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Résumé : 

La présente étude numérique concerne l’écoulement laminaire et stationnaire d’un fluide viscoplastique 

incompressible au sein d’une conduite cylindrique maintenue à une température pariétale uniforme. Le 

fluide obéit au modèle rhéologique de Herschel-Bulkley. En outre, en plus de la chaleur fournie au fluide par 

la paroi de la conduite, la dissipation visqueuse est prise en compte. 

Les résultats montrent que l’augmentation du nombre de Herschel-Bulkley entraine la diminution de la 

vitesse centrale et par conséquent, l’augmentation du coefficient de frottement. Ce dernier croît également 

avec l’augmentation de l’indice d’écoulement du fluide. Il a été noté en outre que le transfert thermique est 

amélioré par l’accroissement du nombre d’Herschel-Bulkley. Cette amélioration est très visible dans la zone 

de l’établissement thermique et ce, loin de l’entrée. Quant à l’introduction de la fonction de dissipation, les 

résultats montrent une amélioration notable du transfert thermique en comparaison avec le cas où celle-ci 

est négligée. 

Abstract: 

The present study concerns the numerical analysis of hydrodynamic and thermal characteristics of the flow 

of an incompressible Herschel-Bulkley fluid of constant physical and rheological properties. The flow takes 

place within a pipe of circular cross section. The pipe is maintained at uniform parietal temperature. 

Because of the viscous character of this type of fluid, viscous dissipation is taken into account. 

The results show that both the friction factor of Fanning and the Nusselt number increase with the increase 

of the Herschel-Bulkley number. However, the increase of the flow index leads to the increase of the friction 

factor on one hand and to the decrease of the Nusselt number on the other hand. In addition, the extent of the 

plug flow region increases when the Herschel-Bulkley number increases. Taking into account viscous 

dissipation improves significantly heat transfer comparing to the case where viscous dissipation is neglected. 

Key words: Herschel-Bulkley fluid, yield stress, forced convection, constant wall temperature, 

viscous dissipation, finite volume method. 

1 Introduction 

The Herschel-Bulkley model is one of rheological models which describe the rheological behaviour of 

viscoplastic non Newtonian fluids. The fluids obeying the Herschel-Bulkley model are encountered in many 

industrial applications. They are characterized by a yield stress from which they start moving. Mitsoulis [1] 

studied, by means of finite element method, the friction factor evolution during the laminar and steady flow 

of a Bingham fluid past a circular cylinder kept between parallel plates. He found that the results are 

independent of the studied geometry. He proposed also a usual correlation, relating the friction factor to the 
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Bingham number. Nouar [2] studied free and forced convection heat transfer of a Herschel-Bulkley fluid 

flow in a horizontal circular pipe subjected to a constant parietal heat flux. He analyzed the effect of 

thermodependency of the fluid consistency and its density on the secondary flows and gave correlations for 

the Nusselt number and the wall shear stress. 

The present work deals with a numerical study of laminar forced convection of a Herschel-Bulkley fluid, for 

which the power law index is taken equal to 0.5 and 1. The fluid is incompressible and of constant physical 

and rheological properties. The flow takes place within a circular pipe, subjected to a constant parietal 

temperature. The study focuses on the effect of the fluid’s viscoplasticity on hydrodynamic and thermal 

characteristics of the flow as well as the effect of viscous dissipation, since it has not yet been deeply 

investigated for this category of fluids, especially for negative values of the Brinkman number. 

2 Governing equation and numerical procedure 

Let’s consider the laminar steady flow of an incompressible Herschel-Bulkley fluid through a circular pipe of 

length L and diameter D maintained at constant wall temperature Tw. The physical and rheological properties 

of the fluid are constant and uniform. The study concerns the case of a shear thinning Herschel-Bulkley fluid 

(n = 0.5) and a Bingham fluid (n = 1). 

The following dimensionless variables are considered for respectively, the radial and axial coordinates, the 

axial and radial velocities, pressure and temperature: 
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Where x and r are respectively the axial and the radial coordinates, Vx and Vr represent respectively the axial 

and the radial velocity components, V0 is the inlet velocity, p* is the pressure, T0 and Tw are respectively the 

inlet and the wall temperatures. 

