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Résumé :

Un couplage pour l’Interaction Fluide-Structure a été proposé par les auteurs entre la méthode Smoo-
thed Particle Hydrodynamics (SPH) pour le fluide et la méthode Eléments Finis (EF) pour le solide.
Ce couplage tire avantages des deux méthodes, à savoir la capacité de la méthode SPH à prendre
en compte de grandes déformations du domaine fluide et la capacité éprouvée de prédiction du com-
portement des solides sous chargement instationnaire de la méthode EF. De plus, aucun algorithme
spécifique n’est requis à l’interface solide-fluide pour éviter l’interpénétration des deux milieux. Tout
ceci conduit à une implémentation relativement aisée du couplage. Des validations sont présentées
en comparaison de résultats analytiques et expérimentaux. En particulier la conservation de l’énergie
totale à travers le couplage est soigneusement suivie et analysée, démontrant la validité de ce couplage
totalement explicite. Enfin le modèle est appliqué à un cas réaliste où les effets 3D ne peuvent être
négligés.

Abstract :

A coupling strategy was proposed by the authors for solving Fluid-Structure Interactions by means
of the Smoothed Particle Hydrodynamics (SPH) method for the fluid, and Finite Elements (FE) for
the solid. This coupling takes advantage from both methods, namely from the capability of SPH to
handle arbitrary large deformations of the fluid domain, and the known capability of FEs to predict
the structural behavior of solids undergoing unsteady pressure loads. Moreover, no specific algorithm
is required at the interface to prevent penetration of one medium into the other. All this permits a
relatively easy implementation of the coupling. Validations are presented in comparison with analytical
and experimental results. In particular, careful monitoring of the total energy evolution throughout
the coupling is analyzed, demonstrating the effectiveness of this fully explicit coupling. Eventually,
the solver is applied to a complex test case where 3D effects cannot be neglected.

Mots clefs : interactions fluide-structure ; surface libre ; couplage explicite

1 Introduction

In [1] an explicit parallel SPH-FEM coupling method was presented and first validation was performed
by studying the impact at high velocity of an elastic solid on the free surface. Despite the use of a weak
coupling strategy, the results obtained were in good agreement with analytical solution provided in
[2]. One advantage of the coupling developed here is that no specific treatment such as sub-iterations
is done to verify physical conditions at the fluid-structure interface. Even if good agreements between
simulations and experimental or analytical data are found, it remained necessary to assess the coupling
consistency. One way to do so is to monitor time conservation of the total energy of the whole system.
In the present paper the evolution of the different flow energies are first analysed on simple fluid
simulations without the presence of a structure. This permits to discuss of energy preservation in
the SPH scheme stabilized with a Riemann solver. Then this monitoring is applied to FSI situations.
In particular, another two-dimensional test case is presented in detail with evaluation of fluid and
solid energies. It concerns the escape of a water column through an elastic gate [3]. Finally, first 3D
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validation of the coupling is performed, and the FSI model applicability to realistic complex situations
is performed on an industrial test case.

2 SPH solver

In this section, the system of equations and the numerical scheme used in the SPH-Flow solver are
briefly described. We then focus on the evaluation of kinetic, potential and internal energies.

2.1 Governing Equations

Locally, we have the following conservation equations of mass and momentum.

∂ρ

∂t
= −�∇.(ρ�v) (1)

∂ρ�v

∂t
= −�∇.(ρ�v ⊗ �v + pId) + ρ�g (2)

The Tait’s equation of state relating pressure to density of the barotropic fluid closes the system above.

p =
ρ0a

2
0

7

[(
ρ

ρ0

)γ

− 1

]
(3)

2.2 Discrete scheme

In concrete terms, the field is described by a set of particles. The discrete scheme is written using the
Lagrangian symmetrized form of equations, leading to, for the space discretization part :

d�xi
dt

= �vi ;
dωi

dt
= −ωi

∑
j

ωj (�vi − �vj) .�∇Wij (4)

and for Euler equations :
dωiρi
dt

= −ωi

∑
j

ωj2ρe(�ve − �v(xij)).�∇Wij (5)

dωiρi�vi
dt

= ωiρi�g − ωi

∑
j

ωj2[ρe �ve ⊗ (�ve − �v(xij)) + peId].�∇Wij (6)

where ρe and �ve are the solutions of the Riemann problem solved for each interaction at the interface
xij . Velocity of this interface is given by (7).

