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Abstract

The production of a light Standard Model Higgs boson in association with a

top-quark pair at the Large Hadron Collider (LHC) is studied in a simulation of

the multipurpose ATLAS experiment. The Higgs boson is assumed to decay into a

bb̄ pair, and the top-quark pair to decay semi-leptonically. The main background

process for this channel is the production of tt̄ events, which can be divided into

reducible and irreducible components. In the process of generating these components

separately, an overlap of events is created through the addition of b-quarks to tt̄

events via parton showering in the tt̄X sample. These events are already included in

the matrix-element cross-section calculation for the tt̄bb̄ sample. A new procedure

for the overlap removal is presented in this thesis.

Two analyses are studied, where one aims at the full reconstruction of the final state

using a cut-based approach. Recently, this way of reconstructing the tt̄H0(H0 → bb̄)

process has been found to be extremely challenging. The other analysis is based

on a new method employing state-of-the-art jet reconstruction and decomposition

techniques where the tt̄ pair and the Higgs boson are required to have large transverse

momenta and can therefore be reconstructed as massive Higgs and top jets. A

recent phenomenological study has shown that the tt̄H0 process can be recovered

as a promising search channel for a low mass Standard Model Higgs boson around

120 GeV using this approach. Finally, to enhance the sensitivity of the tt̄H0 channel,

a combination of the two analyses is presented.



Summary of Contributions

In this thesis, two analyses to study the tt̄H0(H0 → bb̄) Higgs boson search

channel are presented, where the Higgs boson is produced in association with a tt̄

pair and decays to a bb̄ pair.

One analysis is a cut-based selection method for identifying the Higgs boson

and aims at the full reconstruction of the final state. This analysis is based on a

previous analysis [5] performed at a centre-of-mass energy of s =
√

14 TeV but has

been repeated and optimised with more refined simulated data at s =
√

10 TeV.

The obtained statistical significance is discussed together with the systematic errors

and compared to the earlier analysis.

The second analysis forms the major analysis and original contribution to this

thesis. It is the very first detector level study carried out in the tt̄H0(H0 → bb̄)

search channel, employing a new method of jet reconstruction and decomposition

techniques and based on a recent phenomenological study [3]. This analysis exploits

the boosted regime, where the Higgs boson is produced with very large transverse

momentum.

Finally, a way of combining the two analyses is studied and the results are

presented.

A more technical contribution in this thesis is a new technique which has been

developed to remove the overlap in the tt̄bb̄ and tt̄X data samples used in both

analyses.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN, currently operating at a centre-

of-mass energy of 7 TeV, will provide proton-proton collisions with an unprece-

dented centre-of-mass energy of 14 TeV and with instantaneous luminosities of up

to 1034 cm−2s−1 and is therefore ideally suited to explore the TeV energy domain. It

will play an important role in the investigation of fundamental questions of particle

physics.

The Standard Model of particle physics describes three of the four known fun-

damental interactions between the elementary particles: the electromagnetic, weak

and strong forces. It provides an extremely accurate description of the electroweak

and strong interactions and is in excellent agreement with the numerous experimen-

tal measurements. However there is one particle predicted by the Standard Model

whose existence has not yet been proven to the present day: the Higgs boson. The

Higgs boson is the most-wanted elementary particle in physics as it plays a crucial

role of giving other particles a mass without breaking the gauge symmetry the model

is built upon. Almost all physical properties of the Higgs boson are predicted by

theory, the one which is unknown is its mass.

Direct searches performed at the LEP2 collider exclude a Standard Model Higgs

boson with a mass below 114.4 GeV/c2 at 95% confidence level [1]. Indirect con-

straints from electroweak precision observables, where a Higgs boson enters through

virtual corrections, predict a Higgs boson mass of 89+35
−26 GeV/c2 [2]. Under the
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assumption that the Standard Model and the theory of the Higgs mechanism are

valid, the Higgs boson mass is therefore expected to be close to the LEP2 limit.

This thesis presents two different ways of searching for a Higgs boson in the

process pp → tt̄H0, where the Higgs boson is produced in association with a tt̄

pair and decays to a bb̄ pair. The analyses presented here are based on a realistic

simulation of the ATLAS detector, one of the two multipurpose experiments at the

LHC.

One approach aims at fully reconstructing the final state of the process, assigning

the decay products of the two top quarks and the Higgs boson to their mother

particles.

The other approach was proposed recently [3] and relies on the already well

known associated production of a Higgs boson with a tt̄ pair, but where only the

phase space region where the Higgs and the top quarks are produced at large trans-

verse momenta is considered. This approach of a Higgs analysis in the boosted

regime is based on a study carried out in the process where a Higgs boson is pro-

duced in association with a W or Z boson [4] which reinstated the WH/ZH channels

as Higgs discovery channels in the low mass range.

A first detector level study of the tt̄H0(H0 → bb̄) Higgs boson search channel

in the boosted regime, based on a realistic simulation of the ATLAS detector, is

presented in this thesis. The discovery potential, based on simple event counting, is

analysed in terms of statistical significance.

Finally, the effect of a combination of the two analyses on the sensitivity of the

tt̄H0(H0 → bb̄) process is studied.

The main background for the tt̄H0 process is the production of tt̄ events. This

background can be divided into reducible and irreducible components, depending

on whether or not the final state particles are identical to those in tt̄H0. To be able

to study the contributions and behaviour of these backgrounds individually, they

are all simulated separately from each other. The separate generation of the back-

ground introduces an overlap of events through the addition of b-quarks to tt̄ events

via parton showering in the tt̄X sample. These events are already included in the

matrix-element cross-section calculation for the tt̄bb̄ sample. A new procedure for
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removing this overlap has been developed here as an improvement to the technique

previously used in [5].

The thesis is organised as follows: The LHC collider and ATLAS detector are

briefly described in Chapter 2. A short overview of the theory of elementary particle

physics and interactions, with emphasis on the mechanism of electroweak symmetry

breaking, is given in Chapter 3. Chapter 4 gives an overview of how the simulated

data is generated and how the final state particles are identified. The reconstruction

of the tt̄H0(H0 → bb̄) final state is presented in Chapter 5. In Chapter 6, the

procedure of removing the parton shower/matrix element overlap in tt̄ backgrounds

of the tt̄H0 channel is described. The Higgs boson search in the boosted regime is

then described in Chapter 7, while the combination of the two analyses is discussed

in Chapter 8.
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Chapter 2

The Large Hadron Collider and

the ATLAS Detector

2.1 The LHC

The Large Hadron Collider (LHC) [6, 7, 8] is a superconducting hadron acceler-

ator and collider installed in the 26.7 km tunnel that was constructed between

1984 and 1989 for the CERN Large Electron Positron (LEP) machine. Being a

particle-particle collider, there are two rings with counter-rotating beams, unlike

particle-antiparticle colliders where both beams share a single ring. To keep the

accelerated particles along the curved trajectory, a two-in-one design was chosen for

the superconducting magnets, providing a magnetic field in opposite directions for

the two nearby lying accelerated particle beams. The LHC is designed to collide

proton beams with a centre-of-mass energy of
√
s = 14 TeV, but can also collide

heavy (Pb) ions with an energy of 2.8 TeV per nucleon.

Figure 2.1 shows a schematic overview of CERN’s accelerator complex located

at the Swiss-French border near Geneva. Protons are produced through ionisation

of hydrogen a ion beam source, with a so-called duo-plasmatron source. Before they

are injected to the LHC, the protons are pre-accelerated in different stages. At the

beginning of the acceleration chain, a linear accelerator (LINAC) and a subsequent

booster injects the protons into the Proton Synchrotron (PS) which accelerates them

to 26 GeV. The protons are then transferred into the Super Proton Synchrotron
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(SPS) where the energy is increased to 450 GeV before they are injected into the

LHC. In fully operational mode, the LHC accelerates the proton beams to their final

energy of 7 TeV, providing a centre-of-mass energy of 14 TeV.

The delivered instantaneous luminosity is a very important parameter of an

accelerator. The proton beams will be structured in 2808 spatially distinct bunches,

each with 1011 protons, the nominal separation being 25 ns which corresponds to

a distance of 7.5 m. This means the protons will collide every 25 ns, resulting in

40 000 000 bunch-bunch collisions per second. The proton beams are not collided

head on but at a small crossing angle of the order 150 − 200 µrad to avoid the

occurrence of parasitic collisions. The machine luminosity L is given by:

L =
N2
BnBfrevγr
4πεnβ∗

F (2.1)

where NB is the number of particles per bunch, nB the number of bunches per beam,

frev the revolution frequency, γr the relativistic gamma factor, εn the normalised

transverse beam emittance, β∗ the beta function at the collision point and F the

geometric luminosity reduction factor due to the crossing angle at the interaction

point (IP). The normalised transverse beam emittance εn is a convenient quantity for

the operation of a hadron storage ring and describes the decrease of beam emittance

with increasing beam energy during acceleration.

More commonly used is the integrated luminosity L =
∫
Ldt, the integral of the

instantaneous luminosity L over time. The design luminosity of the LHC is L =

1034 cm−2s−1. One year running at design luminosity corresponds to an integrated

luminosity of L = 10 fb−1. The number of events generated in the LHC collisions is

given by:

Nevent = σeventL (2.2)

where σevent is the cross-section for the event under study and L the integrated

luminosity. While it is extremely unlikely that more than one colliding proton pair

will produce a high pT hard scattering event, in general several additional low pT

interactions will take place among other proton pairs in the same bunch crossing, so-

called minimum bias or pile-up interactions. The amount of pile-up events depends
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Figure 2.1: Schematic overview of the accelerator complex at CERN. The accelerator

chain starts with the linear accelerator (LINAC). A subsequent booster transfers

the protons into the Proton Synchrotron (PS) and from there into the Super Proton

Synchrotron (SPS) before they are injected in the Large Hadron Collider (LHC).

on the instantaneous luminosity and on the bunch spacing. At design luminosity,

on average 23 pile-up interactions are expected.

