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Abstract :
When straight rods or ribbons are bent and suddenly released, a burst of flexural waves propagates
down the material. However, for naturally curved ribbons of radius a0, geometrical constrains couple
bending and stretching deformations leading to a strain localized region. Here, we study the curling
dynamics of such ribbons with a width W and show that the buckled region dictates the velocity of
curling propagation. At high Reynolds numbers Re, we show that curling proceeds in a cylindrical
rolling up deformation which has a constant velocity predicted by a balance between drag dissipation
and the variation of elastic, kinetic and gravitational energies. The normalized rolling curvature a0/R
depends both on the elasto-gravitational length and the Cauchy number CY . It reaches a limiting value
of 0.48 when gravity is negligible and CY � 1 and is close to 1 when CY ∼ 1 as observed in water.
Finally, at low Re, we find that curling velocity decreases in time and it is controlled by the interlayers
lubrication forces.

Mots clefs : naturally curved ribbon ; curling ; rolling

1 Introduction
Curling deformation of thin elastic sheets appears in numerous structures in nature, such as membranes
of red blood cells [1] and artificial polymersomes [2], epithelial tissues [4] or green algae colonies [3] to
cite just a few examples (Fig. 1A-D). However, despite its ubiquity, the dynamics of curling propagation
in a naturally curved material remains still poorly investigated.
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rounded up (Fig. 2D), again suggesting elastic behavior. The time
constant for the recoil (Fig. 2E)wasof order 5min (Table 1), similar
to time constants for contractionof gastrula epitheliumsubjected to
nonspecific stimuli (23). If true elastic deformation were involved,
a spring-like stretching of some structural component of the cell
would have to bemaintained over hours and through cell divisions.
To probe this, we attempted to temporarily disrupt tension by
treating explants with cytochalasin D, an inhibitor of the actin cy-
toskeleton. After being compressed for 1 h in the presence of in-
hibitor, explants retracted briefly during lifting of the coverslip, as

they tended to stick to it, but then remained flattened (Fig. 2F and
Fig. S3). However, when the inhibitor was washed out after 1 h and
explants were kept compressed for an additional 2 h, they recoiled
like untreated explants when finally released (Fig.2F and Fig. S3).
Thus, “elastic” stress need not be maintained uninterruptedly, but
can be restored after inhibition. Apparently, explants imitate solid
behavior, showing pseudoelasticity (24).

Pseudoelastic Deformation in Epiboly. To see whether pseudoelastic
deformation also plays a role in vivo, we observed the ectodermal
epithelium during epiboly, when its area increases twofold and its
thickness decreases correspondingly (18, 25). We confirmed that
epithelial height decreases by half between the late blastula and
the end of gastrulation (Fig. 2K). When the epithelium is locally
detached, it immediately curls outward (Fig. 2G). Within <1 min,
bending is reverted (Fig. 2H), but not when basolateral cell ad-
hesion is prevented by EDTA treatment (Fig. 2I). Apparently,
tensile elastic stress is concentrated apically, but is counteracted
by basal surface tension (Fig. 1K), which eventually would fold up
the patch. When epithelium is detached at different stages of
gastrulation and fixed when straightened (Fig. 2H), i.e., when cells
are not wedge shaped but columnar as in the embryo, epithelial
height is always the same regardless of howmuch it was decreased
by epiboly at the time of detachment (Fig. 2K), indicating re-
traction of the epithelium. The average height of the straight
epithelium, 37 μm, corresponds to that of late blastula embryos.
At that stage, the epithelium does not increase in height upon
detachment (Fig. 2K). This result suggests that the 1.8-fold ex-
pansion in epithelial area (corresponding to a decrease in height
from 37 to 20 μm) over 7 h between late blastula and late gastrula
stages (18, 25) is due to pseudoelastic stretching; if tension is re-
leased, the epithelium retracts and always returns to the same
preset target height. After gastrulation, retraction is minimal
again (Fig. 2K). Apparently, the epithelium has now adopted
a new target height.
These observations were made as the detached epithelium

passed through a straight configuration while being gradually
folded up by its basal side surface tension. In the embryo, folding
is prevented as the epithelium is attached to the underlying inner
ectoderm. In explants, epithelia can be kept straight by creating
a double layer, i.e., by joining two epithelial patches on their basal
sides (Fig. 2J). After 1 h under this condition, epithelial thickness
is seen to have increased to the same target height (∼37 μm) as
after local detachment and straightening (Fig. 2K). As thickening
after explantation already occurs within 1 min, epithelial shape
must be stable in these double layers. The result also implies,
again, that the effective apical side surface tension is close to zero.
Indeed, when an epithelial patch is kept in Ca2+/Mg2+-free me-
dium to prevent rounding up, the apical surfaces of cells do not
shrink (Fig. S4), confirming that the apical surface tension is
negligible. To summarize our results thus far, the epithelium
reacts pseudoelastically when stretched in vitro and in vivo and
exhibits tissue surface tension on the basal, but not the apical side.

