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Abstract : 

The nuclear fuel of light water power reactors are manufactured by powder metallurgy. This is also the 

method that is used for the production of fuels containing minor actinides that have high activity and long 

life. Given their radiotoxicity, it is necessary to simplify the manufacturing process to the maximum, limiting 

dissemination and retention of matter. In addition, the fuel must have a mostly open porosity.  

Implementation of particles of a few hundred microns and controlled cohesion could meet this dual objective. 

However, it should be ensured that the mechanical strength of compacts before sintering is sufficient without 

adding binder. Thus, the phenomena that occur during the manufacture of compact are analyzed and 

quantified. It is shown that only a portion of the particles breaks upon application of a stress up to 600 MPa 

and it is possible to detect this fragmentation by acoustic emission. 

Résumé : 

Les combustibles nucléaires des réacteurs électrogènes à eau légère sont fabriqués par métallurgie des 

poudres. C’est également le procédé qui est retenu pour la fabrication des combustibles contenant des 

actinides mineurs à haute activité et à vie longue. Compte tenu de la radiotoxicité de ces derniers, il convient 

de simplifier au maximum le procédé de fabrication en limitant la dissémination et la rétention de matière. 

Par ailleurs, le combustible devra présenter une porosité majoritairement ouverte. La mise en œuvre de 

particules de l’ordre de quelques centaines de microns et de cohésion maîtrisée pourrait répondre à ce 

double objectif. Toutefois, il convient de s’assurer que la tenue mécanique des compacts avant frittage soit 

suffisante sans ajout de liant. Ainsi, les phénomènes qui se produisent lors de la mise en forme des compacts 

sont analysés et quantifiés. On montre que seule une partie des particules se fragmente lors de l’application 

d’une contrainte pouvant atteindre 600MPa et qu’il est possible de détecter cette fragmentation par émission 

acoustique.    
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1 Introduction 

The current nuclear fuel manufacture implements a powder metallurgy process that comprises three main 

steps: preparation of powders, their compaction and sintering of the compact. It is also the reference process 

for the production of fuels containing minor actinides with high activity and long life, intended to be burnt in 

the fourth generation reactors. However, given the radiotoxicity of these fuels, they can be manufactured 

only in shielded cells. It is therefore necessary to simplify the manufacturing process as possible, by limiting 

dissemination and retention of nuclear matter. The technique that controls the process should be easy to 

implement and robust in a hostile and hardly reachable environment. In addition, to facilitate the release of 

helium during irradiation, a solution is to make a fuel having porosity essentially open, after sintering.  

Thus, instead of micronic powders currently used for the production of fuels, the use of particles of a few 

hundred microns, graded in size, shape and cohesion, should help to limit the dissemination and retention of 

the nuclear matter. Such particles also facilitate the filling of press die. Nevertheless, the implementation of 

large particles without addition of organic binder can lead to compact that does not allow mechanical 

handling in industrial manufacturing process. An optimum between size, shape and cohesion of the particles 
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must be sought to obtain a compact with sufficient mechanical strength, while respecting the specifications 

of the sintered product. It is therefore appropriate to identify and quantify the mechanisms that occur during 

compaction according to the characteristics of compacted particles. More specifically, we are interested in 

highlighting the mechanism of particle fragmentation. We present the evolution of the compactness of a 

particle bed, depending on the applied stress. We then observe the microstructure of compacts with different 

compactness values. Lastly, we analyze the acoustic emission produced by the fragmentation of a single 

particle and that produced by a particle bed during compaction. This technique already used to monitor the 

compaction of pharmaceutical powders, has the advantage of being simple to be nuclear-oriented. 

2 Material and experimental setup 

Studies 
[1]

 to obtain calibrated particles directly during the manufacture of actinides oxides are in progress. 

However, the particles that are implemented here are obtained by mechanical granulation of UO2 powder. 

They are obtained by compaction of a powder at 600 MPa; the elementary particles are submicron. The 

compacts are then crushed and size sorting is performed to retain only particles between 160 and 500 

microns. These particles are then called granules. The density of the compact, determined by weighing and 

measurement, is 6.45 g/cm
3
, that corresponds to a compactness of 59%. The granules also have this density. 

They have a polyhedral shape as shown in FIG. 1a. Given the method for obtaining granules, some of them 

may have dimension greater than 500 microns. Their observation at higher magnification allows 

visualization of the powder particles constituting the granules (FIG. 1b and FIG. 1c). Links that bind these 

particles are Van der Waals attractions, electrostatic forces and capillary forces 
[2]

. The dendritic shape of the 

powder particles also contributes to the cohesion of the granules 
[3]

. 

a)   b)   c)  

FIG. 1 - SEM observations of UO2 granules (600MPa, 160-500µm) at various magnifications 

The granules are spilled into the press die and are compacted between two punches of 10 mm diameter (FIG. 

