table 3.2 shows the data code which always starts with 77 and is 
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followed by the estimated date (YYMMDD) of filament disappearances. The second 

column shows the estimated time of disappearances in hours and minutes (or start of a 

data gap). The third column indicates the uncertainty in time of disappearance in hours 

and minutes (or end of data gap). The start and end time in this catalogue are sometimes 

accompanied by the three letters, D (After), E (Before) and U (Uncertain). Column four 

indicates the location of the active filament centroid with N or S for North and South 

latitudes, E or W for East or West central meridian distance. The type parameter in 

column five classifies filaments into one of the fifteen different types shown in Table 

3.3. Column Six contains for limb events; the radial extent above the limb while for disk 

events it contains the heliographic extent in whole degrees. The CMP date is the Central 

Meridian Passage Date which is shown in column seven. When a filament is longer than 

10 degrees, the locations of the ends are also given in column eight. Column Nine 

shows the NOAA/USAF region number, if it is known. SSN is the Station serial number 

for this region and is shown in column ten. The final column contains the Quality (1 = 

poor to 5 = excellent), in addition to the station name. 

 

                                          Table 3.3. Filament Types. 

Type Description 

SSB Solar Sector Boundary 

MDP Mound Prominence 

CRN Coronal Rain 

CAP CAP Prominence 

LPS Loops Prominence System 

SPY Spray 

BSD Bright Surge on Disk 

APR Active Prominence 

DSD Dark Surge on Disk 

ADF Active Dark Filament 

ASR Active Surge Region 

AFS Arch Filament System 

BSL Bright Surge on Limb 

EPL Eruptive Prominence on Limb 

DSF Disappearing filament 
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Another tabulated form for filament disappearances, like that shown in Table 3.4, 

was created by SWRL. This catalogue lists features of the disappeared filaments, which 

include: in the first column, the last appearance time (the last date and time the filament 

appeared); in the second column, the first disappearance time (the first date and time the 

filament disappeared); in the third column the position (the location of the disappeared 

filament in latitude and longitude); and finally in column four, the filament size (area). 

Table 3.4. Part for the filament disappearance, tabulated by SWRL for Year 2005. 

  

 

3.4  Conclusions 

Some of the solar images used in this work were downloaded from the Meudon 

observatory, but images were found to be missing from the solar survey archive over 

certain time periods. Other solar images were downloaded from the Global high 

resolution H-alpha network of SWRL. This network includes observations for around 

30 years obtained from several observatories spread round the globe. Hα images 

were downloaded from some of these stations in different formats with different 

miscellaneous information codes. The one most suited for the various phases of this 

study is the FR miscellaneous information code - which is dark and flat-field 
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corrected and with limb-darkening correction. Although this network collected solar 

images from different solar stations; there are still some images which are missing 

for certain time periods. The first of two catalogues that record filament 

disappearances is the SWRL filament disappearances catalogue (Yuan Yuan. 

yy46@njit.edu. Solar Filament Disappearances. 17 November 2011). This represents 

results for the time period from 1991 to 2005. These results are displayed within nine 

pages: each containing fifty disappeared filaments, to give a total of four hundred 

and fifty disappeared filaments over the fifteen years. The second catalogue is the 

NGDC manual catalogue which is used in the current study as a reference for 

validating the number of disappeared filaments. Its tables list all the DF events 

detected between 1991 and 2012 (C D Slisser. Justin.Mabie@noaa.gov. Catalogue of 

Solar Filament Disappearances. 15 July 2011).  



40 

 

CHAPTER   FOUR 

4 AUTOMATED ALGORITHM FOR DETECTING SOLAR 

FILAMENTS 

4.1 Introduction 

Detecting and characterizing solar filaments are important for several aspects of solar 

activities because of their association with the occurrences of CMEs – these are major 

solar eruptions that could cause geomagnetic storms on Earth. Efficient detection 

systems should be fully automated and work in real-time, which makes their 

implementation and development harder.  

This chapter introduces an automated detection method for solar filaments that has 

avoided using any empirical values to produce a fully automated technique. Definitely, 

the time-factor will affect synthesizing a filament detecting and tracking system to be 

part of a proposed real-time system. This factor could prevent the system from 

producing real-time space weather alerts and quick look-up results. Significantly, the 

accuracy of detecting the spines of filaments plays an important role in identifying its 

main attributes under consideration and as well as better achieving the subsequent 

image post-processing tasks.  

This chapter is organized as follows: Section 4.2 introduces an improved image 

segmentation algorithm. The detection algorithm filament boundary extraction and 

spine detection techniques are described in Section 4.3.  Section 4.4 presents the 

computational demands of the proposed technique. Conclusions on the associated 

findings and comparisons with previous work are discussed in Section 4.5.  
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4.2 Solar Image Segmentation 

The solar image segmentation stage is still a challenge which can be addressed by the 

adaptive detection of solar features. A more accurate implementation would play a key 

role in recognizing and detecting the features with higher probability. In this section, a 

modified and enhanced segmentation phase, based on the pre-processing and cleaning 

technique proposed in (Qahwaji and Colak, 2005), to improve their segmentation results 

is described. This adaptive local thresholding (ALT) technique depends on sliding two 

windows over the whole image.  In this technique, a selection is made to classify the 

pixel contents of the enhanced image (EI) into potential filament pixel or background 

pixel based on the instructions in 4-1 (Automated detection of masses in mammograms 

Kom et al., 2007): 

  For i=1 to m do 

       For j=1 to n do 

    If(EI(i,j)>TH(i,j) and    >    )then 

        EI(i,j)  Candidate filament area                

    Else        (4-1) 

        EI(i,j)   Normal area 

    Endif 

      Endfor j 

  Endfor i 

Where m × n is the size of image, subscripts LW and SW, indicate large and small 

windows centred on pixel at i, j, ),( jiTH is an adaptive threshold value that is calculated 

by the formula shown in Equation 4-2,      is the range of values in the large window 

also shown in Equation 4-2,      represents the average pixel intensity in the small 
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window. ),(max jiEI  and ),(min jiEI  are the maximum and minimum intensity values 

respectively within the large window. 

                 

                                    and       (4-2) 

                                  

From experiment, the dimensions of the large window were chosen to be 17×17 pixels 

and those of the small window were chosen to be 3×3 pixels. These sizes gave the best 

trade-off between accuracy and speed of execution. The whole algorithm for 

segmenting the solar image can be summarised as shown below: 

Segment_Algorithm( ) 

{ 

 For each pixel: 

 Max:= maximum intensity value in the large window 

 Min:= minimum intensity value in the large window 

    : = Max-Min 

     : = average of intensity value in the small window 

 TH: =          

 If ((Pixel Intensity value > TH) AND (   >     )) then 

  The Pixel belongs to the region of interest 

 Else 

  The Pixel belongs to a non-region of interest  

} 

The algorithm was applied to Hα solar images like the one shown in Fig 4.1.a. The 

segmented filaments were tested by comparing the resultant image with the manually 

constructed synoptic maps like that shown in Figure 4.1.b. The maps contain all the 
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solar filaments seen on a given day. Figure 4.1.a represents the enhanced image that is 

used as input to the segmentation method. Some results from applying the technique are 

shown in Figure 4.1.c. The primary goal of all solar filament segmentation techniques is 

to obtain well defined filaments, and a low FAR. 

 (a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.1. Results of applying the ALT technique. (a) Input Image (Enhanced 

Image), original Hα image observed at Meudon observatory on July 30, 2001. (b) 

Synoptic map for the Hα image shown in (a) downloaded from Meudon 

Observatory. (c) The output image after Applying ALT.  (d) The output image 

after applying ALT&V on the same image. 