The LHC has two multipurpose experiments, ATLAS [9] and CMS [10], both

designed for a peak luminosity of L = 1034cm−2s−1 during proton collisions. Addi-

tionally there are LHCb [11] for B-physics; TOTEM [12] foreseen to detect protons

from elastic scattering at small angles; and an experiment dedicated to the LHC

operation with ion beams, the ALICE experiment [13].

2.2 The ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) detector [9] is a multi-purpose detector

designed to fully exploit the discovery potential of the LHC. The detector has a

cylindrical symmetry with a radius of 11 m, a length of 44 m, and a weight of about

7000 tons. The overall layout of the ATLAS detector is shown in Figure 2.2. The

main components of the detector extend radially, starting from the interaction point.
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Figure 2.2: Three dimensional drawing of the ATLAS detector showing the main

detector components: the inner detector (yellow), the electromagnetic (green) and

hadronic (orange) calorimeter and the muon system (blue), as well as the solenoid

and toroid magnets.

Centred in the middle of the detector surrounding the interaction point is the

inner detector (ID). It is embedded in a solenoidal magnet which generates a roughly

homogenous 2 Tesla field parallel to the beam axis. A combination of high-resolution

semiconductor pixel and strip detectors around the interaction point and straw-tube

tracking detectors with the capability to generate and detect transition radiation in

the outer part make it possible to perform pattern recognition, momentum and

vertex measurements as well as electron identification.

The calorimeter consists of an electromagnetic (EM) and a hadronic calorimeter,

situated outside the solenoid. The high granularity liquid-argon (LAr) electromag-

netic calorimeters provide very good performance in terms of energy and position

resolution. Located around it is the hadronic calorimeter, a scintillator-tile calorime-

ter in the central region but using LAr technology in the end-caps.

The calorimeter is surrounded by the outermost layer of the ATLAS detector,

the muon spectrometer. An air-core toroid system generates a magnetic field with

strong bending power in a large volume within a light and open structure. Excellent
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measurement of muon tracks and momenta independent of the inner detector is

achieved.

A more detailed description of the ATLAS detector can be found in the technical

design report (TDR) [14, 15], which is updated by Ref. [16], on which the present

chapter is largely based.

Detector Terminology

The nominal interaction point is the origin of a xyz-coordinate system. The positive

x-axis is defined as pointing in the direction of the centre of the LHC ring and the

positive y-axis points to the surface. The x− y plane is transverse to the beam and

the z-axis follows the beam direction so that the axis system is right-handed. The

radial distance r in the transverse plane is defined as r =
√
x2 + y2. The azimuthal

angle φ covers the range of φ ∈ [0, 2π] and is measured in the x−y plane, originating

from the x-axis, so that the positive x-axis has an azimuthal angle of φ = 0 and the

positive y-axis an angle of φ = π/2. The polar angle θ is measured from the positive

z-axis with θ = 0 being the z-axis, covering the range of θ ∈ [0, π].

Both angles can be expressed using the momentum components as tanφ = py/px

and cot θ = pz/pT where px, py and pz denote the components of the momentum

corresponding to the axis system and the transverse momentum pT =
√
p2
x + p2

y is

defined with respect to the beam axis.

In the case of massive objects (such as jets), the rapidity y = ln[(E+pz)/(E−pz)]
is used, where E is the energy of the object. For highly relativistic particles, the

pseudorapidity η is used as a good approximation within the relativistic limit for the

rapidity y. The pseudorapidity is related to the polar angle through the equation:

η ≡ −ln
[

tan
(
θ

2

)]
. (2.3)

The distance ∆R in the pseudorapidity-azimuthal angle space is defined as ∆R =
√

∆η2 + ∆φ2.

2.2.1 Inner Detector

The inner detector combines high-resolution detectors at the inner radii with con-

tinuous tracking elements at the outer radii, all contained in the solenoid which
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Figure 2.3: Three dimensional view of central part of the inner detector. The high-

resolution detectors (pixel detector and Semiconductor Tracker (SCT)) are located at

inner radii and the continuous tracking elements at outer radii (Transition Radiation

Tracker (TRT)). Taken from [16].

provides a nominal magnetic field of 2 Tesla. It was designed to reconstruct the

trajectories of charged particles by combining the energy hits deposited in the vari-

ous sub-detectors and provides full tracking coverage over a pseudorapidity range of

|η| < 2.5. The layout of the central part of the inner detector is shown in Figure 2.3.

Approximately 1000 particles will emerge from the collision point every 25 ns.

This large track density requires the use of tracking layers with high granularity

to be able to perform high-precision measurements. To meet these criteria, semi-

conductor tracking detectors, using silicon micro-strip (SCT) and pixel technologies

are used close to the beam pipe in conjunction with the straw tubes of the Transi-

tion Radiation Tracker (TRT). In the barrel region, they are arranged in concentric

cylinders around the beam axis while in the end-cap regions they are located on
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disks perpendicular to the beam axis.

The combination of precision trackers at small radii with the TRT at a larger

radius gives very robust pattern recognition and high precision in both r − φ and

z coordinates. The spatial and transverse resolutions for tracking parameters using

the inner detector as a whole are given in Table 2.1.

Pixel Detector

The pixel detector is designed to provide a very high-granularity, high-precision

set of measurements as close to the interaction point as possible. The barrel part

consists of three concentric cylindrical layers and the end-caps of three disks. All

pixel sensors are segmented in r−φ and z and have a minimum pixel size in r−φ×z
of 50 × 400 µm2. Each pixel element has its own readout chip and buffering units

for storing the data, while awaiting the trigger decision.

The whole system contains 80.4 million readout channels, providing intrinsic

accuracies in the barrel of 10 µm in the r−φ plane and 115 µm along the z direction

and in the disks of 10 µm in the r − φ plane and 115 µm along the r direction. In

general, a charged track will leave energy deposits in three pixel layers. The first of

these layers (b-layer) is positioned as close as possible to the interaction region in

order to achieve the best possible impact parameter resolution, which is extremely

important for an efficient b-jet identification

Semiconductor Tracker (SCT)

The SCT uses small-angle (40 mrad) stereo strips to measure both coordinates. In

the barrel region one of these strips is parallel to the beam direction, while in the

end-cap region one of them is running radially, both measuring directly r−φ. They

consist of two sensors with a strip pitch of 80 µm. Eight strip layers are crossed by

each track, corresponding to four space points.

The intrinsic accuracies per module in the barrel are 17 µm (r− φ) and 580 µm

(z) and in the disks are 17 µm (r−φ) and 580 µm (r). The total number of readout

channels in the SCT is approximately 6.3 million.
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Track parameter 0.25 < |η| < 0.5 1.50 < |η| < 1.75

Inverse transverse momentum ( q
pT

) 0.34 TeV−1 0.41 TeV−1

Azimuthal angle (φ) 70 µrad 92 µrad

Polar angle (cotθ) 0.7 × 10−3 1.2 × 10−3

Transverse impact parameter (d0) 10 µm 12 µm

Longitudinal impact parameter (z0 sin θ) 91 µm 71 µm

Table 2.1: Expected spatial and transverse inner detector momentum resolutions for

tracks in representative regions in η. The momentum and angular resolutions are

shown for muons, whereas the impact-parameter resolutions are shown for pions.

The values are shown for two η regions, one in the barrel inner detector where the

amount of material is close to its minimum and one in the end-cap where the amount

of material is close to its maximum. Taken from [16].

Transition Radiation Tracker (TRT)

The TRT was designed to provide a relatively large number of space point mea-

surements at low cost and material. This is achieved by using drift straws of 4 mm

diameter which allow tracks up to |η| = 2 to be reconstructed using a large number

of hits (typically 36 per track). The TRT provides r − φ information only in the

barrel, for which it has an intrinsic accuracy of 130 µm per straw. In the barrel

region the straws are parallel to the beam axis on three cylinders with a maximum

length of 144 cm. The wires are divided into two halves at around η = 0. Following

the design of the SCT, the 37 cm long straws in the end-caps point towards the

beam axis and are arranged in 18 wheels on each side. The total number of TRT

readout channels is approximately 351,000.

While the intrinsic position resolution of the TRT cannot compete with the res-

olution of the silicon technology based detectors, the high number of measurements

and the long lever arm with respect to the measurements in the silicon layers means

that the TRT significantly contribute to the determination of the momentum reso-

lution.

The TRT can also be used for particle identification by detecting transition

radiation when a relativistic particle crosses the boundary between two media with
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different electrical properties (polypropylene foils between the straws). This allows

the separation of electrons from pions and to a much smaller extent the separation of

kaons from pions. Light particles like electrons start emitting transition radiation at

low momentum (∼ 1 GeV) while heavier charged particles like pions emit transition

radiation at high momenta (∼ 100 GeV). By tuning the readout threshold of each

straw, particles can be selected and identified.

2.2.2 Calorimeter

While tracking detectors are designed to have a minimal effect on the particle, the

calorimeter measures the energy of the incident particle through total absorption.

Calorimeters must also be hermetic to achieve a good resolution of the measurement

of the missing transverse momentum.

The ATLAS calorimeter has a coverage up to |η| = 4.9. Different technologies are

used across different regions in pseudorapidity, as shown in Figure 2.4. Over the |η|
range where the calorimeter is surrounding the inner detector, the EM calorimeter

is finely segmented to precisely measure electrons and photons, while the rest of the

calorimeter is more coarsely segmented for jet reconstruction and missing transverse

energy (EmissT ) measurements.

Another design criterion for the calorimeter is to provide good containment for

electromagnetic and hadronic showers of particles with energies around the TeV

scale in order to minimise the punch-through into the muon system and to provide

a good energy resolution. The calorimeter depth is therefore an important design

consideration.

Electromagnetic showers are characterised longitudinally by the radiation length

(X0) and have a narrow transverse profile while hadronic showers have a larger lat-

eral spread and a nuclear interaction length (λ) which is, depending on the material,

an order of magnitude greater than X0. The total thickness of the EM calorimeter

is > 22X0 in the barrel and > 24X0 in the end-caps. The total thickness of elec-

tromagnetic and hadronic calorimeter in nuclear radiation length is 11λ at η = 0,

including 1.3λ from the outer support.
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Figure 2.4: Three dimensional view of the ATLAS calorimeter. The liquid argon

electromagnetic (LAr EM) calorimeter is divided into a barrel part and two end-

caps (EMEC). At outer radii is the hadronic tile barrel and the tile extended barrel.

