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Abstract: 

In the transmission systems of vehicles, unforced vibrations can be observed during the sliding phase of 

clutch engagement. These vibrations are due to frictional forces and may generate noise. Several studies 

have shown that the stability of such friction systems is highly sensitive to the parameters (friction law, 

damping...) which admit significant dispersions. Therefore, the uncertain parameters must be considered in 

the stability analysis of a clutch system. This paper investigates the ability of generalized polynomial chaos 

to take an increasing number of uncertain parameters into account in the stability analysis of a clutch 

system ; it focuses on accuracy, on the criterion for the choice of the order of truncation and on the 

computation quantity. The objective is to propose a low cost, high accuracy model, compared to the Monte 

Carlo method. 
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1 Introduction 

In vehicles with manual transmission systems, unforced vibrations can be observed during the sliding phase 

of clutch engagement. These vibrations are caused by the frictional forces and may generate noise. Several 

studies have focused on the mechanisms responsible for these self-excited friction-induced vibrations [1]. 

Various mechanisms have been defined to explain the friction-induced vibration phenomenon. They are 

classified into two main families. The first one is related to the tribological aspects of friction systems and 

includes the stick-slip and speed dependent friction force mechanisms, while the second family is related to 

geometrical and structural properties and includes the so-called sprag-slip and mode coupling mechanisms. 

Low frequency phenomena such as judder (10–20 Hz) can often be attributed to tribological properties [2]. 

However, high frequency phenomena, such as squeal noise (up to several kHz), cannot be related to stick-

slip behaviour because of the speed range of the vibrations measured. Consequently, mode coupling 

instabilities due to the intrinsic structure of the system are more likely to be responsible for this phenomenon 

[3]. Moreover, numerous studies have demonstrated that the dynamic behaviour of dry friction systems is 

highly sensitive to design parameters, in particular to the friction coefficient, which has been shown to admit 

dispersions which may be due to the manufacturing process. It is therefore necessary to take account of the 

dispersion of the uncertain parameters to ensure the robustness of the analysis of friction systems and thus 

the robustness of the design of this system class. The Monte-Carlo approach which is classically used to 

reach this aim requires prohibitive calculation time. The polynomial chaos formalism has been proposed as 

an alternative to take account of the uncertainties of the friction coefficient in the study of the dynamic 

behaviour of friction systems [4], [5]. However, these studies were carried out on the model of a braking 

system with two degrees of freedom (DOF) and there were only one or two uncertain parameters. Therefore, 

the main objective of this paper is to investigate the ability of generalized polynomial chaos (GPC) to take 

account of an increasing number of uncertain parameters (up to 8) in the stability analysis of a clutch system 

which has numerous DOF. This paper focuses on accuracy, the criterion for choosing the order of truncation, 

and the computation quantity, with the aim to propose a low cost, high accuracy model compared to the 

Monte Carlo approach. This paper is organized as follows: section 2 presents the methods for the analysis of 

the stability of uncertain systems and section 3 the GPC formalisms; the friction system is described in 

section 4 and the results of the stability analysis are presented in sections 5 and 6. A conclusion is given in 

section 7. 
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2 Stability analysis of dynamic systems using the indirect Lyapunov approach 

The equilibriums are steady static states of a system. Their investigations aim at understanding the reasons 

why a dynamic state arises preferentially to equilibrium. The eigenvalue approach of the stability analysis is 

presented in order to highlight how equilibrium can become a repulsive state [4]. 

Consider the equation of motion of a dynamic system: 

 ),( dXfX   (1) 

where X represents the instantaneous state of the system (its coordinates in the phase space), the upper dot 

denotes time derivation and f is a function of X parameterized by the elements of d. According to the 

Hartman–Grobman theorem, the linearization of Eq. (1) in the vicinity of Xe(d0) preserves its nonmarginal 

stability nature. Therefore, the determination of the stability nature of equilibriums only requires the 

knowledge of the linearized equation of motion in their vicinity in most cases. Because of the form of the 

solutions, the stability nature of Xe(d0) is expressed by the eigenvalues (d0) of the Jacobian Df(Xe(d0),d0). 