 



44 

 

The performance of the detection algorithms are evaluated using the FAR measure 

(Hong and Jain, 1998) which is the probability of a non-region of interest (non-RoI) 

being detected as a RoI. The algorithm is compared with the results of the Adaptive 

Local Thresholding and Verification (ALT&V) which is presented by Qahwaji 

(Qahwaji and Colak, 2005) as shown in Figure 4.1.c and Table 4.1. It seems, by 

comparing figures 4.1.c and 4.1.d, that the ALT has the advantage of detecting more 

unambiguous filaments whilst introducing less noise than the ALT&V result shown in 

Figure 4.1.d. 

         Table 4.1. FAR Values for Synoptic Maps and ALT. 

 

Problem 

Synoptic maps ALT ALT&V 

Filaments Filaments FAR (%) Filaments FAR (%) 

02/07/2001 44 28 0 44 15 

03/07/2001 45 33 0 45 5 

04/07/2001 38 18 0 38 3 

06/07/2001 50 43 10 50 18 

09/07/2001 41 28 2 41 12 

10/07/2001 39 21 0 39 15 

11/07/2001 32 29 9 32 7 

15/07/2001 32 32 19 32 31 

16/07/2001 26 28 42 26 36 

17/07/2001 34 20 0 34 31 

19/07/2001 41 43 22 41 27 

20/07/2001 36 29 8 36 24 

21/07/2001 36 37 6 36 4 

22/07/2001 40 46 23 40 21 

25/07/2001 34 22 0 34 18 

26/07/2001 37 33 11 37 9 

29/07/2001 38 23 0 38 11 

30/07/2001 52 36 2 30 18 

31/07/2001 43 38 5 31 2 

03/08/2001 46 44 22 3 29 

04/08/2001 37 26 0 4 33 

Average 39.1 31.3 9 33.9 19 

 

Generally, the system performance requirement is specified in terms of FAR, where 

FAR of zero means that no non-RoI is detected as a RoI. The findings from Figure 4.1 

are confirmed according to this criterion by observing the number of detected filaments 

and FAR values for the two algorithms, which are shown in Table 4.1. The first column 

shows the date of every Hα image, while the total number of filaments that are detected 
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manually by synoptic maps is shown in the second column. The remaining columns 

show the number of filaments and FAR values obtained using the ALT and ALT&V 

techniques. The table shows the improvement that is achieved over ALT&V by 

reducing the average FAR error rate from 19% to 9%, while the difference in detections 

is less than this. Both methods detect fewer filaments on average than shown in the 

synoptic maps.  

4.3 Filament Detection and Boundary Extraction 

In this section, algorithms used to detect the shape and size of filaments and extract their 

boundaries are described.  

4.3.1 Filament Detection 

Filament detection means extracting and identifying the actual filament area as an 

elongated object in Hα solar images. An important achievement in this area is the work 

carried out by (Qahwaji and Colak, 2005) - where processes for recognizing and 

verifying solar filaments and active regions from Hα images were introduced. The solar 

images used in this work were pre-processed (cleaned and enhanced) as described in 

(Qahwaji and Colak, 2005). The filling algorithm defined in this paper is also used to 

distinguish between the background region that lies outside the solar disk and the region 

that lies inside the solar disk. This was followed by applying an intensity filtering 

technique to detect the candidate pixels for the filaments. The process ends by applying 

a region growing technique to detect regions of interest that were not detected by 

intensity filtering. Additionally, the intensity filtering stage in (Qahwaji and Colak, 

2005) is further improved by applying the adaptive thresholding technique presented by 

Atoum (Atoum et al., 2009). This method is further enhanced by developing a fully 

automated detection technique that includes retrieving the actual filament area from the 

region grown one. 
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The detection method starts by computing the mean    and standard deviation    for 

every filament area. Thereafter, the standard deviation   , maximum value     , and 

minimum value      are calculated over a 5×5 pixel neighbourhood centred on every 

pixel of the region grown image. Then the threshold TH, calculated using Equation 4-3. 

 

                                                                                                   (4 – 3)            

 

Where MR is the mid-range value                 . The value of   is calculated 

using Equation 4-4 for solar images from the Meudon observatory or using Equation 4-

5 for solar images from BBSO and KANZ observatories.  

 

                                                                                                                            (4 – 4) 

 

                                                             (4 – 5) 

 

The thresholding rule shown in Equation 4-6, is then applied: 

 

                                      
                         
                               
            

                           (4 – 6) 

 

Where        represents the detected filament and        is the region grown 

filament. Figure 4.2 illustrates the main steps of the filament detection technique. The 

result of the whole detection process is shown in Figure 4.3.d. This technique has the 

advantage of being fully automated.   
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For i=1 to number of images 

 For j=1 to number of filaments in each image 

  Step1: Compute Filament   . 

  Step2: Compute Filament    . 

  Step3: Over a 5×5 window: 

(i) Compute the window min and max values. 

(ii) Compute the   . 

(iii) Compute the threshold value (TH) according to Equation 

(4-3) 

(iv) If (Pixel Value <TH AND TH <    ) Then 

  Pixel Value =1; 

Otherwise 

  Pixel Value=0; 

Figure 4.2. Pseudo-code for the Detection Process. 

The output image of this detection method still suffers from the presence of small 

unwanted pixels and holes. These should be removed without distorting the image, 

noting that it is impossible to remove such noise totally without distorting the image. 

Nevertheless it is a vital step in reducing the image noise to an acceptable level which is 

a fine line between removing the noise completely which will distort the image and 

affect the important filaments or retaining sufficient noise so as not to have too many 

falsely detected filaments. Morphological operators are one tool which could be used to 

remove these pixels and fill the small holes at the same time whilst relatively preserving 

the corner details. 

These operators could achieve the previous task by using a combination of dilation 

and erosion operators. Note that, they have they the disadvantage of merging close 
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elements but using a small structuring element will, due to the existing small size of 

these ‘spots’ and ‘holes’, avoid such shortcomings. 

 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 

 
 

Figure 4.3. The results from the whole detection process applied to Hα image 

observed at Meudon observatory on February 8, 2001. (a) Original Image. (b) 

Segmented Image. (c) Region Grown Image. (d) Detection Results. 

 

The opening morphological operator, consisting of erosion followed by dilation, has 

been implemented using a 3×3 square structuring element to eliminate noise (small 

unwanted pixels in the detected image) while preserving the shape and size of the larger 

objects. To remove other unwanted isolated spurious pixels an area thresholding 

operation has been set as given in Equation 4-7.  
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             (4-7)   

                            

Where         is the mean value of the whole image and       is the mid range of 

the whole image and it is equal
               

 
 ,        and       are the 

maximum and minimum respectively for the whole image. If the object area is less than 

this threshold value T then it will be removed. Another closing operation was 

implemented afterwards using a 3×3 square element to fill in the empty pixels left after 

the previous operations. The closing operation is a dilation followed by an erosion 

operation. 

4.3.2 Boundary Extraction 

Determining the filament’s boundary is a necessity for the subsequent activities; 

spine extraction and filament merging. Morphological image processing is a collection 

of image processing techniques that deal with the structure of features in an image 

(Efford, 2000). There are three primary morphological techniques: erosion, dilation and 

hit-or-miss operators. One application of erosion operation is boundary finding. The 

boundary is extracted by subtracting the eroded image from the original image r, as 

shown in Equation 4-8 below:  

 

                                                                                                                                                         

 

 

s is the SE, Θ is the erosion operation, and g is the image of the region boundaries. The 

size of the SE is chosen to be of 3×3 pixels in order to identify a one-pixel-wide 

boundary. Figure 4.4.a shows a detected filament and Figure 4.4.b shows its boundary. 
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(a)

 

(b)

 

Figure 4.4. Boundary detection results by using a horizontally aligned filament 

from an Hα image observed at Meudon observatory on January 2, 2001. (a) Detected 

Filament. (b) Filament Boundary. 