�v(xij) =
1

2
(�vi + �vj) (7)

Riemann problems are exactly solved using a Godunov numerical scheme [4]. A linear approxima-
tion combined to a limiter is used to extrapolate variables through the Monotone Upstream-centered
Schemes for Conservations Laws (MUSCL) scheme [5].

2.3 Kinetic, potential and internal energies

Noting mi = ρiωi the mass of a particle, the kinetic and potential energies can be calculated using
respectively (7) and (8).

Ep =
∑
i

mi�g.�xi ; Ek =
1

2

∑
i

mi||�vi||2 (8)

The internal energy u satisfies (9).

ρ
du

dt
= −p�∇.�v (9)
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Figure 1 – Time evolution of the fluid for the patch test case

From (1) and (9) we get (10).{
ρdu
dt + p�∇.�v = 0
dρ
dt + ρ�∇.�v = 0

⇒ ρ

p

du

dt
=

1

ρ

dρ

dt

⇒
∫

du =

∫
p

ρ2
dρ (10)

Replacing the pressure in (10) by its expression from Tait’s equation we have :

u =

∫
ρ0c

2
0

γρ2

[(
ρ

ρ0

)γ

− 1

]
dρ =

∫
ρ0c

2
0

γργ0
ργ−2dρ−

∫
ρ0c

2
0

γ

1

ρ2
dρ (11)

Finally, the internal energy can be computed using (12).

u =
∑
i

(
ρ1−γ
0 c20
γ

1

γ − 1
ργ−1
i +

ρ0c
2
0

γ

1

ρi

)
(12)

2.4 SPH simulations with energy evaluation

We first compute kinetic and internal energies on a simple test case. Velocity and pressure fields
computed with (13) are initially imposed to a fluid disk of radius R centered at the origin [6]. Gravity
is not modeled here.

�v0(x, y) = (−A0x,A0y) ; p0(x, y) =
ρ0A

2
0

2

[
R2 −

(
x2 + y2

)]
(13)

For this simulation, we assume R = 1m, A0 = 1s−1, and ρ0 = 1000kg.m−3. Speed of sound is fixed
to ten times the maximum initial fluid velocity : c0 = 10m.s−1. As with all simulations presented
in this paper, the ration h/Δx is set to 1.23 and the cubic spline kernel proposed by Monaghan [7]
is adopted. Pictures in figure 1 show time evolution of the fluid. Initial spacing of particles is set to
Δx = 0.02m. As it can be seen in figure 2 and as expected, there is an exchange between internal and
kinetic energies. Mass is strictly conserved. Total energy, i.e. the sum of internal and kinetic energies
is plotted in figure 2 for three different discretizations. A slight numerical dissipation is observed,
linked to the numerical diffusion introduced to stabilize the scheme (here through a Riemann solver).
However, consistency is verified with a convergence order visibly higher than linear. This preliminary
study permits to highlight the energetic behavior of the SPH scheme for the fluid. When no violent
impact occur in the simulation, consistency of the total energy is obtained, which will enable us to
monitor the coupling quality through global energy preservation when interacting with a structure. In
case of violent impacts this analysis remains possible only up to the impact.
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Figure 2 – Left : evolution of internal and kinetic energies for Δx = 0.02m. Middle : evolution of
total mass. Right : convergence on total energy

Figure 3 – Time evolution of the fluid for the dambreak test case (experiment taken from [3])

3 SPH-FEM coupling

The structure simulations showed in this paper are all performed with a standard FEM solver, namely
here the open source Code Aster solver. The coupling algorithm adopted is straightforward. At each
time step, the two solvers exchange informations at the interface between fluid and structure. When it
is done, the codes perform their calculations in parallel. The time step used for the coupling is based
on the timestep needed for fluid computation. Of course, if the FEM solver needs a smaller time step
to reach convergence then a subdivision of time steps can be applied ; in practice it is not needed in the
following simulations. Regarding the boundary conditions applying at the interface, they are enforced
through a ghost particle technique in the fluid SPH solver. As for the FEM solver, the pressure loading
is computed by averaging the pressure of particles located next to the solid boundary.

