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Résumé :

Nous étudions par simulation numérique discrète (DEM) le comportement d’assemblages de billes
sphériques en écoulement de cisaillement à contrainte normale P contrôlée, en présence de forces
capillaires créées par une faible quantité de fluide intertitiel, sous forme de ménisques joignant les
grains voisins (état pendulaire). Nous portons une attention particulière à l’approche de la limite
quasi-statique et caractérisons le comportement du matériau en exprimant le coefficient de frottement
interne et la densité en fonction de deux paramèters de contrôle sans dimension, le nombre d’inertie
I et la pression réduite P* (qui compare les forces de confinement et la résistance à la traction d’un
ménisque). Les forces capillaires ont un effet notable sur la rhéologie jusqu’à des valeurs de P* de
plusieurs unités, particulièrement dans le cas de force attractives à plus longue portée, pour les volumes
de ménisques plus importants. Cet effet est relié à l’anisotropie de la texture du réseau des contacts et
des interactions à courte distance.

Abstract :

We use a DEM method to simulate dense assemblies of frictional spherical grains in 3D steady shear
flow under controlled normal stress P, either dry or in the presence of a small amount of an inter-
stitial liquid, which gives rise to capillary menisci and attractive forces. We pay special attention to
the quasi-static limit of slow flow. The system behavior is characterized by the dependence of internal
friction coefficient and solid fraction on two dimensionless control parameters : the inertial number, I
and the reduced pressure, P*, comparing confining forces to contact tensile strength. Capillary forces
have a significant effect on the macroscopic behavior of the system, up to P* values of several uni-
ties, especially for longer force ranges associated with larger menisci. We relate this effect to fabric
anisotropy parameters of contact and distant interactions.

Mots clefs : Granular material ; Wet grains ; Capillary force

1 Introduction

Significant recent progress in the understanding of the rheology of granular materials in dense flows
has recently been gained from the consideration steady shear flows [1, 2, 3], under constant normal
stress P . Constitutive relations are then conveniently written for internal friction µ∗ and solid fraction

φ, as functions of an adequate reduced form of shear rate γ̇ , the inertial number I = γ̇
√

m
aP (m

and a denoting particle mass and diameter). If cohesion is introduced, another dimensionless control

parameter should be introduces [4, 5] : the reduced pressure P ∗ is defined as the ratio P ∗ = Pa2

F0
of

applied pressure P on grains with diameter a to tensile strength of cohesive contacts, force F0.

We report here on simulations of spherical grain assemblies in which cohesion stem from capillary
forces acting in the narrow gaps between neighboring grains, where menisci of a wetting fluid are
formed.
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2 Model and Simulation
We simulate homogeneous Couette flows, as a uniform shear rate γ̇ = dvx/dy is imposed to mono-sized
spherical grain assemblies. We use periodic, Lees-Edwards boundary conditions (no wall), and the cell
height H (in the y direction) is allowed to fluctuate to keep normal stress σyy = P constant [2, 3, 5].
Particles interact via Hertz-Mindlin elasticity and Coulomb friction (with coefficient µ = 0.3) in their
contacts as in [6], supplemented by the Maugis force [7] for capillary attraction (inter-particle distance
D, meniscus volume V and surface tension Γ) assuming complete wetting :

F cap. = πaΓ[1− 1√
1 + 4V

πaD2

] (1)

The present study is limited to the pendular state (small saturation) [8]. The liquid is confined within
(constant volume) menisci joining neighboring grains, which form as soon as two particles touch [10]
and disappear once the inter-particle distance exceeds the rupture distance, D0 = V 1/3. Macroscopic
properties were shown not to be sensitive to assumptions about meniscus volumes [9] in such models.
Capillary forces F cap., for solid contacts (h ≤ 0) stay equal to F0 = πaΓ.

Elastic properties are such that contact deflections are kept very small (rigid particle limit [3]). By
definition I → 0 corresponds to the quasistatic limit. Our simulations investigate the interval 10−3 <
I < 10−0.5 , while P ∗ values range from infinity (no cohesion) down to 0.43 (corresponding, e.g., to
a = 1µm,P = 100kPa and Γ = 73mJ.m−2 , the surface tension of water). V/a3 = 10−3 (thus setting
D0/a to 0.1) used in our simulations, corresponds to saturations slightly below 1%.

3 Macroscopic observations
Macroscopic friction coefficient µ∗ (Fig. 1a), measured as a time average of the ratio of the shear stress

to the normal stress (µ∗ =< |σ12|
σ22

>), is recorded along with solid fraction φ (Fig. 1b) for different
values of I and P ∗. As I decreases and the quasistatic limit of I → 0 is approached, µ∗ decreases to
µ∗
0(P

∗) and φ increases to φ0(P
∗), characterizing quasistatic plastic flow.
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Figure 1 – Macroscopic friction coefficient µ∗ (a) and solid fraction φ (b) versus inertial number I
for different values of reduced pressure P ∗ when rupture distance of meniscus is D0/a = 0.1.

If (φ0 − φ) ∝ Iν as I tends to zero, this corresponds to a divergence of effective viscosity in constant
density shear flow as (φ0 − φ)−1/ν (in the range 0.4 - 0.5 in our results).