Located just behind the EMEC is the LAr hadronic end-cap calorimeter (HEC)

which surrounds the LAr forward calorimeter (FCal).

Electromagnetic (EM) Calorimeter

The EM calorimeter is divided into a barrel part (|η| < 1.475) and two end-caps

(1.375 < |η| < 3.2), each housed in their own cryostat. The barrel calorimeter

consists of two identical half-barrels, separated by a small gap of 4 mm at z = 0.

Each end-cap calorimeter is mechanically divided into two coaxial wheels: an outer

wheel covering the region 1.375 < |η| < 2.5, and an inner wheel covering the region

2.5 < |η| < 3.2.

The EM calorimeter is a liquid argon (LAr) detector with accordion-shaped

kapton electrodes and lead absorber plates over its full coverage. The liquid argon

was chosen as an active medium because of its intrinsic radiation hardness and good

energy resolution. The accordion geometry provides complete φ symmetry without

azimuthal cracks.

Over the region of the inner detector (|η| < 2.5), the EM calorimeter is segmented
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in three sections in depth. For the end-cap inner wheel, the calorimeter is segmented

in two sections in depth and has a coarser lateral granularity than for the rest of the

acceptance.

To correct the energy loss due to the material in front of the calorimeter (inner

detector, coil and cryostats), a pre-sampler is located in front of the LAr part in

the region of |η| < 1.8. Particles which shower in the material in front of the

pre-sampler lead to an increased particle multiplicity which is measured by the pre-

sampler. Combining this information with the calorimeter allows an event-by-event

measurement of the energy loss.

The readout granularity of all the different layers of the calorimeter is given

in [16]. The granularity in η, φ in the main ECAL is ∆η = 0.025 and ∆φ = 0.025 in

both the barrel and end-caps. The energy resolution for electrons according to test

beam data in the barrel is

σ(E)
E

=
10%√
E(GeV)

⊕ 0.17% (2.4)

where 10% is the stochastic term and 0.17% is the constant term. The energy

response is also linear within ±0.1%. Similar results have been obtained for the

end-cap EM calorimeter.

Hadronic Calorimeters

The hadronic calorimeters are subdivided into the tile calorimeter, the LAr hadronic

end-cap calorimeters and the LAr forward calorimeter. The tile calorimeter is placed

directly outside the EM calorimeter with the barrel covering the region |η| < 1.0

and the two extended barrels covering the range 0.8 < |η| < 1.7. It is a sampling

calorimeter using steel as the absorber and scintillation tiles as the active material.

The fractional energy resolution σE/E in the tile calorimeter was studied for isolated

pions and is according to test beam data [16]:

σ(E)
E

=
56.4%√
E(GeV)

⊕ 5.5%. (2.5)

The LAr hadronic end-cap calorimeter (HEC) consists of two independent wheels

per end-cap, located directly behind the end-cap electromagnetic calorimeter and
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sharing the same LAr cryostats. Similar to the barrel EM calorimeter, LAr technol-

ogy is used but instead of lead, copper is chosen as the passive material. The energy

resolution for isolated pions is according to test-beam data: σ(E)
E = 71%√

E(GeV)
⊕5.8%.

The LAr forward calorimeter (FCal) covers the region of 3.1 < |η| < 4.9. It

consists of three modules in each end-cap: the first, made of copper, is optimised

for electromagnetic measurements while the other two, made of tungsten, measure

predominantly the energy of hadronic interactions. In test beam data, the relative

energy resolution of the FCAL is measured as σ(E)
E = 94.2%√

E(GeV)
⊕ 7.5%.

The combined performance of the barrel LAr electromagnetic and tile calorime-

ters in test beam data with isolated charged pions was found to be σ(E)
E = 52%√

E(GeV)
⊕

3.1%, the result being very close to design specifications.

2.2.3 Muon Spectrometer

The ATLAS muon spectrometer can identify and reconstruct muons completely in-

dependently from the other sub-detectors; its layout is shown in figure 2.5. Muons

are the only charged particles which are not stopped in the calorimeter and can be

cleanly detected in the muon system. The working principle of the muon spectrom-

eter is based on the magnetic deflection of muon tracks in a system of large super-

conducting magnets, instrumented with separate trigger and high-precision tracking

chambers. For good momentum resolution at high energies a large magnetic field

over long distances is desirable. A system of three large air-core toroids generates

the magnetic field for the muon spectrometer. In the end-cap region, end-cap toroids

are inserted in the barrel toroid at each end and lined up with the central solenoid.

Each of the three toroids is made of eight coils assembled radially and symmetrically

around the beam axis. Contrary to what happens in the inner detector, muons are

therefore bent outside the inner detector in the r − z plane.

The muon detector comprises two sub-detectors, one for precision measurements

and another with very fast sub-detectors with coarser granularity, used for the online

triggering of muon events.

The precision measurements are performed by the Monitored Drift Tube cham-

bers (MDTs), which cover the pseudorapidity region up to |η| = 2.7 and in the
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Figure 2.5: Cut-away view of the ATLAS muon system.

forward region of 2 < |η| <2.7 by Cathode-Strip Chambers (CSCs), used in the

innermost tracking layer due to their higher rate and better time resolution.

While the MDT chambers only constrain the muon track in the bending plane

(z coordinate) with a precision of 35 µm, the CSCs, being multi-wire proportional

chambers with cathode planes segmented into strips in orthogonal direction, provide

a measurement both in the r direction of 40 µm precision and in the φ direction of

5 mm.

These chambers are complemented by the trigger chambers: Resistive Plate

Chambers (RPCs) are used in the barrel (|η| < 1.05) and Thin Gap Chambers

(TGCs) in the end-cap regions (1.05 < |η| < 2.4). The intrinsic time resolution of

these detector components with 1.4 ns for RPCs and 4 ns for TGCs is appropriate for

triggering and permits identification of the correct bunch crossing with an accuracy

of 99%. The spatial and time resolutions as well as measurements per track of the

muon sub-detectors are summarised in table 2.2.

Given the chamber layout of the muon spectrometer, the momentum measure-

ment of a high pT track will depend on the resolution by which its deviation in

the r − z plane in the middle chamber with respect to a straight line, the so-called
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Type Function
Chamber resolution in Measurements/track

z/r φ time barrel end-cap

MDT tracking 35 µm(z) - - 20 20

CSC tracking 40 µm(r) 5 mm 7 ns - 4

RPC trigger 10 mm(z) 10 mm 1.5 ns 6 -

TGC trigger 2− 6 mm(r) 3-7 mm 4 ns - 9

Table 2.2: Resolutions and measurements per track of the muon spectrometer for

each chamber type.

sagitta, can be determined. For a high pT track of 1 TeV, this sagitta will be about

500 µm.

The muon chamber resolution in z using the MDT chambers is better than 10%

in the momentum measurements of muons up to 1 TeV, corresponding to the design

goals of ATLAS. Measurement of low pT muons have to be complemented by the

measurements in the inner detector, since in general not all muon stations will be

reached due to the stronger bending of low pT particles in the magnetic field.

2.2.4 Forward Detectors

Three smaller detector systems cover the ATLAS forward region, two for determin-

ing the luminosity delivered to ATLAS. LUCID (LUminosity measurement using

Cerenkov Integrating Detector) is located ±17 m from the interaction point. It

detects inelastic p − p scattering in the forward direction and is the main online

relative-luminosity monitor for ATLAS. ALFA (Absolute Luminosity For ATLAS),

is at ±240 m, consists of scintillating fibre trackers located inside Roman pots which

are designed to approach as close as 1 mm to the beam. The third system, ZDC

(Zero-Degree Calorimeter), plays a key role in determining the centrality of heavy-

ion collisions and is located at ±140 m from the interaction point, just beyond the

point where the common straight-section vacuum-pipe divides back into two inde-

pendent beam-pipes.
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2.2.5 Trigger System

The ATLAS trigger system is made up of three levels: L1, L2 and the event filter

(EF) to efficiently select the events of interest. After the selection of these events, the

data acquisition (DAQ) system transfers the data from the individual sub-detectors

to the permanent storage elements for offline reconstruction.

The first level trigger (L1) is a hardware based trigger in contrast to the next two

levels which are purely software-based. Together L2 and the event filter are called

High Level Trigger (HLT). The first level uses a limited amount of total detector

information to make a decision in less than 2.5 µs, reducing the rate to about 75 kHz.

The two higher levels access more detector information for a final rate up to 200 Hz

with an event size of approximately 1.3 Mbyte.

Trigger Menus

Trigger menus are an important concept of the trigger system. They consist of a

series of trigger signatures, combinations of objects which pass different thresholds

for different beam energies and luminosities. Depending on the physics they aim

to cover, they are grouped together in a coincidence or in a veto. If one or more

signatures is satisfied, the event passes the trigger.

Trigger menus are designed to make sure that all interesting physics known and

expected is included, but they should also be inclusive to unexpected physics. Trig-

ger menus are constantly evolving in order to achieve the optimal final efficiencies

and rejection factors, but they will also be updated during the running of the ex-

periment, once the detector is well understood.

Level 1 Trigger

The L1 trigger performs the initial event selection based on information from the

calorimeters and muon detectors. The maximum L1 accept rate which the detector

readout systems can handle is 75 kHz (upgradeable to 100 kHz) and the L1 decision

must reach the front-end electronics within 2.5 µs after the bunch crossing with

which it is associated.
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The L1 trigger uses reduced-granularity information from a subset of detectors:

the RPCs and TGCs in the muon system and all the calorimeter sub-systems.

The L1 calorimeter trigger (L1Calo) aims to identify high-ET objects such as

electrons and photons, jets and τ -leptons decaying into hadrons, as well as events

with large missing energy (EmissT ) or large total transverse energy. Isolation can

be required for the electron/photon and τ triggers. This implies that the energetic

particle must have a minimum angular separation from any significant energy deposit

in the same trigger.

