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Abstract

Based on a study of existing solar filament and tracking methods, a fully automated
solar filament detection and tracking method is presented. An adaptive thresholding
technique is used in a segmentation phase to identify candidate filament pixels. This
phase is followed by retrieving the actual filament area from a region grown filament by
using statistical parameters and morphological operations. This detection technique
gives the opportunity to develop an accurate spine extraction algorithm. Features
including separation distance, orientation and average intensities are extracted and fed
to a Neural Network (NN) classifier to merge broken filament components. Finally, the
results for two consecutive images are compared to detect filament disappearance
events, taking advantage of the maps resulting from converting solar images to
Heliographic Carrington co-ordinates.

The study has demonstrated the novelty of the algorithms developed in terms of them
now all being fully automated; significantly the algorithms do not require any empirical
values to be used whatsoever unlike previous techniques. This combination of features
gives the opportunity for these methods to work in real-time. Comparisons with other
researchers shows that the present algorithms represent the filaments more accurately
and evaluate computationally faster - which could lead to a more precise tracking
practice in real-time.

An additional development phase developed in this dissertation in the process of
detecting solar filaments is the detection of filament disappearances. Some filaments
and prominences end their life with eruptions. When this occurs, they disappear from
the surface of the Sun within a few hours. Such events are known as disappearing

filaments and it is thought that they are associated with coronal mass ejections (CMES).



Filament disappearances are generally monitored by observing and analysing
successive solar H-alpha images. After filament regions are obtained from individual H-
alpha images, a NN classifier is used to categorize the detected filaments as
Disappeared Filaments (DFs) or Miss-Detected Filaments (MDFs). Features such as
Area, Length, Mean, Standard Deviation, Skewness and Kurtosis are extracted and fed
to this neural network which achieves a confidence level of at least 80%. Comparing the
results with other researchers shows high divergence between the results. The NN
method shows better convergence with the results of the National Geophysical Data

Centre (NGDC) than the results of the others researchers.
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CHAPTER ONE

1 INTRODUCTION

1.1 Background

As the importance of forecasting space weather increases, the need for detecting
solar features affecting space weather also increases. The increasing powers of
computers, image processing and machine learning techniques offer opportunities to
develop automatic detection methods for solar features and activities that may affect life
on Earth.

Solar flares and CMEs are the most important solar events that lie behind space
weather; these solar eruptions release vast quantities of electromagnetic radiation and
charged particles (Al-Omari et al., 2010). Solar flares are sudden, short lived, burst of
energy on the Sun’s surface, lasting from minutes to hours as described in (Colak and

Qahwaji, 2007) and shown in Figure 1.1.

Figure 1.1. Solar flare recorded by the NASA Solar Dynamics Observatory on

April 16™ 2012.



The most important method for space weather prediction is the accurate detection
and monitoring of the evolution of solar features affecting space weather. Detecting
filaments can indicate the possible occurrence of CMEs. Hence, solar filaments are
features that play a vital role in the study of space weather.

In Ha images as shown in Figure 1.2, filaments appear as dark ribbons against
brighter and hotter background. At the limb, they become bright features against the sky

and are then called prominences.

(@) (b)

Figure 1.2. Solar filament (a) Ha solar image observed at the Meudon observatory
on January 2" 2001. (b) Solar filament as shown in (a).

(http://bass2000.obspm.fr/home.php)

Some filaments erupt and disappear within hours and are known as disappeared
filaments as shown in Figure 1.3. Artificial neural networks (ANNSs), usually called
Neural Networks (NNs) are fairly simple automated models that simulate the neural
structure of the brain. This new approach to computing provides a more attractive
automatic processing compared to traditional methods, because computers can perform

complicated problems but they still have problems in recognizing simple patterns.
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Disappeared Filament

e

Figure 1.3. Solar images illustrate a disappeared filament (a) Ho solar image observed at
the Meudon observatory on January 2™ 2001. (b) Ha solar image observed at the Meudon
observatory on January 3™ 2001.

In this research, the aim is to design a fully automated real-time system that can
detect the disappearance of solar filaments by analysing solar images; the fundamental
steps are shown in Figure 1.4. This system uses solar images for the segmentation
phase, detecting solar filaments, merging broken filaments and finally tracking their

disappearance.

H-alpha

Images Detect Filaments

Spine Detection

!

Merge Broken Detect Filament
Filaments Disappearances

A 4

Figure 1.4. Suggested system for automatic detection of filament disappearances.



1.2 Solar filament segmentation, detection, merging and tracking

Solar images are obtained by ground and space observatories. There are plenty of
public solar images that are obtained using different wavelengths. Solar features seen in
those images could be used by scientists to observe and study solar events. However,
there are many challenges facing solar imaging. The automated detection and tracking
of solar features is one of these challenges. Solar image processing and feature
extraction techniques are usually used to extract numerical features that can provide
efficient representation for solar features, solar activities and/or general regions of
interest in the solar images. Knowledge extraction and prediction of forthcoming
activities can be achieved using machine learning.

A successful integration between image processing and machine learning could
provide automatic detection, tracking and even classification of filaments. In this case,
the automated system could be used to represent the detected filaments using statistical
and geometrical features (i.e., size, location, shape, orientation, etc.).

Solar filaments are large regions of very dense, relatively cool ionized gases, held in
place by magnetic fields. They are elongated structures and dark features appearing in

H-alpha (Ha) solar images as shown in Figure 1.5.a.

Figure 1.5. (a) Solar filament seen in the Ho solar image observed at the Meudon
observatory on January 2" 2001. (b) Solar prominence seen from the NASA/Solar

Dynamics Observatory on September 8", 2010.



Filaments appear dark because they are cooler than their surroundings, while they
appear bright when they become visible on the edge of the solar disk and are then called
prominences as shown in Figure 1.5.b.

Despite the advances expressed in the previous works, machine learning has not been
used for large-scale analysis of filaments during the detection or classification phases.
Still one of the challenges that face this paradigm is the need to develop and implement
a detection technique that could avoid the use of any empirical values to produce a fully
automated technique.

Additional requirements include producing a fully automated filament detection
algorithm that is both fast and accurate. Time requirement is definitely a factor which
would affect the ability to synthesize a filament detection and tracking system as part of
a proposed real-time system. The successful real-time implementation of such a system
would give the opportunity to produce timely space weather alerts and quick look-up of
results.

Solar filaments are characterized by its low intensity values in Ho images because
they are darker in colour. This nature, being well separated from the background, gives
the opportunity to use a thresholding segmentation technique. This is achieved by
defining a range of brightness values in the original image, choosing the image pixels
that fall in this range to be foreground and ignoring other pixels as they represent the
background. The same technique has been used in this study without using any range of
brightness value in segmenting unambiguous filaments whilst introducing minimal
noise compared to the other techniques.

This segmentation method is followed by a region growing technique developed by
(Qahwaji and Colak, 2005). This method uses the foreground pixels as seeds; then it
combines the adjacent pixels and the unwanted seeds are eliminated. A fully automated

detection technique is developed in this study to retrieve the actual filament area from



these region grown filaments. This technique involves statistical parameters and
morphological operations and avoids using any empirical values whatsoever. The shape
of the detected features is represented by determining its spine geometry which gives
the opportunity to extract all the filament morphological features.

In some solar images, some filaments may be broken or segmented into several small
filaments due to differences in intensity values or fail in the pre-processing parts of this
phase. These filaments should be merged to get the correct filament numbers and to get
the actual filament parameters like the spine length. An NN-based merging technique is
used by extracting some of the filament characteristics and feeding it to an NN to
classify filaments into two groups, merged or not merged.

After obtaining the areas of individual filaments, the resultant filaments in two
consecutive images are compared to detect the filament disappearances. Again a NN-
based tracking technique is followed by extracting a set of characteristics of individual

filaments and feeding it to an NN to distinguish it from a miss-detected one.

1.3 Motivation

The importance of studying solar filaments comes from considering its
disappearances as a significant indicator for possible occurrence of CMEs, which is
considered as the major cause of geomagnetic storms.

CMEs could be initiated from closed magnetic field regions such as filament regions
and it is now almost certain that there is a close association between CMEs and filament
disappearances (Gopalswamy et al., 2003, Moon et al., 2002, Pojoga and Huang, 2003,
Jing et al., 2004, Gopalswamy, 2006, Schmieder, 2006, Alejandro 2008, Robbrecht et
al., 2009, Al-Omari et al., 2010).

CMEs are enormous bubbles of hot plasma (billions of tons of magnetized plasma)
that propagate away from the solar corona into the interplanetary medium at a very high

velocity (Alejandro, 2008). Figure 1.6 shows one CME. These bubbles which are
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carrying a huge amount of energy can — if directed towards our planet — cause massive
disruption in our communication networks, failures in navigational systems and

satellites, and power outages and disruptions.

Figure 1.6. Coronal Mass Ejections observed at SDO, the NASA Solar Dynamics
Observatory, on January 27‘“, 2010.

These CMEs have been observed in the images of the solar corona obtained by Solar
Heliospheric Observatory (SOHO) mission’s Large Spectrometric Coronagraph
(LASCO) since 1996. A coronagraph is a telescope that uses a disk to block the Sun’s
direct light, while permitting light from surrounding sources; this light reveals the solar
corona and a coronagraph could be regarded as a producer of artificial solar eclipses.

SOHO has two coronagraphs on board; “C2” coronagraph and C3 coronagraph. C2
coronagraph images are usually coloured red; C3 coronagraph images are blue as shown
in Figure 1.7.

There are three possible indicators of CME onsets, which are: filament
disappearances, coronal dimming and solar flares. The coronal dimming phenomenon

occurs when the intensity of the Sun corona decreases (Attril et al., 2006).
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Figure 1.7. Two examples of coronagraph images. (a) SOHO LASCO C2 image taken on

07™ April, 2002 at 16:36. (b) SOHO LASCO C3 image taken on 07" April, 2002, 16:43.

With the current huge development in Space instruments, computers and
communications, the need becomes greater for quick alerts and warnings of the risks
that threaten our planetary atmosphere and for forecasting space weather. Thus the need
becomes more critical for developing a real-time CME prediction system. The work in
this underlying study will stop at detecting filament disappearances and in future may

be used for developing this CME prediction system.
1.4 Research Aims and Objectives

The main aims of this research were the accurate detection of solar filaments by the
process of merging broken filaments to create an automated detection system for solar
filament disappearances. The technique will receive the real-time solar images that are
observed by different ground-based observatories and are available online. The
development of this real-time system using machine learning algorithms will help in
modelling a reliable tracking technique. The different objectives of this research are

summarized as:



http://soho.nascom.nasa.gov/data/realtime/c2/1024/latest.html
http://soho.nascom.nasa.gov/data/realtime/c3/1024/latest.html

1.5

Designing an automated computer platform for automatic detection of solar

filaments.

Designing an automated tool for extracting different features of solar filaments.
A geometrical-based approach is used for extracting the filament spine and
determining its properties. These properties give the opportunity to accurately

accomplish the subsequent processing tasks.

Designing an automated tool for merging the broken filaments structures. This

method has exploited the findings of the initial extraction of the filament spine.

Designing novel techniques to effectively track the disappearances of solar

filaments.
Original Contributions

The main original contributions presented in this thesis can be summarised as

follows:

o The development of an adaptive thresholding technique for segmenting
Ha solar images in order to detect filaments as Regions of Interest (Rol)
and discard everything else as background. These well-defined and visible
filaments could be considered for further analysis by characterizing their
features which may give the ability to provide suitable inputs for machine
vision techniques. (Atoum et al., 2009).

o Presentation and development of a fully automated technique for the
detection of solar filaments by manipulating statistical parameters and
morphological operations. The present detection process avoids using any
empirical values whatsoever. This technique is described in Chapter four

and in a submitted paper.



o Representation of the shape of the detected filaments by determination of
its spine geometry. The algorithm gives the opportunity to extract the
filament morphological features, such as: the filament length, filament
centre, filament head-end points, filament tail-end points and the filament
boundary. The algorithm is valuable as part of a real-time system for
detecting and tracking solar filaments. This algorithm is presented in
Chapter four and in a submitted paper.

o The use of the NN classifier algorithm to achieve the merging of the
broken filaments with a higher merging percentage than before. The
algorithm avoids the use of empirical constant values for different
filament merging attributes. This algorithm is described in Chapter five
and also in a submitted paper.

o Finally a solar filament tracking technique was implemented to detect
disappearing filaments. The technique exploits the relatively small
movements of the filaments over HCMs. It uses an NN classifier to
distinguish between the actual disappeared filaments and the phenomenon
of disappearing miss-detected filaments. This technique is presented in

Chapter six and in a submitted paper.

1.6 Outline of the Thesis

This thesis is organized as follows:

o Chapter Two provides a literature review of recent research on the
automatic detection techniques for solar filaments. The methods used in
each phase of the detection process are detailed.

o Chapter Three explores the available sources of solar data that can be used

in the research presented in this thesis. Some of these data are used for
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solar filament segmentation, other solar data is used for automatic
detection, spine representation, merging algorithms and tracking
techniques.

Chapter Four introduces an improved image segmentation algorithm; an
automated detection algorithm which includes retrieving the approximate
actual filament from the region grown one and the detection of the
filament boundary. Additionally, it describes the implementation of the
filament spine representation.

Chapter Five describes and implements a merging technique that utilizes
the findings of the spine extraction to merge the broken structures using a
neural network.

Chapter Six describes the implementation of a tracking technique. It
includes the filament detection stage and creating the Heliographic
Carrington Map. A neural network is used then to categorize the detected
disappearances as true or false.

Finally the concluding remarks and recommendations for future work are

presented in Chapter Seven.
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CHAPTER TWO

2 LITERATURE REVIEW

2.1 Solar Filament Detection

In image processing, the term feature detection refers to the methods that aim to
make a decision at every image pixel on whether it is an image feature or not. The
outcomes of these methods will be subsets of the image domain, often in the form of
isolated points.

In solar imaging, given a solar image, filament detection means to determine whether
or not the specified filament is present, and, if present, determine its characteristics.
These characteristics include properties such as: length, area, centre, head-start points,
tail-end points and filament boundary points. Once these characteristics are found, they
are utilized in trying to merge the broken filaments in order to approximately restore the
actual size of the detected filaments. The image processing task also involves the very
important task of detecting the filament disappearance - where studies have shown that
filament disappearances are usually associated with the occurrence of CMEs. The
filament detection process should also create algorithms which execute speedily.

Filaments usually appear above the chromosphere as thin elongated structures in Ha
solar images. Detecting and characterizing solar filaments is important for several
aspects of solar activities because of their association with geomagnetic storms (Al-
Omari et al., 2010). An efficient detection system which is fully automated and further,
works in real-time is highly desirable, which makes its implementation in software
rather challenging.

There have been a number of methods developed for detecting solar filaments,

merging broken filaments and detecting the filament disappearances during the last
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decade. Each of these methods is addressed in detail in the following sections. The
detection methods are presented in Section 2.2, the detection techniques are presented in
Section 2.3, the merging methods are described in Section 2.4, the techniques used for
detection of filament disappearances are described in Section 2.5 and finally

conclusions are given in Section 2.6.