While qualitatively similar results were observed in cohesionless and cohesive systems [5], the effect
of capillary forces on the system behavior is considerably stronger in the present case, as µ∗ increases
from about 0.35 to more than 0.6 between P ∗ infinite and P ∗ = 1.

2
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This is due, to some extent, to the longer attraction range (here D0/a = 0.1), compared to previous
2D results [5], as confirmed by Fig. 2 : the increase of internal friction and the decrease of density
caused by cohesion are reduced for smaller D0.
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Figure 2 – Macroscopic friction coefficient µ∗ (a) and solid fraction φ (b) versus inertial number I
with P ∗ = 0.43 for two different values of rupture distances 0.1 (red circle points) and 0.01 (blue
squares).

To understand the microscopic origin of such rheological features, we now investigate properties of
contact networks and forces.

4 Microscopic observations

4.1 Coordination numbers

The coordination number of all interacting pairs z, can be written as z = zc + zd with zc the average
number of contacts per grain and zd that of distant interactions through the liquid bridges. z and zc
are plotted for different values of I and P ∗ in Fig. 3a.
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Figure 3 – Coordination number for pairs in contact zc (a) and for all interactions z (b) versus inertial
number I for different values of P ∗ with rupture distance D0/a = 0.1.
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z decreases for larger values of I that correspond to lower solid fractions. Fig. 3b plots the contact
coordination number zc. zc increases for lower values of P

∗ , but already strongly departs from its value
in the dry case at quite large P ∗, especially near the quasistatic limit. Enduring liquid bridges prevent
contacting grains from moving apart, and, for small I, grains are at least contacting two neighbors
in cohesive systems, while a significant proportion (> 6%) are “rattlers“ (no force-carrying contact)
without cohesion.

Contact coordination number zc is therefore, not systematically increasing with density, which is larger
for smaller cohesive forces. However, the coordination number associated to close neighbors, separated
by a gap smaller than h, as shown in Fig. 4, is directly correlated to φ for h/a > 2.5 × 10−3 . This
function is described by power law z(h) − z(0) ∝ (ha )

0.6 in range 0 < h/a < 0.06. On comparing
zd = z − zc (Figs. 3a, 3b) to z(D0) (Fig. 4), one deduces the proportion xM = zd

z(D0)−zc
of pairs at

distance lower than D0 joined by a meniscus : xM varies between 0.61 and 0.68 as I increases from
10−3 to 10−0.5 , similar to some experimental results [10].
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Figure 4 – Coordination number of close neighbors for I = 10−3, growing with gap thickness (dis-
tance) h. Blown-up detail corresponds to small h range.

4.2 Agglomeration
As observed and reported in [4, 5], adhesive forces entail particle agglomeration, and grains that stick
to one another form clusters that are transported by the flow for some distance before they are broken
or restructured. As a consequence, the distribution of the age τc of contacts, as shown in Fig. 5, is
such strain intervals γ̇τc) reach values of several units. This suggests that contacting pairs survive
full tumbling motion in the average flow (Fig. 6). The average contact age increases as P ∗ decreases,
indicating stronger cohesion effects produce longer lasting contacts. Little difference is noted between
I = 0.1 and 0.01, showing little microstructural or geometric changes take place in this interval, which
is not far from the quasistatic limit.

4.3 Fabric
Macroscopic friction is related to fabric anisotropy [11]. The distribution of unit vectors ~n normal to
the surface of interacting grains can be expressed [11] with a few spherical harmonics terms and fabric
parameters F12, (F11 − F22), (F33 − 1/3), F13 and F23, defined, as usual, as :

Fαβ = 〈nαnβ〉 (2)

Figs. 7a and 7b plot the fabric parameters for contact and distant interactions. In both cases F13 and
F23 are negligible. (F c

11 − F c
22) and (F c

33 − 1/3) are also small. The most noteworthy contributions to
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Figure 5 – Distribution of age of contacts
P (τ cγ̇) for two different I and P ∗. Age of
contacts τ c is normalized by shearing time
1/γ̇.

Figure 6 – Configuration of a system of
particles in steady shear flow with I =
0.01 and P ∗ = 0.43. All particles that have
at least one contact with τ cγ̇ ≥ 5 are rep-
resented by a red color.

shear stress at small I are associated to the additive effect of contacting pairs with ϕ near 3π/4, with
F c
12 = −0.03, mostly carrying repulsive forces, on the one hand ; and of distant attractive interactions,

oriented near ϕ = π/4, with F d
12 = 0.14, on the other hand. As sketched in Fig. 8, those repulsive and

attractive contributions respectively correspond to approaching and receding pairs according to the
average flow kinematics. This specific fabric anisotropy of distant interactions thus explains, to some
extent, the important influence of the attractive forces of finite range to the material rheology.
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Figure 7 – Fabric parameters of contact interactions (a) and distant interactions (b) versus I for
P ∗ = 0.43

5 Conclusions

Quantitative measurements of the rheological properties of model wet granular materials at low sat-
uration thus reveal an important, unexpected influence of distant attractive force on the behavior.
Many other features should be exploited (such as normal stress differences, related to non-negligible
values of (F d

11 −F d
22) and (F d

33 − 1/3). Further studies, extending to larger saturations should reveal a
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rich landscape of interesting rheophysical properties.

Figure 8 – Sketch of approaching (ϕ near 3π/4) and receding (ϕ near π/4) grain pairs in shear flow.
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