4.3.3 Spine Description and Extraction 

The accurate detection of the filament’s spine could provide accurate description for 

the shape, size and orientation of the filament. An accurate spine detection algorithm 

should satisfy the following requirements (Fuller et al., 2005; Ingrid et al., 2002): 

1. Non-linearity: The spine should pass through the middle of local regions, 

following the body of the filament as a curve not as a line. 

2. Morphology: The spine should retain the shape of the original feature. 

3. Adaptation: The shape of the spine should match any changes in the filament 

shape. 

4. Connectivity: The spine points should be connected. 

This work does not describe the spine as a set of line segments, where a threshold 

can be used to control their size and number as done by Bernasconi (Bernasconi et al., 

2005). Additionally it does not make extensive use of the morphological operations 

(standard thinning and skeletonization) to extract the filament spine as done by Fuller 

(Fuller et al., 2005) because this could require significant computational time. 

Instead a new automated technique for detecting and extracting these spines is 

proposed. This new technique represents the spine as a smooth curve, which passes 
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through the middle of the boundary data. This produces a curve, instead of a set of line 

segments, represented by a set of connected points. To determine these curves, six 

consecutive steps are implemented for each filament as shown below and illustrated in 

Figure 4.5.   

 (a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 

 
 

(e) 

 

 
 

(f) 

 

 
 

 

Figure 4.5. The steps implemented for spine determination. (a) Solar filament. (b) 

The three line segments. (c) The middle of the longest line segment. (d) The full 

four line segments that pass through the seed pixel. (e) The longest line segment. (f) 

The opposite longest one of e. 
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     Step 1: Determine the initial seed pixel. 

     Step 2: Determine the starting Vertex. 

     Step 3: Determine the four line segments passing through this starting vertex. 

     Step 4: Find the longest line segment. 

     Step 5: Projecting and averaging the perpendicular line segments. 

     Step 6: Maintain the continuity of the drawn spine. 

A seed pixel is first determined by moving from the lower left to the lower right 

boundary of the rectangle that encloses the filament like that shown in Figure 4.5.a. 

When a white pixel is found, three line segments are drawn from it towards the filament 

body as shown in Figure 4.5.b. Finally, the middle point of the longest line segment is 

chosen to be the seed pixel for drawing the spine, as shown in Figure 4.5.c. Moving to 

the next vertex requires drawing the four line segments in the directions shown in 

Figure 4.6 below.  

   

Figure 4.6. The four line directions. 

These lines pass through the seed pixel (the first vertex determined in Figure 4.5.c) 

towards the boundary of the filament as shown in Figure 4.5.d and the longest is chosen 

as shown in Figure 4.5.e. This segment guides the part of the spine opposite the longest 

line segment as shown in Figure 4.5.f,  which will determine the starting part of the 

spine to complete the drawing of the full spine. 

The next projection and averaging phase of the algorithm proceeds as follows. For 

each point of the longest line segment, a perpendicular line is drawn and the mid-point 

found between the points where the perpendicular intersects the filament boundary, as 
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shown in figures 4.7.a and 4.7.b. The result of the projection process applied to the 

initial part of the spine is shown in Figure 4.7.c.  

This process is repeated and to prevent the redrawing of the previous line segment 

step, the previous drawing direction is preserved as a reference for the next movement. 

This requires ignoring any direction that will guide the spine to go back to its previous 

starting position as shown in Figure 4.7.d. The final curve is shown in Figure 4.8.  

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 

 
 

Figure 4.7. Projecting and averaging phase of determining the spine. (a) The 

projection result. (b) The averaging result. (c) The spine of the first longest line 

segment and its opposite longest one. (d) The continuity while preserving the 

previous orientation to determine the next movement. 

 

The resulting discrete curve is represented as discontinuous points. Some of these 

points are missed because finding the mid-point of the perpendicular line segments that 
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intersects the largest line segment produces consecutive discrete points as shown in 

4.9.a, for which at the end needs to be connected so as to maintain the continuity of the 

drawn spines.  

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

 

Figure 4.8. The complete filament spine: (a) Full spine of a horizontally aligned 

filament. (b) Full spine of a filament in an Hα image observed at BBSO 

observatory on February 9, 2002. (c) Full spine of a vertically aligned filament. 

 

An algebra slope-intercept algorithm (Hearn et al., 1997) is used to connect these 

separated points by drawing lines between them as shown in Figure 4.9.b.  In this 

algorithm any straight line on the co-ordinate plane can be described by the equation 

ax+by+1=0.  

(a) 

 

(b) 

 
 

Figure 4.9. The result of applying the slope-intercept algorithm. (a) Before 

applying the algorithm. (b) After applying the algorithm. 
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4.4 Critical Evaluation of the Implemented Algorithm  

In order to demonstrate the performance of the Atoum spine drawing algorithm, 

results were compared with those from Bernasconi’s algorithm (Bernasconi et al., 

2005). The two algorithms were applied to ninety eight filaments of various sizes 

collected empirically from solar images obtained on the dates: 1/1/1999, 2/1/1999, 

3/1/1999, 2/1/2001, 3/1/2001, 4/1/2001, 29/7/2001, 30/7/2001 and 31/7/2001. It was 

found that the Bernasconi filament spines are more adapted for large filaments. This is 

demonstrated by setting a threshold for the length of the line segment to be twenty 

pixels in the Bernasconi algorithm. It is also apparent that the Atoum filament spines are 

more convoluted precisely because they accurately follows the bodies of the filaments, 

as they goes through the middle of the features as shown in Figure 4.10.  

Figure 4.10.a shows an original filament and Figure 4.10.b shows the spine obtained 

by running the Atoum code drawn over the original filament. The figures 4.10.d, 4.10.f 

and 4.10.h show the spines drawn using the Bernasconi algorithm with different starting 

lines. The first guessed line is determined by Bernasconi as explained in (Bernasconi et 

al., 2005) by running roughly parallel to the longest side of the box that just encloses 

the filament under consideration. Figure 4.10.d shows the output if the first guessed line 

is chosen as in Figure 4.10.c where        is the longest side of the box (one of the longest 

sides of the box that encloses the filament), while Figure 4.10.f shows the drawn spine if 

the first guessed line is chosen as in Figure 4.10.e where        is the longest side of the 

box that encloses the filament. If the first guess line is chosen as in Figure 4.10.g,  the 

line produced by going from c to d row-by-row going up until we get one end-point and 

going from d to b column-by-column going back until we get the other end-point , then 

the output will be as shown in Figure 4.10.h. These results illustrate the better accuracy 
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of the Atoum algorithm which is a characteristic of crucial importance for the automatic 

determination of the filament spine. 

 (a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 

 
 

(e) 

 

 
 

(f) 

 

 
 

(g) 

 

 
 

(h) 

 

 
 

 

Figure 4.10. Samples illustrating the filament tortuousness and accuracy of the 

spines from Atoum (b) and Bernasconi (d, f, h) algorithms. (a) Original filament.  

(b) Spine produced using Atoum algorithm. (c) The first guess Line       . (d) The 

spine produced using the (c) guessed line. (e) The first guess line       . (f) The spine 

produced using the (e) guessed line. (g) The first guest line produced by row and 

column processing (h) The spine produced using the (g) guessed line. 
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4.4.1 Efficiency of the algorithm 

The Atoum algorithm introduced here is computationally less complex compared to 

the Bernasconi algorithm. The former on average takes 0.098 s to extract a filament 

spine, while the latter takes 0.341 s. The computer used in this work was a PC with an 

Intel Core Duo CPU P8700, operating at 2.53 GHz, running the Windows Vista 32-bit 

operating system. Figure 4.11 shows the processing times for the full set composed of 

ninety eight filaments.  

 

 

Figure 4.11. Elapsed time in seconds per feature for the two algorithms. 

 

Additionally, the Atoum implementation results in a longer spine because it tracks 

the actual filament backbone more accurately as shown in Figure 4.10.b. This result is 

confirmed by the longer pixel count for the Atoum spines as shown in Figure 4.12, 

compared against (Bernasconi et al., 2005) results.  
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Figure 4.12. Spine length in pixels per feature. 