2.2 Detection methods

The papers on the various stages of filament processing found in the literature are
listed below. Methods used for detecting solar filaments include:

e Threshold and Region-based Technique (Gao et al., 2002)

o Atrtificial Neural Networks (Zharkova and Schetinin, 2003)

e Morphological Operations (Shih and Kowalski, 2003)

e Adaptive Thresholding Method and Support Vector Machine (SVM) (Qu et al.,
2005)

e Thresholding, Region Growing and Spine detection (Fuller et al., 2005)

e Thresholding, Region Growing and Spine Tracing (Bernasconi et al., 2005)

e Thresholding, Region Growing and Feature Verifications (Qahwaji and Colak,
2005)

e Intensity and Size Threshold (Joshi et al., 2010)

Adaptive Thresholding Method (Yuan et al., 2011)
Methods used for merging broken structures include:
e Distance Criterion (Gao et al., 2002)
¢ Implementation of Distance and Angle (Bernasconi et al., 2005)
e Closing, Thinning, Pruning and Adaptive Edge Linking (Qu et al., 2005)
e Morphological Closing Operation (Fuller et al., 2005)

e Grouping and Distance Criteria (Joshi et al., 2009)

13



e Closing Operation (Yuan et al., 2011)
Methods used for tracking solar filaments include:
e Comparison of Two Consecutive Images (Gao et al., 2002)
e Component Matching (Qu et al., 2005)
e Comparison of Three Consecutive Images (Bernasconi et al., 2005)
e Applying a region growing techniques over Carrington Maps (Aboudarham et
al., 2008)

e Labelling Criterion (Joshi et al., 2009)

2.3 Detection Process

In this section, all of the algorithms that were implemented and discussed in the
literature are presented. There have been many successful attempts at designing
algorithms for detecting solar filaments. Gao (Gao et al., 2002), combined thresholding
and region growing techniques to achieve filament detection. Filament candidates were
obtained using a thresholding technique. The region growing technique was then used
for grouping the candidate pixels to form filament areas. The detection method includes
three particular operations; deletion of any adjacent pixels that touch the solar limb,
because these pixels could be part of filaments, so this avoids the detection of
prominences; remove any filament area with less than half the median intensity value of
the whole image; because it is considered noise; an eighty-adjacency connection
method is used to connect the adjacent pixels (eighty pixels around the central pixel are
checked for connectivity) to avoid small errors in solar images. During the image
processing, some large filaments could become broken into small fragments which
could become excluded because they are now less than a 220 pixel area threshold. This

method could not be considered a fully automatic detection technique because it uses
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many different constant values in the detection process. Also it cannot handle low
contrast filaments and thus produces unstable results.

A feed-forward ANN technique is used by Zharkova (Zharkova and Schetinin,
2003); this network is composed of two hidden and one output neurons to extract solar
filaments automatically from Ha solar images. In total 55 filament fragments were
selected depicting filaments with different backgrounds; one is used for training the
network and the other 54 are used for testing. The main aim of the proposed ANN is to
remove a contribution of the variable background elements which is defined as a
background function. The technique is based on a standard sliding window technique as
follows: The given image is transformed into columns; with each column representing a
set of pixels taken from a sliding window width of size 3x3. The output neuron makes a
decision on whether the central pixel is a filament or non-filament pixel. The results of
this technique were not validated nor optimized.

A superposition of morphological closing operations was applied by Shih (Shih and
Kowalski, 2003) to separate filaments from the granular background. The process used
eight directional linear 11x11 structuring elements with 90°, 0°, 45°, 135°, 67°, 112.5°,
22.5°, 157.5° slopes, respectively as shown in Figure 2.1. An additional closing
operation with a 3x3 structuring element was applied to eliminate spurious features. The
dark features obtained are used as seeds for a region growing process. This checks the
neighbourhoods of the detected features and compares them against the original pre-
processed image. All connected black points in the pre-processed image neighbouring
the detected filament are marked as belonging to the filament. Using 8-neighbor
connectivity, all connected black points in the pre-processed image neighbouring the
detected filament are marked as belonging to the filament. This detection method uses
an extensive set of morphological operations in detecting solar filaments which could

thus consume significant computational time.
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Figure 2.1. Eight directional linear 11x11 structuring element with 90°, 0°, 45°,

135°, 67°,112.5° 22.5° 157.5° slopes, respectively.

The Sobel operator was applied by Qu (Qu et al., 2005) to detect the edges of the
filaments. This operator emphasizes the regions of high spatial gradient that correspond
to edges by performing a two dimensional spatial gradient measurement on an image.
Then, two thresholding operations are performed; a global one for the whole image to
select filaments that have high contrasts relative to the background. A second local one
is performed for sub-images of size 100x100 pixels to select filaments that have locally
high contrasts relative to the background. Initially, a set of adaptive thresholds ranging
from zero to the median of pixel intensities of the image are chosen for segmenting dark
regions. The global threshold is computed by dividing the result of applying the Sobel
operator over the segmented region by the number of the pixels in the same region.
When the new expanded region meets the edges of filaments then the threshold value
reaches the maximum which then represents the best global threshold for segmenting
solar filaments. The local threshold is computed according to two criteria; firstly, the
local threshold equals the optimal global threshold plus or minus 30 and secondly; the

size of the region obtained by the local threshold is less than three times that of the
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region obtained by the global threshold. Additionally, any small regions with area less
than 10 pixels are considered noise and removed. Finally, a SVM classifier is used to
discriminate sunspots from filaments, where the sunspots are represented by nine
features representing the input of the SVM, which are extracted from a window of size
100 x100 pixels. This method cannot be considered a fully automatic detection
technique because several constant values have been utilized for computing the local
threshold and for removing the noisy pixels.

The detection process by Fuller (Fuller et al., 2005) is started by detecting the seed
regions that need to be grown. Primarily, the image is divided into local square windows
with size 1/6 of the image size and then any pixel value less than the mean value in this
window is discarded from the calculation. The threshold for each sub-image is then
computed by using a local quiet Sun intensity minus a constant value multiplied by the
standard deviation as shown in equation 2-1. The constant value was chosen to be 3.7.

Twin = QSwin — @ X Owin (2-1)
T.in is the threshold for each sub image, QS,,;, is the local quiet Sun intensity, « is the
constant value and o,,;, is the standard deviation for each sub image. Any remaining
spurious seeds were removed by keeping only seeds whose size is more than 20 pixels.
A region growing technique is then applied to group pixels together; the upper and
lower limits of the growing process are identified by threshold values; the lower
threshold is set to be zero while the upper threshold is computed by multiplying the
standard deviation of the bounding rectangle of this seed region by 1.5. Then this value
is subtracted from the quiet Sun intensity of the bounding rectangle. To fill in small
holes and to merge nearby regions a closing operator is applied. The spine detection
process is also achieved using multiple morphological operators. They have applied an
iterative thinning method to produce the skeleton of the region followed by a pruning

process to remove the branches of the skeleton tree. This method cannot be considered a
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fully automatic detection technique because several constant values are used for
computing the threshold for each sub-image, for removing the spurious pixels and in
calculating the threshold that is used in the region growing technique.

The detection process by Bernasconi (Bernasconi et al., 2005) starts by creating a
binary filament mask in which pixels labeled one are considered part of a filament and
the background is filled by zeros. Then the process searching for filaments is limited to
within a latitude circle of 60° heliocentric from the Sun center. Secondly, sunspots are
removed from the mask according to the thresholding method that was introduced by
Shih (Shih and Kowalski, 2003). The resulting pixels are then used as seeds for a
region-growing operation using upper and lower threshold values to avoid detecting too
large spots and too small spots. After that a new threshold value is assumed to extract
the filament mask; this threshold extracts not only the required filaments but also
spurious pixels which then should be removed,; this is done by applying a morphological
filtering operation that was introduced by Shih (Shih and Kowalski, 2003). The
resulting pixels are now used as seeds for a region growing operation that extends the
filament size to an adopted threshold. After all filaments are detected to their full shape,
a threshold is again used to exclude the too small filaments or the false detection results.
Thereafter the filament boundary is extracted as an array of Cartesian co-ordinates of
each pixel along the outline of the filament. Finally a principal curve algorithm uses a
multi-step iterative technique to determine the filament spine. This detection process has
limited the searching process within a latitude circle of 60° which means it will not be
able to detect filaments outside this. Several constant values are used to implement the
detection process which prevents it being considered a fully automatic detection
technique.

The detection process by Qahwaji (Qahwaji and Colak, 2005) starts by detecting

seed pixels using an intensity filtering technique. This technique uses the standard
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deviation, the mean value and a constant value in a thresholding equation to detect the
seeds pixels for the desired solar filaments. A region growing algorithm is then applied
to detect the Rols (Regions of Interest) which have not been detected by the previous
filtering algorithm; this process involved two main stages: firstly combining the
adjacent seed pixels and secondly eliminating the unwanted seeds. The results of these
calculations are then fed to a neural network to verify the detected regions and minimize
the false acceptance rate. This method uses constant values in the statistical equations
for detecting the solar filament, thus it cannot be considered as a fully automated
detection technique.

Joshi (Joshi et al., 2010), applied an intensity threshold based on a variable local
thresholding method introduced by Shih (Shih and Kowalski, 2003) to identify when a
pixel value is related to a filament and not to the background. The method starts by
calculating the median at every pixel in the image using a 19x19 pixel neighborhood
centred on the pixel. Two cut-off values are used, a lower cut-off value which is 10% of
the intensity range of the image and a higher cut-off value which is 90% of the intensity
range of the image. The threshold is equal to the lower cut-off value if the median value
at a pixel is less than or equal to this value. If the threshold is equal, the higher cut-off
value is chosen if the median filter at the pixel is less than or equal to this value. This
threshold value, thereafter, is used to extract the solar filaments. Then a fixed threshold
value is then applied to eliminate some non-filament features, this is set to 12 pixels in
size. Finally, dark sunspots are removed by selecting a threshold to be 30% of the disc-
centre intensity of the normalized images (Shih and Kowalski, 2003). A constant value
was used to remove the non-filament features; this prevents the algorithm from being
considered as a fully automated detection process.

An adaptive segmentation procedure is presented by Yuan (Yuan et al., 2011). It

consists of five different stages; convolving the solar image by a high-pass Laplacian
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filter; using the median and standard deviation to create a series of thresholds by
generating an arithmetic progression method; segmenting the solar image using these
threshold values to obtain the segmented regions and the difference regions; the
segmented regions and the difference regions are then used to calculate a series of
thresholds; and the final threshold value is then chosen to be the maximum one. After
this segmentation method, the filaments are removed if they are too small (3.5% of the
radius of the solar disk), then a closing operation is applied to connect the broken
filaments using a disk structuring element with size of 0.5% of the radius of the solar
disk. A shape-based threshold is then adopted to remove the sunspots. The area and
perimeter were used to create a shape measurement value, these values will be within
the [0, 1] interval. The larger value is more likely if it is a sunspot; an experimental
value of 0.7 is chosen; so if the shape measurement of an object is more than 0.7 then it
is removed. A morphological reconstruction operation is then applied to fill in the holes
inside each filament. An iterative morphological thinning is applied after that to obtain
the skeleton of the filament. The image is initially thinned by the left SE as shown in
Figure 2.2 and then by the right SE as shown in Figure 2.2 and followed by the

remaining six 90° rotations of the two mentioned structure elements.

0 0 0 X 0 0
X 1 X 1 1 0
1 1 1 X 1 X

Figure 2.2. The two basic structural elements used in the morphological thinning
process, (x indicates do not care).

The process is repeated until none of the thinning processes produces any further

changes. A graph theory approach is then implemented to remove the skeleton branches.
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The adjacent matrix representation for each filament is created; for each pixel on the
skeleton a vertex that represents it is created; all the vertices and connectivities of the
vertices are then created. If the pixels of the skeleton are 8-connected, an edge
connecting the two vertices corresponding to the two pixels is then created. After that,
two graph algorithms are implemented to find the main skeleton; the first one; finding
the shortest path between all pairs of vertices and the path with the maximum length is
the main skeleton. The second is finding all the end vertices by searching over the
shortest paths between each pair of the end vertices. The part with the maximum length
is the main skeleton. A constant value was used for creating a shape measurement

value; this prevents it from being a fully automated detection process.

2.4 Merging Process

In some solar images, some filaments may be broken or segmented into several
smaller filaments. In order to detect the correct numbers of filaments and to extract the
correct characteristics of these merged filaments, such as length, starting end-points and
ending end-points, a merging algorithm is needed to combine these broken filaments.
Most of these broken structures are large ones; large dark filaments that disappear
generally produce larger interplanetary atmospheric disturbances that are capable of
having an impact on Earth. So, merging and detecting these large filaments is a
significant measure in detecting filament disappearances. There are two criteria
specified in the literature to merge broken elongated objects (Cheng et al., 2007 and
Ingrid et al., 2002): the broken features should be close enough and they should satisfy
some relative orientation requirements.

In one of the early studies in this area by Gao (Gao et al., 2002), a distance constant
value to be 40 pixels is adopted as a merging threshold; if the distance between each

two filaments is less than this threshold then they are considered as one filament. A
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constant value is used for the distance between the filaments to achieve the merging
process, again it cannot be considered as a fully automatic merging technique.

The two mentioned merging rules were used in (Bernasconi et al., 2005) by
estimating two constant values for the two criteria; one for the distance (d) of each spine
end-point of each filament to all other filaments and one for the angle (0) between the
last two segments of the two spines relative to the line connecting the two end-points as
shown in Figure 2.3. If d<25 pixels then the two filaments are merged. If d>25 pixels
and d<100 pixels then the 0 is calculated, if for both segments 6, and 0, are both <22.5°
then they are merged. This merging technique is considered imperfect as stated by the

author.

The line connecting the two ends
which represents the distance (d)

The Last Segment The Last Segment
line

0, v 0,

Filament spine

\ Filament

Figure 2.3. The angles between the last two segments and the line connect the two end-
points of the two filaments.

It must be noted that this merging process is implemented after characterizing the

solar filament by Bernasconi. Two constant values have been used for the distance and

the angle in order to implement the merging process. This prevents the algorithm from

being an automatic merging process.
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A set of mathematical morphological operations that includes: closing, thinning and
pruning and adaptive edge linking methods were undertaken by Qu (Qu et al., 2005). A
closing operation is used to eliminate the small gaps. A thinning operation is then used
to determine the skeleton of the filaments; this process is repeated using a sequence of
eight structuring elements until no further changes can occur. A pruning operation is
then used to determine the spines of the filament; this operation also uses eight
structural elements. Even after using the previous set of morphological operations there
could be big gaps in broken filaments which could not be merged. Therefore, an
adaptive edge linking method was used to connect edges based on the orientation of the
filament spines (Shih and Cheng, 2004). In this method, an adaptive dilation
morphological operation is applied at each endpoint with an adaptive elliptical
structuring element (SE). The size and orientation of the SE are adjusted according to
local properties, such as curvature and slope. Some post-processing operations are
applied, such as, thinning and pruning to remove noisy edge segments. This extensive
use of morphological operations in extracting the filaments spine could require
significant computational time.

A morphological closing operation was implemented by Fuller (Fuller et al., 2005) to
merge closed regions. A simple morphological closing operation to achieve the merging
process is useful for the filaments that are close to each other. To get a more efficient
and accurate result for this operation and to fill in the big gaps in broken filaments, a
larger structuring element or multiple dilations followed by the same numbers of
erosions is utilized. This will, however, destroy the structural integrity of the underlying
filament. Thus this algorithm is not suitable for widely disjointed broken filaments.