The L1 muon trigger is based on signals in the muon trigger chambers: the RPCs

in the barrel and the TGCs in the end-caps. The trigger searches for patterns of

hits consistent with high-pT muons originating from the interaction region.

The output of the calorimeter and muon trigger is passed to the Central Trigger

Processor (CTP) which combines the information for different object types and

makes the decision according to the trigger menus specifically designed for this level.

Trigger menus can be programmed with up to 256 distinct items, each item being

a combination of requirements on the input data. The trigger decision is then

distributed to the detector front-end and readout systems via the Timing, Trigger

and Control (TTC) system. During the time it takes for the trigger decision to be

made, all information is stored in pipeline memories.

While the L1 trigger decision is based only on the multiplicity of trigger objects,

information about the geometric location of the trigger objects is retained in the

muon and calorimeter trigger processors. If the event is accepted by the L1 trigger,

this information is sent as a Region of Interest (RoI, a geometrical grouping of

detector hits) to the L2 trigger where it is used to seed the selection performed by

the HLT.

Level 2 Trigger

The L2 trigger is seeded by the RoIs and uses their information on coordinates,

energy and types of signatures to limit the amount of data which must be transferred

from the detector readout. The L2 trigger reduces the event rate to below 3.5 kHz

with an average event processing time of approximately 40 ms.
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The data of an event passed on to the L2 trigger is moved from the pipeline

memories to the Read-Out Buffers (ROBs) where they are stored for the whole

processing time of L2. Full granularity and full precision data are available from

all sub-detectors but only in the RoIs identified by L1. In special cases and only

for a small fraction of the events, L2 can access and process data from the full

detector with the full granularity and precision within the bandwidth limitations.

This applies for example to the processing of all calorimeter cells for an improved

calculation of EmissT .

L2 processes events by running algorithms which are used to identify objects like

electrons or jets and determine their properties by grouping together data for each

RoI. The sequence of execution of the algorithms is chosen to maximise the physics

potential. After each step in the sequence, an algorithm determines whether a given

signature is satisfied or not. The processing of any given RoI is stopped as soon as

it is clear that it cannot contribute to the selection of the event. The event itself is

rejected if none of the signatures in the trigger menu is satisfied.

Event Filter

The EF uses offline analysis procedures on fully-built events to further select events

down to a rate which can be recorded for subsequent offline analysis. It reduces

the event rate to approximately 200 Hz with an average event processing time of

order four seconds and is the last stage of the online selection before the events are

transferred to permanent storage. The EF is seeded by the L2 decision and has

access to full event data as well as to the full detector geometry with all calibration

and alignment information. It uses more sophisticated algorithms which are often

similar to the offline reconstruction algorithms.
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Chapter 3

Theoretical Framework and

Higgs Phenomenology

The Standard Model (SM) [17, 18, 19] of particle physics describes the electromag-

netic, weak and strong interactions between all elementary particles. There is one

particle predicted by the SM which has not yet been observed, the Higgs boson,

which is thought to be the mediator of mass. All physical properties of this particle

are predicted by theory, except its mass.

This chapter presents a short overview of the current understanding of elemen-

tary particles and fundamental interactions with some emphasis on the Higgs mech-

anism. The tt̄H0(H0 → bb̄) channel, which is the subject of this thesis, is also

presented here. In this thesis, natural units are used, defining ~ = 1 and c = 1

(except in Chapter 1).

3.1 The Standard Model - particles and forces

The Standard Model describes the fundamental forces between the elementary par-

ticles with Quantum Field Theories. The elementary particles with spin 1
2 are called

fermions and are the building blocks of matter. The fermions can be subdivided

into two categories and arranged in three generations of progressively more massive

doublets. There are six leptons,
(
νe
e−

)(
νµ
µ−

)(
ντ
τ−

)
(3.1)
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and six quarks,
(
u

d

)(
c

s

)(
t

b

)
(3.2)

For each particle there exists an anti-particle with identical mass but opposite quan-

tum numbers.

Additionally, the model contains vector bosons, particles responsible for mediat-

ing the fundamental interactions:

• the photon γ, the gauge boson for the electromagnetic interaction

• the W±, Z0, the three gauge bosons for the weak interaction

• eight gluons, the gauge bosons for the strong interaction

and one scalar boson:

• the Higgs boson H, which has not yet been observed.

The Standard Model of particle physics is a special case of a gauge theory, a

type of field theory in which the Lagrangian is invariant under a continuous group

of local transformations. These local transformations are transformations which are

not identically performed at every point in space-time and are referred to as local

symmetry or gauge groups.

The requirement of local symmetry places a stringent constraint in the construc-

tion of a theory. For local symmetry to be observed, the laws of physics must retain

validity when a different transformation is applied at any point in space and time.

In order to make a theory invariant with respect to local transformation, a new field

has to be added that would compensate for changes from the local transformations.

These so-called gauge fields arise through the corresponding group generators of the

symmetry group and describe the forces of the SM. The quanta of the fields are

called gauge bosons, they act as carriers of the forces.

The symmetry group of the Standard Model is of the kind SU(3)C ⊗ SU(2)I ⊗
U(1)Y where SU(3)C is the colour symmetry of strong interactions, SU(2)I describes

the weak isospin I for the unified electroweak interactions and U(1)Y the invariance

under hypercharge Y transformations. The Lagrangian can be separated into a term

for strong interactions LQCD and a term for electroweak interactions LEW .
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Despite its power, the Standard Model in its early form was a theory of massless

particles contradicting every day experience. Explicit mass terms in the Lagrangian

destroy gauge invariance and make the theory meaningless. However, this can be

solved by introducing a scalar field with a quartic potential and by breaking the

symmetry of its ground state. This symmetry breaking takes place in the electroweak

sector of the Standard Model. In the following sections neutrinos are assumed to

be massless, although experimental observations support non-vanishing values for

neutrino masses [20].

3.1.1 Strong Interaction

The theory of strong interactions [21, 22, 23] describing the interaction of quarks

and gluons is called quantum chromodynamics (QCD). It is based on colour charges

and described by the SU(3)C gauge symmetry.

Interactions between coloured quarks are mediated by eight massless gauge

bosons, the gluons. The range of the strong interaction is limited to ∼ 10−18m. At

long distances, QCD becomes strongly interacting and perturbation theory breaks

down. In this confinement regime, the coloured partons are transformed into colour-

less hadrons, a process called hadronisation. The Lund string model [24] is a phe-

nomenological model of hadronisation: The self-interaction of gluons via 3-gluon

and 4-gluon vertices causes the strength to increase with distance. As quarks are

separated, the potential energy between them increases until it is favourable for

the field to form new quark-anti-quark pairs, continuing until all quarks are bound

within colourless objects, either mesons (qq̄) or baryons (qqq).

Since the strong interaction does not discriminate between different quark flavours,

QCD has approximate flavour symmetry, which is broken by the differing masses of

the quarks. The Lagrangian, describing the dynamics of the quarks and gluons is

given by:

LQCD = i
∑

f

q̄fγ
µDµqf −

1
4
GiµνG

µν
i , (3.3)

where qf is a colour triplet of quarks with flavour f , γµ are the Dirac matrices and
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the covariant derivative Dµ is defined as

Dµ = δµ − ig3
λi
2
Giµ (3.4)

with the SU(3)C coupling constants g3. The tensor fields Gµν are defined as

Gi,µν = δµGi,ν − δνGi,µ + gfijkGj,µGk,ν , (3.5)

where Gi,ν are the eight gluon fields, λi the generators of SU(3)C , the so-called

Gell-Mann matrices and fijk the structure constants of the symmetry group.

3.1.2 Quantum Electrodynamics

The first and simplest local gauge theory was quantum electrodynamics (QED)

describing the electromagnetic force and based on the U(1)Q symmetry. The in-

teraction of a spin-1
2 fermion field Ψ of mass mf with the electromagnetic field of

infinite range, the vector potential Aµ, is described by the Lagrangian

LQED = Ψ̄(iγµDµ −mf )Ψ− 1
4
FµνF

µν (3.6)

with the tensor of the electromagnetic field strength Fµν = δµAν−δνAµ correspond-

ing to the kinetic energy and the covariant derivative Dµ = δµ − ieAµQ, with the

electric unit charge e and the charge operator Q (Q(electron) = −1).

The Lagrangian is invariant under the local transformation

Ψ(x)→ expiα(x)Q Ψ(x), (3.7)

where Aµ transforms as

Aµ(x)→ Aµ(x) +
1
e
δµα(x). (3.8)

α(x) is a local phase depending on space and time in a completely arbitrary way

without relevance for observable quantities. Local gauge invariance requires the

photon field Aµ to be massless because adding an explicit mass term of the form

mγAµA
µ breaks the gauge invariance. The Abelian nature of U(1)Q does not allow

any self-interaction terms for photons.
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3.1.3 Weak Interaction

The charged weak currents do not distinguish left-handed charged leptons and their

associated left-handed neutrino. They can therefore be grouped into a doublet

χL =
(
ν
l−
)

which transforms under the symmetry group SU(2)L (L for left-handed).

The associated inner symmetry is the third component of the weak isospin. The

right-handed leptons remain singlets, lR. The Lagrangian

LW = iχ̄Lγ
µDµχL + iēRγ

µδµeR (3.9)

is invariant under transformations χL → exp
i
2
~α(x)·~τ χL, if the derivative takes the

form

Dµ = δµ + i
g

2
~τ · ~Wµ(x). (3.10)

The Pauli matrices τi are generators of SU(2) and g is a coupling constant. Local

gauge invariance introduces three vector fields W1,W2,W3 which can be associated

with the weak gauge bosons. W1 and W2 mix to the physical W bosons:

W±µ =
1√
2

(W 1
µ ∓W 2

µ). (3.11)

The third component W3 could be associated with the Z0 boson, but the next section

will show that the situation is slightly more complicated.