4.5 Conclusions 

In Section 4.1 is shown the development of an adaptive thresholding technique for 

segmenting Hα solar images to get foreground segmented filaments and a non-RoI 

background. Based on false acceptance rate and output images with well-defined 

filaments the segmentation process provides quality pre-processed images for machine 

vision techniques.  

Section 4.2 describes the fully automatic detection algorithm for solar filaments 

which involves calculating statistical parameters and morphological operations. This 

detection process avoids using empirical values. The shape of the detected features is 

represented by determining its spine geometry. The resulting Atoum spin drawing 

algorithm gives the means to extract all the filament morphological features required, 

such as: filament length, filament centre, filament head-end, filament tail-end and 

filament boundary. The algorithm is valuable as part of a real-time system for detecting 

and tracking solar filaments. The comparison with Bernasconi shows that the Atoum 

algorithm represents the filaments more accurately and is also computationally faster, 

which could lead to a more precise tracking practice in real-time.  
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There are still, however, some problems yet to be resolved, these being incomplete 

spines due to errors in choosing the largest line segment through the automated drawing 

process.  
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CHAPTER FIVE 

5 ADAPTIVE ALGORITHM FOR MERGING BROKEN 

FILAMENTS USING NEURAL NETWORK 

5.1 Introduction 

After the solar detection phase, some filaments were found to be not detected at all or 

not segmented properly due to variations in intensity along the filament; this results in 

these filaments being displayed as discrete segments. These broken filaments will affect 

post processing practices, such as detecting a complete spine for the whole filament. 

This spine, which is used to define the attributes of the underlying filaments, will, if 

broken, have an effect on detecting filament disappearances. Thus, a merging algorithm 

is needed to combine broken sections. In this chapter, a merging algorithm is proposed 

that merges broken filaments by using a NN classifier. This classifier is trained using 

numerical and statistical values extracted from the image filaments after drawing their 

spines. The algorithm considers every two neighbouring filaments, checking the 

merging possibility.  Any merged entity is reconsidered as a new single filament and 

rechecked for possible further merges with other components. Thus, the algorithm will 

achieve single or successive merging processes according to the results of the merging 

criteria. 

This chapter is organized as follows: Section 5.2 introduces the idea behind using the 

NN in the merging process. Section 5.3 describes the merging process. Section 5.4 

presents an evaluation of the whole merging process. Conclusions on the associated 

findings and comparisons with previous work are discussed in Section 5.5.  
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5.2  Neural Networks 

The NN approach is used in this research for data classification purposes. The 

strength of neural networks comes from their ability to learn a classification function, 

given a suitable training set, choice of feature vector and NN topology (Qahwaji and 

Colak, 2006). In addition to their ability to overcome the drawbacks of the classical 

algorithms used in problem solving, NNs have the attribute of adaptive learning which 

allows dynamic changes to their structures during the training phase. Moreover, a 

crucial advantage of these networks is their ability to classify new patterns after training 

because of their generalization capability (Mao and Jain, 1995 and Lerner et al., 1999). 

The NN approach has been used before in the field of solar imaging. An NN 

technique is used in (Zharkova and Schetinin, 2003) to extract solar filaments 

automatically from Hα solar images. In another example, the results of an intensity 

filtering technique in (Qahwaji and Colak, 2005) are fed to a NN to verify the detected 

regions.  

In this study, the approach adopted to merge broken filaments uses values found 

from the extracted filaments as inputs to a NN. The NN has an input layer with number 

of neurons equal to the number of values. This input layer is connected to a hidden layer 

and this hidden layer is connected with a one neuron output layer. The NN is trained on 

five numerical and statistical values extracted from the filament spines under 

consideration. For each direction, as determined in Section 5.3.1, five different 

normalized values, as shown in Table 5.1, are computed and fed to the NN. The five 

input values are specified in the second column, the method used in the normalization 

process is defined in column three and finally the value of the output is specified in the 

fourth column. Because the neural network is used to classify the filaments into two 

cases, merged or not merged, the output layer has one neuron. 
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Table 5.1. The inputs, normalizing methods and output used by the NN. 

No. Inputs Normalizing Method Output 

1 The angle subtended by the centroids of 

two consecutive filaments at the mid-

point of the line connecting the 

filament end points.  

Dividing by 180º. 

Merged =0.9 

Not Merged 

=0.1 

 

2 The distance between each spine end-

point of each filament and the other 

filaments spine end-points.  

Dividing by the 

maximum distance 

computed in the image. 

3 The difference between the mean 

intensities of the two consecutive 

filaments.  

 

Dividing by the 

maximum mean value 

of the filaments in the 

image. 

4 The difference between the mean 

intensity of the first filament and the 

mean intensity of the area in-between. 

Dividing by the 

maximum in-between 

mean intensity. 

5 The difference between the mean 

intensity of the second filament and the 

mean intensity of the area in-between. 

Dividing by the 

maximum in-between 

mean intensity. 

 

The first criterion in Table 5.1 is that the two filaments to be merged should have 

appropriate relative orientation to each other. The second criterion is that two filaments 

are required to be in close proximity. The third criterion is that the two filaments should 

be merged if the difference between the mean filament intensity of the two consecutive 

filaments is small. The fourth and fifth criteria are that the two filaments should be 

merged if their average intensity values are very close to the in-between average 

intensity value. 

The merging process starts when the NN returns an output value that is greater than 

0.5. Then filled circles will be drawn along the line segments that connect these broken 
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filaments which ultimately recovers the approximate shape of the original filament as 

shown in Figure 5.1.  

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 

 
 

 
Figure 5.1. Results of the merging process: (a) Original filament. (b) Segmented filament. 

(c) Merged filament. (d) The filament spine after merging. 

 

The NN was optimized by finding the minimum Mean Squared Error (MSE) during 

training with different NN topologies as described by Colak (Colak and Qahwaji, 2009). 
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The training set consisted of 145 samples, extracted from 20 different segmented Hα 

images from the months, January 1999, January 2001, and February 2001 and the 

testing set was 31 samples extracted from the same images. 

Training experiments were carried out changing the number of nodes in the hidden 

layer from one to twenty. For every new experiment the MSE of the training stage was 

recorded and the number of hidden nodes with the least MSE was chosen. The network 

was optimized using seven nodes for the hidden layer; as shown in Figure 5.2, which 

shows the structure of the optimised NN.  

 

 

Figure 5.2 . The structure of the optimized neural network. 

 

 

 

 



65 

 

5.3 Merging Process 

5.3.1 Determining the Direction 

Determining the most appropriate merging direction from the end of each filament 

depends on finding the shortest distance between pairs of filaments. To do this, four 

different distances from each filament to all other filaments are determined. The first 

distance is between the spine start points of two filaments (SSDistance) as shown in the 

Figure 5.3. 

 

 

 

 

 

 

 

 

Figure 5.3. The distance between the start points of two successive filaments 

(SSDistance). 

The second distance is between the spine start point of one filament and the spine end 

point of the other filament (SEDistance) as shown in the Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.4. The distance between the start point of the first filament and the end 

point of the second filament (SEDistance). 

The line indicating the distance between the start points 

of the first and second filaments. 

The line indicating the distance between the start point of 

the first filament and the end point of the second filament 
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The third distance is between the end point of one filament and the start point of the 

other filament (ESDistance) as shown in the Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. The distance between the end point of the first filament and the start 

point of the second filament (ESDistance). 

 

The fourth distance is between the end points of the two filaments (EEDistance) as 

shown in the Figure 5.6. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. The distance between the end points of two successive filaments 

(EEDistance). 

 

 

5.3.2 Previous Study 

There are two basic criteria specified in the literature to merge broken elongated 

objects as given by Chen (Cheng et al., 2007) and Ingrid (Ingrid et al., 2002). The 
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broken features should be close enough and should satisfy some relative orientation 

requirements. These merging rules were used Bernasconi (Bernasconi et al., 2005) who 

defined constant values to be used with the two criteria. Two constants are used with the 

distances between each spine end-point of each filament and all other filaments as 

shown in Figure 5.7.  