Following Lyapunov’s indirect method, if all the eigenvalues show a strictly negative real part then the 

equilibrium is asymptotically stable; if at least one eigenvalue shows a strictly positive real part then the 

equilibrium is unstable. So, in the classic Monte Carlo procedure, to analyze the stability of a system which 

has uncertain parameters , the samples are first generated following the probabilistic support of parameters, 

then the eigenvalues (d) corresponding to each sample are calculated. This sampling based method is 

known to be time-consuming since it requires a high number of samples to ensure reasonable accuracy with 

high confidence. The resulting computing cost is exorbitant since the system’s eigenvalues must be 

calculated for each sample, an operation which is difficult, especially for systems with numerous DOF. 

Therefore, the generalized polynomial chaos formalism can be used instead of the classic Monte Carlo 

procedure. 

3 Generalized polynomial chaos theory  

Generalized polynomial chaos establishes a separation between the stochastic components of a random 

function and its deterministic components [4]. In the dynamic system, if the uncertain parameters d are 

uniform, all the eigenvalues i(i=1,...,n) are also random functions. According to the Askey scheme [4], the 

Legendre polynomials Lj are best suited to deal with uniform uncertainties, so the random eigenvalues are 

given by:  
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Here  is a vector of r independent random variables, distributed uniformly within the orthogonality interval 

[-1,1]. The truncation order P is shown to be dependent on the polynomial chaos order p and stochastic 

dimension r denoting the number of uncertain parameters:  
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Then, the computing i is turned into the problem of finding the coefficients ji,  of its truncated expansion. 

These coefficients called stochastic modes can be computed by the non-intrusive spectral projection (NISP) 

or the regression technique. The principal advantage of these techniques is related to the fact that no 

modification is performed on the system, only the calculations of the eigenvalues of the completed clutch 

system for a limited number of samples are required. The NISP technique exploits the orthogonality property 

of the Legendre polynomials Lj to calculate ji,  of the equation (2) (Gauss collocation methods) as follows: 
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where 
(k)

 and W(
(k)

) (k=1,...,Q) are given by the well known Gauss collocation points and their 

corresponding weights [2]. 

The accuracy of the proposed method depends on the accuracy of the polynomial chaos (2). Therefore, it is 

important to choose an appropriate order p which ensures an acceptable level of accuracy. 



21
ème

 Congrès Français de Mécanique                                                                  Bordeaux, 26 au 30 août 2013 

  3 

4 A squeal model of the clutch system 

The squeal model of the clutch system used in this paper has been defined by Wickramarachi P. [6]. This 
squeal model which is a masses/springs model with 6 DOF has been chosen because it is sufficient and 
efficient to study mode coupling instability and has been validated with experiments. In the model, the 
contact between the friction disc (1) and the flywheel (2) is created at points A’, B’, C’, D’ by a progressive 
spring kp that is split into four springs kA, kB, kC and kD. In order to consider the nonlinear characteristic of 
the progressive spring, the stiffness kA and kB are respectively divided and multiplied by a ratio 1 and the 
stiffness kC and kD are respectively divided and multiplied by a ratio 2 (as shown by equation 9). 1 and 2 

can be considered the impact coefficients differences around the axis x and axis y in the process of 
manufacture and assembly between the flywheel and the friction disc. Points A, B, C, D are the projections 
of contacts on the average surface of the flywheel. The flywheel is deformable and it is modelled by the 
bending stiffness (kf). Points E, F, G, H are fixed. The DOF of the flywheel are the rotations x, y around the 
fixed axes x, y and the movement translations ZA, ZB, ZC, ZD of points A, B, C, D along the fixed axis z. 

 

 

 

 

 

Figure 1. Clutch model ([6]) 

The linear model of an undamped clutch system can be expressed as follows: 

 0 UKUM   (5) 

 with  T

DCBAyx ZZZZU    (6) 

   4/4/4/4/ mmmmIIdiagM yx   (7) 
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 kA = 1kp/4;     kB = kp/(41);     kC = 2kp/4;     kD = kp/(42); (9) 

where r = (r1+r2)/2 with r1, r2 are the minimal and maximal radii of sliding;  is the coefficient of friction and 

l is the thickness of the flywheel. In the case of a damped clutch system, in the context of this study, the 

dampings ci are applied in the same locations as the springs kp and kf. Base nominal values set are [0,0.5]; 

kp=16.8MN/m; kf = 7.35MN/m; 1 = 0.9; 2 = 0.9; r1 = 75mm; r2 = 120mm; l = 12.5mm; ci = 1 N/m. 