Epithelial Spreading: Analysis. Epithelial layers are often attached
on their basal side to another tissue, as in the case of the gastrula

Fig. 2. Elasticity of epithelium. (A) Spherical epithelial explant treated with
EDTA after 3 h. Apical (pigmented) cell surface (yellow outline) shrinks. (B–E)
Flattening of spherules by compression. Spherules (3 h after explantation)
before (B) and 30 min after compression (D) are shown. (C) Flattened explant
120 min after start of compression. (E) Recoil after compression; τ, time
constant. (F) Recoil for flattened explants treated with cytochalasin D and
explants treated with cytochalasin D followed by washing with MBS for 1 h.
(G–I) Recoil of epithelial patch in situ. Fixed and fractured embryos, ecto-
dermal region, are shown. The epithelium (e) was cut at three sides and
peeled off the inner ectoderm (ie). The patch, attached at the fourth side
(arrow), curls back, shortening its apical side (ap) (G), and then straightens
within <1 min (H). No straightening occurs in EDTA buffer even after 5 min
(I). Patches were oriented randomly; no indication of in-plane anisotropy
was noted. (J) Two stage 10+ epithelial patches attached with their basal
sides (arrowheads) form a double layer: fixed and fractured 1 h after ex-
plantation. (K) Height of epithelium at different stages in intact embryo
(dark gray bars) and after straightening of patch, as in H, or in double layer
(DL), as in J (light gray bars). Error bars, SDs; significant differences at same
stage and between stages are marked with brackets. Numbers inside bars
indicate numbers of measurements and embryos.

Table 1. Flattening and rerounding of epithelial spheres

Patch
Initial

radius, μm
Flattened

surface area/A0

Final surface
area/A0

Time constant,
min

a 78 1.64 1.06 6
b 79 1.68 1.24 6
c 111 2.13 1.03 12
d 112 1.96 1.09 3
e 74 1.47 0.90 5
f 85 1.55 0.75 2
Average ± SD 1.01 ± 0.17 5.7 ± 3.5

A0, initial surface area; time constant measured for rerounding. The
final surface area of an explant divided by the initial one gives values close
to unity.

4002 | www.pnas.org/cgi/doi/10.1073/pnas.1010331108 Luu et al.
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Figure 1 – Curling observed for A) Malaria infected red blood cells [1] B) Artificial polymersomes [2] C)
Volvox [3] D) Epithelial tissue [4] E) a naturally curved PVC ribbon in Silicone oil [5].

Here, we present a coupled experimental and theoretical study of the dynamical curling deformation of
naturally curved ribbons (see Fig. 1E). Using thermoplastic and metallic ribbons molded on cylinders
of different radii, we tune separately the natural curvature and the geometry to study curling dynamics
in air, water and in viscous oils, thus spanning a wide range of Reynolds numbers.

Our theoretical and experimental approaches separate the role of elasticity, gravity and hydrodynamic
dissipation from inertia and emphasize the fundamental differences between the curling of a naturally
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curved ribbon and a rod described by the classical Kirchhoff equations [6].

Ribbons are indeed an intermediate class of objects between rods, which can be totally described by
one-dimensional deformations, and sheets. Since Lord Rayleigh, it is known that a thin sheet can easily
be bent but not stretched. As a result, large deformations in thin sheets usually lead to the localization
of deformations into small peaks and ridges as observed by crumpling a simple piece of paper. These
elastic defects induce critical buckling situations studied in detail statically in the literature, while
experimental and theoretical studies on their dynamics are scarce. Our work shows evidence for the
propagation of such a single instability front, selected by a local buckling mechanism. Finally, we show
that depending on gravity, and both the Reynolds and the Cauchy numbers, the curling speed and
shape are modified by the large scale drag and the local lubrication forces, shedding a new light on
microscopic experiences where curling is observed.

2 Curling at high Reynolds number (103 − 104)
When a Ribbon with natural curvature c0 = 1/a0 is uncoiled on a solid substrate a pronounced de-
formation in the cross-section appears as a consequence of the poisson ratio ν of the material (Fig.2).
This deformation induces localizations of the longitudinal curvature which can not be explained using
the standard mechanics of beams. A good geometrical parameter to characterize the localization phe-
nomena that we name the Tapespring Number (TSN), is the ratio between the typical displacement
in the cross-section (∼ νW 2

a0
) and its tickness h. When νW 2

ha0
is much smaller than one, the system will

behave like a perfect rod, otherwise, the bending mode selected by curling will depend on the presence
of a buckled region and its propagation will follow the criteria of propagating instabilities [7, 8].

Spiraling Rolling

Self-Contact !