 

 

  

 
 

Figure 5.7. The distance between the two filaments. 

 

Another constant value is used with the angles between the spines of the last two 

filament segments as shown in Figure 5.8 relative to the line connecting the two end 

points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.The angles between the last two segments and the line connecting the 

two end-points of the two filaments. 

If the distance is less than 25 pixels then the two filaments are merged. If it is greater 

than 25 pixels and less than 100 pixels then the angles are calculated; if for both 
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segments this angle is less than 22.5° then the filaments are merged. This merging 

technique was not considered perfect by the author. It must be noted that this merging 

process is implemented after characterizing the solar filament. In this chapter the same 

two criteria (without the constants), with the addition of another three criteria, are used 

as an input vector for the NN. 

5.3.3 The Atoum Approach 

5.3.3.1 NN Input Vector  

Before determining the input vector and depending on the determined co-ordinates of 

the start and end-points of each filament and all other filaments in the solar image the 

distance between each filament centroid and all other filaments centroid are calculated 

(DCC) as shown in Figure 5.9.  

 

 

 

 

 

 
 

 

 

Figure 5.9. Line segment showing the distance between the centroids of two 

successive filaments. 

Thereafter the code computes the distances of each filament spine end-point to all 

other filaments spine end-points to find the smallest (DEE). If the DEE is less than half 

the value of the DCC then the direction between each filament and all other filaments in 

the same image were determined as explained in Section 5.3.1. Then for each direction 

five different normalized values as shown in Table 5.1 and Figure 5.2, I1 to I5, are 

computed and fed to the NN.  Figure 5.10 illustrate the first criterion in Table 5.1; 

The line represents the distance between the two centroid 

of two successive filaments 
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which is the angle θ subtended by the centroids of the consecutive filaments at the mid-

point of the line that connecting the two filament end-points.  

 
 

 

 

 

 

 

Figure 5.10. The angle between the centroids of two consecutive filaments and the 

mid-point of the line that connect the two end-points. 

5.3.3.2 Filling Gaps by Drawing Circles  

Drawing successive circles between the broken filaments can recover approximately 

the non-broken filaments. These circles takes as diameter the last line segment used in 

the projection and averaging phase of the process of drawing the filament spine. This is 

illustrated in figures 5.11 and 5.12. 

 

 

 

 

 

 

 

Figure 5.11. The last line segments used to draw the spine of each filament. 

 

 

 

 

 

 

 

 

Figure 5.12. The circle drawn by using the last line segments as diameter. 

These circles take the points on the line segment that connects the two filaments as 

centres, as shown in Figure 5.13. 

The angle between the two lines that connect the centroid of each filament and the 

mid-point of the line that connect the two end points. 
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Figure 5 13. Drawing circles by taking the last line segment as diameter and taking 

the points on the line that connects the two filaments as centres of these circles. 

Using these points will adjust the position of the drawn circles according to the 

orientation of the broken filaments as shown in Figure 5.14 and in Figure 5.1.  

 
 

 

 

 

 

 

 

 

 

Figure 5.14. Drawing filled circles to fill the gap. 

 

The merging process starts when the NN shown in Figure 5.2, returns an output 

value K that is greater than 0.5. The merging algorithm draws filled circles along the 

line segments that connect these broken filaments which ultimately recovers the 

approximate shape of the original filament as shown in Figure 5.1.c.  

5.4 Evaluation of the Implemented Algorithm  

The main aim of the work presented in this chapter was the creation of computer 

software that can achieve the merging of broken filaments. The merging method 

described in this chapter is novel and has not been previously used by any other 
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researchers as far as is known by the author. The algorithm is the first that uses an 

adaptive Neural Network classifier to merge the segmented filaments. It also appears to 

give a higher filament merging percentage than that of Bernasconi, as indicated below. 

Table 5.2 shows results of applying the Atoum merging technique on a selected set of 

Hα images. 

Table 5.2. Results of applying the merging process on a set of Hα images. 
 

 

Image 

Observed Number 

of Broken 

Filaments (BF) 

Number 

of Broken 

Parts 

(NBP) 

Merged 

Parts 

(MP) 

Not 

Merged 

Parts 

(NMP) 

Falsely 

Merged 

Parts 

(FM) 

1 mh010304 4 8 8 0 4 

2 mh010307 4 8 8 0 2 

3 mh010308 2 5 5 0 0 

4 mh010309 4 9 7 2 2 

5 mh010312 1 5 5 0 0 

6 mh010321 6 16 14 2 0 

7 mh010401 5 12 10 2 2 

8 mh010402 1 2 2 0 0 

9 mh010403 3 8 6 2 2 

10 mh010404 3 6 6 0 0 

11 mh010408 5 12 8 4 0 

12 mh010410 5 10 8 2 0 

13 mh010412 2 5 2 3 0 

14 mh010413 1 3 2 1 0 

15 mh010418 1 3 3 0 0 

16 mh010419 1 2 2 0 0 

17 mh010423 3 6 4 2 0 

18 mh010501 5 16 14 2 0 

19 mh010502 1 2 2 0 0 

20 mh010508 1 2 2 0 0 

21 mh010509 3 6 6 0 0 

22 mh010510 3 6 6 0 0 

23 mh010512 2 4 2 2 0 

24 mh010513 2 4 2 2 0 

25 mh010514 1 2 2 0 0 

26 mh010515 3 6 6 0 2 

27 mh010516 2 5 4 1 0 

28 mh010517 2 8 7 1 0 

29 mh010518 3 7 6 1 0 

30 mh010519 4 10 10 0 0 

Total 83 198 169 29 14 
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The name of the image which also shows the observing date is given in column two. 

Column three shows the number of broken filaments observed in the image (BF), 

column four shows the number of broken parts in all the broken filaments in the image 

(NBP), column five shows the number of correctly merged parts (MP), column six 

shows the number of parts that should be merged but are not (NMP) and column seven 

shows the number of parts which are merged but should not be (FM). From the totals in 

Table 5.2 the following performance measures result: 

Merging rate: MP/NBP = 85.35%. 

Non-merging rate: NMP/NBP=14.65%. 

False-merging rate: FM/NBP=7%. 

The merging rate was 85.3%, and is achieved without the use of thresholds unlike the 

traditional techniques. According to the author’s knowledge, this is the first time such 

detailed results have been presented, which thus makes it not possible to compare these 

results with previous researchers. Bernasconi (Bernasconi et al., 2005), mentions a 

merging percentage of 70% but no supporting information, like Table 5.2, is provided. 

It should be noted that the present result of 85% is superior to that reported by 

Bernasconi.  

5.5 Conclusions 

A novel merging method for combining the broken filaments is introduced in this 

chapter. This method exploits the findings from the extraction of the filament spine, the 

resulting start-points and the end-points accordingly and other statistical values that are 

computed for the filaments which are candidates for merging process.  

This merging algorithm achieves the ability to merge the broken filaments by using a 

NN classifier trained with feature values extracted from a set of sample image filaments. 

After extracting filament spines, every two consecutive filaments, is considered to 
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check the merging possibility. Any merged entity is reconsidered as a new filament and 

rechecked for possible further merges with other filament. Thus, the algorithm will 

achieve single or successive merges according to the results of the merging criteria. 