Thus, the dimensionless governing equations, i.e. continuity, momentum and energy equations are 

respectively given by: 
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Taking into account viscous dissipation and assuming that the physical properties of the fluid (, Cp and k) 

are constant, result in the following dimensionless energy equation: 
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This dimensional analysis generates the following dimensionless numbers: KDVRe nn2
0
   (Reynolds 

number), RePrkDVCPe 0p   (Peclet number) and )TT(kKVBr w0
2

0   (Brinkman number). The 

latter compares the dissipation term with the conduction term in the energy equation. It represents the 
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viscous dissipation function. A negative value of the Brinkman number means that the fluid is heated 

(heating case) whereas a positive value indicates that the fluid is cooled down (cooling case). 

The general model of Herschel-Bulkley is given by the following rheological law, which relates the shear 

stress    to the shear rate   : 
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K is the fluid consistency,  n  is the flow index and  0  is the yield stress. In order to avoid numerical 

instabilities in the low shear rate region, many authors [1,3] recommend to use the following constitutive law 

proposed by Papanastasiou, for which they advised to take m = 1000 s: 
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Where *  is the dimensionless shear rate, M = mV0/D represents the dimensionless exponential growth 

parameter and n
0

n
0 VKDHB   is the Herschel-Bulkley number which represents the ratio of the yield 

stress to the nominal shear stress. 

The boundary conditions consist of uniform axial velocity and temperature at the inlet (U =  = 1, V = 0), 

no-slip condition and a uniform wall temperature along the wall (U = V =  = 0) as well as fully developed 

velocity and temperature at the outlet 
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The governing equations quoted previously, are solved numerically using the finite volume method proposed 

by Patankar [4]. They are discretized and put in the form of an algebraic equation which is solved using a 

computing code based on the SIMPLER algorithm, by considering a 250x50 non uniform mesh. 

3 Validation of the computing code 

To validate our computing code, we consider the limit case of a Bingham fluid (0 ≠ 0 and n = 1) and we 

compare the friction factor’s variation according to the Reynolds number values obtained from this code with 

the ones obtained by Malin [5], by taking a Hedstrom number 
 







 

1
n

2

HBReHe equal to 100. The 

comparison in figure 1, shows that the results seem to be in good agreement. 
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FIG. 1 – Variation of the friction factor according to the Reynolds number. n = 1, He = 100. 

4 Results and discussion 

The results concern the effect of the fluid’s viscoplasticity, represented by the Herschel-Bulkley number, on 

hydrodynamic and thermal properties of the flow. 

Since the momentum and energy equations are decoupled in relation to the velocity field, viscous dissipation 

affects only thermal properties of the flow. This result has been confirmed by [3]. For that purpose, the effect 

of the Brinkman number will be studied only for the evolution of the Nusselt number. 



21ème Congrès Français de Mécanique                                                                  Bordeaux, 26 au 30 août 2013 

  4 

Furthermore, we consider for all the study, a great value of the Prandtl number (Pr = 50) in order to get close 

to industrial applications concerning this category of viscous fluids. 

4.1 Effect of the Herschel-Bulkley number 

Figures 2-a and 2-b show the fully developed velocity profiles (at X = 1000) for various values of the 

Herschel-Bulkley by considering n = 0.5 and n = 1, respectively. We note that all the curves, except the one 

corresponding to HB = 0 (shear thinning power law fluid when n = 0.5 and Newtonian fluid when n = 1), 

present two regions: a region close to the wall characterized by a parabolic velocity profile and a zone 

around the centreline which represents a uniform velocity distribution, called “plug flow region” or 

“unyielded” region. In this region, the shear stress is less than the yield stress, the fluid resists consequently 

to deformations and moves like a rigid solid. It is to be noted also that the centreline velocity decreases when 

the Herschel-Bulkley number increases and the flow index decreases whereas the extent of the unyielded 

region increases with the increase of both the Herschel-Bulkley number and the flow index. 

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 

 

U

R

 HB = 10

 HB = 5

 HB = 2

 HB = 0

(a)

 
0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 

 

U

R

 HB = 10

 HB = 5

 HB = 2

 HB = 0

(b)

 

FIG. 2 – Fully developed velocity profiles according to the Herschel-Bulkley number. 