Figure 2 – Superposition of pictures of a typical experiment of a PVC ribbon (W = 50 mm, h = 200
µm and a0 = 11 mm) obtained at 1000 fps

In a typical curling experiment, the ribbon rapidly curls on itself until self-contact is produced, forming
a compact cylinder of radius R which moves with a constant velocity Vr (see Fig.2). At short time
scale, the dynamics depends strongly on the TSN (see in Fig.3). Ribbons with low TSNs, disclose a
decelerating curling front, while ribbons with TSN values present both a typical buckling time followed
by an accelerating regime. This occurs basically because the localization of the planar deformations
generates an extra inertia compared to the low TSN case. During curling, not only the curled part
grows while moving, but the inertia associated to lateral unfolding of the cross-section modifies the
dynamics.

At long time scale however, the rolling speed Vr becomes independent of the TSN. The normalized
curvature of rolling e = a0/R remains constant and depends only on 1/a0. Considering a balance
between the different energies involved in the problem (Kinetic, Elastic, Gravitational and inner and
outer Dissipated energies), we can find the following relation between Vr , e, and the mechanical
properties of the material [5] :

(
Vr
Vflex

)2

=
λ2

2(1 +D)
− 12(1− ν2)

e(1 +D)

(
a0

Lg

)3

(1)

, where Vflex = 1
a0

√
B
σ is the characteristic speed of flexion (B is the bending stiffness, σ is the surface

density of the material) λ2 = 2e− e2 − ν2 is a geometrical prefactor in the variation of elastic energy,
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D = CDρfa0

eσ is a number proportional to the drag forces (CD is the drag coeficient of the cylinder, ρf
is the density of the outer fluid) and Lg is the elastogravitational length of the ribbon.
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buckled length
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time for buckling
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Figure 3 – kinematics at short time scale : Curled length as a fuction of time for two different ribbon
with different width ( PVC 200 µm thick and a0 = 11 mm).

The parameter e reflects an equilibrium between three principal interactions : elastic, drag, gravita-
tional and centrifugal forces. When drag and gravitation are neglected, e reaches its minimum value
≈ 0.50 which is compatible with a rolling solution of the elastica problem associated [5]. However, we
characterized the gravitational effects in terms on the critical natural radius a∗0 ≈ 0.28Lg for static equi-
librium with gravity (when a0 > 0.28Lg curling cannot propagate along the material). Experimentally,
when a0 is slightly less than a∗0, e gets its maximum experimental value ≈ 1.1.

With large scale drag, the balance of energy is modified and the Cauchy number CY = D
1+D (it is the

ratio between drag and elastic forces, noteworthy it cannot be larger than 1) becomes important in
the problem. This is illustrated with experiments we realized in water, where the rolling solution is
still observed. However, at CY ≈ 1 and since a0 ∼ 2 − 3 × a∗0, we find e ≈ 1 and the velocity is close
but lower than the one we predict with equation 1. We believe this discrepancy arises from the corner
flow between the cylindrical body to the rolling ribbon and its uncoiled region which is not taken
into account in our analysis. Moreover, we find that at larger speed when a0 � a∗0, the theoretical
estimates becomes worst and worst with the observed one. We observe indeed that the ribbon enters a
new dynamical state and vortices are shed, inducing an extra mode of deformation in the system (see
Fig. 4), affecting the way to consider the drag dissipation [5].

Figure 4 – Superposition of images associated with the curling process in water, the images were
taken at 100 fps ( PVC 100 µm thick and a0 = 5 mm). The figure shows oscillations produced by the
elastic response to the shedding vortices generated by the curling itself.
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3 Curling at low Reynolds number (10−4 − 10−3)
When the Reynolds number is low, the scenario is very different. Lubrication prevents self contact and
the rolling regime does not exist. The constant speed of propagation is never reached. In Fig.5A we
show the experimental measurement of the outer diameter d of the coiled spiral as a function of time.
We observe that the increase of d is faster for larger values of the width W of the ribbon. The curled
length (position) as a function of time appears in Fig.5B ; at short time scale, the tendency of the curve
is compatible with a power law ∼ t1.7, while for long time scale, the suitable relationship is ∼ t0.7. This
result is intriguing and shows the effect of such non compact curling on the kinematics of curling of
ribbons. Indeed, a simple argument as used in the earlier paragraph predicts a constant velocity for a
ribbon of constant width. This preliminary result suggests that not only the drag at large scale should
be considered but also the important role lubrication forces play in curling dynamics.
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4 Conclusions
In conclusion, curling belongs to the class of propagating instabilities in mechanics, where a localized
deformation travels along the material. This property originates from the geometric extension of rib-
bons, which selects a single front of propagation by a local buckling mechanism and lead to a rolling
regime when only inertia and elasticity are important. Moreover, we show that depending on gravity,
and both the Reynolds and the Cauchy numbers, the curling speed and shape are modified by the
large scale drag and local lubrication forces.
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