3.1.4 Electroweak Interaction

The electroweak (EW) theory is a unified gauge theory of the electromagnetic and

weak forces for energies above ∼ 100 GeV and based on the SU(2)L ⊗U(1)Y gauge

symmetry group. The conserved quantity of SU(2)L is the third component of the

weak isospin and the conserved quantity of U(1)Y is the hypercharge Y , which is

related to the electric charge and the weak isospin:

Q =
Y

2
+ I3. (3.12)

The SU(2)L symmetry group is non-Abelian, therefore self-interaction terms are

possible for the weak gauge bosons, but not for the electromagnetic force carriers of

the Abelian group U(1)Y .
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The Lagrangian is given by Eq. 3.9, but the covariant derivative is now

Dµ = δµ + ig
~τ

2
~Wµ + ig′

Y

2
Bµ, (3.13)

with the coupling constants g, g′. The Lagrangian is invariant under local gauge

transformations of the form

χL → ei(~α(x)·~τ+β(x)Y )/2χL, (3.14)

eR → eβ(x)Y/2eR. (3.15)

Multiplying out the derivative, the Lagrangian becomes

L = χ̄Lγ
µ

[
iδµ − g

1
2
~τ · ~Wµ − g′

Y

2
Bµ

]
χL

ēRγ
µ

[
iδµ − g′

Y

Bµ

]
eR −

1
4
~Wµν · ~Wµν − 1

4
~Bµν · ~Bµν , (3.16)

where Bµν = δµBν − δνBµ and Wµν = δµ ~Wν − δν ~Wµ + ig ~Wµ × ~Wν . The first two

terms describe the kinetic energy of the fermions and their interaction with the

gauge fields. The last two terms are the kinetic energy and the self-interaction of

the gauge fields. It is the mixing between these four gauge fields that give rise to

the photon field Aµ, the Z boson field Zµ and the charged W± boson fields via

Aµ = sin ΘWW
3
µ + cos ΘWBµ, (3.17)

Zµ = cos ΘWW
3
µ − sin ΘWBµ, (3.18)

W±µ =
W 1
µ ∓ iW 2

µ√
2

, (3.19)

where ΘW is the weak mixing angle. The quanta of these fields are the gauge bosons

W±, Z0 and γ.

The formalism presented here so far has an important drawback: It does not

allow explicit mass terms for gauge bosons and fermions. Mass terms in the La-

grangians break gauge invariance and the theory is no longer renormalisable. But

experiments demonstrate that the gauge bosons W± and Z0 and fermions like the τ

lepton and top quark have large masses, so Eq. 3.16 is not an acceptable represen-

tation of the phenomenology observed in nature. Only the electromagnetic sector of

the U(1) subgroup is described correctly, since the photon is indeed massless. The
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next section describes how the introduction of a new fundamental scalar field helps

in retaining the concept of local gauge invariance whilst giving mass to the weak

gauge boson and the fermions.

3.2 The Higgs Mechanism and Mass Generation

The Lagrangian introduced so far describes a theory of massless particles, which is

in clear contradiction with experimental observations. When introducing particle

masses, the original gauge invariance of the Lagrangian has to be preserved. This is

done by the so-called spontaneous symmetry breaking.

Spontaneous symmetry breaking occurs when a system which is symmetric in

itself is exposed to an external force and a specific outcome occurs. A commonly

used example is a ball sitting on top of a hill. The ball is symmetric in itself, but

as soon as some perturbing interaction with the ball is carried out, the ball will roll

down the hill in a specific direction, causing the symmetry to break because the

direction in which the ball rolled has a feature that distinguishes it from all other

directions.

In the SM the introduction of a new fundamental scalar field helps in retaining

the concept of local gauge invariance, where the spontaneous symmetry breaking

from SU(3)C⊗SU(2)L⊗U(1)Y to SU(3)C⊗U(1)Q provides masses to the W± and

Z0 bosons, while the photon does not acquire any mass. This is called the Higgs

mechanism [25, 26].

The new field introduced by the Higgs mechanism is a doublet of complex scalar

fields with appropriate potential. Interactions of fermions and gauge bosons with

this field manifest themselves as masses of the particles. The simplest representation

of a scalar field, known as the Higgs field Φ is

Φ =
(

Φ+

Φ0

)
=
(

Φ3 + iΦ4

Φ1 + iΦ2

)
, with Φi real, Y = 1, IW =

1
2
. (3.20)

By imposing gauge invariance, the symmetry breaking can be described by a La-
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grangian

LHiggs = (DµΦ)†(DµΦ) + V (Φ) with (3.21)

V (Φ) = −µ2Φ†Φ− λ(Φ†Φ)2, µ2, λ ∈ R, (3.22)

Dµ = δµ +
1
2
ig~τ ~Wµ +

1
2
ig′Y Bµ (3.23)

The values of µ2 and λ in the Higgs potential V(Φ) are free real parameters. λ

is chosen positive to make the total field energy bounded from below. If µ2 is

chosen positive, the potential has its minimum for Φ = 0, whereas if µ2 is negative,

the minimum is not a single point but a circle in the complex plane as shown in

Figure 3.1. The field Φmin
1,2 in the minimum of the potential is then given by

Φmin
1,2 =

√
−µ2

2λ
expiΘ, 0 ≤ Θ ≤ 2π. (3.24)

This implies that the state of minimum energy, the vacuum state, is not unique

but degenerate. The equations of motion are obtained by expanding the Lagrangian

around the minimum, and so one point Φvac from Eq. 3.24 must be fixed. The

common choice is to set Θ = 0, which leads to

Φvac
1,2 =

√
µ2

2λ
:=

v√
2
, (3.25)

with the vacuum expectation value v. Choosing one point from the degenerated

minimum breaks the symmetry of the potential. The Higgs field must take the form

Φ1 = v/
√

2,Φ2 = Φ3 = Φ4 = 0, as non-vanishing values for Φ2,Φ3,Φ4 would result

in additional unphysical massless fields, associated with Goldstone bosons, which

can not be identified with existing particles [27]. Also, the expectation value of the

upper component Φ+ must be zero in order to leave U(1)Q unbroken.

Small excitations around Φvac can be written as Φ = 1√
2

(
0

v+H(x)

)
with the real

field H(x) and, when inserted into Eq. 3.22, one obtains a part (among many others)

that describes a scalar Klein-Gordon field H

LKG =
1
2
δµHδµH − λv2H2 − λvH3 − 1

4
λH4. (3.26)

with mass mH = v
√

2λ and self coupling according to H3 and H4 terms. Mass

terms for fermions must be introduced ’by hand’ via the Yukawa couplings λf of the
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Figure 3.2: The Higgs potential shown as function of two out of the four field components Φi .

The appropriate extension to the Lagrangian is given by

LHiggs = (DµΦ)† (DµΦ)− V (Φ), where (3.14)

V (Φ) = −µ2Φ†Φ + λ
(

Φ†Φ
)2

, µ2,λ > 0 (3.15)

Dµ = ∂µ +
1
2
ig~τ ~Wµ +

1
2
ig′YW Bµ (3.16)

The values of λ and µ2 in the Higgs potential are free real parameters of the theory. λ is
chosen positive to make the total field energy bounded from below. If µ2 is chosen negative,
the potential has its minimum for Φ = 0. If, instead, µ2 is positive, the minimum is not a
single point but a circle in the complex plane, as depicted in Figure 3.2. The field Φmin

1,2 in
the minimum of the potential is given by:

Φmin
1,2 =

√
−µ2

2λ
eiθ, 0 ≤ θ ≤ 2π. (3.17)

The equations of motion are obtained by expanding the Lagrangian around the minimum,
and so one point Φvac from Equation (3.17) must be fixed. The common choice is to set
θ = 0, which leads to

Φvac
1,2 =

√
µ2

2λ
:=

v√
2

, (3.18)

This equations defines the vacuum expectation value v. The choice of one point from
the degenerated minimum breaks the symmetry of the potential. It can be shown that
the Higgs field must take the form Φ1 = v/

√
2, Φ2 = Φ3 = Φ4 = 0 (unitary gauge). Non-

vanishing values for Φ2, . . . , Φ4 would result in additional unphysical massless fields, called
Goldstone bosons, which can not be identified with existing particles [9]. The degrees of
freedom represented by the three Goldstone bosons are absorbed by the additional degree
of freedom of longitudinal polarization that the three weak gauge bosons acquire after
becoming massive. Also, the expectation value of the upper component Φ+ must be zero
in order to leave U(1), and thus qed, unbroken. Small excitations around Φvac can then
be written as

Φ =
1√
2

(
0

v +H(x)

)
, (3.19)

11

Figure 3.1: The Higgs potential shown as a function of two out of the four field

components Φi.

Higgs field to fermions, shown here for the first generation of leptons and quarks:

LY ukawa = λeχeΦeR + λuq̄Φ̃uR + λdχdΦdR + h.c., (3.27)

where q = (u, d) and Φ̃ = iτ2Φ∗ is the charge conjugate field which gives mass to

quarks with I3
W = +1

2 .

The masses of the fundamental particles are all proportional to the vacuum

expectation value of the Higgs field:

mW± = v
g

2
,

mZ0 = v

√
g2 + g′2

2
,

mf = v
λf√

2
,

mH0 = v
√

2λ =
√

2µ. (3.28)

The vacuum expectation value is related to Fermi’s constant:

GF√
2

=
1

2v2
→ v = (

√
2GF )−1/2 ≈ 246 GeV. (3.29)

The Standard Model now gives an acceptable description of what is observed

to date. It is a renormalisable quantum gauge theory with massive fermions and



30

massive weak gauge bosons. The Higgs boson H0 is a consequence of the mechanism

which breaks electroweak symmetry. All its properties are precisely predicted by the

model except for its mass mH0 . The following sections describe which bounds can

be set on the mass from theory and from direct searches.

3.3 Constraints on the Higgs Boson Mass

3.3.1 Theoretical Bounds

Several theoretical constraints can be derived from assumptions on the energy range

in which the SM is valid before perturbation theory breaks down and new phenomena

should emerge. These include constraints from unitarity in scattering amplitudes,

triviality and stability of the electroweak vacuum. For a more detailed discussion

see [28].