The algorithm achieves a higher merging percentage than the method of Bernasconi, 

but there is still a percentage of false merges remaining. It should be noted that this 

work highlights this merging challenge of false merging - often overlooked by other 

researchers. The merging algorithm exceeds the work of others by using the adaptive 

nature of using an NN and by avoiding the use of empirical threshold values for 

different filament merging attributes.  
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CHAPTER SIX 

6 AUTOMATIC TECHNIQUE FOR TRACKING SOLAR 

FILAMENTS 

6.1 Introduction 

Object tracking is a general imaging term which represents an important task in the field 

of computer vision. Tracking can be defined as the problem of estimating the path of a 

moving or moved object in the image plane, as needed for further analysis (Yilmaz et al., 

2006). The lack of automatically generated tracking catalogues, the general need for 

automatic object analysis and representation and the need to know the reasons behind the 

occurrences of CMEs, together with the increasing power of computers and the availability of 

high quality instruments, make opportune the development automatic tracking methods for 

solar features and activities that may affect life on Earth.  

Filament disappearances are generally monitored by observing and analysing successive 

solar H-alpha images. In this chapter, after the filament regions are obtained from individual 

H-alpha images, the results of two consecutive images are compared to detect these filament 

disappearances. Significantly, a novel efficient tracking technique for solar filaments is 

presented in this chapter, taking advantage of Heliographic Carrington Maps (HCMs) 

obtained by converting solar images to Heliographic Carrington co-ordinates. The relatively 

fixed positions of solar filaments over consecutive HCMs facilitate the process of tracking 

solar filaments. This study is directed towards large, stable filaments; small and unstable 

filaments are disregarded. A NN classifier is used to categorize the detected filaments as DFs 

or mis-detected filaments (MDFs). Features such as: Area, Length; intensity statistics Mean, 
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Standard Deviation, Skewness, and Kurtosis, are extracted and fed to this network to get a 

confidence level of at least 80 %.  

The Atoum technique is composed of three main stages: detecting and representing solar 

filaments, generating HCMs and implementing an automatic tracking method. 

The technique presented here gives results in close uniformity with those obtained 

manually, presented in the NGDC catalogue. The author could not find an evaluation or 

comparisons by other researchers like the one undertaken here. Furthermore, the only 

automatic algorithm that could found was provided by SWRL. However, it does not seem to 

perform very well when compared with the NGDC catalogue as indicated in Section 6.4.  

So this study is most likely the first in distinguishing the actual disappeared filaments and 

the miss-detected filaments by applying ANNs.  

The research presented here has concentrated on devising a novel solar detection and 

tracking technique based on an extensive literature review. The resulting algorithm does this 

by the use of an NN classifier with no empirical variables, which is one novelty of the 

algorithm. In the previous literature, all such methods appear to have used empirical values in 

their algorithms. 

This chapter is organized as follows: Section Two describes the Carrington Heliographic 

co-ordinate system. Section Three illustrates the tracking technique. Results and evaluation 

are presented in Section Four and finally the conclusions are presented in Section Five. 

6.2 Carrington Heliographic Co-ordinate System 

Heliographic co-ordinates are a spherical co-ordinate system that uses the two variables, 

latitude and longitude to locate a point on the solar surface (Colak et al., 2011). The longitude 

co-ordinates are converted to the Heliographic Carrington Co-ordinates to identify the 

positions of solar features in a manner independent of the solar rotation. Figure 6.1.a shows a 

H-alpha image with its segmented form in Figure 6.1.b and the segmented filaments are 
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shown in the HCM in Figure 6.1.c in the position corresponding to the date of the image in 

(a) . 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

 
Figure 6.1. The HCM created using an H-alpha Image observed at the Meudon Observatory on 

8
th

 February, 2001. (a) Original image. (b) Segmented image. (c) Heliographic Carrington Map. 

The method used in this study for filament tracking purposes to create HCMs is the one 

described by Colak (Colak et al., 2011) as part of work on 3D representation of solar 

features. It starts by creating images for storing data in Carrington Heliographic Co-ordinates 

using a standard method of spherical astronomy described by Smart (Smart and Green, 1977). 

During this phase a resolution recalculation is performed to avoid information loss resulting 

from truncation. An image enhancement algorithm is then applied to determine pixels 

missing in the newly created heliographic images.  

These maps are used, to take advantage of the relatively small movements of the filaments 

over such HCMs. This movement is easily accommodated using a rectangular tracking 
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window. This is used to determine whether a filament has disappeared or not by placing it in 

an identical position in the next day image. The presence of any white pixels means that the 

filament has not disappeared. The use of this technique means that it does not matter if the 

filament moves slightly in any direction as long as a single pixel remains in the search 

window because all that is of interest is the binary decision as to the presence or non-presence 

of the filament.  

6.3 Filament Tracking Technique 

Filament disappearance may be associated with filament eruptions, in which case at least 

50 percent of the ejected material disappears over a 24 hour period (Jing et al., 2004). In 

order to detect the filament disappearances, a new technique is developed to compare the 

filament detection results obtained in every two consecutive (daily) images. 

The technique starts by checking that the images under consideration are successive 

images like those shown in Figure 6.2. Figures 6.2.a and 6.2.b show two successive solar 

images, the corresponding segmented images are shown in figures 6.2.c and 6.2.d and finally 

their corresponding HCMs are shown in figures 6.2.e and 6.2.f. 

To exclude small erupted filaments,  a condition is applied, as described below, that still 

keeps the algorithm fully automated by not using a specific filament size. For each filament 

in the first image, a search process for white pixels is carried out in the second image within 

the rectangle that encloses the first image filament. If no white pixel is detected and if the 

area of the first day filament is greater than the average filament area, it is considered a 

disappeared filament (DF), otherwise it is considered a stable filament (SF).  
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Figure 6.2. Example for two consecutive solar images. (a) H-alpha image observed at the BBSO 

observatory on 16
th

 February, 2001. (b) H-alpha image observed at the KANZ observatory on 

17
th

 February, 2001. (c) Segmented image for (a). (d) Segmented image for (b). (e) HCM for (c). 

(f) HCM for (d). 
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A flow chart for the whole algorithm is given in Figure 6.3.  

Figure 6.3. Flow chart of the tracking algorithm. 
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Here filaments are treated as two-dimensional projections of their 3D structure in line with 

other researchers but it is acknowledged that filaments are 3D dimensional structures and 

their movements are also in 3D and this extended analysis is reserved for future study.   

Although the current method was found to give results closer to the manual NGDC 

catalogue than other work as shown in Section 4, there are still some filaments which are 

identified as disappeared whilst in fact they still exist according to manual observation. These 

are called miss-detected filaments. 

The Atoum tracking algorithm was tested using solar maps for the whole of year 2001, 

which contained 6414 solar filaments. The results after running the code are shown in Table 

6.1.  

Table 6.1. The number of filaments detected in one year classified as actually disappeared 

filaments or miss-detected filaments. 

 

Table 6.1 contains the filament data divided into twelve rows labeled by month in the first 

column, the second column shows the total number of filaments detected in this month. The 

total number of disappeared filament candidates found is shown in column three. Column 

four shows the total number of miss-detected filaments disappearances and column five 

shows the total number of disappeared filaments. This total number of DF does not include 

the small filaments which have areas less than the average filament area. It can be seen in 
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Table 6.1 that the algorithm found 176 possible disappeared filaments; while by observation, 

76 was the actual number of disappeared filaments and 100 were miss-detected filaments.   

A Neural Network classifier was applied to reduce the number of these miss-detected 

filament disappearances. This NN was trained using six statistical values extracted from the 

filament segments under consideration as input to the NN together with the required decision. 

During training, the NN structure was optimized as to number of hidden nodes. Because the 

NN is used to classify the filaments as DFs or MDFs the output layer was chosen to have one 

neuron. The training set was 128 samples randomly selected from the 176 possible 

disappeared filaments, which correspond to about 72 % of the whole set. Table 6.2 shows 

part of this set, where the units of the input features, length, mean, Standard Deviation, 

skewness and kurtosis are pixel based while the unit of the area is pixel squared. 

Table 6.2. Part of the dataset used for training the NN. 
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The testing set was 20 out of the full set of 176 samples, as shown in Table 6.3.  

Table 6.3. The dataset used for testing the NN. 

