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Résumé :
Ce document propose une extension de la Théorie Variationnelle des Rayons Complexes [4, 14] (TVRC)
pour calculer la réponse en moyenne fréquence dans des coques élastiques en utilisant la technique dé-
nommée Proper Generalized Decomposition [12, 13] (PGD). Le TVRC est une approche de type Trefftz
pour le calcul des vibrations de structures élastiques légèrement amorties dans la gamme de moyenne
fréquence. Elle a été entièrement développée pour les problèmes de vibrations acoustiques et structurels
à une fréquence fixe. La méthode PGD [12, 13] est une technique de réduction de modèle qui repose sur
la construction a priori d’une représentation de la solution avec des variables séparées sur le domaine
fréquentiel. L’approche PGD a montré de bons résultats sur d’autres problèmes multi-paramétriques. Ce
travail montre son efficacité sur les exemples considérés qui concernent les chocs pyrotechniques et les
problèmes de bande de fréquence de vibration.

Abstract :
This paper proposes an extension of the Variational Theory of Complex Rays [4, 14] (VTCR) to calculate
the medium-frequency bandwidth response in elastic shells using the Proper Generalized Decomposition
[12, 13] (PGD) technique. The VTCR is a Trefftz-type approach for calculating vibrations of slightly
damped elastic structures in the medium-frequency range. It has been fully developed for acoustic and
structural vibration problems at a fixed frequency. The PGD method [12, 13] is a model reduction tech-
nique which relies on the a priori construction of the separated variables representation of the solution
over the frequency-space domain. The PGD approach has shown good results on other multi-parametric
problems. This work will show its efficiency on the considered examples which concern pyrotechnic shocks
and frequency band vibration problems.

Keywords : Shells ; Variational Theory of Complex Rays ; Proper Generalized Decom-
position

1 Introduction
The study of the vibrational response of elastic structures is a key point of the modern structural design
process. The low-frequency range nowadays poses no threat to FEM or BEM solvers, even for complex
structures [1]. On the other side, the high-frequency range is well studied by the statistical energy
analysis (SEA) method which does not takes into account the spatial aspect of the problem [3, 11].
However, the study of the medium-frequency range continue to present problems. The difficulty for the
low-frequency methods lies in the length of variation of the phenomena being considered, which is very
small if compared to characteristic dimension of the structure. In fact the number of degrees of freedom
(DoF) required for such calculations is prohibitive. Nevertheless, much work is currently in progress to
extend the frequency range of the SEA-based techniques.
Problems arise also if one tries to apply the SEA method to the medium frequency range. In fact a
spatial description of the problem is still needed. The theory depicted in [10, 15] is built upon the ideas
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of effective energy density and effective vibrational energy. Despite it is extremely attractive, it still
encounters some obstacles [9].
The alternative approach developed here is called the Variational Theory of Complex Rays (VTCR). It
is a native medium-frequency approach and it has been introduced in [4]. The vibrational response at
a fixed frequency is computed using a new variational formulation. It has been developed in order to
allow a priori independent approximations within the substructures. The transmission conditions are
incorporated in the variational formulation. This method hes been successfully applied to bars, beams,
plates and shells [4, 6, 14]. This technique computes the vibrational response at a specified frequency.
The Proper Generalized Decomposition (PGD) is an a priori model reduction technique. It relies on the
a priori construction of separated variables representations of the solution. It can be interpreted as an
extension of Proper Orthogonal Decomposition (POD) for the a priori construction of such separated
representation.
The VTCR has already been applied on the medium-frequency band using a Taylor approximation
approach [5, 7, 8] and on fluids using the PGD technique [2]. The objective of this article is to present
the extension of VTCR theory for shallow shells to a medium-frequency band using the PGD technique.

2 The reference problem
Just for the sake of clarity, let us formulate the problem for an assembly of two substructures. The
method can easily be generalized to the case of n substructures. The two reference surfaces of the
isotropic and homogeneous sub-domains of the shallow shells are Ω1 and Ω2. ∂Ω1 and ∂Ω2 denote the
boundaries of the surfaces Ω1 and Ω2 respectively. It is required to study the harmonic vibration of the
structures on a frequency band ω ∈ [ω1, ω2]. In order to expand the VTCR method let us discretize
the domain in a vector of fixed frequencies ω and apply the VTCR technique to every fixed frequency
step. All the quantities of the system can be defined in the complex domain : an amplitude S(x)
corresponds to S(x)ejωit. For each shell, the generic displacement uz =

[
vz, wz

]′ (tangential displacement
vz =

[
uz, vz

]′ , normal displacement wz), the moment and the resultant (associated with operators M
and N respectively) are taken into account. The structures are assumed to be slightly curved. The effect
of the environment on Ω1 is represented in Figure 1 and consists of a displacement field u1d on ∂u1d

Ω1,
a force density F 1d on ∂F 1d

Ω1 and a surface load f1d on Ω1. Similar quantities are defined for Ω2. The
common boundary is Γ.