Unitarity

The unitarity argument applies to the scattering process of longitudinal gauge bosons

VLVL → VLVL where V is either a W± or a Z0 boson in the high energy limit s�
m2
V . Divergences in the scattering amplitudes of longitudinal gauge bosons require

the existence of new physics like the Higgs boson and set in this case an upper bound

on the Higgs mass, depending on the scattering process. For W+
LW

−
L → W+

LW
−
L a

limit of mH < 870 GeV can be found, for the channel W+
LW

−
L → ZLZL the limit

can be tightened to mH < 710 GeV.

Similar bounds can also be calculated for other scattering processes, they all

constrain the Higgs boson mass to values below 1 TeV [29]. However, these bounds

have to be taken with care as they are obtained from high energy limits of pertubative

expansions.

Triviality and Vacuum Stability

Another bound on the Higgs mass arises from loop corrections to the classical Higgs

potential, due to the dependence of the couplings and masses which appear in the

SM Lagrangian. This is also the case of the quartic Higgs self-coupling λ which



31

monotonically increases with the energy scale Q [30, 31]. This leads to non-trivial

constraints on this coupling and therefore on the Higgs boson mass.

The general triviality argument states that for the scalar sector of the SM to

remain perturbative at all scales one needs to have a coupling λ = 0. This means

in the SM that the Higgs boson is massless, rendering the theory trivial, i.e. non

interacting. However, this argument can be viewed in a different way and an energy

cut-off ΛC can be introduced below which the self coupling λ remains finite. The

choice of ΛC sets a bound on the Higgs mass. In particular, if the cut-off is set at

the Higgs boson mass itself, ΛC = mH , the requirement that the quartic coupling

remains finite implies that mH ≥ 700 GeV. But if λ is too large, one cannot use

perturbation theory anymore and this constraint is lost. However, from simulations

of gauge theories on the lattice, where the non perturbative effects are properly

taken into account, it turns out that one obtains the bound mH < 640 GeV, which

is in a remarkable agreement with the bound obtained by naively using perturbation

theory.

So far, only the contribution of the Higgs boson itself has been included in

the running of the quartic coupling λ, which is justified in the regime where λ is

large. For a complete treatment of the running coupling, the contributions from

fermions and gauge bosons have to be included. Since the Higgs boson couplings are

proportional to the particle masses, only the contribution of top quarks and massive

gauge bosons need to be considered. Particularly the top quark contribution can

become dominant if the coupling λ is too small, driving it into a negative value which

would lead to a scalar potential V (Q) < V (v). That would mean that the vacuum

is not stable anymore because it has no minimum. The stability argument requires

a scalar potential which is bounded from below and therefore keeps λ positive. This

puts a constraint on the Higgs boson mass in the sform of a lower bound, which

depends on the value of the cut-off ΛC , i.e. for ΛC ∼ 103 GeV and mH & 70 GeV.

The constraints provided by both the triviality and vacuum stability bounds

are shown in Figure 3.2. Choosing ΛC to be the Grand Unification scale ΛGUT ∼
1016 GeV, results in a bound on the Higgs boson mass of 130 GeV . mH0 . 180 GeV.
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at the TeV scale, the Higgs boson mass is allowed to be in the range

50 GeV <∼ MH <∼ 800 GeV (1.181)

while, requiring the SM to be valid up to the Grand Unification scale, ΛGUT ∼ 1016 GeV,

the Higgs boson mass should lie in the range

130 GeV <∼ MH <∼ 180 GeV (1.182)

Figure 1.19: The triviality (upper) bound and the vacuum stability (lower) bound on the
Higgs boson mass as a function of the New Physics or cut–off scale Λ for a top quark mass
mt = 175 ± 6 GeV and αs(MZ) = 0.118± 0.002; the allowed region lies between the bands
and the colored/shaded bands illustrate the impact of various uncertainties. From Ref. [136].

1.4.3 The fine–tuning constraint

Finally, a last theoretical constraint comes from the fine–tuning problem originating from

the radiative corrections to the Higgs boson mass. The Feynman diagrams contributing to

the one–loop radiative corrections are depicted in Fig. 1.20 and involve Higgs boson, massive

gauge boson and fermion loops.

69

Figure 3.2: The triviality (upper) and vacuum stability (lower) bound on the Higgs

boson mass as a function of the new physics energy scale Λ. Taken from Ref. [28].

3.3.2 Experimental Constraints

Indirect Bounds from High Precision Measurements

The Higgs boson contributes via loop diagrams to virtual corrections of fundamental

parameters of the SM, like the mass of the W and Z boson, various leptonic and

hadronic asymmetries and many other electroweak observables. Many of these pa-

rameters have been measured with high precision, so a global fit to these electroweak

observables with the Higgs boson mass as a free parameter can result in an indirect

measurement of mH0 . The dependence on the Higgs boson mass in electroweak ob-

servables is typically logarithmic, so the precision with which the Higgs mass can be

determined is limited.

The χ2 of the electroweak fit is shown in Figure 3.3 (left). The obtained value

of the SM Higgs boson mass is mfit
H0 = 89+35

−26 GeV at a 68% Confidence Level

(CL) [2]. The fitted value of mH0 is very sensitive to the top quark mass. The global

electroweak fit in terms of predicted top quark and W boson masses is shown in a

two-dimensional correlation plot in Figure 3.3 (right), together with the correlated

Higgs boson mass values.
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Figure 3.3: Left: The χ2 distribution of the global fit to parameters of the Standard

Model as a function of the Higgs mass mH0 . Taken from Ref [2]. Right: Correlation

between the top quark and W boson mass in the electroweak fit, compared with the

actual world average (68% confidence level curves, in red for LEP1 and SLD, in blue

for LEP2 and Tevatron). The contour lines at ±1σ with the corresponding values

for the Higgs boson mass are also shown. Taken from Ref [2].

Bounds from Direct Searches

At present, the best experimental lower limit on the mass of the SM Higgs boson is

from direct searches at LEP2 [1]. The region below mH0 = 114.4 GeV was excluded

at 95% confidence level, while recent searches at the Tevatron have excluded a Higgs

boson mass around the WW mass threshold [32] of mH0 = 160−170 GeV with 95%

confidence level [33] as can be seen in Figure 3.4. The actual exclusion limits,

normalised to the expected SM cross-section are shown in Figure 3.4.

3.4 Higgs Phenomenology

One of the main goals of the LHC is to continue the search for the Higgs boson

over the full range of possible masses. Precision electroweak measurements indicate

that the Higgs mass should be close to the current experimental lower limit [34].
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21

is less than or equal to one would indicate that that particular Higgs boson mass is excluded at the 95% C.L.
The combinations of results of each single experiment, as used in this Tevatron combination, yield the following

ratios of 95% C.L. observed (expected) limits to the SM cross section: 3.6 (3.2) for CDF and 3.7 (3.9) for DØ at
mH = 115 GeV/c2, and 1.5 (1.6) for CDF and 1.3 (1.8) for DØ at mH = 165 GeV/c2.

The ratios of the 95% C.L. expected and observed limit to the SM cross section are shown in Figure 4 for the
combined CDF and DØ analyses. The observed and median expected ratios are listed for the tested Higgs boson
masses in Table XVIII for mH ≤ 150 GeV/c2, and in Table XIX for mH ≥ 155 GeV/c2, as obtained by the Bayesian
and the CLS methods. In the following summary we quote only the limits obtained with the Bayesian method
since they are slightly more conservative (based on the expected limits) for the quoted values, but all the equivalent
numbers for the CLS method can be retrieved from the tables. We obtain the observed (expected) values of 2.5
(2.4) at mH = 115 GeV/c2, 0.99 (1.1) at mH = 160 GeV/c2, 0.86 (1.1) at mH = 165 GeV/c2, and 0.99 (1.4) at
mH = 170 GeV/c2. We exclude at the 95% C.L. the production of a standard model Higgs boson with mass between
160 and 170 GeV/c2. This result is obtained with both Bayesian and CLS calculations.
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FIG. 4: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits on the ratios to the
SM cross section, as functions of the Higgs boson mass for the combined CDF and DØ analyses. The limits are expressed
as a multiple of the SM prediction for test masses (every 5 GeV/c2) for which both experiments have performed dedicated
searches in different channels. The points are joined by straight lines for better readability. The bands indicate the 68% and
95% probability regions where the limits can fluctuate, in the absence of signal. The limits displayed in this figure are obtained
with the Bayesian calculation.

Figure 3.4: Exclusion limits on the presence of a Higgs boson at 95% confidence

level, normalised to the expected SM cross-section, as a function of the Higgs boson

mass, corresponding to the last updated results from the Tevatron experiments.

The full black line shows the actual limit, while the dashed one shows the expected

sensitivity of the experiments. It is surrounded by 1 and 2σ bands, showing the

68% and 95% probability regions where the limits can fluctuate, in the absence of

signal. The pink band on the left shows what mass range of the Higgs boson has

been excluded in the past by the LEP II experiments, while the one on the right

is the Tevatron exclusion region. The vertical axis has units of the ”times the SM”

limits. This means that an exclusion at i.e. 5 times the SM for a mass of 130 GeV

implies that a Higgs boson production with a rate five times higher than what the

SM predicts is excluded by the experiment; an exclusion of 1.0 or less means that

Standard Model Higgs boson is ruled out in the corresponding mass range. Taken

from Ref. [32].

This mass range is one of the most challenging for ATLAS with several different

production and decay modes. One of these channels involves the Higgs production

with an associated top quark pair, where the Higgs boson decays to b quarks. The

tt̄H0(H0 → bb̄) channel can therefore contribute to a discovery in the low mass

range. Once the Higgs boson has been discovered, it will be important to measure its

properties in order to make sure that what has been observed does really correspond

to the SM Higgs boson. These properties include, amongst others, a more precise
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determination of the Higgs boson mass, of the width of the Higgs boson resonance

and the determination of the Higgs boson couplings. The tt̄H0(H0 → bb̄) channel

is the only channel in the low mass range to provide a measurement of the directly

top-Higgs Yukawa coupling.

3.4.1 Production Modes at the LHC

At the LHC design centre-of-mass energy of
√
s = 14 TeV, the probability to extract

a gluon out of a proton (as described by the gluon PDF) is significantly higher than

the corresponding probability to extract a quark or antiquark. This is the reason

why in general processes initiated by gluons are significantly enhanced with respect

to processes initiated by quarks or antiquarks.