 

In the columns in Table 6.2, the last two input features are skewness, and kurtosis, which 

are  calculated as shown in Equations 6-1 and 6-2 respectively (NIST/SEMATECH, 2012): 

 

                                             
           

   

   
                                                      (6-1) 

                                            
           

   

   
                                                     (6-2) 

  

Where µ is the mean, σ is the standard deviation, N is the total number of data points, and 

X(n) is the pixel value. The classification value is shown in the last column where 0.1 means 

stable filament and 0.9 means disappeared filament. 

6.3.1 Optimizing the Neural Network 

Several training experiments were carried out while changing the number of nodes in the 

hidden layer from one to twenty. For every experiment, the MSE of the training stage was 
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recorded and the number of hidden nodes with the least MSE was chosen as the optimized 

one. The network was optimized with nine nodes in the hidden layer as shown in Figure 6.4.  

  

Figure 6.4. The structure of the optimised neural network. 

Detecting a filament disappearance starts by checking that the area of the filament under 

consideration is greater than the average area of all filaments in the first day image. Next, the 

NN begins working with the values of the six parameters and returns the classification value 

of the filament under consideration. If this value is greater than 0.5 then the underlying 

filament is classified as having disappeared; otherwise it is considered as stable filament. The 

disappearance detection algorithm is considered unique because it is the first time that an 

adaptive NN classifier has been used to detect the filament disappearance as far as is known 
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by the author. Not only that, it gives a high detection rate of 80 %, as shown by comparing 

results in Tables 6.3 and 6.4. 

A screen dump showing the output from the algorithm displayed in Figure 6.5, below, 

shows at the top, the name of the first and second solar image observatory, the date, time, the 

average filament area and average filament length. Column 1 shows the number of the 

filament in the first day image, column 2 shows the number of corresponding filament in the 

second day image; if it is considered as disappeared then this number is shown as -1, column 

3 shows the normalized filament area, column 4 shows the area of the corresponding filament 

in the second day image. Column 5 contains the tracking results; where 1 means disappeared 

and 0 means stable. 

Figure 6.5. Screen dump of the result of the code execution for 2
nd

 and 3
rd

 Feb., 2001. 

Table 6.4 contains the results from testing the NN. It shows the classification values that 

are compared with the required values given in Table 6.3 in order to determine the 

disappearance detection rate. Agreement is found when the values in Table 6.4 are greater 

than 0.5 while the values in Table 6.3 are 0.9 and also the values that are less than 0.5 in 

Table 6.4 while the values in Table 6.3 are 0.1. This comparison gives 16 matching results 

out of 20, which equals an 80% confidence level. 
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Table 6.4. Test results from the NN. 

 

6.4 Evaluation Results 

The results of the Atoum algorithm are compared with the results from Bernasconi 

(Bernasconi et al., 2005) by applying the method to the Hα solar images from the Big Bear 

Solar Observatory (BBSO), for the same period, from July 6, 2000 to January 9, 2005, that 

was examined by Bernasconi. They presented their results as the number of appeared 

filaments. After running their code, 9,459 disappeared filaments were computationally found, 

out of the 19,211 filaments processed. This means that the percentage of disappeared 

filaments found by this tracking approach was equal to approximately 51%. Using the NN 

algorithm, the number of disappeared filaments was found to by 418 out of 22,213 processed 

for the same period. This means that the percentage number of disappeared filaments found 

by the NN algorithm is approximately 2%.  These Bernaconi and Atoum results show a great 

variation. Both results can be compared with the number of disappeared filaments registered 

during the same time period in the NGDC manually compiled catalogue. Counting the 
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number of disappeared filaments shown in the NGDC catalogue gives 691. This is much 

closer to the 418 disappeared filaments resulting from the NN method  than the 9752  

resulting  from Bernasconi method which shows the former is much more consistent with the 

manual results recorded in the NGDC catalogue, which was the aim of the method. Since 

both the Bernasconi and Atoum methods detect broadly similar numbers of filaments, 19,211 

and 22,213, over this period the difference may be due to the different treatment of small 

filaments.    

6.4.1 Evaluation of Excluding Small Filaments 

To exclude the small erupted filaments from consideration by the NN, four different 

conditions were compared to find the one that gave the closest results to the manual NGDC 

result. These conditions exclude filaments with less than half the average area of the whole 

filaments in the first image, filaments with less than half the average length of the whole 

filaments in the first image, combine the former two conditions together and finally apply no 

condition. The disappeared filament results for the whole year of 2001 were collected and 

compared with the results of the NGDC and the SWRL catalogues for the same year. The 

average number of disappearances found applying each of the conditions was compared with 

the catalogued values. The area condition gave average value nearest to the NGDC average, 

as shown in Table 6.5. 
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Table 6.5. Disappeared filament results from applying the four conditions to exclude 

small filaments for comparison with NGDC and SWRL. The average of the numbers in 

each column is shown at the bottom of each column. 

 

To show the convergence or divergence between what has been discovered after applying 

the four different conditions and what is found in the NGDC and SWRL catalogues, several 

charts where drawn for the month of January 2001. Figure 6.6 compares the data from the 

NGDC observations and the Atoum algorithm after applying the area condition.  

 

Figure 6.6. The comparison between the NN algorithm results with the area condition 

and the NGDC Catalogue results for January, 2001. 
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The days of the month are displayed on the horizontal axis and the numbers of disappeared 

filaments are displayed on the vertical axis in this, and the next four charts. Charts for the 

other three conditions are shown in Figure 6.7.  

Figure 6.7.a shows the relation between the average values of all the disappeared filaments 

in the NGDC catalogue and the average value of all the disappeared filaments from the NN 

algorithm, after excluding the filaments with area less than the average area value and with 

length less than the average length value in the first day image. This figure shows that the 

daily number of DFs in NGDC differs from the number given by the NN algorithm in both 

number and date. The latter may be due to different sensitivities to detecting disappearances 

of the manual and machine methods. Figure 6.7.b shows the relation between the average 

values of all the disappeared filaments in the NGDC catalogue and the average value of all 

the disappeared filaments from the NN algorithm, after excluding the filaments with length 

less than the average length of all the filaments in the first day image. Again, this figure 

shows high divergence between the two results. Figure 6.7.c shows the relation between the 

average values of all disappeared filaments in NGDC and the NN algorithm without applying 

any condition. This figure shows higher divergence between the numbers in the two results 

which applying the condition is meant to reduce. None of these figures show detailed 

convergence between the NN algorithms and the results of the NGDC but the area condition 

is the closest overall. 

 

  



89 

 

 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

Figure 6.7. Three charts showing the NGDC results for January, 2001 in comparison with those 

from applying the NN NN algorithm with the three conditions (a) area+length, (b) length, (c) no 

condition. 
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Taking the NGDC manual catalogue as a reference, the graph shown in Figure 6.8 was 

drawn to compare the numbers of disappeared filaments with those from the SWRL 

automatic catalogues. This shows a similar divergence in positions between the two sets of 

results as seen in figures 6.6 and 6.7 but the numbers are much less than those in the NGDC 

catalogue.  

 

 
 

Figure 6.8. The average numbers of all disappeared filaments in the NGDC manual 

catalogue and the SWRL automatic catalogue for January, 2001. 

6.5  Conclusion 

A Neural Network classifier is used in solar filament tracking to categorize the detected 

filaments as DFs or MDFs. Features including Area, Length, Mean, Standard Deviation, 

Skewness and Kurtosis are extracted from the underlying filament and fed to the NN. This 

NN is applied to reduce the number of the filaments miss-detected when a simpler binary 

decision rule was used. The network is optimized by using nine nodes for the hidden layer.  

The result is a novel filament tracking algorithm which aims to automatically detect solar 

filament disappearance in Hα full disk images obtained from different solar observatories. 