Ω1

Ω2

f 1d

f 2d

Γ

∂u1dΩ1

∂u2dΩ2

F 1d

F 2d

Figure 1 – Reference example described in section 2.

The shell theory used here is the standard theory of shallow shells which is a particular case of the
Donnel-Mushtari-Vlasov theory of thin shells (see [16]). At first the geometry of the shallow shell can be
approximated its projection on the local x, y plane. The displacement class is restricted to (Kirchhoff’s
kinematic assumption) :

uz = u− zφ (1)
φ = grad (w)−Rv (2)
u = [v, w]′ (3)
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where u, v and w are the total, in-plane and off-plane displacements of a point of the middle surface.
The displacement troughtout the thickness is uz. The symbol �′ is the transpose operator.

R =
[ 1
Rx

0
0 1

Ry

]
(4)

is the curvature matrix. The transverse deformation energy is neglected. Define for the generic subdomain
Ω the field D =

{
u,N,M

}
such that

uz ∈ Uz finite energy displacement set, (5){
N,M

}
∈ S finite energy generalized stress set, (6)

div
(
div

(
M
))

+ Tr
(
RN

)
+ fdz + %hω2

iw = 0 on Ω, (7)

div
(
N
)

+ f
ds

+ %hω2
i v = 0 on Ω, (8)

f
d

= [fdx, fdy, fdz]′ , (9)
f
ds

= [fdx, fdy]′ , (10)

M = −Kcp : grad
(
grad (w)

)
, (11)

N = 12
h2 Kcp :

(
ε−Rw

)
, (12)

ε = grad (v)sym = 1
2
(
grad (v) + grad (v)H

)
, (13)

D = Eh3

12 (1− ν2) , (14)

E = E0 (1 + iη) . (15)

where Kcp is Hooke’s plane stress operator, % the density, η the damping coefficient, h the thickness of
the shell, E0 the Young modulus, ν the Poisson’s ratio, �H is the hermitian operator, N and M are
the usual stress resultants and stress moment resultants tensors respectively. The subspaces D1 and D2
associated with the homogenized conditions (f1d = f2d = 0) are denoted D0 1 and D0 2. The boundary
conditions are :

u1 = u1d on ∂u1d
Ω1, u2 = u2d on ∂u1d

Ω1, (16)
w1,n1 = w1d,n1 on ∂w1d,n1

Ω1, w2,n2 = w2d,n2 on ∂w2d,n2
Ω2, (17)(

N1 −R1M1

)
n̂1 = µ1 = µ1d on ∂µ

1d
Ω1,

(
N2 −R2M2

)
n̂2 = µ2 = µ2d on ∂µ

2d
Ω2, (18)(

div
(
M1

))
n̂1 +

(
t̂
′
1M1n̂1

)
, t1 =

Q1 = Q1d, on ∂Q1dΩ1

(
div

(
M2

))
n̂2 +

(
t̂
′
2M2n̂1

)
, t2 =

Q2 = Q2d, on ∂Q2dΩ2
(19)

n̂′1M1n̂1 = M1 = M1d on ∂M1dΩ1, n̂′2M2n̂2 = M2 = M2d on ∂M2dΩ2, (20)
(21)

the conditions on Γ are :
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u1 = u2, (22)
w1,nw1d,n1

= −w2,nw2d,n2
, (23)(

N1 −R1M1

)
n̂1 =

(
N2 −R2M2

)
n̂2, (24)(

div
(
M1

))
n̂1 +

(
t̂
′
M1n̂1

)
,t̂1

=
(
div

(
M2

))
n̂2 +

(
t̂
′
M2n̂2

)
,t̂2
, (25)

n̂′1M1n̂1 = n̂′2M2n̂2, (26)

the condition of the generic corner m is :

2
2∑
i=1

n̂i
′M

i
t̂i = Smd (27)

where n̂1 is the versor normal to the boundary directed outside the element Ω1 and t̂1 is the tangent versor
of that boundary. Similar quantities are defined for the boundaries of element Ω2. In these equations,
for the sake fo brevity, we have defined some useful quantities like µ1 while stating the corresponding
boundary constraint µ1d.