The Higgs boson production at the LHC proceeds via four dominant production

mechanisms (gluon fusion, vector boson fusion, Higgs-strahlung, and associated pro-

duction with a tt̄ pair) and corresponding example Feynman diagrams are shown

in Figure 3.5. Their cross-sections, assuming the nominal centre-of-mass energy of

14 TeV, are shown in Figure 3.6 (right).

Due to the heavy top-quark loop, the loop induced gluon-gluon fusion is the

leading production mode at the LHC, followed by the weak boson fusion, qq̄ → qq̄H,

where the Higgs boson is produced in association with two forward jets with large

rapidity gap between them (qq̄ → V H, V = W,Z). With descending cross-section,

these processes are followed by the Higgs boson production in association with a W

or a Z boson are called Higgs-strahlung and the associated production with a tt̄ pair

(gg → tt̄H).

3.4.2 Higgs Decays

The Higgs boson is an unstable particle and can only be detected through its decay

products. It couples directly to various particles leading to several decay channels.

The branching ratioBR(H → f), the fraction of Higgs bosons decaying into a certain

decay channel, depends on the Higgs boson mass mH and is shown in Figure 3.6

(left).

At low Higgs boson masses the decay to a bb̄ pair dominates with a BR of 67.7%
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24 2 Higgs phenomenologyGiven the Higgs 
ouplings introdu
ed in Se
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troweak gauge bosons (H → W+W−, ZZ) and into pairs of quarksand leptons (H → qq̄, l+l−). Due to loop 
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ay into two photons(H → γγ), two gluons (H → gg) or a γZ pair (H → γZ). The bran
hing ratios of theHiggs boson in these 
hannels have a signi�
ant di�erent behaviour for a light Higgs boson(mH < 130− 140 GeV) and a heavy Higgs boson (mH ≥ 130− 140 GeV).At low Higgs boson masses the H → bb̄ de
ay 
hannel dominates (BR ≈ 67% with mH = 120GeV), followed by the H → ττ 
hannel (BR ≈ 6.9% with mH = 120 GeV), whi
h is aroundone order of magnitude lower. The H → gg de
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kground from multi-jet QCD events. The
H → γγ de
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hannel has a very low bran
hing ratio (BR ≈ 0.2% with mH = 120 GeV), butthe very good experimental mass resolution allowed by the γγ �nal state and the relativelylow rate of quark or jets fragmenting into high energy isolated photons allows the extra
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e of very large 
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kgrounds.At high Higgs boson masses the dominant de
ays are H → W+W− and H → ZZ, inparti
ular for Higgs boson masses above the respe
tive 2mW and 2mZ thresholds, while,above 2mt, also the H → tt̄ de
ay 
hannel opens up. There is also an intermediate region,below the mH = 2mW mass threshold, where the three-body de
ays into WW ∗ or ZZ∗be
ome important, due to the large HWW and HZZ 
ouplings, even if they are suppressedby the fa
t that one of the two W or Z bosons are o�-shell.2.2 Produ
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fusion (top left), vector boson fusion (top right), Higgs-strahlung (bottom left) and

associated production with a tt̄ quark pair (bottom right).
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Figure 1: Left: Branching ratios for the relevant decay modes of the Standard Model Higgs boson as a
function of its mass. Right: cross-sections for the five production channels of the Standard Model Higgs
boson at the LHC at 14 TeV.

3.1 Production and decays of neutral Higgs bosons

The Higgs boson production proceeds via two different mechanisms, the direct and the b quark associated
production, as described below. In the following φ stands for either of the three neutral Higgs bosons: A,
H, and h. Further details can be found in [27].

Direct Production: The diagram for this process is depicted in Fig. 2(a). It dominates in the range of
low tanβ and its rates are significantly larger than for the Standard Model. For the range of higher tanβ it
is still dominant for low mA. The cross-section for this process has been calculated at NLO accuracy [22]
and the numerical values used here are listed under σdirect

h/H/A in Table 9.

Associated Production: Different approaches have been followed by theorists to calculate the cross-
section for Higgs boson production in association with b quarks, each of them assuming one of the
diagrams depicted in Fig. 2(b-d) as their leading order (LO) contribution. The implications connected
with this choice are briefly discussed below.

• gg→ bb̄φ :
The cross-section for this process has been calculated at NLO accuracy for the case of both b
quarks at high transverse momentum [28, 29], where this calculation is considered to be reliable.
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Figure 2: Feynman diagrams contributing to the MSSM Higgs boson production. Diagram a) is called
‘direct production’, diagrams b) to e) contribute to the b quark associated production. In the above
diagrams φ represents either of the neutral Higgs bosons in the MSSM, h, H, or A.
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1204

Figure 3.6: Left: Branching ratio of the Higgs boson decaying in the different possible

final states as a function of the Higgs boson mass mH . Right: Cross-sections for the

main Higgs boson production modes at the LHC computed at NLO as a function of

the Higgs boson mass. Taken from Ref. [5].

for a Higgs boson mass mH = 120 GeV, followed by the H → ττ channel with a BR

of 6.9%. Although the H → γγ decay channel has a very low branching ratio (BR ≈
0.2% for mH = 120 GeV), a signal extraction in the presence of very large continuum

backgrounds is possible due to the excellent experimental mass resolution. The Higgs

boson branching ratios for H → W+W− and H → ZZ at low Higgs boson masses
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are 13.3% and 1.5%, respectively. The decay to a gluon pair, H → gg has a BR of

≈ 10% but is impossible to separate from the huge QCD multi-jet background at a

hadron collider and is therefore not considered.

At high Higgs masses , the dominant decay modes are the decays into pairs of

electroweak gauge bosons (H →W+W−, ZZ), in particular for Higgs boson masses

above the 2mW , 2mZ thresholds. Above 2mt, the decay channel H → tt̄ is also

significant.

In the intermediate region below the 2mW threshold, decays into WW ∗ or

ZZ∗can occur. These channels are important due to the large HWW and HZZ

couplings, though they are suppressed by the fact that one of the two W or Z bosons

are off-shell1.

3.4.3 Discovery Potential with the ATLAS Experiment

For Higgs boson masses below mH ≈ 130 GeV the discovery sensitivity has to rely

on the combination of different channels, in particular qq̄H → qq̄τ+τ− and H → γγ.

To discover a Higgs boson in the low mass region, a higher amount of integrated

luminosity may be needed to claim a 5σ discovery than in the higher mass regions.

In the intermediate mass region of 130 < mH < 450 GeV, an integrated lumi-

nosity of 10 fb−1 is sufficient for a discovery. Here the most significant channels are

H → W+W− both in gluon and vector boson fusion and H → ZZ. It should be

noted that two important Higgs boson channels, H → WW → (eνeν, µνµν) [35],

have not yet been considered in the combination.

Figure 3.7 shows the expected significance of a Higgs discovery for the various

channels which have been studied, assuming a centre-of-mass energy of
√
s = 14 TeV.

The channels considered for the combination are H → γγ, H → ZZ∗ → 4l, H → ττ

and H →WW → eνµν.

The amount of collected data needed discover as well as to exclude the Higgs

boson versus its mass is shown in Figure 3.8 .
1* denoting an off-mass-shell boson
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given the amount of Monte Carlo data available (out to q0 between around 9 to 16, i.e., to the level of a
3 to 4σ discovery). At present it is not practical to verify directly that the chi-square formula remains
valid to the 5σ level (i.e., out to q0 = 25). Thus the results on discovery significance presented here rest
on the assumption that the asymptotic distribution is a valid approximation to at least the 5σ level.

The validation exercises carried here out indicate that the methods used should be valid, or in some
cases conservative, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,
one will be interested primarily in exclusion limits at the 95% confidence level. For this the distributions
of the test statistic qµ at different values of µ can be determined with a manageably small number of
events. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the
experiment.

4 Results of the combination

4.1 Combined discovery sensitivity

The full discovery likelihood ratio for all channels combined, λs+b(0), is calculated using Eq. 33. This
uses the median likelihood ratio of each channel, λs+b,i(0), found either by generating toy experiments
under the s+b hypothesis and calculating the median of the λs+b,i distribution or by approximating the
median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were validated to
agree with each other. The discovery significance is calculated using Eq. 36, i.e., Z ≈

√

−2lnλ (0),
where λ (0) is the combined median likelihood ratio.

The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated
luminosity of 10 fb−1.
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

The median discovery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5σ contour. Note that the approximations used do
not hold for very low luminosities (where the expected number of events is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, however, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , λb(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, λb,i(µ), calculated, either by generating
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Figure 3.7: ATLAS discovery potential of a SM Higgs boson as a function of the

Higgs boson mass, corresponding to an integrated luminosity of 10 fb−1, for the low

mass range (left) and up to 600 GeV (right). Taken from Ref [5].

3.4.4 The tt̄H0(H0 → bb̄) Channel

For a light Higgs boson in the low mass range up to mH ≤ 135 GeV, the decay mode

with the highest branching fraction is H0 → bb̄. It will not be possible to observe

this decay channel in the dominant direct production gg → H0 due to the huge

QCD backgrounds. However, the bb̄ final state can be observed in the associated

production of a Higgs boson with a W or Z boson or a pair of top quarks. The

tt̄H0(H0 → bb̄) channel is one of the channels that could be added to the low mass

combination mentioned in Section 3.4.3.

Signal Process

At the LHC, the production of tt̄H0 is dominated by gluon-gluon interaction (90%)

whereas the quark-antiquark interaction contributes to only 10%. For a Higgs boson

mass between 115 GeV and 130 GeV the production cross-section times branching

ratio to bb̄ varies between roughly 0.4 and 0.3 pb at leading order.

The top quarks decay almost exclusively into Wb. Therefore the final states can

be classified according to the decays of the W bosons. W bosons decay hadronically

in about 2/3 of all cases, and into a lepton and neutrino in about 1/3 of all cases.