Experimental results show that there is a significantly but small number of miss-detected 

filament disappearances phenomenon which still needs to be solved.  
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The algorithm has improved on the previous detection process by now being able to 

accept, handle and process solar images with different contrasts from several observatories. A 

solar image is first converted to the HCM format and then filament tracking is accomplished 

by comparing the contents of the rectangle that encloses a filament in the first image with 

those in the successive image. The technique continues by distinguishing miss-detected 

filament disappearance from actual filament disappearance by using the NN with the input 

features: area, length, mean, standard deviation, skewness, and kurtosis. The result after 

applying the NN is an 80% detection level.  

The new tracking technique improves on the work of others by representing the tracking 

process more plainly, by considering the miss-detection filaments and by utilizing the 

adaptive nature of an NN. All of these advantages could lead to a more precise knowledge of 

the association expected between disappeared filaments and CMEs. 

It has, however, to be noted that if there were many middle sized filaments with only one 

very big filament, then the middle filaments will not be taken into consideration by the 

algorithm. This is actually a rare case and is not a major problem under normal solar 

phenomena. The author appears to be the first researcher to actually consider the possibility 

of this occurrence having any effect on the tracking algorithm; hence no references could be 

found for this scenario in the literature. This case will be addressed in future work on the NN 

algorithm.  
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CHAPTER SEVEN 

7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

7.1 Conclusions 

7.1.1 Overall Conclusions 

The main achievement of the research presented in this thesis can be described as a 

collection of algorithms related to the field of automatic detection of solar filament 

disappearances, which have been developed using machine learning based technologies. 

These involved several Neural Network topologies trained using different attributes of solar 

filaments. It is believed that this work is important because for the first time machine 

learning-based techniques have been adopted for merging broken filaments and detecting the 

filament disappearances. There are additionally two aspects that have importance for filament 

detection techniques, namely the implementation of a fully automated system without using 

any predetermined empirical thresholds and the real time functionality of the algorithm. 

These findings are considered an important step towards creating automated and reliable 

prediction systems for CME.  

7.1.2 Detailed Conclusions 

The concluding remarks on this research are listed as follows. 

 Segmentation of solar filaments constitutes an important and difficult concern in the 

field of solar image processing. Therefore, an adaptive thresholding technique was 

devised that introduced minimal noise whilst also being able to detect more 

unambiguous filaments, with the constraint of avoiding the use of any empirical 
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values in Hα solar images. This work was described in Chapter Four with 

performances measured in terms of the FAR, which is the probability of a non-

filament being detected as a filament. The resultant FAR value was found to be 9% 

when compared with another segmentation algorithm over one month of solar images. 

Additionally reducing the FAR value means reducing the proportion of the presence 

of other solar features like sunspots. This value is lower than the work of others but is 

still greater than zero, which means that there are still some non-filaments detected as 

filaments. This segmentation technique could be used to highlight the dark features 

(like filaments in Hα images) in any cleaned image and eliminate the background. 

 A fully automated spine detection technique is presented in Chapter Four. It is 

apparent that the Atoum algorithmically derived spine is more convoluted, precisely 

because it accurately follows the body of the filament. It is less computationally 

complex compared to Bernasconi (Bernasconi et al., 2005). On average the Atoum 

algorithm was 3.5 times quicker than Bernasconi, taking only 0.098 s to extract the 

filament spine. Additionally, the results of the Atoum algorithm show longer spine 

lengths because it tracks the actual filament backbone more accurately. Despite the 

positive results from the detection technique, there is still a need to reduce the 

unwanted pixels and the small holes. Furthermore, there are incomplete spines 

existing due to errors in choosing the largest line segment through the automated 

drawing process. The technique could be adopted in future to extract the spine of 

different features in different types of images; especially elongated objects such as the 

spine of neuronal dendrites. 

 It was clear from the literature that the author had to include the spatial and 

orientation relationships between the regions of the segmented filaments so as to 
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determine if they should be merged or not. There was one technique developed by 

Bernasconi (Bernasconi et al., 2005) which considered these issues in merging the 

broken filaments but there was a challenge to avoid using empirical thresholds for the 

angles and distances used in this method. The Atoum merging algorithm achieves 

15% greater merging of broken filaments than the Bernasconi algorithm. This 

improved performance was obtained by using a neural network approach and also 

avoids the thresholds used in traditional techniques. Although there is a percentage of 

false merges still remaining, it should be noted that this work has highlighted this 

challenge of the existence of false merging - often overlooked by other researchers. 

The same method could be used in future to merge broken structures in different 

images. 

 A novel tracking method was implemented in Chapter Six that achieved a fully 

automated real-time method; coping with the movement of filaments upward and 

downward and most importantly addressing the problem of the presence of filaments 

that are considered disappeared, but are not in fact. All these challenges were solved 

by using a Neural Network approach. The results of the NN algorithm were compared 

with the results of Bernasconi (Bernasconi et al., 2005) and in the NDGC catalogue. 

The NN approach under detects the number of disappeared filaments by 40% while 

Bernasconi's algorithm over detects by over 1400%. This clearly shows the 

superiority of the NN algorithm in reproducing the NDGC results. Although the NN 

algorithm has given improved results in terms of accuracy, there still exist a small 

percentage of filaments that are detected as disappeared when actually they have not 

and also filaments that have actually disappeared but are not detected as such. 
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Given time, a CME prediction system could be implemented based on the findings of this 

work. The results of detecting filament disappearances could then be compared with the data 

of NGDC manual catalogue of filament and the data in the SOHO/LASCO CME manual 

catalogue. This could be achieved through combining the present work with that of Al-Omari 

(Al-Omari et al., 2010). 

7.1.3  Knowledge Discovery Resources 

In this research, a wide range of experience was gained in through making full use of the 

following resources:  

 Many sources of solar data were considered for use. Images from several ground-

based observatories including the Meudon and BBSO Observatories were used as 

well as the NGDC and SWRL catalogues of solar filament disappearances.  

 Many different features of Visual Studio C++ were used. All the algorithms 

developed in this research were designed using the C++ programming language. 

 The adaptive nature of the developed algorithms was produced using Neural 

Network algorithms. 

7.2 Suggestions for Future Work  

Some of the challenges that still need to be overcome with suggested solutions and some 

ideas for further research are included in the following list. 

 As concluded in Chapter Four, there is a problem which has emerged while 

extracting the filament spine. The final phase of the spine algorithm is to achieve 

the task of averaging and projection. For each point in the largest line segment, the 

mid-point of the perpendicular line segments that intersects this line is found; i.e. if 

the first drawn line is horizontal then the projection will be achieved by finding all 

the mid-points of the vertical lines that intersect this line. This phase sometimes 
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produces and incomplete or a ‘stuck spine’ due to errors in choosing the largest 

line segment through the automated drawing process.  

 Although the merging algorithm gives a high merging percentage; there is still a 

percentage of false merging remaining. Either these broken filaments represent one 

filament and they are combined wrongly or they are parts of two different 

filaments and are combined together incorrectly. 

 Another challenge which has been observed while implementing the tracking 

algorithm is the existence of miss-detected filament. These filaments which are 

classified as having being disappeared have not actually disappeared at all because 

the detection algorithm has miss-identified them; there is no ideal filament 

detection technique. The present study seems to be the first in distinguishing the 

actual disappeared filaments and the miss-detected filaments by applying ANNs. 

Even so, a percentage of these filaments are detected as disappeared.  

 One further challenge in the area of detecting filament disappearances is applying a 

backward tracking method by the construction of temporal evolution patterns. This 

could be implemented by comparing the current day image with the previous day 

image to detect newly appeared filaments. 

 An additional challenge is improving the system by developing an automatic 

prediction technique for CME-filament association. The technique will start with 

comparing the disappeared filaments with the detected CMEs manually from a 

CME catalogue. If there is an association between them then a machine learning 

algorithm will be developed to extract the features of these filaments which will 

then be processed by the machine learning algorithm to predict the occurrence of a 

CME. 
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