3.1 2D validation test case

We presented in [1] a first validation of this coupling method between SPH and FEM on the impact at
high velocity of an aluminium beam on free surface [1], recovering accurately beam deformation and
local pressures in comparison to the analytical solution. Here we focus on another test case described
in [3]. It deals with the escape of a water column initially locked by a deformable body. The width of
the reservoir is 0.1m and the water level is set to 0.14m. The plate is in rubber material with density
1100kg.m−3. The Poisson coefficient has been fixed to 0.499 but has no influence on the deformations
of the solid. The dimensions of the plate are 79mm in length to 5mm in thickness. The experimental
stress-strain curve of the deformable body used for the simulation can be found in [8]. The initial
distance between particles is set to 1mm while the finite element mesh of the plate is composed of four
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Figure 4 – Left : displacement of the free end of the plate. Right : evolution of SPH and FEM total
energies

quadrangles in thickness to forty in length. The speed of sound is fixed to c0 = 30m.s−1, a sufficient
value to comply with a Mach number below 0.1 throughout the simulation. Figure 3 show a comparison
between the experiment and the results given by our simulation. A close agreement is visible. It can be
noticed presence of an oscillating pressure field in the fluid. These high frequency acoustic variations
are transmitted to the solid, and can generate instabilities in the coupling. However, one can note that
the finite element solver is not affected by this high-frequency low energetic loading. This is thanks to
the use of a Hilber-Hugues-Taylor (HHT) time advance scheme in the solid which enables a controlled
dissipation of high frequency oscillations.

To obtain a more precise evaluation of the simulation quality, we can compare the displacement of
the free end of the plate obtained by SPH-FEM to the experimental one, see figure 4. Despite a
slight overestimation of displacements on the two directions a very good agreement is found between
simulation and experiment. In any case the experiment is not strictly 2D and the friction on the wall
of the rubber gate is not null. The evaluations of total energies for this FSI simulation are plotted
in figure 4. As expected we have an exchange between fluid and solid energies. A slight decreasing
of the total system energy is observed at the beginning and can be interpreted as a slight numerical
dissipation. After some time, the increase of total energy for the fluid is due to the increase of internal
energy, as already noted for the dambreak test case, and thus mainly corresponds to a slight residual
contraction of the fluid domain volume. Nonetheless, the variation of the total energy throughout the
simulation is very low, of the order of a few percents. This permits to verify the effectiveness of the
simple explicit coupling methodology adopted. It is likely that the small time steps used, driven by
the explicit nature of the weakly-compressible SPH fluid scheme used, permit to provide accuracy to
this weak coupling, whereas iterating methods are usually employed for implicit solvers using larger
time steps.

3.2 3D demonstrative test case

In order to illustrate the capabilities of the coupling method we performed a simulation of rubber
material slipping on a rough ground in presence of fluid. This solid represents in reality only a small
part of the tyre of a wheel, whose velocity is imposed by its upper part. The ground is fixed and
solid-solid contact is performed within the FEM solver. As it can be seen in figure 5, the deformable
solid first reaches the ground and then a translation movement is applied to its upper part. At this
stage, the solid undergoes the loadings coming from contact and from fluid pressure and largely
deforms. After its passage it is visible how it has dried the ground modeling the surface of a road.
This problem of adhesion of a wheel on a wet rough ground is known to be numerically challenging
very challenging. This permits to highlight the benefits of the coupling developed : the SPH capability
to deal with complex fragmentations and reconnections of a free surface, and the FEM capability to
perform contact simulations.
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Figure 5 – Evolution of a rubber material slipping on a rough ground in presence of fluid

4 Conclusion
In previous communications we showed first validations on the simulation of FSI with a coupling
between SPH and FEM methods. In this paper this coupling is further validated on different test
cases, and extended to 3D complex applications. A monitoring of the energies in the fluid domain
is introduced and permits to investigate the behavior of the SPH scheme in this respect. From this
analysis it is then possible to monitor the energy preservation of the whole coupling, showing that
the explicit weak coupling strategy adopted is effective and permits to obtain accurate results in
comparison to experiments. This is in particular the case for the validation problem of a water column
escaping through an elastic gate. The effectiveness of the method in 3D is then demonstrated, by
comparison with 2D simulations on this same test case first, and then through the simulation of a
complex test case. The latter one consists in the interaction between a piece of tyre and the wet ground
when the wheel is rolling, which constitutes a challenging test case of industrial interest. On this test
case the association of the meshless nature of the method adopted in the fluid enabling to capture the
complex deformation of the water film, and the possibilities of the established FEM in the structure
able to model the contact between the rough ground and the tyre, proves to be an effective strategy.
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