5 Study of the influence of parameters on the mode coupling of a clutch system 

in a deterministic approach  

The deterministic calculations of the eigenvalues help to identify the mode coupling phenomena in the 

system. If there is a coalescence of two modes (their imaginary parts are equal) and the real part of a mode 

becomes positive, the system becomes unstable. Therefore, the deterministic approach helps to identify the 

pairs of modes which generate the mode coupling phenomena and to study the influence of parameters on the 

stability of the clutch system (Figures 2 and 3). 

In system (5), there are 12 non-zero eigenvalues including 4 single frequencies which depend on the values , 

kp, kf, (Modes 1, 2, 3 and 4) and one double frequency (Modes 5, 6) which depends on the values , kp. 

Modes 4, 5 and 6 are always decoupled; the coalescence phenomena occur between 3 modes (1, 2 and 3). 

The results in Figures 1, 2, 3 show that, if kp is small (13 MN/m), 2 modes (1 and 2) are decoupled, 2 modes 

(2 and 3) become coupled from a value of . When kp increases (14 MN/m), all 3 modes are decoupled. If kp 
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increases (16 MN/m), 2 modes (1 and 2) are coupled from a value of , 2 modes (2 and 3) are decoupled. So, 

the system becomes more unstable if  increases. If damping increases, the real parts become increasingly 

negative (Figure 3). 
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Figure 2. The real and imaginary parts of the eigenvalues of the 3 modes 1, 2, 3  

(with kp = 13, 14 and 16 MN/m, undamped)  
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Figure 3. Real and imaginary parts of the eigenvalues of the 3 modes 1, 2, 3 

(with kp = 16 MN/m, the damping ci = 1 N/m)  

    

 

 

 

 

 

 

 

The results in figure 4 show that, if  = 0.15 (low value), there are three stability areas for the system: 

unstable, stable and unstable. The results in figure 5 show that if  = 0.35 (higher value), there are three 

stability zones : unstable, stable and unstable. Other studies show that if there is a little damping (ci = 2.8 

Ns/m), there are four stability zones : stable, unstable, stable and unstable. If damping increases, there are 

two zones of stability - stable and unstable. If damping has a high value, all real parts are negative, and the 

system is stable. So, these different studies show that the dynamic behaviour of the clutch system is highly 

nonlinear and highly sensitive to design parameters (friction, stiffness). 

6 Generalized polynomial chaos for the stability analysis of a clutch system 

As mentioned in section 3, to obtain acceptable accuracy, the choice of the truncation order P of generalized 

polynomial chaos is of great importance. Moreover, the criterion for the choice of the optimal order P should 

only depend on the results obtained with GPC. The eigenvalues are complex, so the assessment error 

between the modules obtained with two developments in successive order Pl is used to select the optimal 

Figure 4. Real and imaginary parts of the 

eigenvalues of the 3 modes 1, 2, 3 with  = 0.15 
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Figure 5. Real and imaginary parts of the 

eigenvalues of the 3 modes 1, 2, 3 with  = 0.35 
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order P. In a complex system, the interaction between modes is very important, so that the optimal P must be 

chosen to satisfy the requirements that all the average errors of the eigenvalue modules do not pass a 

threshold mod and the relative error of the stability proportion does not pass a threshold of stability stable. The 

stability of the equilibrium point is analyzed for each of the N samples generated according to the 

probabilistic law considered for uncertain parameters. N was set to ensure a confidence level of 99% with an 

accuracy margin of 1% for the stability proportion [7]. 

The average relative error of the module of the eigenvalue i (in the least square sense), between two 

developments in successive order pl, pl +1 (l = 1, 2,...) of the polynomial chaos, is defined by: 
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The relative error of the stability proportion of the system between two successive developments in order Pl, 

Pl +1 of polynomial chaos is defined by: 
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To choose P optimal, the truncation order has been increased until all average relative errors ei,rel of module 

of each eigenvalues and the relative error of the stability proportion of the system between two successive 

developments are successively less than the threshold of module (mod) and the threshold of the stability 

proportion (stable). In addition, the number nc of eigenvalues of the complete system - which must be 

calculated to evaluate the stochastic modes of polynomial chaos - must be less than the number of 

calculations of the complete system using the Monte Carlo method (N). 