Joshi (Joshi et al., 2009) have employed a grouping criterion to identify the
fragments that belonged to the same single filament. The largest filament is labeled ‘1’

and is compared with all the other fragments of the same image that lie within a 40 pixel
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distance (Gao et al., 2002). According to this criterion, any filament fragment found
close to the one labeled ‘1’ is also labeled “1°. Again this fragment is compared with all
other remaining fragments to check their distances. Once this fragment ‘1’ is compared
with all other fragments, the next largest fragment is labeled ‘2°. The process is repeated
until all the fragments are finished. The spatial relationship between the regions that
need to be merged is important but the orientation relationship between these regions is
also important and it is not considered here. Additionally the algorithm has used a
constant value for the distance between the fragments; thus it is not considered as fully
automated.

Mathematical morphology closing is used in (Yuan et al., 2011) to connect broken
filaments using a disk-shaped SE; the size of the SE used was 0.5 percent of the radius
of the solar disk according to their experiments. Again using a simple morphological
closing operation to achieve the merging process could be useful for the filaments that
are close to each other.

These previous merging methods could be classified into two groups. The first group
has adopted the spatial (distance) and orientation (angle) criteria and uses a few constant
values. The shortcoming of the second group is the extensive use of morphological
operations which could consume additional computational time. None of these current

state of the art techniques can be said to be suitable for fully automated use.
2.5 Tracking Process

Obiject tracking is a general imaging term which represents an important task in the
field of computer vision. Tracking can be defined as the problem of estimating the path
of a moving or moved object in the image plane as needed for further analysis (Yilmaz
et al., 2006). The lack of automatic tracking catalogues and the need for automatic
object analysis and representation; the increasing power of computers and the

availability of high quality instruments, and the need to know the reasons behind the
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occurrences of CMEs - these offer a reason or an opportunity to develop automatic
tracking methods for solar features and activities that may affect life on Earth. Thus the
accurate tracking of solar filaments is imperative for the reliable prediction of
geomagnetic storms and the near-earth space weather as they affect the communication
networks and power grid systems of our increasingly networked planet.

The majority of current tracking methods that | have looked at appear to have some
deficiencies in that they do not offer a complete study which indicate and explain the
stages of tracking and the evaluation of the tracking results accurately. Some of the
filaments that are classified as being disappeared have actually not disappeared, but
have simply not been detected because the applied detection technique is not sensitive
enough. These classes of miss-detected filaments have not been considered in the
majority of previous research (Gao et al., 2002,Shih and Kowalski, 2003,Qu et al.,
2005,Fuller et al., 2005,Bernasconi et al., 2005,Qahwaji and Colak, 2005, Aboudarham
et al., 2008, Joshi et al., 2009 and Yuan et al., 2011).

One of the early studies in the area of detection of filament disappearances was made
by Gao (Gao et al., 2002). In this study, the results of two consecutive images are
compared after the filament areas are obtained in individual images. The method takes
into consideration the rotation of the Sun during the time elapsed between the two solar
images when they were taken. Solar rotation can take the disappeared filaments behind
the limb, so in this method any filament that was out of the view is excluded from the
detection process. Also an extra threshold is set to control the vertically movement of
the solar filaments. A “size threshold” for disappeared filament area is set to 750
arcsec’. Additionally a “size threshold” for filament area is set to 250 arcsec’ to exclude
small filaments from detection. Many constant values are used to control the vertically
movement of solar filaments, for restricting the size of the disappeared filaments and the

size of the small filaments that should be excluded.

25



A component matching method was used by Qu (Qu et al., 2005) to detect filament
disappearances. The results of two consecutive images were matched after considering a
differential solar rotation correction (Freeland and Handy, 1998). After dilating the
spine with a 20x20 structuring element, a matching process is implemented according to
the size of the spines and the intensity of the filaments. If the spine size of the current
day filament is greater than 40% of the previous day and the mean intensity value of the
current day filament is less than 1.5 times of the previous day, then the filaments are
considered as matched. Unmatched filaments are reported as disappeared. Constant
values were used in the method to control the size of the filament spine.

Another filament tracking scheme was developed by Bernasconi (Bernasconi, et al.,
2005). This method is based on tracking the day-by-day evolution of the filaments and
then composing a filament tracking table that includes all the relative attributes of a
tracked filament. The method uses two main thresholds for achieving the comparison
process while comparing the tracking tables for three consecutive days. The first limits
the search area and the second bounds the possible final search region. The process
starts by reading the location (latitude and longitude) of each filament in the first table
and compares that with the entries in the second table within a 5° circle from the
predicted location. If no match is found then the search process continues in the third
table. The search process is extended up to three days or until the predicted locations
falls beyond the 60° filament detection limit. If after three days the filament is not
found, it is considered as disappeared. Two latitude circles have been adopted to restrict
the search results between the tables of the different days within 5° circle and to restrict
the search process to a latitude circle of 60° which will prevent the detecting of the
disappearance of prominences.

Carrington maps are used to achieve the tracking process by Aboudarham

(Aboudarham et al., 2008) where all the detected filaments during each solar rotation
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are plotted by applying a region growing technique on those plots. This study needs to
be validated as expressed clearly by the authors themselves.

An automatic tracking method based on a labelling criterion has been described by
Joshi (Joshi et al., 2009). Filaments of the new images are compared with filaments of
the previous images; if they are found to lie within a distance of 15 pixels from each
other, the filament label of the original image is assigned to the corresponding filament

of the new image. This 15 pixel search area was the major limitation of Joshi's work.

2.6 Conclusions

Although there have been tremendous efforts over the past decade in the area of
automatic detection of solar filaments, it can be shown from the previous description of
the three fundamental classes of digital image processing operations that there still exist
key challenges in all these classes. These include: achieving fully automatic system
implementation for filament detection, merging broken structures and detecting filament
disappearances; consideration of the existence of miss-detected filaments that still need
to be identified and detected correctly; the implementation of a real-time system; the use
of spatial and orientation considerations for the merging process instead of simple
morphological closing operations; a faster implementation of the filament spine process
than previous methods; finally, the extensive use of morphological operations for
achieving a more optimal merging process. To reach the ultimate goal of this research,
which is implementing an automated filament tracking system, the process should run
through several related phases: image pre-processing; image segmentation; solar
filament detection; characterizing these filaments; merging broken structures; and
detecting filament disappearances. Many filament studies during the last decade have
covered these phases by using different image processing techniques, including (Gao et
al., 2002, Shih and Kowalski, 2003, Qu et al., 2005, Fuller et al., 2005, Bernasconi et

al., 2005, Qahwaji and Colak, 2005, Aboudarham et al., 2008, Joshi et al., 2009 and
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Yuan et al., 2011). However, for the last phase few investigators have actually
implemented a fully automatic detection of filament disappearances: (Gao et al., 2002,
Qu et al., 2005, Bernasconi et al., 2005, Aboudarham et al., 2008 and Joshi et al.,
2009).

Regardless of the number of studies undertaken; all of them look to solve the two
main challenges of implementing an automated system and achieving this in real-time.
This makes their implementation and development more difficult.

The following chapters discuss the stages involved in implementing a fully
automated filament detection system in real-time. Chapter Four introduces an improved
image segmentation algorithm and describe the implementation of the filament spine
representation. Chapter Five describes the merging technique that utilizes the findings
of the spine extraction to merge the broken structures using a NN. Chapter Six describes
the implementation of a tracking technique which includes the filament detection stage
and the creation of an HCM. A NN is used to categorize the detected filaments as DFs

or MDFs.
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CHAPTER THREE

3  SOLAR DATA

3.1 Introduction

This chapter reviews the two data types that were used in the practical work of this
thesis. These types include solar images that are downloaded online from observatories
such as the Meudon Observatory®, included in the Global High Resolution H-alpha
Network (GHN)? that is operated by the Space Weather Research Lab (SWRL). These
images are used throughout the different phases of the present algorithms. The last
phase, filament tracking, makes use of another type of solar data. These are taken from
the data catalogues: the NGDC* and filament disappearance catalogue of SWRL.

This chapter is organized as follows: Section 3.2 identifies the solar images used in
the different methods of this thesis. The catalogues of filament disappearances are
described in Section 3.3. Conclusions on the contents of the different observatories and

catalogues are discussed in Section 3.4.
3.2 Solar Images

Generally, solar images are obtained from many ground-based and space-based
observatories. Although the space-based observatories being above the Earth's
atmosphere avoid the effects of atmospheric turbulence and instability, they can more
specifically be used to observe at particular wavelengths of the electromagnetic
spectrum (like infrared, ultraviolet, x-ray, and gamma rays) that are impossible or

difficult to observe using ground-based observatories. This is because they are either

! http://www.obspm. fr/

2 http://swrl.njit.edu/ghn_web/
® http://swrl.njit.edu/

* http://www.ngdc.noaa.gov
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absorbed by the Earth’s atmosphere or are blocked by some other mechanism. However,
ground-based observatories are cheaper to build and easier to maintain than space-based
observatories. They have also been improved to get clearer solar images using adaptive
optical compensation techniques to combat the turbulence of the atmosphere. These
ground based observatories are used to monitor the Sun in specific segments or
windows of the electromagnetic spectrum (like radio and visible light).

All the solar images that were used in this research are full-disk solar images
(spectroheliograms) which were observed at the Meudon observatory and downloaded
from the Global High Resolution H-Alpha Network observatories. The
Spectroheliogram is an instrument designed to produce monochromatic images of the
Sun in various wavelengths. The Meudon spectroheliograms include Ha images, Ca 1l
K1 images, Ca Il K3v images and Ca Il K3p images. The Spectroheliograph provides
images of the solar photosphere via the K1v images and of the solar chromospheres via
the K3 and H-alpha solar images. These data are acquired once a day. The four types are
shown in Figure 3.1. The Ca Il K observations are very sensitive to the presence of
regions with very strong magnetic fields like active regions and sunspots (Qahwaji, et
al., 2005), (Ermolli et al., 2009).

The chromosphere can be observed using the very narrow spectral band of light
known as the hydrogen-alpha line. The Ha line is a strong spectral line (high
absorption) which has a wavelength of 656.3 nm (red light). In this line we can see up to

1700 km above the visible layer (National Solar Observatory, 1996).
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(a) (b)

Figure 3.1. The four types of Meudon Spectoheliohraphs observed on 30" September 2001.
(@) Ha spectroheliogram observed at 06:43:00. (b) Kilv spectroheliogram observed at
09:45:00 (c) K3 spectroheliogram observed at 07:04:00. (d) K3 (prominence)

spectroheliogram observed at 07:15:00.

The spectroheliograms in which filaments are best seen are Ha images, as shown in
Figure 3.2.a, so that these are used in this study. Figure 3.2.b shows a synoptic map
manually constructed at the Meudon Observatory to record the locations of the observed

filaments.
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(@)

BES200Fard s Dbservatory

Figure 3.2. (a) Ha image observed at Meudon Observatory on 02-Jan-2001 08:50:00.

(b) The synoptic map for the solar image of (a).

In the segmentation phase of this system, a False Acceptance Rate (FAR) (Hong and

Jain, 1997) is estimated by comparing the detected filaments with those detected

manually and recorded in the synoptic maps. Figure 3.3 illustrates the different layers of

the Sun: the corona, the chromosphere and the photosphere.In addition to filaments, Ho

images show other solar features such as: plages, short-lived solar flares, sunspots and

elongated filaments. Filaments in these images appear obviously as dark ribbons against

their brighter background.

Internal structure:
inner core

radiative zone
convection zone,

Subsurface flows

Se Photosphere

Chromosphere

Figure 3.3. Layers of the Sun. NASA.
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The general format of solar image filenames from the Meudon Observatory® is
composed of three parts, image type, date and time. An image filename is shown in the
example below.

Example: mh010102.085000.gif

Starting from the left, the first two characters, mh, represent the type of the image
(mh for Hao images (chromosphere), mk for Ca II K1 images (wing of the line,
photosphere) and for Ca Il K3 images (centre of line, chromosphere) and mp for Ca Il
K3 prominences). The second part, 010215.082336, corresponds to the image date and
time (the first part of it is the date in the format (YYMMDD); note that the first two
numbers are the last two digits of the year, whilst the second part is for the time, with
the format (HHMMSS)). The last part of the image filename, gif, is the image file
format.

The global high resolution H-alpha network includes the set of H-alpha stations
which are managed and maintained by the SWRL. These stations include: the Big Bear
Solar Observatory (BBSO) in California, the Kanzelhghe Solar Observatory (KSO) in
Austria, the Catania Astrophysical Observatory (CAO) in Italy, Meudon and Pic du
Midi Observatories in France, the Huairou Solar Observing Station (HSOS) and the
Yunnan Astronomical Observatory (YAO) in China, the Mauna Loa Solar Observatory
in Hawaii, and the Uccle Solar Equatorial Table (USET) in Belgium. These stations
monitor the solar activity of the chromosphere twenty four hours a day. The data set
used here is mainly collected from the: BBSO, Kanzelhthe solar observatory (KNZ)
and Observatoire De Paris, Section De Meudon (MEUDON) observatories.

The SWRL was established in September, 2008 by the New Jersey Institute of
Technology (NJIT)®. SWRL focuses scientific research in the area of space weather. Its

mission is to understand the magnetic activities of the Sun and their effects on the near-

% http://bass2000.0bspm.fr/data_guide.php?what=all#spectro_general
® http://www.njit.edu/
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Earth environment. Its tools are being developed to monitor, understand and forecast
solar activity and its geomagnetic effects. The reason behind the use of this network in
the present study is the availability of successive images from its different observatories
that gives benefit in the process of tracking.

The SWRL network follows the SOHO convention for file naming’, except that the
observation time will have six characters with the format HHMMSS instead of four
characters and the miscellaneous info code will be modified to represent different
spatial resolution and calibration data. The file name will consist of 33 characters

(including four underscore characters and a dot) as shown in the example below.

Example: bbso_halph_fr_20010216_164558.jpg

Reading from left to right: the first four characters, bbso, are the institution code, the
next five characters, halph, are the image type code, the next two characters, fr, are the
miscellaneous info code (all such codes are shown in Table 3.1), the next eight
characters, 20010216, are the observation date in yyyymmdd format (16/02/2001), the
next six characters, 164558, are the observation time in hhmmss format (16:45:58) and
the last three characters, jpg, represent the file type.

Table 3.1. BBSO Miscellaneous Info Code.

Code Description
FI Full disk raw image (Singer or photometric telescope).
FL Full disk image dark subtracted and flat field corrected.
FR Full disk image limb darkening subtracted.
FF Full disk flat field frame.
FD (Full disk dark frame).

