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The effects of time correlations in subcritical fracture.
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Résumé :

Nous avons étudié les émissions acoustiques résultant de la rupture sous-critique d’une feuille de pa-
pier. La fracture avance par des sauts discrets produisant des évènements acoustiques soudains et
discrets. Le temps d’attente entre deux évènements acoustiques et l’énergie des évènements sont dis-
tribués suivant des lois de puissance. La valeur de l’exposant de la loi de puissance pour la distribution
des énergies dépend fortement de la fréquence de l’analyse. Cet effet est dû aux corrélations temporelles
entre les évènements et en particulier à l’existence de répliques.

Abstract :

The acoustic emissions resulting from the subcritical fracture of a sheet of paper are analyzed. A single
crack advances through a series of discrete fracture jumps resulting in discrete acoustic burst-like
events. Both the waiting time between consecutive events and the energy of the bursts are distributed
according to power laws. Surprisingly, the exponent value of the power law for the energy distribution
strongly depends on the frequency of the analysis. This effect is provoked by temporal correlations
between the events, in particular by the presence of aftershocks.

Mots clefs : subcritical fracture ; aftershocks ; critical exponents

1 Introduction

It is well known that there is a critical value for a load that a brittle structure can hold without
quasi-instantaneously breaking into pieces. However, even a subcritical load can provoke the failure of
a structure, but in a time-dependent manner. As stresses intensify around a flaw in the material [5], a
micro-crack can start growing, in an intermittent manner (the case of heterogeneous materials), until
reaching a critical length where the whole system fails. This process, denominated subcritical fracture
[4, 10, 13, 17], belongs to a large family of “catastrophic” phenomena evolving through discrete, power
law distributed events whose best-known example are earthquakes [2, 6, 12]. Predicting large events
is the ultimate goal concerning these systems. However, most of the theoretical approaches explaining
their dynamics have been exploited by the formalism of critical phenomena, which invalidates pre-
dictability and is ruled by universality classes [1, 15] . This classification into universality classes is
based on the consideration of characteristic exponent values for different power laws describing the
dynamics of the system. In contradiction with these ideas, recent experiments show exponents which
are sensitive to material properties [3]. The possibility of predicting large events has also been explored
[11].

In this work, the acoustic emissions resulting from the subcritical fracture of a sheet of paper containing
a crack and submitted to a constant force are analyzed. The distribution of the events’ energies follows
a power law distribution, with exponents that, surprisingly, depend on the frequency of the analysis. We

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by I-Revues

https://core.ac.uk/display/18622644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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show that this effect is provoked by time correlations between events, in particular, by the presence of
aftershocks (which are common in this family of catastrophic phenomena). The distribution of waiting
time between consecutive events also follows a power law distribution. However its exponent is not
affected by the frequency of the analysis.

2 Experimental procedure

We use fax paper samples from Alrey having a thickness of 50 µm and effective dimensions 21 cm ×
4 cm, being fixed along the longer sides and free in the perpendicular direction. An initial crack of
length l0 is prepared at one free side of the sample, both in a parallel direction and equidistant from
the fixed borders. Experiments are performed by applying a constant force F perpendicularly to the
direction of the initial crack. By adjusting l0 = 4.75 cm and F = 200 N , the crack grows reaching a
critical length, lc ∼ 8 cm, in approximately 10 to 30 minutes after the application of the force. The
critical length lc separates the slow dynamics from the quasi-instantaneous rupture. A piezoelectric
transducer of diameter 2.3 mm (Valpey Fisher VP-1.5) is placed in contact with the paper at 5 cm
from the free side containing the initial crack and at 1 cm from the fixed border (which also corresponds
to a 1 cm distance to the direction of the initial crack). An ultrasonic gel guarantees a good contact
between the sensor and the sheet of paper. The acoustic signals are amplified by 64 dB and recorded
continuously during the whole experience by a NI USB-6366 card at 2 MHz. All experiences have
been performed under the same conditions. The temperature and relative humidity were 26.5 ± 1◦C
and 45± 2% respectively.

The amplitude of the acoustic signal depends on the contact between the transducer and the sheet
of paper, which varies between different realizations. In order to compare events from different ex-
periences, a calibration was performed. It consisted on the averaged response of each sensor to six
localized rupture events produced on every sample (by piercing it with a computer controlled thin
needle of 250 µm of diameter) before complete loading. Additional series of experiments was done in
order to study the attenuation of acoustic waves in paper. 10 to 20 localized rupture events were indu-
ced on a sheet of paper submitted to a force of 200 N , but with no initial crack to limit spontaneous
and uncontrolled rupture events. The events were made on a line parallel to the longer sides of the
paper, in the same direction as the fracture in previous experiments. The acoustic signal was recorded
by two sensors placed at 4 cm from each-other.

In addition to the acoustic measurements, a high-speed camera (Photron FASTCAM SA4) recorded
images in a rectangular area containing the advancing crack at a frequency of 10 Hz and a spatial
resolution of 100 µm/pixel.