   Nnenie cstablerelstablereli  ;;),...,1(,max ,mod,    (11) 

Figures 6 show the percentages of the relative error of the eigenvalues modules and the percentages of the 

relative error of the stability proportion of the system between two successive orders, using polynomial 

chaos (NISP) (blue curves) and between the calculated results, using polynomial chaos (with the order pl) 

and the calculated results directly with the complete system (DC) (red curves). The results show that if the 

value of p is either too low or too high, the errors increase. The figures show the real and imaginary parts of 

the eigenvalues, which have 1 uncertain parameter (7a) and 3 uniform uncertain parameters (7b). 
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Figure 6. Evolution of the percentage of the maximum and minimum average errors of the eigenvalue 

modules and the percentage of the relative error of the stability proportion  
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           (a) with 1 uniform uncertain parameter:                (b) with 3 uniform uncertain parameters: , kp, kf 

Figure 7. Real and imaginary parts of the eigenvalues of the two modes 1, 2 using the direct calculation of 

the complete system (DC) and with polynomial chaos (NISP)   

Table 1 shows the comparison of the results of the stability analysis of the clutch system based on the 

analysis of the real and imaginary parts of eigenvalues of the two modes (1, 2) obtained successively through 

the direct calculation of the complete system and with generalized polynomial chaos, the optimal order p 

being calculated with mod = 0.01%, stable = 1% and N = 10,000). The results concern the Hopf bifurcation 
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point (with 1 uncertain parameter), the stability proportion, and the number of calculations of the 

eigenvalues. The uncertain parameters are kp, kf, 1, 2, r1, r2, l in uniform ranges [0.95*nominal value, 

1.05*nominal value] and [0, 0.5]. The percentage of error for the stability proportion between direct 

calculation and  GPC is less than 6% up to r = 7, and a little more than 10% up to r = 8. So, polynomial 

chaos will be efficient for up to 7 uncertain parameters. Moreover, with r = 3, poptimal = 10, the number of 

direct calculations of the eigenvalues of the complete system - which is a complicated and expensive task - 

must reach 10,000. However, with polynomial chaos, 1000 calculations of the eigenvalues of the complete 

system are sufficient. Therefore, the computational cost is considerably reduced. These results show that the 

application of polynomial chaos in the stability analysis of dynamic systems with numerous DOF and several 

uncertain parameters can be effective. 

 DC Generalized polynomial chaos with r  uncertain parameters  

  r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 

Order optimal p  17 23 10 8 5 4 3 3 

Hopf bifurcation point 0 0.234 0.235 - - - - - - - 

Percentage of error of 0 (%) - 0.427 - - - - - - - 

Percentage of error of the stability proportion between direct calculation and 

polynomial chaos (%) 

- 0.841 1.11 0.753 0.635 4.755 5.736 5.966 11.72 

Percentage of error of the stability proportion between 2 successive orders (%) - 0.129 0.386 0.353 0.696 0.540 5.036 5.635 18.63 

Number of calculations of the complete system 10,000 17 529 1000 4096 3125 4096 2187 6561 

Table 1. Comparison between the direct calculation (DC) of the complete system and polynomial chaos  

7 Conclusion 

This paper has shown that mode coupling phenomena may occur in clutch systems and generate instabilities. 

Deterministic studies show that parameters such as the friction coefficient, pressure (represented by 

progressive stiffness) and damping are factors which significantly affect the stability of the system. 

Therefore, the dynamic behaviour of a clutch system is highly nonlinear and highly sensitive to design 

parameters. In order to circumvent the drawback of the classic Monte-Carlo method which is prohibitive for 

industrial systems, generalized polynomial chaos has been proposed. The ability of generalized polynomial 

chaos to take an increasing number of uncertain parameters into account in the stability analysis of a clutch 

system has been investigated. The eigenvalue has been built using a non-intrusive spectral approach. Two 

criteria for the choice of the truncation order have been defined: the average relative error of the module of 

the eigenvalue i (in the least square sense) and the relative error of the stability proportion between two 

developments in successive order. Polynomial chaos must be efficient for up to 7 uncertain parameters and 

computation time will then be reduced considerably. For a greater number of uncertain parameters, the 

truncation order required to obtain good accuracy with generalized polynomial chaos leads to a higher 

number of direct calculations of the eigenvalues of the complete system than the number required in the 

classic Monte-Carlo approach. The results show that the application of polynomial chaos in the stability 

analysis of dynamic systems with numerous degrees of freedom and 7 uncertain parameters can be effective. 
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