" http://www.mssl.ucl.ac.uk/grid/iau/extra/local_copy/BBSO_SOHO_filenames.html
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The Singer telescope mentioned in Table 3.1 was built by Boller and Chivens under
contract to the Link Division of Singer-General Precision in New York; it is from here
the name Singer originates (Denker, et al. 1998). Corrections to the raw sensor data are
required because the camera pixels have non-zero responses to no light (dark) and
different sensitivities to light (flat field). Separately, the brightness of the solar disk
decreases towards the limb due to increased absorption of light in the solar atmosphere
(limb darkening). In the work presented here, BBSO images with the FR miscellaneous

info code, which are corrected for dark, flat-field and limb-darkening have been used.
3.3 Data Catalogues

Solar catalogues are lists or tabulation displays which have been produced for several
aspects of solar activities over many years. Most of these catalogues are available online
in electronic format and can be freely downloaded. Solar filament catalogues are
intended to provide values for the features of these filaments. A related type is
catalogues of solar filament disappearances, which are the subject of the discussion in
the next subsection. They are available in two existing online catalogues, which are

dependent on the NGDC and SWRL ground-based observatories.
3.3.1 Filament Disappearances Catalogues

Two different catalogues were used in this study for filament tracking, the last phase
of this research. These are the NGDC® and the SWRL® catalogues. The former
catalogue provides near complete detail about different solar features and activities; in
particular, it tabulates the Solar Filament Disappearances as text files, like that shown in
Table 3.2. This table lists all DF events detected in January 2001. The results of

filament disappearances detected by the algorithm were evaluated against the contents

® ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FILAMENTS/, last access: 2012.
% http://swrl.njit.edu/ghn_web/
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of the NGDC manual catalogue. The contents of this catalogue are classified and
arranged based on human observation of the filaments.

Table 3.2. The solar filaments and prominences as tabulated by NGDC for January, 2001.

Date Sifart E_nd Position Event Extent CMP End Time NOAA| SSN|Quality
Time | Time Type Date [

77010117{1404 1424 |314E90 |EPLA1 E 99 10124 4 1 |25VTO
77010119{2137U 11410 |S18E08 |DSF E0S00 [101206 |S22E16 1 | 3RAMY
77010121[1912 1917 |SO7TE40 |DSF3  |EO700 101248 |S10E37 |S1[}E36 9313 1 | 3RAMY
77010124]1616U 12050 [S14W47 |DSF E0B00 101211 |S18W40 1 | ARAMY
77010124]1616U 12050 [N13W13 |DSF E1600 101237 |N20W15 |N20W25 2 | IRAMY
77010129]23220 15340 [N289E12 |DSF3  |E2400 101309 [N19W10 1 | 3HOLL
77010131[{1536 1644 |522W80 |BSD E 00 1012556 |S23W86 9316 ] 1 | 3HOLL
77010131[{1536 1044 |377W21 |BSD E1100 |10129.7 |S89W23 9316 | 1 | 3RAMY
77010204[13260 (06340 |[N24E55 |DSF2 |E0800 |0102 8.8 |N20E6G1 1 |3SVTO
77010209(2137U 12120 |[N15W29 |DSF E1400 0102 7.7 [NO1TW31 1 | 3RAMY
77010209]2137U 12120 [N11E2T |DSF E0900 102119 |N20E24 2 | 3RAMY
7701020915190 |0939U [N29W11 |DSF E0900 (010288 |N27W03 1 | 3ASVTO
77010209]1519U |0939U [N27E13 |DSF E0GO0  |102106 |N24E18 2 |3ASVTO
77010215{0018U 14070 [N20E20 |DSF E1500 |10216.5 1 | 3HOLL
7701021509440 |2317U |S25E1T7 |DSF EO700  |10216.7 |S18E20 1 BLEAR
7701021509490 |2346U [S45E21 |DSF2  |E2500 102171 |S35W02 1 |3LEAR
77010215[19541) |1444U |S27E02 |DSF E1700 10216 N18E13 1 | 3RAMY
77010216{09440 |2317U |S25E17 |DSF EO700 [10217.7 |S18E20 1 | 3LEAR
77010216{2113U |1138U |S50E36 |DSF E0300 [10219.9 |S48E38 1 | 3RAMY
7701021615380 |0627U |S27E11 |DSF E0B00 102175 |S21E16 1 | 3ASVTO
7701021719280 |1444U |S25E08 |DSF3  |EOBOO [102184 |S19E16 1 | 3HOLL
7701021709470  |23110U [N3BW38 |DSF E0500 102143 |N39W33 1 | 3LEAR
7701021920270 17000 [S35W23 |DSF E1000 |10218 S39W13 1 | 3RAMY
7701022611912U 12140 [S16W10 |DSF E1200 10226 S17W05 I S22E00 1 | 3ARAMY
7701022615450 12130 [S16W09 |DSF E1100 |10226 S21E01 1 ]3sSVTO
77010228[1146 13230 |317W05 |DSF1 |E1100  [10228.1 |S25W13 1 | 3RAMY
77010228[1734U |1113U |S30E40 |DSF ENS00 [0103 3.9 |S22E42 2 | 3RAMY
77010301[{08460U |0039U |[NOSW21 |DSF2  |E250000|10227 .9 1 | 4LEAR
7701030110230 |2302U |S33E18 |DSF E0B00 (010329 |S30E26 1 | 3LEAR
77010306]1025E |0 N22W44 |LPS E 00 0103 2.0 9371 1 | 3ASVTO
77010306]1025E 13070 [N21W44 |LPS E 00 0103 2.1 9371 1 ]3sSVTO
77010306[10110  |2301U |S33E26 |DSF EO700 (0103 8.5 |S27TE22 1 | 2LEAR
77010307110150  |2304U [N40EG3 |DSF2  |E2100 [10312.5 |[N29E45 1 | 3LEAR
77010309{0858U |2316U |S05E18 |DSF2 |E 0000 |10310.8 1 | 3LEAR
77010311[2333 6 S12E80 |EPL3 |E 00 10318 9376 1 | 3HOLL
77010311{2006U 11190 |S55E04 |DSF E2200 [10312.2 |S56E2T 1 | 3RAMY
7701031114300 |1356U |S56E03 |DSF E2400 103119 |S56E27 1 | 3ASVTO
7701031200300 |1338U |SGOEQS |DSF E2500 103125 |SG0OE30 1 | 3HOLL
77010313]23290 14110 [S41W29 |DSF E0900 103116 |S34W34 1 | 3HOLL
7010313121110 11410 [S27W40 |DSF E1700 103108 |S40W31 1 | 3RAMY
77010314|625 1168 |S37TW3a8 |DSF3  |E1000 103112 |S41WW45 |S43W4[} 1 ]3SVTO

The source images used in this catalogue are from the Solar Observing Optical
Network (SOON) in Boulder, Colorado, USA. This network is an American Air Force
Global Network for ground-based solar observatories (U.S. Air Force Fact Sheet, 2010).

The first column of Table 3.2 shows the data code which always starts with 77 and is
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followed by the estimated date (YYMMDD) of filament disappearances. The second
column shows the estimated time of disappearances in hours and minutes (or start of a
data gap). The third column indicates the uncertainty in time of disappearance in hours
and minutes (or end of data gap). The start and end time in this catalogue are sometimes
accompanied by the three letters, D (After), E (Before) and U (Uncertain). Column four
indicates the location of the active filament centroid with N or S for North and South
latitudes, E or W for East or West central meridian distance. The type parameter in
column five classifies filaments into one of the fifteen different types shown in Table
3.3. Column Six contains for limb events; the radial extent above the limb while for disk
events it contains the heliographic extent in whole degrees. The CMP date is the Central
Meridian Passage Date which is shown in column seven. When a filament is longer than
10 degrees, the locations of the ends are also given in column eight. Column Nine
shows the NOAA/USAF region number, if it is known. SSN is the Station serial number
for this region and is shown in column ten. The final column contains the Quality (1 =

poor to 5 = excellent), in addition to the station name.

Table 3.3. Filament Types.
Type | Description

SSB | Solar Sector Boundary
MDP | Mound Prominence

CRN | Coronal Rain

CAP | CAP Prominence

LPS | Loops Prominence System
SPY | Spray

BSD | Bright Surge on Disk
APR | Active Prominence

DSD | Dark Surge on Disk

ADF | Active Dark Filament
ASR | Active Surge Region

AFS | Arch Filament System
BSL | Bright Surge on Limb
EPL | Eruptive Prominence on Limb
DSF | Disappearing filament
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Another tabulated form for filament disappearances, like that shown in Table 3.4,
was created by SWRL. This catalogue lists features of the disappeared filaments, which
include: in the first column, the last appearance time (the last date and time the filament
appeared); in the second column, the first disappearance time (the first date and time the
filament disappeared); in the third column the position (the location of the disappeared
filament in latitude and longitude); and finally in column four, the filament size (area).

Table 3.4. Part for the filament disappearance, tabulated by SWRL for Year 2005.

Last Appearance Time First Disappearance Time | Position(latitude,longitude)| 5Size(square arcsec)
05/08/2005 15:26 05/08/2005 22:06 W2N33 3397
05/08/2005 22:06 08/08/2005 17:49 W17N18 3947
10/08/2005 16:50 10/08/2005 18:50 W4ON19 470
10/08/2005 20:50 10/08/2005 22:50 W51N15 780
17/08/2005 15:24 17/08/2005 17:23 E51N20 719
18/08/2005 23:24 19/08/2005 15:2% E24N52 1407
19/08/2005 19:29 19/08/2005 21:2% WIN1 1103
29/07/2005 17:24 29/07/2005 23:16 W12N29 807
28/07/2005 22:07 29/07/2005 15:23 W26547 7
28/07/2005 22:07 29/07/2005 15:23 WEN16 819
28/07/2005 22:07 29/07/2005 15:23 E24520 1845
27/07/2005 23:17 28/07/2005 15:22 W7520 464
26/07/2005 20:36 27/07/2005 18:37 E19N1% 1303
26/07/2005 20:36 27/07/2005 18:37 E5MN12 1782
25/07/2005 17:41 25/07/2005 22:23 E29517 841
25/07/2005 17:41 25/07/2005 22:23 E44N17 1040
21/07/2005 22:21 22/07/2005 15:2% W15N13 860
19/07/2005 17:29 19/07/2005 22:15 E1515 831

3.4 Conclusions

Some of the solar images used in this work were downloaded from the Meudon
observatory, but images were found to be missing from the solar survey archive over
certain time periods. Other solar images were downloaded from the Global high
resolution H-alpha network of SWRL. This network includes observations for around
30 years obtained from several observatories spread round the globe. Ho images
were downloaded from some of these stations in different formats with different
miscellaneous information codes. The one most suited for the various phases of this

study is the FR miscellaneous information code - which is dark and flat-field
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corrected and with limb-darkening correction. Although this network collected solar
images from different solar stations; there are still some images which are missing
for certain time periods. The first of two catalogues that record filament
disappearances is the SWRL filament disappearances catalogue (Yuan Yuan.
yy46@njit.edu. Solar Filament Disappearances. 17 November 2011). This represents
results for the time period from 1991 to 2005. These results are displayed within nine
pages: each containing fifty disappeared filaments, to give a total of four hundred
and fifty disappeared filaments over the fifteen years. The second catalogue is the
NGDC manual catalogue which is used in the current study as a reference for
validating the number of disappeared filaments. Its tables list all the DF events
detected between 1991 and 2012 (C D Slisser. Justin.Mabie@noaa.gov. Catalogue of

Solar Filament Disappearances. 15 July 2011).
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CHAPTER FOUR

4  AUTOMATED ALGORITHM FOR DETECTING SOLAR

FILAMENTS

4.1 Introduction

Detecting and characterizing solar filaments are important for several aspects of solar
activities because of their association with the occurrences of CMEs — these are major
solar eruptions that could cause geomagnetic storms on Earth. Efficient detection
systems should be fully automated and work in real-time, which makes their
implementation and development harder.

This chapter introduces an automated detection method for solar filaments that has
avoided using any empirical values to produce a fully automated technique. Definitely,
the time-factor will affect synthesizing a filament detecting and tracking system to be
part of a proposed real-time system. This factor could prevent the system from
producing real-time space weather alerts and quick look-up results. Significantly, the
accuracy of detecting the spines of filaments plays an important role in identifying its
main attributes under consideration and as well as better achieving the subsequent
image post-processing tasks.

This chapter is organized as follows: Section 4.2 introduces an improved image
segmentation algorithm. The detection algorithm filament boundary extraction and
spine detection techniques are described in Section 4.3. Section 4.4 presents the
computational demands of the proposed technique. Conclusions on the associated

findings and comparisons with previous work are discussed in Section 4.5.

40



4.2 Solar Image Segmentation

The solar image segmentation stage is still a challenge which can be addressed by the
adaptive detection of solar features. A more accurate implementation would play a key
role in recognizing and detecting the features with higher probability. In this section, a
modified and enhanced segmentation phase, based on the pre-processing and cleaning
technique proposed in (Qahwaji and Colak, 2005), to improve their segmentation results
is described. This adaptive local thresholding (ALT) technique depends on sliding two
windows over the whole image. In this technique, a selection is made to classify the
pixel contents of the enhanced image (EI) into potential filament pixel or background
pixel based on the instructions in 4-1 (Automated detection of masses in mammograms

Kom et al., 2007):

Fori=1tomdo
For j=1tondo
If(EI(i,j)>TH(i,j) and Ry >Xsy )then
El(i,j)e Candidate filament area
Else (4-1)
El(i,j)e Normal area
Endif
Endfor j
Endfor i
Where m x n is the size of image, subscripts LW and SW, indicate large and small

windows centred on pixel at i, j, TH(I, j) is an adaptive threshold value that is calculated

by the formula shown in Equation 4-2, Ry, is the range of values in the large window

also shown in Equation 4-2, X, represents the average pixel intensity in the small
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window. El . (i,j) and El (i, j) are the maximum and minimum intensity values

min

respectively within the large window.
TH(i,j) = Xsw — Rw
and (4-2)
Riw = Elpax(L,)) — Elpin(i,))

From experiment, the dimensions of the large window were chosen to be 17x17 pixels
and those of the small window were chosen to be 3x3 pixels. These sizes gave the best
trade-off between accuracy and speed of execution. The whole algorithm for

segmenting the solar image can be summarised as shown below:

Segment_Algorithm()

{
For each pixel:
Max:= maximum intensity value in the large window
Min:= minimum intensity value in the large window
R,y : = Max-Min
Xsy . = average of intensity value in the small window
TH: = Xsy — Riw
If ((Pixel Intensity value > TH) AND (R, >Xsy, )) then
The Pixel belongs to the region of interest
Else
The Pixel belongs to a non-region of interest
}

The algorithm was applied to Ha solar images like the one shown in Fig 4.1.a. The
segmented filaments were tested by comparing the resultant image with the manually

constructed synoptic maps like that shown in Figure 4.1.b. The maps contain all the
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solar filaments seen on a given day. Figure 4.1.a represents the enhanced image that is
used as input to the segmentation method. Some results from applying the technique are
shown in Figure 4.1.c. The primary goal of all solar filament segmentation techniques is

to obtain well defined filaments, and a low FAR.

(b)

(a) 2881/87/38 BRSS2000/Paris Observatory

(c) (d)

Figure 4.1. Results of applying the ALT technique. (a) Input Image (Enhanced
Image), original Ha image observed at Meudon observatory on July 30, 2001. (b)
Synoptic map for the Ho image shown in (a) downloaded from Meudon
Observatory. (c) The output image after Applying ALT. (d) The output image

after applying ALT&YV on the same image.
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The performance of the detection algorithms are evaluated using the FAR measure
(Hong and Jain, 1998) which is the probability of a non-region of interest (non-Rol)
being detected as a Rol. The algorithm is compared with the results of the Adaptive
Local Thresholding and Verification (ALT&V) which is presented by Qahwaji
(Qahwaji and Colak, 2005) as shown in Figure 4.1.c and Table 4.1. It seems, by
comparing figures 4.1.c and 4.1.d, that the ALT has the advantage of detecting more
unambiguous filaments whilst introducing less noise than the ALT&V result shown in

Figure 4.1.d.