3 The weak variational formulation of VTCR
The VTCR is a weak variational formulation of the whole boundary conditions. The theory uses in-
dependent approximations within substructures. It looks for the solutions

{
u1, N1,M1

}
∈ D1 and{

u2, N2,M2

}
∈ D2 such that

∫
∂v1dΩ1

δµH1 (v1 − v1d) ds+
∫
∂v2dΩ2

δµH2 (v2 − v2d) ds+
∑

m corners

 ∑
Ωi on corners

wHmi

(
2n̂′miMmi

t̂mi − Smd
)

+
∫
∂w1dΩ1

δQH
1 (w1 − w1d) ds+

∫
∂w2dΩ2

δQH
2 (w2 − w2d) ds

−
∫
∂w1d,nΩ1

δMH
1 (w1,n − w1d,n) ds−

∫
∂w2d,nΩ2

δMH
2 (w2,n − w2d,n) ds

+
∫
∂µ1d

Ω1

δvH1

(
µ1 − µ1d

)
ds+

∫
∂µ2d

Ω2

δvH2

(
µ2 − µ2d

)
ds

+
∫
∂K1dΩ2

δwH1 (K1 −K1d) ds+
∫
∂K2dΩ1

δwH2 (K2 −K2d) ds

−
∫
∂M1dΩ1

δwH1,n (M1 −M1d) ds−
∫
∂M2dΩ2

δwH2,n (M2 −M2d) ds

+
∫

Γ

1
2

((
δµ1 − δµ2

)H
(v1 − v2) + (δQ1 − δQ2)H (w1 − w2)− (δM1 + δM2)H (w1,n + w2,n)

)
ds

+
∫

Γ

1
2
(
(δv1 + δv2)H

(
µ1 + µ2

)
+ (δw1 + δw2)H (Q1 +Q2)− (δw1,n − δw2,n)H (M1 −M2)

)
ds = 0

∀
{
u1, N1,M1

}
∈ D1 ∨ ∀

{
u2, N2,M2

}
∈ D2 ∨ ∀

{
δu1, δN1, δM1

}
∈ D0 1 ∨ ∀

{
δu2, δN2, δM2

}
∈ D0 2

(28)

where the sum on the corners consider just the elements that share the same corner. The solution is
researched in the form of a sum of shape functions

u ≈ uV TCR (xrel) =
m∑
i=1

aiĉie
jk′
ixrel (29)
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where ai are unknown parameters, xrel is the position vector with respect of a certain point of the element
(usually the geometric center) and ĉi and ki are chosen so that equations (7) and (8) are identically
satisfied. The substitution of (29) into the variational formulation using the same set of shape functions
as test functions brings us to solve the set of linear equations

B a = l (30)

where B = B (ωi) is the square matrix associated to the bilinear form, l = l (ωi) is linear form and
a = a (ωi) are the unknown parameters. We need to underline that terms in (30) must be calculated
for every frequency step. In order to solve this set of set of equations the PGD technique is considered.
The final solution is a matrix where the columns are the solution of (30). It is a rectangular matrix
A = A

(
k̂, ω

)
= [a (ω1) , a (ω2) , . . . , a (ωn)] where k̂i is the versor of the ray ki. In the same way the

general linear form is l and the bilinear form B. We need to stress out that only the norm of ki depends
on the frequency ωi. Therefore its versor is independent and the solution is uncoupled. For shallow shells
membrane modes and bending ones are weakly coupled. Therefore they can be studied separately with
just a corrective coupling term.

4 The PGD technique
Let us study the "best" pth-order approximation POD-type on the frequency-direction domain Ψ×Θ of
A
(
k̂, ω

)
. The idea of PGD is to define the solution which minimizes the distance to the initial function

A
(
k̂, ω

)
with respect to a particular norm ‖�‖Ψ×Θ :

A
(
k̂, ω

)
=

p∑
i=1

αi (ω) β
i

(
k̂
)

= arg

 min
αi(ω),β

i
(k̂)


∥∥∥∥∥l (k̂, ω)−B (k̂, ω)

p∑
i=1

αi (ω) β
i

(
k̂
)∥∥∥∥∥

2

Ψ×Θ


 . (31)

where αi (ω) is an unknown function of the frequency only and β
i

(
k̂
)

is an unknown function of
the direction only as in the usual POD technique. In literature there are some ways to deal with the
resolution of this problem [2, 12, 13].

5 Numerical example
F d

Ω

O

x̂ ŷ

ẑ

Figure 2 – Shallow shell example considered in Section 5.

The generic example that we want to solve is shown in Figure 2. It is a shallow shell subjected to a
distributed load F d. The mechanical properties of this example are : E = 75 GPa, η = 0.0001, ν = 0.33,
% = 2750 Kg/m, [1600, 2000] Hz, F d = [0, 0, 1]′ N/m. At first the frequency is discretized and the VTCR
is applied for each element ωi ∈ ω. The shape functions used are of the form

u ≈ uV TCR (xrel) =
Nr∑
n=1

anĉn (ωi)n e
jkn(ωi)k̂

′
nxrel (32)
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where xrel is the distance between a generic point P and a point O chosen in the element (usually it is
the geometric center of the element), k̂′n is the versor of the generic wave vector.
After that the solution of the problem in the whole frequency-direction domain is searched using the
PGD approach.

6 Conclusions
The proposed approach which is a fusion of the VTCR method with the PGD technique has been intro-
duced to compute the frequency response of elastic shallow shells structures over a medium-frequency
band. Since it is a very general approach the method seems to be well suited for solving general vibra-
tional problems such as pyrotechnic shocks in spacecraft.
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