2.1 Data Analysis

To detect acoustic events we use spectral distance calculation. Usually spectral distance calculation is
done by considering the logarithms of the power spectra of signals. We choose to define a linear spectral
distance which is directly proportional to the signal’s energy and thus makes energy estimations
simpler. Spectral distance is calculated as the integral over a time window (w) of the difference between
the power spectra of the signal averaged over all the frequencies (〈S(t)〉) and the power spectra of the
noise, averaged over all the frequencies and over a time interval of at least 0.5s (〈N̄〉) :

DS,N (t) =
1

w

∫ t−w

2

t−w

2

(〈S(t′)〉 − 〈N̄〉)dt′ (1)

We choose a time interval of w = 100µs which is slightly greater than the duration of the shortest
acoustic events. Noise power spectrum is determined using the signal recorded during the calibration,
for which no uncontrolled rupture has occurred. We detect acoustic events by thresholding the spectral
distance. The threshold is defined as the maximum value of the spectral distance of the noise with
itself : trsh = max(DN,N (t)).
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Figure 1 – Detection of acoustic events. Light blue line (acx.s2) : square of the acoustic signal, thin
red line (DS,N ) : spectral distance of the signal to the noise, black line (trsh) : threshold value of the
spectral distance, black dashed line (trsh/2), dark gray line (event) : acoustic signal corresponding to
an event, thick dark red line (DS,N > trsh/2) : spectral distance over the event’s duration
(a) High energy event : the acoustic event presents few maxima. (b) Determining the end of an event
by thresholding the spectral distance. (c) Low energy event : the event’s amplitude is in the range of
the noise amplitude. (d) Zoom on the low energy event.

This method is much more sensitive to acoustic emissions in paper compared to signal thresholding :
in our case the number of events detected is almost four times greater. It is possible to detect events
whose amplitude is in the range of the noise amplitude (figure 1 c and d).

The energy of acoustic events is defined as the integral of the spectral distance (equation 1) over an
event’s duration. Once an event is detected using the initial threshold, it’s duration is defined as the
part of the spectral distance overcoming the threshold divided by 2. We prefer this definition of the
energy to the maximal amplitude of the signal (or of the spectral distance) because acoustic events
are not single punctual bursts : they sometimes have irregular shapes in time, presenting few local
maxima as consequence of the fact that few fibers can break consecutively in a very small lapse of
time, appearing as one single event (figure 1.a). Taking into account only one of these maxima would
result in neglecting a considerable proportion of the acoustic energy. Integrating the spectral distance
rather than the square of the signal itself decreases the influence of the noise.

3 Results

As the applied force is subcritical and the material heterogeneous, the initial crack propagates in an
intermittent manner [13] : images show that the length of the fracture is constant for most of the time
and increases by making fast discrete crack steps denominated jumps or avalanches [16]. The acoustic
data shows discrete bursts with a finite duration. Each burst constitutes an acoustic event. The analysis
focuses on the distribution of waiting times between events and the distribution of events’ energies ;
and in particular their dependence on the frequency of the analysis. This is quite relevant when
comparing different measurements taken at different frequencies. In our case, the acoustic sampling
is performed at 2 MHz while the frame rate of the images corresponds to 10 Hz. The changing
in frequency has been performed numerically, by dividing the time series in equispaced intervals of
duration δt and adding all the energies of the events belonging to the interval. δt has been chosen
between 10−4s (smallest waiting time value) and 0.5s. For δt below 10−4s the result we obtain doesn’t
vary from the one obtained without changing the frequency ; if δt is smaller than the smallest waiting
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Figure 2 – (a) Distributions of waiting times between events (δt < 10−4). (b) Distribution of the
events’ energies (δt < 10−4). Open symbols : of each experiment separately, solid symbols : ensemble
average of all experiments, dashed line : power law fits of the ensemble average in the signalized range.
(c) Distributions of the energy for the minimal and maximal δt values considered, within the fitting
range. (d) Exponents of the power law distributions of the energy as a function of δt.

time between events, each time interval contains at most one single event and the energy distribution
remains unchanged.

Waiting Times : For subcritical fractures the time between two discrete events, referred to as the
waiting time, follows power law distributions [3, 7, 14]. Figure 2a shows the probability distribution
of waiting times between the events for the acoustic data (at δt = 10−4s). The distribution is fitted
as a power law P (τ) ∼ τ−β with an exponent β = 1.00 ± 0.03. As δt changes from 10−4s to 1s the
distributions move to higher τ values, but their exponent β remains constant.