Table 4.1. FAR Values for Synoptic Maps and ALT.

Synoptic maps | ALT ALT&V
Problem - - -
Filaments Filaments |FAR (%) | Filaments FAR (%)

02/07/2001 |44 28 0 44 15
03/07/2001 |45 33 0 45 5
04/07/2001 |38 18 0 38 3
06/07/2001 |50 43 10 50 18
09/07/2001 |41 28 2 41 12
10/07/2001 |39 21 0 39 15
11/07/2001 |32 29 9 32 7
15/07/2001 |32 32 19 32 31
16/07/2001 |26 28 42 26 36
17/07/2001 |34 20 0 34 31
19/07/2001 |41 43 22 41 27
20/07/2001 |36 29 8 36 24
21/07/2001 |36 37 6 36 4
22/07/2001 |40 46 23 40 21
25/07/2001 |34 22 0 34 18
26/07/2001 |37 33 11 37 9
29/07/2001 |38 23 0 38 11
30/07/2001 |52 36 2 30 18
31/07/2001 |43 38 5 31 2
03/08/2001 |46 44 22 3 29
04/08/2001 |37 26 0 4 33
Average 39.1 31.3 9 33.9 19

Generally, the system performance requirement is specified in terms of FAR, where
FAR of zero means that no non-Rol is detected as a Rol. The findings from Figure 4.1
are confirmed according to this criterion by observing the number of detected filaments
and FAR values for the two algorithms, which are shown in Table 4.1. The first column

shows the date of every Ho image, while the total number of filaments that are detected
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manually by synoptic maps is shown in the second column. The remaining columns
show the number of filaments and FAR values obtained using the ALT and ALT&V
techniques. The table shows the improvement that is achieved over ALT&V by
reducing the average FAR error rate from 19% to 9%, while the difference in detections

is less than this. Both methods detect fewer filaments on average than shown in the

synoptic maps.
4.3 Filament Detection and Boundary Extraction

In this section, algorithms used to detect the shape and size of filaments and extract their

boundaries are described.
4.3.1 Filament Detection

Filament detection means extracting and identifying the actual filament area as an
elongated object in Ha solar images. An important achievement in this area is the work
carried out by (Qahwaji and Colak, 2005) - where processes for recognizing and
verifying solar filaments and active regions from Ha images were introduced. The solar
images used in this work were pre-processed (cleaned and enhanced) as described in
(Qahwaji and Colak, 2005). The filling algorithm defined in this paper is also used to
distinguish between the background region that lies outside the solar disk and the region
that lies inside the solar disk. This was followed by applying an intensity filtering
technique to detect the candidate pixels for the filaments. The process ends by applying
a region growing technique to detect regions of interest that were not detected by
intensity filtering. Additionally, the intensity filtering stage in (Qahwaji and Colak,
2005) is further improved by applying the adaptive thresholding technique presented by
Atoum (Atoum et al., 2009). This method is further enhanced by developing a fully
automated detection technique that includes retrieving the actual filament area from the

region grown one.
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The detection method starts by computing the mean u, and standard deviation o5 for
every filament area. Thereafter, the standard deviation ¢,,,, maximum value W,,,, and

minimum value W,,;, are calculated over a 5x5 pixel neighbourhood centred on every

pixel of the region grown image. Then the threshold TH, calculated using Equation 4-3.

TH=MR + a * of (4-3)

Where MR is the mid-range value (W0 — Winin)/2.0 . The value of « is calculated
using Equation 4-4 for solar images from the Meudon observatory or using Equation 4-

5 for solar images from BBSO and KANZ observatories.

a = o,/MR (4-4)
a=ﬁ/aw (4-5)

The thresholding rule shown in Equation 4-6, is then applied:

1, I(x,y) <TH and TH < Ur
fl,y) = (4-6)

0, Otherwise

Where f(x,y) represents the detected filament and I(x,y) is the region grown
filament. Figure 4.2 illustrates the main steps of the filament detection technique. The
result of the whole detection process is shown in Figure 4.3.d. This technique has the

advantage of being fully automated.
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For i=1 to number of images
For j=1 to number of filaments in each image
Stepl: Compute Filament p.
Step2: Compute Filament o .
Step3: Over a 5x5 window:
Q) Compute the window min and max values.
(i) Compute the g,,.
(i) Compute the threshold value (TH) according to Equation
(4-3)
(iv)  If (Pixel Value <TH AND TH < puf) Then
Pixel Value =1;
Otherwise
Pixel Value=0;
Figure 4.2. Pseudo-code for the Detection Process.

The output image of this detection method still suffers from the presence of small
unwanted pixels and holes. These should be removed without distorting the image,
noting that it is impossible to remove such noise totally without distorting the image.
Nevertheless it is a vital step in reducing the image noise to an acceptable level which is
a fine line between removing the noise completely which will distort the image and
affect the important filaments or retaining sufficient noise so as not to have too many
falsely detected filaments. Morphological operators are one tool which could be used to
remove these pixels and fill the small holes at the same time whilst relatively preserving
the corner details.

These operators could achieve the previous task by using a combination of dilation

and erosion operators. Note that, they have they the disadvantage of merging close
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elements but using a small structuring element will, due to the existing small size of

these ‘spots’ and ‘holes’, avoid such shortcomings.

(a) (b)

Figure 4.3. The results from the whole detection process applied to Ha image
observed at Meudon observatory on February 8, 2001. (a) Original Image. (b)

Segmented Image. (¢) Region Grown Image. (d) Detection Results.

The opening morphological operator, consisting of erosion followed by dilation, has
been implemented using a 3x3 square structuring element to eliminate noise (small
unwanted pixels in the detected image) while preserving the shape and size of the larger
objects. To remove other unwanted isolated spurious pixels an area thresholding

operation has been set as given in Equation 4-7.
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im
T = gmean/imgMR (4_7)

Where img,,,.qn 1S the mean value of the whole image and imgy is the mid range of

the whole image and it is equal(lmgmax B lmgmi”)/z, iIMGmar aNd imgminare the

maximum and minimum respectively for the whole image. If the object area is less than
this threshold value T then it will be removed. Another closing operation was
implemented afterwards using a 3x3 square element to fill in the empty pixels left after
the previous operations. The closing operation is a dilation followed by an erosion

operation.
4.3.2 Boundary Extraction

Determining the filament’s boundary is a necessity for the subsequent activities;
spine extraction and filament merging. Morphological image processing is a collection
of image processing techniques that deal with the structure of features in an image
(Efford, 2000). There are three primary morphological techniques: erosion, dilation and
hit-or-miss operators. One application of erosion operation is boundary finding. The
boundary is extracted by subtracting the eroded image from the original image r, as

shown in Equation 4-8 below:

g=r—(r0s) (4—-8)

s is the SE, © is the erosion operation, and g is the image of the region boundaries. The
size of the SE is chosen to be of 3x3 pixels in order to identify a one-pixel-wide

boundary. Figure 4.4.a shows a detected filament and Figure 4.4.b shows its boundary.
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(a) (b)

Figure 4.4. Boundary detection results by using a horizontally aligned filament
from an Ha image observed at Meudon observatory on January 2, 2001. (a) Detected

Filament. (b) Filament Boundary.

4.3.3 Spine Description and Extraction

The accurate detection of the filament’s spine could provide accurate description for
the shape, size and orientation of the filament. An accurate spine detection algorithm
should satisfy the following requirements (Fuller et al., 2005; Ingrid et al., 2002):

1. Non-linearity: The spine should pass through the middle of local regions,
following the body of the filament as a curve not as a line.

2. Morphology: The spine should retain the shape of the original feature.

3. Adaptation: The shape of the spine should match any changes in the filament
shape.

4. Connectivity: The spine points should be connected.

This work does not describe the spine as a set of line segments, where a threshold
can be used to control their size and number as done by Bernasconi (Bernasconi et al.,
2005). Additionally it does not make extensive use of the morphological operations
(standard thinning and skeletonization) to extract the filament spine as done by Fuller
(Fuller et al., 2005) because this could require significant computational time.

Instead a new automated technique for detecting and extracting these spines is

proposed. This new technique represents the spine as a smooth curve, which passes
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through the middle of the boundary data. This produces a curve, instead of a set of line
segments, represented by a set of connected points. To determine these curves, six
consecutive steps are implemented for each filament as shown below and illustrated in

Figure 4.5.

(a) (b)

(©) (d)

(€) (f)

Figure 4.5. The steps implemented for spine determination. (a) Solar filament. (b)
The three line segments. (¢) The middle of the longest line segment. (d) The full
four line segments that pass through the seed pixel. (e) The longest line segment. (f)

The opposite longest one of e.
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Step 1: Determine the initial seed pixel.

Step 2: Determine the starting Vertex.

Step 3: Determine the four line segments passing through this starting vertex.

Step 4: Find the longest line segment.

Step 5: Projecting and averaging the perpendicular line segments.

Step 6: Maintain the continuity of the drawn spine.
A seed pixel is first determined by moving from the lower left to the lower right
boundary of the rectangle that encloses the filament like that shown in Figure 4.5.a.
When a white pixel is found, three line segments are drawn from it towards the filament
body as shown in Figure 4.5.b. Finally, the middle point of the longest line segment is
chosen to be the seed pixel for drawing the spine, as shown in Figure 4.5.c. Moving to
the next vertex requires drawing the four line segments in the directions shown in

Figure 4.6 below.

A

o — -

AR

Figure 4.6. The four line directions.

These lines pass through the seed pixel (the first vertex determined in Figure 4.5.c)
towards the boundary of the filament as shown in Figure 4.5.d and the longest is chosen
as shown in Figure 4.5.e. This segment guides the part of the spine opposite the longest
line segment as shown in Figure 4.5.f, which will determine the starting part of the
spine to complete the drawing of the full spine.

The next projection and averaging phase of the algorithm proceeds as follows. For
each point of the longest line segment, a perpendicular line is drawn and the mid-point

found between the points where the perpendicular intersects the filament boundary, as
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shown in figures 4.7.a and 4.7.b. The result of the projection process applied to the
initial part of the spine is shown in Figure 4.7.c.

This process is repeated and to prevent the redrawing of the previous line segment
step, the previous drawing direction is preserved as a reference for the next movement.
This requires ignoring any direction that will guide the spine to go back to its previous

starting position as shown in Figure 4.7.d. The final curve is shown in Figure 4.8.

(a) (b)

Figure 4.7. Projecting and averaging phase of determining the spine. (a) The
projection result. (b) The averaging result. (c) The spine of the first longest line
segment and its opposite longest one. (d) The continuity while preserving the

previous orientation to determine the next movement.

The resulting discrete curve is represented as discontinuous points. Some of these

points are missed because finding the mid-point of the perpendicular line segments that
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intersects the largest line segment produces consecutive discrete points as shown in
4.9.a, for which at the end needs to be connected so as to maintain the continuity of the

drawn spines.

b
(b) ©

<7

Figure 4.8. The complete filament spine: (a) Full spine of a horizontally aligned
filament. (b) Full spine of a filament in an Ha image observed at BBSO

observatory on February 9, 2002. (c) Full spine of a vertically aligned filament.

An algebra slope-intercept algorithm (Hearn et al., 1997) is used to connect these
separated points by drawing lines between them as shown in Figure 4.9.b. In this
algorithm any straight line on the co-ordinate plane can be described by the equation

ax+by+1=0.

(@) (b)

Figure 4.9. The result of applying the slope-intercept algorithm. (a) Before

applying the algorithm. (b) After applying the algorithm.
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4.4 Critical Evaluation of the Implemented Algorithm

In order to demonstrate the performance of the Atoum spine drawing algorithm,
results were compared with those from Bernasconi’s algorithm (Bernasconi et al.,
2005). The two algorithms were applied to ninety eight filaments of various sizes
collected empirically from solar images obtained on the dates: 1/1/1999, 2/1/1999,
3/1/1999, 2/1/2001, 3/1/2001, 4/1/2001, 29/7/2001, 30/7/2001 and 31/7/2001. It was
found that the Bernasconi filament spines are more adapted for large filaments. This is
demonstrated by setting a threshold for the length of the line segment to be twenty
pixels in the Bernasconi algorithm. It is also apparent that the Atoum filament spines are
more convoluted precisely because they accurately follows the bodies of the filaments,

as they goes through the middle of the features as shown in Figure 4.10.

Figure 4.10.a shows an original filament and Figure 4.10.b shows the spine obtained
by running the Atoum code drawn over the original filament. The figures 4.10.d, 4.10.f
and 4.10.h show the spines drawn using the Bernasconi algorithm with different starting
lines. The first guessed line is determined by Bernasconi as explained in (Bernasconi et
al., 2005) by running roughly parallel to the longest side of the box that just encloses
the filament under consideration. Figure 4.10.d shows the output if the first guessed line
is chosen as in Figure 4.10.c where AB is the longest side of the box (one of the longest
sides of the box that encloses the filament), while Figure 4.10.f shows the drawn spine if
the first guessed line is chosen as in Figure 4.10.e where CD is the longest side of the
box that encloses the filament. If the first guess line is chosen as in Figure 4.10.g, the
line produced by going from c to d row-by-row going up until we get one end-point and
going from d to b column-by-column going back until we get the other end-point , then

the output will be as shown in Figure 4.10.h. These results illustrate the better accuracy
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of the Atoum algorithm which is a characteristic of crucial importance for the automatic

determination of the filament spine.

(@) (b)
(c) (d)
NI I
C - D
(e) ()

(9)
B

A
)
C D

Figure 4.10. Samples illustrating the filament tortuousness and accuracy of the

spines from Atoum (b) and Bernasconi (d, f, h) algorithms. (a) Original filament.

(b) Spine produced using Atoum algorithm. (c) The first guess Line AB. (d) The

spine produced using the (c) guessed line. (e) The first guess line CD. (f) The spine

produced using the (e) guessed line. (g) The first guest line produced by row and

column processing (h) The spine produced using the (g) guessed line.

56




4.4.1 Efficiency of the algorithm

The Atoum algorithm introduced here is computationally less complex compared to
the Bernasconi algorithm. The former on average takes 0.098 s to extract a filament
spine, while the latter takes 0.341 s. The computer used in this work was a PC with an
Intel Core Duo CPU P8700, operating at 2.53 GHz, running the Windows Vista 32-bit
operating system. Figure 4.11 shows the processing times for the full set composed of

ninety eight filaments.

------ Atoum Ellapsed Time In Seconds
em— Bernsconi
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Figure 4.11. Elapsed time in seconds per feature for the two algorithms.

Additionally, the Atoum implementation results in a longer spine because it tracks
the actual filament backbone more accurately as shown in Figure 4.10.b. This result is
confirmed by the longer pixel count for the Atoum spines as shown in Figure 4.12,

compared against (Bernasconi et al., 2005) results.
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Figure 4.12. Spine length in pixels per feature.
4.5 Conclusions

In Section 4.1 is shown the development of an adaptive thresholding technique for
segmenting Ha solar images to get foreground segmented filaments and a non-Rol
background. Based on false acceptance rate and output images with well-defined
filaments the segmentation process provides quality pre-processed images for machine

vision techniques.