2). The upper punch is movable and the lower punch is fixed. The die is mobile that allows ejection of the 

compact. Compaction is carried out at a speed of 0.1 mm/s for the movement of the upper punch until the 

desired applied stress. Then this pressure is maintained for 15 seconds before being reduced. During the 

ejection, a pressure of approximately ten times lower than the maximum applied stress is maintained on the 

compact to control the release of stored elastic energy during compaction and to avoid cracking or 

delamination of the compact 
[4], [5]

. Force sensors (in blue in FIG. 2) are arranged directly on the punches and 

in the die. They record the force applied on the upper punch, the force transmitted to the lower punch and the 

radial force applied by the powder on the die. These three forces are used to calculate the friction coefficient 

between the granules and the die, and the ability of the granules to convert an axial force into a radial force. 

The average stress viewed by the compact is equal to the geometric mean of the applied stress and the 

transmitted stress 
[6]

. Knowing the strengths, the position of the upper punch at any time and the compliance 

of the press, the variation in height of the compact as a function of stress can be calculated.  

 

FIG. 2 - Diagram of the compression system 
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In addition, the die is equipped with two piezoelectric sensors (in red on FIG. 2). They record the acoustic 

emission during compaction using a device developed by Mistras company (FIG. 3). Sensors have a 

bandwidth between 100 kHz and 1 MHz. To enhance the signal transmission between the die and the sensor, 

they are fixed to the die by means of a spring that ensures a constant holding force. Silicon grease is used as 

a couplant. Before each test series, we test the quality of the sensor mounting by recording the acoustic 

emission produced by a pencil lead break as described in the norm “NF EN 1330-9”. 

 

 

1. Acoustic sensor 

2. Preamplifier (gain 40 dB) 

3. Scanning system 

FIG. 3 - Diagram of acoustic emission line FIG. 4 - Burst signal parameters 

FIG. 4 shows a typical burst signal of acoustic emission, and some associated parameters. The straight 

forward parameter is the number of hits, ie the number of pulses that exceed the detection threshold. 

However, it is not possible to associate the number of hits to a particular phenomenon because of the 

diversity of emission origins in the compact (friction, fragmentation) and possible spurious noise 

(background noise, electromagnetic radiation, mechanical vibrations related to the machine). However, an 

acoustic emission caused by a given mechanism will lead to a typical burst signal shape. 

3 Results 

3.1 Evolution of the porosity during compaction 

Knowing the mass of granules introduced into the die, it is possible to continuously monitor the density of 

compact of UO2 granules as a function of applied stress. The density after filling of the die is 3.0 g/cm
3
, that 

corresponds to a compactness of 47% of the stack of granules. The applied stress (FIG. 5) varies between 0 

and 1 MPa (interval corresponding to the measuring accuracy of force) as the density is less than 3.9 g/cm
3
 

(60% compactness).  

It is noted that the stress rapidly increases beyond about 40 MPa, that corresponds to a density in the die of 

5.7 g/cm
3
. From 40 MPa, the difference between the applied and transmitted stresses also becomes 

significant. The density monotonically increases with stress. It is not possible to discern from this curve 

change in compaction mechanism. After ejection, the density of the compact compressed to 600 MPa is 6.80 

g/cm
3
; the rebound occurring during ejection is of the order of 8%. Moreover, we find that this density is 

greater than the measured density for the powder compacted to the same stress (6.45 g/cm
3
). 

Observation of a ceramographic section of compacts performed at different applied stresses allows to 

visualize the evolution of the microstructure (FIG. 7). After the application of a stress of 5 MPa, there are 

cracked granules and large porosity between the granules. Fragments of cracked granules will facilitate the 

rearrangement of granules. It seems that some granules are very fragmented, while others are almost not 

fragmented. When the stress increases from 5 MPa to a value between 100 and 300 MPa, fragmentation 

increases. However between 300 and 600 MPa, the size of the granules does not vary greatly. The difference 

in granular appearance on the picture of compacts formed at 5, 20 and 60 MPa and those formed at 100, 300 

and 600 MPa is due to sample preparation. The former compacts are embedded in resin under vacuum and 

then polished, while the latter are thermally consolidated before being polished. 

Even after an applied stress of 600 MPa, there are still some spaces between the granules that are not filled. 

These spaces are not due to granule wrenching during preparation of the sample, but to pores existing in the 

compact. It can be concluded that some granules may be subjected to high isostatic loads and low shear 

stress. They do not fragment while the porosity between the granules is then not completely reduced. 
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FIG. 5 – Evolution of the applied stress and the 

difference between the applied stress and the 

transmitted stress, as a function of the density 

FIG. 6 – Evolution of the porosity calculated by 

weighing and geometric measurements and the 

porosity measured by image analysis, as a function 

of the applied stress 

Quantification of granule size by image analysis is on progress. A first data analysis allowed to calculate the 

porosity between the granules. For low applied stresses, it can be assumed that the granules do not densify 

themselves. We can then calculate the porosity between the granules from the density of the compact and the 

density of granules (6.45 g/cm
3
).  