Energies : The spectral distance integration provides an estimation of the acoustic energy detected by
the sensors, which does not exactly correspond to the energy at the event’s source. This energy needs
to be corrected by taking into account the attenuation of the acoustic waves, which can be scattered
or absorbed by paper fibers. If acoustic events are uniformly distributed in the sample, the power law
exponent can be independent of wave attenuation [18], else the distribution of the acoustic energy will
be affected by the attenuation [8]. In our experiments acoustic events are localized along the fracture
line, so attenuation should be taken into account. Experiments on crack-free paper provided data on
the position and energy of about hundred events relative to the two different sensors. By comparing
the energy ratio of signals detected by the two sensors to the distance separating each event from the
sensors, we obtained that the energy is attenuated following E(r)/Es ∼ (1/r)exp(−r/rc), where Es
corresponds to the energy at the source (r = 0) and r0 is a characteristic length equal to 11.1 cm.
To determine the position of the source of an acoustic event we use the images and suppose that
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10
−4

10
−2

10
0

10
2

τ (s)

10
−4

10
−2

10
0

10
2

decorrelated waiting time

10
−4

10
−3

10
−2

10
−1

E
ac

x

waiting time before the event waiting time after the event

 (A−D)/D

 

 

10
−4

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

τ (s)

E
ac

x

 

 
 (B−D)/D      

−100%

0%

100%

200%

300%

0 2 4 6
0
1
2
3
4
5

0.9
1

dt (s)

 autocorrelation

τ (s)

 

 

20

40

60

80

100

120

−100%

0%

100%

200%

300%

d. e.

a. c.

f.

b.

×10−3

×10−3

Figure 3 – (a) Repartition of events’ energies and waiting times before events. (b) Repartition of
events’ energies and waiting times after events. (c) Repartition of events’ energies and mixed-up waiting
times. (d) Relative difference between the number of events in each interval for waiting times before
the event and uncorrelated waiting times. (e) Relative difference between the number of events in each
interval for waiting times after the event and uncorrelated waiting times. (f) Temporal autocorrelation
of the acoustic signal.

it occurred at the position of the crack tip at the corresponding time. By knowing the distance
between the source and the sensor, we can compute the attenuation of the energy. The estimated
acoustic energy at the event’s source (figure 2b) follows a power law P (E) ∼ E−α with an exponent
of α = 1.51 ± 0.06 (without considering the wave attenuation the exponent is of 1.55 ± 0.03). As
δt increases, the distribution of the acoustic energy still follows a power law, but its exponent α is
strongly affected (figures 2c, d).

If energy and waiting time distributions were uncorrelated, calculating the energy for different time
intervals (i.e., at different frequencies) should only change the range of energies without affecting the
exponent of the power law distribution. Thus, the strong dependence shown in figure 2d indicates that
there may exist a correlation between the waiting time and the energy of an event. To identify it we
study waiting times and energies of the events of all experiments combined.

On figure 3 we represented each event by a point on a energy-waiting time diagram. Each event is
defined by its energy and can be represented with the waiting time that precedes it (a) or the waiting
time that follows it (b). We can see on (b) that there is a large density of events for large energies
(top) and small waiting times (left). To compare this to a case where waiting times and energies are
uncorrelated, we considered a case where a random waiting time from the experiments is associated
to each event (c). The three diagrams were divided in 7 × 9 cells, and the number of events in each
cell is stored in 7 × 9 matrices : B for waiting times before the events, A for waiting times after the
events, and D for the uncorrelated waiting time. For more accuracy the matrix D was calculated as the
mean of the distribution of 1000 random energy-waiting time redistributions. Finally, a comparison
between experimental results (A and B) and the uncorrelated case (D) is made by calculating the
relative difference between the matrices. The result is shown on figure 3 d, e. As expected, the number
of events having large energy and followed by small waiting times is much larger for the experimental
data than for the uncorrelated case (e). On the other hand, this behavior is not observed for waiting
times preceding the events. This shows the existence of aftershocks during the propagation of the crack,
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with typical waiting time of 10−3 s, corroborated by the analysis of the temporal autocorrelation of
the signal, considering a δt = 10−4 s (figure 3f). A time of about 10−3 s also corresponds to the
maximal variation of the energy distribution exponent (figure 2d) confirming that the dependence of
the exponent on the signal’s frequency is due to the aftershocks. Also, for both waiting times (before
and after the event) we observe a large density for small energies (bottom right of d and e), meaning
that there exist “inactivity times” characterized by long waiting times and low energy events.

4 Conclusions

We studied the subcritical crack growth of a single crack in a sheet of paper submitted to a constant
force by using acoustic emissions as the main source of information. Direct image analysis was also
performed. Two variables, the waiting times between the events and the energy released at each event,
were statistically analyzed. They both present power law distributions. The exponent of the power law
for the waiting time distribution is quite robust to variations in the frequency of the analysis. However,
the corresponding exponent for the energy distribution shows a strong dependence with frequency. This
effect is provoked by time correlations between events, in particular, by the presence of aftershocks.
Considering that aftershocks are a common feature of many different phenomena evolving through
power law distributed events, this effect can be relevant to a large family of phenomena.

We acknowledge financial support from the Federation of Research “A. M. Ampère” of Lyon (FRAMA).
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