Section 4.2 describes the fully automatic detection algorithm for solar filaments
which involves calculating statistical parameters and morphological operations. This
detection process avoids using empirical values. The shape of the detected features is
represented by determining its spine geometry. The resulting Atoum spin drawing
algorithm gives the means to extract all the filament morphological features required,
such as: filament length, filament centre, filament head-end, filament tail-end and
filament boundary. The algorithm is valuable as part of a real-time system for detecting
and tracking solar filaments. The comparison with Bernasconi shows that the Atoum
algorithm represents the filaments more accurately and is also computationally faster,

which could lead to a more precise tracking practice in real-time.
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There are still, however, some problems yet to be resolved, these being incomplete
spines due to errors in choosing the largest line segment through the automated drawing

process.
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CHAPTER FIVE

5 ADAPTIVE ALGORITHM FOR MERGING BROKEN

FILAMENTS USING NEURAL NETWORK

5.1 Introduction

After the solar detection phase, some filaments were found to be not detected at all or
not segmented properly due to variations in intensity along the filament; this results in
these filaments being displayed as discrete segments. These broken filaments will affect
post processing practices, such as detecting a complete spine for the whole filament.
This spine, which is used to define the attributes of the underlying filaments, will, if
broken, have an effect on detecting filament disappearances. Thus, a merging algorithm
is needed to combine broken sections. In this chapter, a merging algorithm is proposed
that merges broken filaments by using a NN classifier. This classifier is trained using
numerical and statistical values extracted from the image filaments after drawing their
spines. The algorithm considers every two neighbouring filaments, checking the
merging possibility. Any merged entity is reconsidered as a new single filament and
rechecked for possible further merges with other components. Thus, the algorithm will
achieve single or successive merging processes according to the results of the merging
criteria.

This chapter is organized as follows: Section 5.2 introduces the idea behind using the
NN in the merging process. Section 5.3 describes the merging process. Section 5.4
presents an evaluation of the whole merging process. Conclusions on the associated

findings and comparisons with previous work are discussed in Section 5.5.
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5.2 Neural Networks

The NN approach is used in this research for data classification purposes. The
strength of neural networks comes from their ability to learn a classification function,
given a suitable training set, choice of feature vector and NN topology (Qahwaji and
Colak, 2006). In addition to their ability to overcome the drawbacks of the classical
algorithms used in problem solving, NNs have the attribute of adaptive learning which
allows dynamic changes to their structures during the training phase. Moreover, a
crucial advantage of these networks is their ability to classify new patterns after training
because of their generalization capability (Mao and Jain, 1995 and Lerner et al., 1999).

The NN approach has been used before in the field of solar imaging. An NN
technique is used in (Zharkova and Schetinin, 2003) to extract solar filaments
automatically from Ha solar images. In another example, the results of an intensity
filtering technique in (Qahwaji and Colak, 2005) are fed to a NN to verify the detected
regions.

In this study, the approach adopted to merge broken filaments uses values found
from the extracted filaments as inputs to a NN. The NN has an input layer with number
of neurons equal to the number of values. This input layer is connected to a hidden layer
and this hidden layer is connected with a one neuron output layer. The NN is trained on
five numerical and statistical values extracted from the filament spines under
consideration. For each direction, as determined in Section 5.3.1, five different
normalized values, as shown in Table 5.1, are computed and fed to the NN. The five
input values are specified in the second column, the method used in the normalization
process is defined in column three and finally the value of the output is specified in the
fourth column. Because the neural network is used to classify the filaments into two

cases, merged or not merged, the output layer has one neuron.
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Table 5.1. The inputs, normalizing methods and output used by the NN.

No.

Inputs

Normalizing Method

Output

The angle subtended by the centroids of
two consecutive filaments at the mid-
point of the line connecting the

filament end points.

Dividing by 180°.

The distance between each spine end-
point of each filament and the other

filaments spine end-points.

Dividing by the
maximum distance

computed in the image.

The difference between the mean
intensities of the two consecutive

filaments.

Dividing by the
maximum mean value
of the filaments in the

image.

The difference between the mean
intensity of the first filament and the

mean intensity of the area in-between.

Dividing by the
maximum in-between

mean intensity.

The difference between the mean
intensity of the second filament and the

mean intensity of the area in-between.

Dividing by the
maximum in-between

mean intensity.

Merged =0.9
Not Merged
=0.1

The first criterion in Table 5.1 is that the two filaments to be merged should have

appropriate relative orientation to each other. The second criterion is that two filaments

are required to be in close proximity. The third criterion is that the two filaments should

be merged if the difference between the mean filament intensity of the two consecutive

filaments is small. The fourth and fifth criteria are that the two filaments should be

merged if their average intensity values are very close to the in-between average

intensity value.

The merging process starts when the NN returns an output value that is greater than

0.5. Then filled circles will be drawn along the line segments that connect these broken
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filaments which ultimately recovers the approximate shape of the original filament as

shown in Figure 5.1.

(a)

(d)

{/ | ,__,,,e“

(L ; 2 - <

Figure 5.1. Results of the merging process: (a) Original filament. (b) Segmented filament.

(c) Merged filament. (d) The filament spine after merging.

The NN was optimized by finding the minimum Mean Squared Error (MSE) during

training with different NN topologies as described by Colak (Colak and Qahwaji, 2009).
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The training set consisted of 145 samples, extracted from 20 different segmented Ha
images from the months, January 1999, January 2001, and February 2001 and the
testing set was 31 samples extracted from the same images.

Training experiments were carried out changing the number of nodes in the hidden
layer from one to twenty. For every new experiment the MSE of the training stage was
recorded and the number of hidden nodes with the least MSE was chosen. The network
was optimized using seven nodes for the hidden layer; as shown in Figure 5.2, which

shows the structure of the optimised NN.

Input Layer Hidden Laver Cutput Layer

Figure 5.2 . The structure of the optimized neural network.
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5.3 Merging Process

5.3.1 Determining the Direction

Determining the most appropriate merging direction from the end of each filament
depends on finding the shortest distance between pairs of filaments. To do this, four
different distances from each filament to all other filaments are determined. The first
distance is between the spine start points of two filaments (SSDistance) as shown in the

Figure 5.3.

Filament spine/v

Filament

The line indicating the distance between the start points
of the first and second filaments.

Figure 5.3. The distance between the start points of two successive filaments
(SSDistance).
The second distance is between the spine start point of one filament and the spine end

point of the other filament (SEDistance) as shown in the Figure 5.4.

The line indicating the distance between the start point of
the first filament and the end point of the second filament

Flamen

Filament

Figure 5.4. The distance between the start point of the first filament and the end
point of the second filament (SEDistance).
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The third distance is between the end point of one filament and the start point of the

other filament (ESDistance) as shown in the Figure 5.5.

The line indicating the distance between the end point of
the first filament and the start point of the second
filament

Filament spine

\ Filament /

Figure 5.5. The distance between the end point of the first filament and the start
point of the second filament (ESDistance).

The fourth distance is between the end points of the two filaments (EEDistance) as

shown in the Figure 5.6.

The line indicating the distance between the end points of
two successive filaments.

Filament spine/'
\ Filament
Figure 5.6. The distance between the end points of two successive filaments
(EEDistance).
5.3.2 Previous Study
There are two basic criteria specified in the literature to merge broken elongated
objects as given by Chen (Cheng et al., 2007) and Ingrid (Ingrid et al., 2002). The
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broken features should be close enough and should satisfy some relative orientation
requirements. These merging rules were used Bernasconi (Bernasconi et al., 2005) who
defined constant values to be used with the two criteria. Two constants are used with the
distances between each spine end-point of each filament and all other filaments as

shown in Figure 5.7.

Line indicating the distance between the end
points of two successive filaments

.%
Figure 5.7. The distance between the two filaments.
Another constant value is used with the angles between the spines of the last two

filament segments as shown in Figure 5.8 relative to the line connecting the two end

points.

The line connecting the two

The Last S ends
e Last Segment The Last Segment

line .
line
Filament spine
Filament

Figure 5.8.The angles between the last two segments and the line connecting the

two end-points of the two filaments.
If the distance is less than 25 pixels then the two filaments are merged. If it is greater

than 25 pixels and less than 100 pixels then the angles are calculated; if for both
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segments this angle is less than 22.5° then the filaments are merged. This merging
technique was not considered perfect by the author. It must be noted that this merging
process is implemented after characterizing the solar filament. In this chapter the same
two criteria (without the constants), with the addition of another three criteria, are used
as an input vector for the NN.
5.3.3 The Atoum Approach

53.3.1 NN Input Vector

Before determining the input vector and depending on the determined co-ordinates of
the start and end-points of each filament and all other filaments in the solar image the
distance between each filament centroid and all other filaments centroid are calculated
(DCC) as shown in Figure 5.9.

The line represents the distance between the two centroid
of two successive filaments

Filament spine

Filamen

Figure 5.9. Line segment showing the distance between the centroids of two
successive filaments.

Thereafter the code computes the distances of each filament spine end-point to all
other filaments spine end-points to find the smallest (DEE). If the DEE is less than half
the value of the DCC then the direction between each filament and all other filaments in
the same image were determined as explained in Section 5.3.1. Then for each direction
five different normalized values as shown in Table 5.1 and Figure 5.2, I1 to 15, are

computed and fed to the NN. Figure 5.10 illustrate the first criterion in Table 5.1;
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which is the angle 6 subtended by the centroids of the consecutive filaments at the mid-

point of the line that connecting the two filament end-points.

The angle between the two lines that connect the centroid of each filament and the
mid-point of the line that connect the two end points.

0

Filaments spine

Filaments

Figure 5.10. The angle between the centroids of two consecutive filaments and the
mid-point of the line that connect the two end-points.
5.3.3.2 Filling Gaps by Drawing Circles
Drawing successive circles between the broken filaments can recover approximately
the non-broken filaments. These circles takes as diameter the last line segment used in
the projection and averaging phase of the process of drawing the filament spine. This is
illustrated in figures 5.11 and 5.12.

The last Line Segment

Filament

Figure 5.11. The last line segments used to draw the spine of each filament.

The
Circle

Figure 5.12. The circle drawn by using the last line segments as diameter.
These circles take the points on the line segment that connects the two filaments as

centres, as shown in Figure 5.13.
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Circles

Filaments spine

Filaments
Figure 5 13. Drawing circles by taking the last line segment as diameter and taking
the points on the line that connects the two filaments as centres of these circles.
Using these points will adjust the position of the drawn circles according to the

orientation of the broken filaments as shown in Figure 5.14 and in Figure 5.1.

Circles

Filaments spin/

Filaments

Figure 5.14. Drawing filled circles to fill the gap.

The merging process starts when the NN shown in Figure 5.2, returns an output
value K that is greater than 0.5. The merging algorithm draws filled circles along the
line segments that connect these broken filaments which ultimately recovers the

approximate shape of the original filament as shown in Figure 5.1.c.
54 Evaluation of the Implemented Algorithm

The main aim of the work presented in this chapter was the creation of computer
software that can achieve the merging of broken filaments. The merging method

described in this chapter is novel and has not been previously used by any other
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researchers as far as is known by the author. The algorithm is the first that uses an
adaptive Neural Network classifier to merge the segmented filaments. It also appears to
give a higher filament merging percentage than that of Bernasconi, as indicated below.

Table 5.2 shows results of applying the Atoum merging technique on a selected set of

Ho images.

Table 5.2. Results of applying the merging process on a set of Ha images.
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The name of the image which also shows the observing date is given in column two.
Column three shows the number of broken filaments observed in the image (BF),
column four shows the number of broken parts in all the broken filaments in the image
(NBP), column five shows the number of correctly merged parts (MP), column six
shows the number of parts that should be merged but are not (NMP) and column seven
shows the number of parts which are merged but should not be (FM). From the totals in
Table 5.2 the following performance measures result:

Merging rate: MP/NBP = 85.35%.
Non-merging rate: NMP/NBP=14.65%.
False-merging rate: FM/NBP=7%.

The merging rate was 85.3%, and is achieved without the use of thresholds unlike the
traditional techniques. According to the author’s knowledge, this is the first time such
detailed results have been presented, which thus makes it not possible to compare these
results with previous researchers. Bernasconi (Bernasconi et al., 2005), mentions a
merging percentage of 70% but no supporting information, like Table 5.2, is provided.
It should be noted that the present result of 85% is superior to that reported by

Bernasconi.

55 Conclusions

A novel merging method for combining the broken filaments is introduced in this
chapter. This method exploits the findings from the extraction of the filament spine, the
resulting start-points and the end-points accordingly and other statistical values that are

computed for the filaments which are candidates for merging process.

This merging algorithm achieves the ability to merge the broken filaments by using a
NN classifier trained with feature values extracted from a set of sample image filaments.

After extracting filament spines, every two consecutive filaments, is considered to
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check the merging possibility. Any merged entity is reconsidered as a new filament and
rechecked for possible further merges with other filament. Thus, the algorithm will
achieve single or successive merges according to the results of the merging criteria.

The algorithm achieves a higher merging percentage than the method of Bernasconi,
but there is still a percentage of false merges remaining. It should be noted that this
work highlights this merging challenge of false merging - often overlooked by other
researchers. The merging algorithm exceeds the work of others by using the adaptive
nature of using an NN and by avoiding the use of empirical threshold values for

different filament merging attributes.
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CHAPTER SIX

6 AUTOMATIC TECHNIQUE FOR TRACKING SOLAR

FILAMENTS

6.1 Introduction

Object tracking is a general imaging term which represents an important task in the field
of computer vision. Tracking can be defined as the problem of estimating the path of a
moving or moved object in the image plane, as needed for further analysis (Yilmaz et al.,
2006). The lack of automatically generated tracking catalogues, the general need for
automatic object analysis and representation and the need to know the reasons behind the
occurrences of CMEs, together with the increasing power of computers and the availability of
high quality instruments, make opportune the development automatic tracking methods for
solar features and activities that may affect life on Earth.

Filament disappearances are generally monitored by observing and analysing successive
solar H-alpha images. In this chapter, after the filament regions are obtained from individual
H-alpha images, the results of two consecutive images are compared to detect these filament
disappearances. Significantly, a novel efficient tracking technique for solar filaments is
presented in this chapter, taking advantage of Heliographic Carrington Maps (HCMs)
obtained by converting solar images to Heliographic Carrington co-ordinates. The relatively
fixed positions of solar filaments over consecutive HCMs facilitate the process of tracking
solar filaments. This study is directed towards large, stable filaments; small and unstable
filaments are disregarded. A NN classifier is used to categorize the detected filaments as DFs

or mis-detected filaments (MDFs). Features such as: Area, Length; intensity statistics Mean,
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Standard Deviation, Skewness, and Kurtosis, are extracted and fed to this network to get a
confidence level of at least 80 %.

The Atoum technique is composed of three main stages: detecting and representing solar
filaments, generating HCMs and implementing an automatic tracking method.

The technique presented here gives results in close uniformity with those obtained
manually, presented in the NGDC catalogue. The author could not find an evaluation or
comparisons by other researchers like the one undertaken here. Furthermore, the only
automatic algorithm that could found was provided by SWRL. However, it does not seem to
perform very well when compared with the NGDC catalogue as indicated in Section 6.4.