Pe = 1000. (a)  n = 0.5    (b)  n = 1. 

The effect of the Herschel-Bulkley number on the velocity profile has a significant consequence on the 

friction factor of Fanning (fRe), which is directly related to the pressure drop. Indeed, figure 3 illustrate this 

effect, by considering the axial evolution of  fRe  for both  n = 0.5  and  n = 1.  We can see that the increase 

of the Herschel-Bulkley number leads to the increase of  fRe,  since the wall velocity gradient increases too 

(figure 2). It is interesting to note that the values of  fRe  are more important for  n = 1  (figure 3-b) than for  

n = 0.5  (figure 3-a). This can be explained by the fact that the shear thinning Herschel-Bulkley (n < 1) are 

less viscous than Bingham fluids (n = 1). 
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FIG. 3 – Axial evolution of the friction factor of Fanning according to the Herschel-Bulkley number. 

Pe = 1000.   (a)  n = 0.5    (b)  n = 1. 
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Regarding the effect of the Herschel-Bulkley number on heat transfer (the Nusselt number, Nu), figure 4 

shows the case when viscous dissipation is neglected. We can see, for n = 0.5 (figure 4-a) and n = 1 (figure 

4-b), that the increase of the Herschel-Bulkley number improves heat transfer especially in the fully 

developed region. However, this effect is not very significant at the inlet and is less noticeable for  n = 1. 
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FIG. 4 – Axial evolution of the Nusselt number according to the Herschel-Bulkley number. 

Pe = 1000, Br = 0.   (a)  n = 0.5    (b)  n = 1. 

4.2 Effect of viscous dissipation 

Viscous dissipation is an energy source, represented by the Brinkman number. Taking this function into 

account in the energy equation, leads to modifications on heat transfer behaviour. 

Figures 5 and 6 show the effect of the Brinkman number on the axial evolution of the Nusselt number for     

n = 0.5 and n = 1, respectively, by considering both heating (Br < 0) and cooling (Br > 0) cases. 
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FIG. 5 – Axial evolution of the Nusselt number according to the Brinkman number. 

Pe = 1000, HB = 2, n = 0.5. 

The curves display a sharp decrease of the Nusselt number near the inlet, before reaching an asymptotic 

value downstream, which corresponds to the fully developed flow. It is interesting to note that for both 

heating and cooling, when viscous dissipation is taken into account, this asymptotic value is independent of 

the Brinkman number. It is equal to 16.44 and 10.66 for n = 0.5 and n = 1, respectively. Thus, the Nusselt 

number increases when the Brinkman number increases. Therefore, neglecting viscous dissipation leads to 

underestimate heat transfer by about 256% and 180% for n = 0.5 and n = 1, respectively. 

It is interesting to note also, that in the case of heating (Br ≺ 0), the curves present a discontinuity. We notice 

moreover, the existence of negative values of the Nusselt number due to the change in heat direction. 
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For the limit case of a Bingham fluid (figure 6), the results are compared to those obtained from the 

numerical study of Min et al. [3]. The agreement is good whether or not viscous dissipation is neglected or 

taken into account, since the deviation between the two studies does not exceed 3%. 
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FIG. 6 – Axial evolution of the Nusselt number according to the Brinkman number. 

Pe = 1000, HB = 2, n = 1. 

5 Conclusion 

A numerical study based on finite volume method was carried out. It consisted on the laminar forced 

convection flow of an incompressible Herschel-Bulkley fluid in a circular pipe maintained at uniform wall 

temperature, by taking viscous dissipation into account. 

The results show that the increase of the Herschel-Bulkley number leads to the decrease of the centerline 

velocity and the increase of the extent of the plug flow region. Heat transfer is consequently enhanced but the 

friction factor of Fanning increases too and, so does the pressure drop. However, the increase of the flow 

index leads to the increase of the friction factor on one hand and to the decrease of the Nusselt number on the 

other hand. 

Taking into account viscous dissipation improves significantly heat transfer since the asymptotic value of the 

Nusselt number is notably greater than the one corresponding to the case where viscous dissipation is 

neglected. Thus, in order to have a good design of industrial equipments dealing with the flow of viscoplastic 

fluids, it is necessary to take into account viscous dissipation in computation. 
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