As expected, porosity decreases as the stress increases (FIG. 6). For a stress of 400 MPa, the density of the 

compact is equal to that of the granules. The granules significantly densify on themselves at a stress of 400 

MPa. Therefore, the assumption made to calculate the porosity between the granules is no longer valid. It is 

the reason of the negative calculated porosity between the granules of compacts made at 600 MPa. It remains 

true that the porosity rate thus calculated is comparable to that determined from the image analysis. For 

stresses below a hundred MPa, that should not lead to a significant densification of granules themselves, the 

observed differences may come from a too low sampling measurement by image analysis. 

a)  b)  c)  

d)   e)   f)  

FIG. 7 - Ceramographic sections of compacts of granules performed at: a) 5MPa, b) 20MPa, c) 60MPa,        
d) 100MPa, e) 300MPa, f) 600MPa 

Analysis by mercury intrusion porosimetry 
[7]

 of compacts would reveal the size of the pores. However, if 

this method is used to identify the stress from which the volume of pores between the granules becomes 

negligible, it cannot monitor/detect granules fragmentation. Only observations of the microstructure of 

compacts show that the granules fragmentation occurs for stresses below 300MPa. 
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3.2 Acoustic emission during the granules compaction 

Acoustic emission is used in many processes as passive technique to monitor real-time processes that emit 

acoustic waves. In particular, this technique is implemented to detect and/or monitor cracks in materials. For 

example, G. Kerboul 
[8]

 followed the formation of cracks that sometimes occurs during the ejection of 

actinide powder compacts. In our case, the objective is to detect in situ fragmentation of granules to infer the 

evolution of the microstructure. Before following the acoustic emission during compaction of a bed of 

granules, we crushed one granule between two punches (FIG. 8) and simultaneously recorded the produced 

acoustic emission. The speed of movement of the punch is 500μm/min. 

First force gradually increases, and then abruptly decreases. The granule then has a crack. The maximum 

force is 1.5 N ± 0.7 N (dispersion obtained for a ten granules batch). The displacement to achieve the 

breaking strength is approximately 100 microns. It corresponds to the formation of flat surfaces on the 

granule in contact with the punches and deformation of the granule. During the increase in stress, no acoustic 

emission exceeds the threshold that was set at 25 dB. Upon breakage, a single event characterized by 

acoustic burst signal shown in FIG. 9a is detected. It has a shape similar to a graphite pencil lead break (FIG. 

9b): a fast rise time followed by an exponential decay and duration of the order of 2 ms for both events. The 

shape of the burst recorded during the rupture of the granule is a typical characteristic of fragmentation. 

However, the amplitudes cannot be compared because the pencil lead break could not be performed directly 

on the punch holder granule (too small size punch). 

    

 

a)    

b)   

FIG. 8 – Illustration of a crushed UO2 granule and load curve 
 FIG. 9 – Emitted burst upon rupture of     

a) one granule, b) a pencil lead break 

We also recorded the acoustic emission during the compaction of granules presented in § 3.1. As mentioned 

for the compaction of alumina powders 
[9]

, pharmaceutical powders 
[10]

 or sand 
[11]

, the number of hits 

increases as the density increases (ie when the stress increases) (FIG. 10). The number of hits increases 

exponentially until it reaches a plateau at a stress of about 35 MPa. When the stress exceeds 500 MPa, the 

number of hits increases again. 

  
FIG. 10 – Cumulative number of hits and applied 

stress, as a function of compact density 

FIG. 11 - Maximum amplitude of burst signals and 

applied stress, as a function of the compact density 

Each point plotted in FIG. 11 corresponds to the amplitude of a burst signal. The detection threshold was set 

at 30 dB. It is noted that burst signals of high amplitude appear as soon as a density of 3.6 g/cm
3
 (56%) is 

reached. Beyond 6.2 g/cm
3
, the amplitude of the burst does not exceed 30 dB. However, there is a slight 

increase in the amplitude of the burst when the stress exceeds 500 MPa. Between 3.6 g/cm
3
 and 6.2 g/cm

3
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more than 80% of the burst signals, whose amplitude is greater than 35 dB, have a shape identical to that 

recorded in the rupture of a granule. They are characteristic of the granules fragmentation. On the other hand, 

the bursts observed at a stress greater than 500 MPa have a very different shape compared to those 

characteristic of fragmentation. The mechanism underlying these burst signals remains to be identified. 

4 Conclusion 

The decrease in porosity during the uniaxial compaction of a bed of granules between 160 and 500 microns 

obtained by compaction of a powder compact, then crushing and grain sorting, is due to rearrangements of 

granules and their fragmentation. Fragmentation allows further rearrangement without significant increase in 

the applied stress. For the high stresses, increase of compactness is mainly due to densification of the 

granules themselves.  

The recording of the acoustic emission makes possible the in-situ determination of the beginning and the end 

of the granules fragmentation, based on the acoustic signature of this phenomenon. This is a promising and 

powerful tool for monitoring the compaction of powders through a multi-parameter analysis leading to 

pattern recognition. The observation of a ceramographic section of compact shows that some granules do not 

fragment, although the porosity between the granules is not completely filled. They are thus subject to a 

shear stress weaker than their cohesion.  

These experimental results are in agreement with the numerical results obtained using a discrete element 

approach implementing dynamics of contacts 
[12]

. Studies of the particle compaction having different 

cohesions and the influence of the characteristics of the granular packing on the compact porosity before and 

after sintering are in progress. 
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