So this study is most likely the first in distinguishing the actual disappeared filaments and
the miss-detected filaments by applying ANNSs.

The research presented here has concentrated on devising a novel solar detection and
tracking technique based on an extensive literature review. The resulting algorithm does this
by the use of an NN classifier with no empirical variables, which is one novelty of the
algorithm. In the previous literature, all such methods appear to have used empirical values in
their algorithms.

This chapter is organized as follows: Section Two describes the Carrington Heliographic
co-ordinate system. Section Three illustrates the tracking technique. Results and evaluation

are presented in Section Four and finally the conclusions are presented in Section Five.
6.2 Carrington Heliographic Co-ordinate System

Heliographic co-ordinates are a spherical co-ordinate system that uses the two variables,
latitude and longitude to locate a point on the solar surface (Colak et al., 2011). The longitude
co-ordinates are converted to the Heliographic Carrington Co-ordinates to identify the
positions of solar features in a manner independent of the solar rotation. Figure 6.1.a shows a
H-alpha image with its segmented form in Figure 6.1.b and the segmented filaments are
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shown in the HCM in Figure 6.1.c in the position corresponding to the date of the image in

@ .

(a) (b)

Figure 6.1. The HCM created using an H-alpha Image observed at the Meudon Observatory on
8" February, 2001. (a) Original image. (b) Segmented image. (c) Heliographic Carrington Map.

The method used in this study for filament tracking purposes to create HCMs is the one
described by Colak (Colak et al., 2011) as part of work on 3D representation of solar
features. It starts by creating images for storing data in Carrington Heliographic Co-ordinates
using a standard method of spherical astronomy described by Smart (Smart and Green, 1977).
During this phase a resolution recalculation is performed to avoid information loss resulting
from truncation. An image enhancement algorithm is then applied to determine pixels
missing in the newly created heliographic images.

These maps are used, to take advantage of the relatively small movements of the filaments

over such HCMs. This movement is easily accommodated using a rectangular tracking
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window. This is used to determine whether a filament has disappeared or not by placing it in
an identical position in the next day image. The presence of any white pixels means that the
filament has not disappeared. The use of this technique means that it does not matter if the
filament moves slightly in any direction as long as a single pixel remains in the search
window because all that is of interest is the binary decision as to the presence or non-presence

of the filament.
6.3 Filament Tracking Technique

Filament disappearance may be associated with filament eruptions, in which case at least
50 percent of the ejected material disappears over a 24 hour period (Jing et al., 2004). In
order to detect the filament disappearances, a new technique is developed to compare the
filament detection results obtained in every two consecutive (daily) images.

The technique starts by checking that the images under consideration are successive
images like those shown in Figure 6.2. Figures 6.2.a and 6.2.b show two successive solar
images, the corresponding segmented images are shown in figures 6.2.c and 6.2.d and finally
their corresponding HCMs are shown in figures 6.2.e and 6.2.f.

To exclude small erupted filaments, a condition is applied, as described below, that still
keeps the algorithm fully automated by not using a specific filament size. For each filament
in the first image, a search process for white pixels is carried out in the second image within
the rectangle that encloses the first image filament. If no white pixel is detected and if the
area of the first day filament is greater than the average filament area, it is considered a

disappeared filament (DF), otherwise it is considered a stable filament (SF).
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(@) (b)

Figure 6.2. Example for two consecutive solar images. (a) H-alpha image observed at the BBSO
observatory on 16™ February, 2001. (b) H-alpha image observed at the KANZ observatory on
17" February, 2001. (c) Segmented image for (a). (d) Segmented image for (b). () HCM for (c).

(f) HCM for (d).
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A flow chart for the whole algorithm is given in Figure 6.3.

detectF ilaments
mergeBroken Filaments
createHCM

getlime
getLocation
getArea

Computedverage
getRectangle
search

More
Filaments?

FArea=
averagedrea
a

Figure 6.3. Flow chart of the tracking algorithm.
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Here filaments are treated as two-dimensional projections of their 3D structure in line with
other researchers but it is acknowledged that filaments are 3D dimensional structures and
their movements are also in 3D and this extended analysis is reserved for future study.

Although the current method was found to give results closer to the manual NGDC
catalogue than other work as shown in Section 4, there are still some filaments which are
identified as disappeared whilst in fact they still exist according to manual observation. These
are called miss-detected filaments.

The Atoum tracking algorithm was tested using solar maps for the whole of year 2001,
which contained 6414 solar filaments. The results after running the code are shown in Table
6.1.

Table 6.1. The number of filaments detected in one year classified as actually disappeared

filaments or miss-detected filaments.

Month Total Number of | Total Number of Candidate | Total Number of Miss Total Number of
Filaments Disappeared Filaments Detected Filaments |Disappeared Filaments
Jan 444 12 9 3
Feb 404 8 4 2
March 437 16 11 5
April 474 16 6 10
May 570 13 6 7
June 569 14 9 §
July 581 14 2 12
Aug 514 19 7 12
Sept 628 13 8 5
Oct 490 19 15 4
Nov 690 20 12 8
Dec 813 12 11 1
Total 6414 176 100 76

Table 6.1 contains the filament data divided into twelve rows labeled by month in the first
column, the second column shows the total number of filaments detected in this month. The
total number of disappeared filament candidates found is shown in column three. Column
four shows the total number of miss-detected filaments disappearances and column five
shows the total number of disappeared filaments. This total number of DF does not include

the small filaments which have areas less than the average filament area. It can be seen in
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Table 6.1 that the algorithm found 176 possible disappeared filaments; while by observation,
76 was the actual number of disappeared filaments and 100 were miss-detected filaments.

A Neural Network classifier was applied to reduce the number of these miss-detected
filament disappearances. This NN was trained using six statistical values extracted from the
filament segments under consideration as input to the NN together with the required decision.
During training, the NN structure was optimized as to number of hidden nodes. Because the
NN is used to classify the filaments as DFs or MDFs the output layer was chosen to have one
neuron. The training set was 128 samples randomly selected from the 176 possible
disappeared filaments, which correspond to about 72 % of the whole set. Table 6.2 shows
part of this set, where the units of the input features, length, mean, Standard Deviation,
skewness and kurtosis are pixel based while the unit of the area is pixel squared.

Table 6.2. Part of the dataset used for training the NN.

Area Length Mean Standard Deviation| Skewness | Kurtosis | Classification
1 0729412 | 064234 0531212 0386208 | 0502009 0.1
0783124 | 0529412 | 0822351 0825098 0542343 03975 0.1
0.289439 1 0.35511 0.776182 0715797 | 0623172 0.1
0.173395| 0.455621| 0.58242 0.866962 1 1 0.1
0 344664 1 0410778 (1.86509 0351441 048789 0.1
0454819 | 0956522 | 0746017 0619736 0176456 | 0413408 0.1
0.458573 | 0.541667 | 0.836633 0.89782 0.539348 | 0433797 0.1
1 0.978022 | 0.0902762 0.524678 1 1 0.1
0454416 | 0.862745| 0.615368 1 0.369439 | 0.300593 0.1
0345745 0921053 1 0 496952 00366197 | 0254274 0.1
0436374| 077027 | 056723 0730467 0387564 024478 0.1
0.730387 | 0.433566 | 0.8607584 0.771631 0.454088 | 0.394722 0.1
0.502905 1 0.499613 0.478322 0.360384 | 0.207216 0.1
032581 | 0331984 | 0504304 0683344 0450343 | 0423496 0.1
0621635 | 0668966 | 0156056 1 064531 082462 09
0.595061 | 0.677193 | 0.755683 0.643527 0.326519 | 0.239541 0.9
0.515694 | 0.428571 | 0.338145 0.757243 1 1 0.9
0.446492 | 0.512563 | 0.727908 0.900381 0.0304002 | 0.0473946 0.9
0574199 | 0409639 | 0.712091 0714645 0398278 | 0310655 09
1 09625 | 0371204 0742038 0868716 | 0828327 09
0.435517 1 0.555018 1 0.540473 | 0.436595 0.9
0.549085 | 0.452381 | 0.793325 0.676178 0.306355 | 0.606939 0.9
0696041 | 0 333333 1 0612786 0609897 | 0504179 09
1 0.309091 | 0467397 0510517 0584846 | 0319598 09
0.410437 | 0.618812 | 0.552634 0.723398 0.266687 | 0.304684 0.9
0.388782 | 0.360656 | 0.581624 0.637538 0.069281 | 0.100327 0.9
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The testing set was 20 out of the full set of 176 samples, as shown in Table 6.3.

Table 6.3. The dataset used for testing the NN.

Area Length Mean | Standard Deviation| Skewness| Kurtosis |Classification

0937741 0.357771] 0.792345 0.69617 0.090797 | 0.237719 0.1
0.375629]0.832335] 0.5344686 0.474626 0.354462 | 0.431021 0.1
1 0.315412] 0.43658 0.665064 0.142854 | 0.086058 0.1
0.371573] 0.57764 1 0.522092 1 1 0.1
0.503686 | 0.836207 | 0.604092 (1.689846 0.0177343 | 0.129573 0.1
0.331754 1 0.477922 0.641134 0.364544 | 0.270865 0.1
0.487463 | 0.391608 | 0.763976 (0.434676 0.910812 1 0.1
0.313131] 062037 | 0.540518 (0.682012 0.0186854 | 0.0686832 0.1
0.111579 1 0.345268 0.484412 1 0.75767 0.1
02237741 0490741 1 0.587617 0.219854 | 0.224239 0.1
0.631246] 0.547038 | 0.665606 1 0.235759 | 0.160758 0.9
0.350589 0.4 0.638337 0.681501 027138 | 0.189831 0.9
0.212212]0.745946 | 0.669229 (1.580796 0.0678205 | 01895042 0.9
0.34753 | 0.421941 | 0.596294 0.630554 -0.0687134 | 0.0536176 0.9
0.570649] 0.302752 | 0.542807 0.489823 0.362108 | 0.604928 0.9
0.175296 1 0.131282 (0.5565801 0.512134 | 0.486516 0.9
1 1 0.219364 0.721113 1 1 0.9
0.77796 0.4 0.840255 0.568293 -0.691428 | 0.570762 0.9
1 (0.458837 | 0.743717 0.521591 0.743333 | 0.914094 0.9

(0.22876 | 0.389679] 0.651975 1 055278 | 0675372 0.9

In the columns in Table 6.2, the last two input features are skewness, and kurtosis, which

are calculated as shown in Equations 6-1 and 6-2 respectively (NIST/SEMATECH, 2012):

Tn=olX()—p?

skew = 3
No

(6-1)

r_olX(n)—pul*

kurtosis = y
No

(6-2)
Where [ is the mean, o is the standard deviation, N is the total number of data points, and

X(n) is the pixel value. The classification value is shown in the last column where 0.1 means

stable filament and 0.9 means disappeared filament.

6.3.1 Optimizing the Neural Network

Several training experiments were carried out while changing the number of nodes in the

hidden layer from one to twenty. For every experiment, the MSE of the training stage was
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recorded and the number of hidden nodes with the least MSE was chosen as the optimized

one. The network was optimized with nine nodes in the hidden layer as shown in Figure 6.4.

Input Layer Hidden Lazer Quiput Layer

Figure 6.4. The structure of the optimised neural network.

Detecting a filament disappearance starts by checking that the area of the filament under
consideration is greater than the average area of all filaments in the first day image. Next, the
NN begins working with the values of the six parameters and returns the classification value
of the filament under consideration. If this value is greater than 0.5 then the underlying
filament is classified as having disappeared; otherwise it is considered as stable filament. The
disappearance detection algorithm is considered unique because it is the first time that an

adaptive NN classifier has been used to detect the filament disappearance as far as is known
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by the author. Not only that, it gives a high detection rate of 80 %, as shown by comparing
results in Tables 6.3 and 6.4.

A screen dump showing the output from the algorithm displayed in Figure 6.5, below,
shows at the top, the name of the first and second solar image observatory, the date, time, the
average filament area and average filament length. Column 1 shows the number of the
filament in the first day image, column 2 shows the number of corresponding filament in the
second day image; if it is considered as disappeared then this number is shown as -1, column
3 shows the normalized filament area, column 4 shows the area of the corresponding filament
in the second day image. Column 5 contains the tracking results; where 1 means disappeared

and 0 means stable.

Filament Tracking List
First Image Observatory : BBS0
second Image Observatory :@ BBSO

First Image Date is : 2/11/2001 Second Image Date is @ 3/11/2001
First Image Time is : 16: Second Image Time is - 16:8

The average area in the frrst image is : 671

The average length in the first image : 69

(1) (2) Filament(1) F7ilament(2) Tracking Length Mean value stdpev skew Kurtosis
Area Area Result
o a 0.91962 1620 a 0.31016 0. 563632 0. 658209 0. 169649 Q.171834
i -1 Q. 209494 a a 0.192513 0. 419901 0.712612 0.120814 0.130749
2 1 a. 320253 356 a 0. 566845 0.379629 0.7493265 0. 0704067 Q0. 0991588
3 2 0.175316 1481 a 0. 315508 0. 457524 0. 696149 0. 370641 a.259113
4 E 0.234177 az6 a 0. 203209 0.795479 0. 574026 0.0957631 0.106475
5 -1 1 a a 0.106952 0.735657 0. 538803 0. 616929 a. 455009
& 4 0. 239241 292 a 0. 342246 0.612188 1 Q. 3275101 0.210157
7 - 0. 381646 a a 0.342246 0.642132 0. 8043236 0.1759 0.137096
g 5 0.471519 a36 a 0. 44385 0.701741 0. 654724 0.0250194 0. 136934
g -1 0.137342 o 0.181818 0. 644877 0.677718 0.117089 0.126065
io [ 0. 349367 815 o 0. 365984 0. 643206 0. 699562 0.187026 0.147992
i1 7 0. 805063 977 o 0.716578 0. 443552 0. 91868 0.42619 0.230294
iz 8 0.135443 201 o 0.187166 0. 6487432 0. 833516 -0.126229 0.125092
i3 2 0. 205063 1011 o 0. 203209 0.49189 0. 880679 -0. 0276499 0. 0849444
i4 10 0. 324051 1302 o 0. 433155 0.471492 0. 668225 0. 450332 0.256967
i5 11 0. 696203 254 o 0. 540107 0. 501704 0. 589794 0. 433911 0.341183
i6 12 0. 66519 847 o 0. 967914 0. 55808 0.781515 0. 384089 . 221958
iz -1 0. 686709 [ o 0.235294 i 0. 561598 1
i8 13 0.125316 i41i0 o 0.139037 0. 654375 0. 456851 -0. 00668643 0. 0775049
i9 14 0.226582 1724 o 0.262032 0. 568996 0. 673649 0. 300322 0.219913
20 -1 0.493038 o i 0.187166 0.70236 0.50679 0.0765056 0.187931
21 15 0.317722 1970 o i 0 678139 0. 622722 0. 141545 a0.170804
22 16 0. 649367 252 o 0. 278075 a o

The total number of disappeared filaments : 1

** Tracking Result 0: means Appeared
** Tracking Result 1: means Disappeared — DA

Figure 6.5. Screen dump of the result of the code execution for 2" and 3" Feb., 2001.

Table 6.4 contains the results from testing the NN. It shows the classification values that
are compared with the required values given in Table 6.3 in order to determine the
disappearance detection rate. Agreement is found when the values in Table 6.4 are greater
than 0.5 while the values in Table 6.3 are 0.9 and also the values that are less than 0.5 in
Table 6.4 while the values in Table 6.3 are 0.1. This comparison gives 16 matching results

out of 20, which equals an 80% confidence level.
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Table 6.4. Test results from the NN.

Area | Length | Mean | Standard Deviation [ Skewness| Kurtosis | Classification
0937741 | 0357771 ]| 0.792345 0.69617 0.080797 | 0.237718 0.0284087
0.375629 | 0.832335 | 0.534466 0.474628 0.354462 | 0.431021 0.375232

1 0.315412 | 0.43658 0.665064 0.142854 | 0.086056 3.55E-05
0371573 057764 1 0.522082 1 1 0.255865
0.503686 | 0.836207 | 0.6040982 0.689848 0.0177343 | 0128573 0.456521
0.331754 1 0.477922 0.641134 0.364544 | 0.270865 0.132.3897
0.487463 ] 0.391608 | 0.763976 0.434676 0.910812 1 0.268917
0.313131] 0.62037 | 0.540518 0.682912 0.0186854 | 0.0686932 0.72257
0111579 1 0.345268 0.484412 1 075767 3.03E-07
0.223774 | 0.490741 1 0.597617 0.219854 | 0.224238 0.475688
0.631246 | 0.547038 | 0.665606 1 0.235759 | 0160758 (0.99949493
0.350589 0.4 0.638337 0.681501 0.27138 0.189881 0654153
0.212212 | 0.745946 | 0 869229 0.580798 0.0678205 | 0.1895042 0.50408

0.34753 | 0.421941 | 0.596294 0.630554 -0.0687134 | 0.0536176 0.5891079
0.570649 ] 0.302752 | 0.542807 0.489823 0.362108 | 0.604828 (.9994908
0.1752896 1 0.131282 0.556801 0.512134 | 0.486516 1

1 1 0.219364 0.721113 1 1 0.781505
0.77796 0.4 0.840255 0.568293 -0.691428 | 0570762 3.11E-14

1 0.458937 | 0743717 0.521581 0.743333 | 0.814084 6. 60E-06
0.22876 | 0.399679 ] 0.651975 1 0.55278 0.675372 0.435708

6.4 Evaluation Results

The results of the Atoum algorithm are compared with the results from Bernasconi

(Bernasconi et al., 2005) by applying the method to the Ha solar images from the Big Bear
Solar Observatory (BBSO), for the same period, from July 6, 2000 to January 9, 2005, that
was examined by Bernasconi. They presented their results as the number of appeared
filaments. After running their code, 9,459 disappeared filaments were computationally found,
out of the 19,211 filaments processed. This means that the percentage of disappeared
filaments found by this tracking approach was equal to approximately 51%. Using the NN
algorithm, the number of disappeared filaments was found to by 418 out of 22,213 processed
for the same period. This means that the percentage number of disappeared filaments found
by the NN algorithm is approximately 2%. These Bernaconi and Atoum results show a great
variation. Both results can be compared with the number of disappeared filaments registered

during the same time period in the NGDC manually compiled catalogue. Counting the
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number of disappeared filaments shown in the NGDC catalogue gives 691. This is much
closer to the 418 disappeared filaments resulting from the NN method than the 9752
resulting from Bernasconi method which shows the former is much more consistent with the
manual results recorded in the NGDC catalogue, which was the aim of the method. Since
both the Bernasconi and Atoum methods detect broadly similar numbers of filaments, 19,211
and 22,213, over this period the difference may be due to the different treatment of small

filaments.
6.4.1 Evaluation of Excluding Small Filaments

To exclude the small erupted filaments from consideration by the NN, four different
conditions were compared to find the one that gave the closest results to the manual NGDC
result. These conditions exclude filaments with less than half the average area of the whole
filaments in the first image, filaments with less than half the average length of the whole
filaments in the first image, combine the former two conditions together and finally apply no
condition. The disappeared filament results for the whole year of 2001 were collected and
compared with the results of the NGDC and the SWRL catalogues for the same year. The
average number of disappearances found applying each of the conditions was compared with
the catalogued values. The area condition gave average value nearest to the NGDC average,

as shown in Table 6.5.
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Table 6.5. Disappeared filament results from applying the four conditions to exclude
small filaments for comparison with NGDC and SWRL. The average of the numbers in

each column is shown at the bottom of each column.

Month Length + Area Area Length | Without | NGDC SWRL
1 |Jan_2001 12 24 43 130 25 4
2 |Feb_2001 6 18 51 139 8 0
3 |March_2001 18 31 47 112 17 1
4 |April_2001 18 33 48 112 32 5
5 |[May_2001 7 24 44 123 16 3
6 |June_2001 12 30 54 150 29 5
7 |July_2001 11 33 56 148 14 2
8 |August_2001 19 30 64 137 27 3
9 |Sept_2001 9 27 61 157 7 1
10|Oct_2001 17 37 61 152 34 2
11|Nov_2001 14 39 63 154 31 2
12|Dec_2001 12 26 61 146 36 1
Average 12.91666667 | 29.33333 54.5 138.3333 23 2.416667

To show the convergence or divergence between what has been discovered after applying
the four different conditions and what is found in the NGDC and SWRL catalogues, several
charts where drawn for the month of January 2001. Figure 6.6 compares the data from the

NGDC observations and the Atoum algorithm after applying the area condition.
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Figure 6.6. The comparison between the NN algorithm results with the area condition

and the NGDC Catalogue results for January, 2001.
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The days of the month are displayed on the horizontal axis and the numbers of disappeared
filaments are displayed on the vertical axis in this, and the next four charts. Charts for the
other three conditions are shown in Figure 6.7.

Figure 6.7.a shows the relation between the average values of all the disappeared filaments
in the NGDC catalogue and the average value of all the disappeared filaments from the NN
algorithm, after excluding the filaments with area less than the average area value and with
length less than the average length value in the first day image. This figure shows that the
daily number of DFs in NGDC differs from the number given by the NN algorithm in both
number and date. The latter may be due to different sensitivities to detecting disappearances
of the manual and machine methods. Figure 6.7.b shows the relation between the average
values of all the disappeared filaments in the NGDC catalogue and the average value of all
the disappeared filaments from the NN algorithm, after excluding the filaments with length
less than the average length of all the filaments in the first day image. Again, this figure
shows high divergence between the two results. Figure 6.7.c shows the relation between the
average values of all disappeared filaments in NGDC and the NN algorithm without applying
any condition. This figure shows higher divergence between the numbers in the two results
which applying the condition is meant to reduce. None of these figures show detailed
convergence between the NN algorithms and the results of the NGDC but the area condition

is the closest overall.
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Figure 6.7. Three charts showing the NGDC results for January, 2001 in comparison with those
from applying the NN NN algorithm with the three conditions (a) area+length, (b) length, (c) no

condition.
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Taking the NGDC manual catalogue as a reference, the graph shown in Figure 6.8 was

drawn to compare the numbers of disappeared filaments with those from the SWRL

automatic catalogues. This shows a similar divergence in positions between the two sets of

results as seen in figures 6.6 and 6.7 but the numbers are much less than those in the NGDC

catalogue.
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Figure 6.8. The average numbers of all disappeared filaments in the NGDC manual

catalogue and the SWRL automatic catalogue for January, 2001.
6.5 Conclusion

A Neural Network classifier is used in solar filament tracking to categorize the detected
filaments as DFs or MDFs. Features including Area, Length, Mean, Standard Deviation,
Skewness and Kurtosis are extracted from the underlying filament and fed to the NN. This
NN is applied to reduce the number of the filaments miss-detected when a simpler binary
decision rule was used. The network is optimized by using nine nodes for the hidden layer.
The result is a novel filament tracking algorithm which aims to automatically detect solar
filament disappearance in Ha full disk images obtained from different solar observatories.
Experimental results show that there is a significantly but small number of miss-detected

filament disappearances phenomenon which still needs to be solved.
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The algorithm has improved on the previous detection process by now being able to
accept, handle and process solar images with different contrasts from several observatories. A
solar image is first converted to the HCM format and then filament tracking is accomplished
by comparing the contents of the rectangle that encloses a filament in the first image with
those in the successive image. The technique continues by distinguishing miss-detected
filament disappearance from actual filament disappearance by using the NN with the input
features: area, length, mean, standard deviation, skewness, and kurtosis. The result after
applying the NN is an 80% detection level.

The new tracking technique improves on the work of others by representing the tracking
process more plainly, by considering the miss-detection filaments and by utilizing the
adaptive nature of an NN. All of these advantages could lead to a more precise knowledge of
the association expected between disappeared filaments and CMEs.

It has, however, to be noted that if there were many middle sized filaments with only one
very big filament, then the middle filaments will not be taken into consideration by the
algorithm. This is actually a rare case and is not a major problem under normal solar
phenomena. The author appears to be the first researcher to actually consider the possibility
of this occurrence having any effect on the tracking algorithm; hence no references could be
found for this scenario in the literature. This case will be addressed in future work on the NN

algorithm.

91



CHAPTER SEVEN

7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7.1 Conclusions

711 Overall Conclusions

The main achievement of the research presented in this thesis can be described as a
collection of algorithms related to the field of automatic detection of solar filament
disappearances, which have been developed using machine learning based technologies.
These involved several Neural Network topologies trained using different attributes of solar
filaments. It is believed that this work is important because for the first time machine
learning-based techniques have been adopted for merging broken filaments and detecting the
filament disappearances. There are additionally two aspects that have importance for filament
detection techniques, namely the implementation of a fully automated system without using
any predetermined empirical thresholds and the real time functionality of the algorithm.
These findings are considered an important step towards creating automated and reliable

prediction systems for CME.
7.1.2 Detailed Conclusions

The concluding remarks on this research are listed as follows.

e Segmentation of solar filaments constitutes an important and difficult concern in the
field of solar image processing. Therefore, an adaptive thresholding technique was
devised that introduced minimal noise whilst also being able to detect more

unambiguous filaments, with the constraint of avoiding the use of any empirical
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values in Ho solar images. This work was described in Chapter Four with
performances measured in terms of the FAR, which is the probability of a non-
filament being detected as a filament. The resultant FAR value was found to be 9%
when compared with another segmentation algorithm over one month of solar images.
Additionally reducing the FAR value means reducing the proportion of the presence
of other solar features like sunspots. This value is lower than the work of others but is
still greater than zero, which means that there are still some non-filaments detected as
filaments. This segmentation technique could be used to highlight the dark features

(like filaments in Ha images) in any cleaned image and eliminate the background.

A fully automated spine detection technique is presented in Chapter Four. It is
apparent that the Atoum algorithmically derived spine is more convoluted, precisely
because it accurately follows the body of the filament. It is less computationally
complex compared to Bernasconi (Bernasconi et al., 2005). On average the Atoum
algorithm was 3.5 times quicker than Bernasconi, taking only 0.098 s to extract the
filament spine. Additionally, the results of the Atoum algorithm show longer spine
lengths because it tracks the actual filament backbone more accurately. Despite the
positive results from the detection technique, there is still a need to reduce the
unwanted pixels and the small holes. Furthermore, there are incomplete spines
existing due to errors in choosing the largest line segment through the automated
drawing process. The technique could be adopted in future to extract the spine of
different features in different types of images; especially elongated objects such as the

spine of neuronal dendrites.

It was clear from the literature that the author had to include the spatial and

orientation relationships between the regions of the segmented filaments so as to
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determine if they should be merged or not. There was one technique developed by
Bernasconi (Bernasconi et al., 2005) which considered these issues in merging the
broken filaments but there was a challenge to avoid using empirical thresholds for the
angles and distances used in this method. The Atoum merging algorithm achieves
15% greater merging of broken filaments than the Bernasconi algorithm. This
improved performance was obtained by using a neural network approach and also
avoids the thresholds used in traditional techniques. Although there is a percentage of
false merges still remaining, it should be noted that this work has highlighted this
challenge of the existence of false merging - often overlooked by other researchers.
The same method could be used in future to merge broken structures in different

images.

A novel tracking method was implemented in Chapter Six that achieved a fully
automated real-time method; coping with the movement of filaments upward and
downward and most importantly addressing the problem of the presence of filaments
that are considered disappeared, but are not in fact. All these challenges were solved
by using a Neural Network approach. The results of the NN algorithm were compared
with the results of Bernasconi (Bernasconi et al., 2005) and in the NDGC catalogue.
The NN approach under detects the number of disappeared filaments by 40% while
Bernasconi's algorithm over detects by over 1400%. This clearly shows the
superiority of the NN algorithm in reproducing the NDGC results. Although the NN
algorithm has given improved results in terms of accuracy, there still exist a small
percentage of filaments that are detected as disappeared when actually they have not

and also filaments that have actually disappeared but are not detected as such.
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Given time, a CME prediction system could be implemented based on the findings of this

work. The results of detecting filament disappearances could then be compared with the data

of NGDC manual catalogue of filament and the data in the SOHO/LASCO CME manual

catalogue. This could be achieved through combining the present work with that of Al-Omari

(Al-Omari et al., 2010).

7.1.3

Knowledge Discovery Resources

In this research, a wide range of experience was gained in through making full use of the

following resources:

7.2

Many sources of solar data were considered for use. Images from several ground-
based observatories including the Meudon and BBSO Observatories were used as
well as the NGDC and SWRL catalogues of solar filament disappearances.

Many different features of Visual Studio C++ were used. All the algorithms
developed in this research were designed using the C++ programming language.
The adaptive nature of the developed algorithms was produced using Neural

Network algorithms.

Suggestions for Future Work

Some of the challenges that still need to be overcome with suggested solutions and some

ideas for further research are included in the following list.

As concluded in Chapter Four, there is a problem which has emerged while
extracting the filament spine. The final phase of the spine algorithm is to achieve
the task of averaging and projection. For each point in the largest line segment, the
mid-point of the perpendicular line segments that intersects this line is found; i.e. if
the first drawn line is horizontal then the projection will be achieved by finding all

the mid-points of the vertical lines that intersect this line. This phase sometimes
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produces and incomplete or a ‘stuck spine’ due to errors in choosing the largest
line segment through the automated drawing process.

Although the merging algorithm gives a high merging percentage; there is still a
percentage of false merging remaining. Either these broken filaments represent one
filament and they are combined wrongly or they are parts of two different
filaments and are combined together incorrectly.

Another challenge which has been observed while implementing the tracking
algorithm is the existence of miss-detected filament. These filaments which are
classified as having being disappeared have not actually disappeared at all because
the detection algorithm has miss-identified them; there is no ideal filament
detection technique. The present study seems to be the first in distinguishing the
actual disappeared filaments and the miss-detected filaments by applying ANNS.
Even so, a percentage of these filaments are detected as disappeared.

One further challenge in the area of detecting filament disappearances is applying a
backward tracking method by the construction of temporal evolution patterns. This
could be implemented by comparing the current day image with the previous day
image to detect newly appeared filaments.

An additional challenge is improving the system by developing an automatic
prediction technique for CME-filament association. The technique will start with
comparing the disappeared filaments with the detected CMEs manually from a
CME catalogue. If there is an association between them then a machine learning
algorithm will be developed to extract the features of these filaments which will
then be processed by the machine learning algorithm to predict the occurrence of a

CME.
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