Table 3.1 lists the relevant branching ratios.
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Figure 17: Significance contours for different Standard Model Higgs masses and integrated luminosities. The
thick curve represents the 5σ discovery contour. The median significance is shown with a colour according to the
legend. The hatched area below 2 fb−1 indicates the region where the approximations used in the combination are
not accurate, although they are expected to be conservative.

toy experiments under the b-only hypothesis and calculating the median of the λb,i distribution or ap-
proximating the median likelihood ratio using the Asimov data sets with µA,i = 0. Both approaches were
checked to agree with each other. A signal strength µ = 1 corresponds to the Standard Model Higgs
boson.

Any exclusion of µ(mH) smaller than 1 corresponds to an exclusion of a Standard Model Higgs
boson with a mass mH . To probe the median sensitivity for excluding a Standard Model Higgs boson we
follow Eq. 35 and calculate the corresponding p-value for µ = 1, p1 for a given luminosity at a given
Higgs mass. A p-value of 0.05 corresponds to a significance (Eq. 36) of 1.64. The resulting p1 for the
various channels as well as for the combination, for a luminosity of 2fb−1, are shown in Fig. 18. Note
that any p-value below 0.05 indicates an exclusion. We therefore conclude that with a luminosity of 2
fb−1 ATLAS has the median sensitivity to exclude a Standard Model Higgs boson heavier than 115 GeV
at the 95% Confidence Level. This can also be seen from Fig. 19, which shows the luminosity required
to exclude a Higgs boson with a mass mH at a given confidence level from the combination of the four
channels explored in this note.

The sharp increase in the required luminosity for lower mH seen in Fig. 17 reflects the decrease in
sensitivity to the Higgs when using only the set of channels considered here. Further developments will
increase the sensitivity in this region. For example, improved analysis methods for the H → γγ channel
are described in Ref. [4], including a separation of the events into those with zero or two accompanying
jets. Additional final states such as ttH with H → bb will help somewhat, although the contribution to
the sensitivity will be small because of the large uncertainties in the background.

For the WW channel, the present study includes only the eνµν decay mode, but it is planned to
include eνeν , µνµν and qqlν as well. The ZZ (∗) channel here only includes Z decays to ee and µµ , but
in future analyses qqνν will be included. The additional WW and ZZ (∗) modes have been found to have
sensitivity for a high-mass Higgs. Finally, combination with the results from ATLAS with those of CMS
will of course result in an overall increase in sensitivity.
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Figure 18: The median p-value obtained for excluding a Standard Model Higgs Boson for the various channels
as well as the combination for (a) the lower mass range (b) for masses up to 600 GeV.
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Figure 19: The expected luminosity required to exclude a Higgs boson with a massmH at a confidence level given
by the corresponding colour. The hatched area below 2 fb−1 indicates the region where the approximations used
in the combination are not accurate, although they are expected to be conservative.
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Figure 3.8: Left: Significance contours for different SM Higgs masses and integrated

luminosities. The thick curve represents the 5σ discovery contour. Right: The

expected luminosity required to exclude a Higgs boson with a mass mH at a confi-

dence level given by the corresponding colour. In both plots, the hatched area below

2 fb−1 indicates the region where the approximation used in the combination are

not accurate, although they are expected to be conservative. Taken from Ref [5].

Process Branching ratio

t+ →Wb > 99.8% (SM prediction)

W+ → l+ν (10.68 ± 0.12)% per lepton family

W+ → hadrons (67.96 ± 0.35)%

Table 3.1: Branching ratios of top quarks and W bosons [36].

The all-hadronic channel has therefore the highest branching fraction with a

value of 43% but the purely hadronic multi-jet final state with moderate transverse

momentum of the jets does not allow easy triggering. Only tight requirements on

the transverse jet momentum and on the jet multiplicity could lead to a reasonable

rate in the first level of the trigger but these requirements come at the expense of

the signal efficiency.

The fully leptonic final state with the presence of two isolated leptons is a simpler

signature to trigger on. But the branching fraction is very low with a value of 5%

(only considering l = e, µ) and the two neutrinos prevent the reconstruction of the



40

top quarks.

To have a handle for triggering tt̄H0 events, the semileptonic final state is a

good compromise with a branching fraction of 28%(only considering l = e, µ). The

experimental signature consists of one energetic isolated lepton, a high jet multi-

plicity with 6 jets, 4 or which are b-jets) and missing transverse energy from the

neutrino. An example Feynman diagram is shown in Figure 3.9. In this thesis, only

the semileptonic tt̄H0 channel will be investigated.

Background Processes

The main background to the signal process arises from QCD processes with a top-

quark pair. Given the high jet multiplicity in the signal process of at least 6 jets, only

tt̄ events with at least two additional jets from initial or final state gluon radiation

contribute. Most of the additional jets are dominated by light flavours, therefore

requiring four b-jets in the final state can effectively suppress large parts of this

background.

The irreducible background arises from tt̄bb̄ production either via QCD or elec-

troweak (EW) interaction with a total cross-section of the order of 9 pb. Figure 3.10

and Figure 3.11 show some of the Feynman diagrams of the QCD and EW pro-

duction mechanism respectively. Although the QCD production cross-section is ten

times larger than the EW production, the EW tt̄bb̄ background can contaminate the

signal regions due to the large momenta of the b-jets not coming from the tt̄ system.

Their invariant mass is typically close to the Z boson mass.

Although having a cross-section about 60% higher than the tt̄bb̄ production,

the tt̄cc̄ production is considered negligible as a background for tt̄H0 due to c-jet

rejection which is possible when b-tagging jets [5] (see Section 4.4.4).

Other backgrounds are W+jets, tW production and QCD multi-jet production.

The W plus 2 jets background has a large inclusive cross-section of about 1200 pb

per lepton flavour [37], but it has been shown [38] that this contribution is negligible

as long as four b-tags are required. The same applies for the tW background with

a cross-section of 9.5 pb [39]. Even when four b-jets are requested in the event,

contamination via QCD bb̄bb̄ production, which has a cross-section of a few hundred
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Figure 3.9: Example Feynman diagram of the semileptonic signal process

tt̄H0(H0 → bb̄) .

nb [40], is still possible. But the reconstruction of the tt̄ system allows a certain

degree of safely against non-top backgrounds.
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Figure 3.10: Example Feynman diagrams of the tt̄bb̄ QCD production.

Figure 3.11: Example Feynman diagram of the electroweak tt̄bb̄ production.
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Chapter 4

Event generation, Detector

Simulation and Reconstruction

4.1 Introduction

The Monte Carlo (MC) simulation method is an essential part of high energy physics

with various applications. This includes the optimisation of detector layout and per-

formance but also the ability to implement theoretical or phenomenological models

to then test them against real data. The simulation of physics events in ATLAS is

carried out in two main steps:

1. Event generation: The physics process in the collisions of particles (protons

for the LHC) is simulated based on theoretical and phenomenological models

producing final-state particles as an output with the same average behaviour

and the same fluctuations as expected from real data.

2. Detector simulation: The detector simulation is a detailed or parameterised

simulation of the detector response to the final-state particles produced in the

event generation and follows the physics laws of particles travelling through

matter.

The next common step, which MC simulated events and events from real data after

passing the online trigger selection have in common, is the offline event recon-

struction. In the ATLAS experiment it is implemented in the software framework
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ATHENA [41]. This chapter will give an overview of the event generators and detec-

tor simulations used in this thesis. A description of the reconstruction algorithms as

implemented in the ATLAS software will be briefly introduced as the reconstruction

of the final-states of the analyses relies on these algorithms.

In the following Sections 4.2 and 4.3, the MC generated information will be referred

to as truth information.

This thesis makes use of high level reconstructed objects (electrons, muons, jets,

etc.) that are standard in ATLAS. They are briefly described in Section 4.4.

4.2 Event Generation

The objective of an event generator is to describe the primary interactions of funda-

mental particles and their resulting production of multiple final-state particles is as

much detaile as could be observed by a perfect detector. A typical hadronic event

generator simulates (taken from the HERWIG manual [42]) the following subpro-

cesses:

• Initial-state composition and substructure: Initially two beams of par-

ticles (protons for the LHC) are brought to collision. Each particle is char-

acterised by a set of distributions which define its partonic sub-structure in

terms of flavour composition and energy sharing.

• Elementary hard subprocess: A pair of incoming beam particles or their

constituents interact to produce one or more primary outgoing fundamental

objects. The hard, i.e. high momentum, transfer scale Q together with the

colour flow of the the subprocess set the boundary conditions for the initial-

and final-state parton showers.

• Initial- and final-state showers: A shower initiator parton from each beam

starts off a sequence of branchings, which build up an initial-state shower.

Just like the incoming partons, the outgoing partons may branch as well and

produce final-state showers.
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• Heavy object decays: Massive produced objects such as top quarks and

Higgs bosons are unstable and decay further on timescales comparable or

shorter to branching times in QCD parton showers. Depending on their na-

ture and decay mode, they may also initiate parton showers before and/or

after decaying.

• Hadronisation and further decay: The process of the formation of hadrons

out of quarks and gluons is based on colour confinement, in which free quarks

or gluons cannot exist individually.

The final-state particles represent therefore particles from the primary interaction,

additional bremsstrahlung-type particles and a large number of particles from the

hadronisation process.

4.2.1 Underlying Event

Additional parton interactions can take place among the components of the same

particle which gave rise to the hard scattering process of interest. The outcome of

this additional parton interaction is defined as the underlying event (UE). It usually

results in very low pT scattering processes which are difficult to model. There are

different multiple parton interaction models. The UE in all samples used in this

thesis has either been modelled by the JIMMY Monte Carlo program [43] or the

multiple interactions in Pythia [44, 45].

4.2.2 Pile-up

Another source of additional low pT interactions are pile-up events. These are events

which take place among other proton-proton pairs in the same bunches as the hard

scattering event. They are completely independent from the hard scattering process

and therefore easier to describe than the underlying event. Pile-up interactions have

not been included in the generation process of the simulated data used in this thesis

because only the hard scatter was of interest in order to obtain the best estimate of

possible achieved sensitivity.
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4.3 Detector Simulation

The detector simulation is the next step that follows the event generation and de-

scribes the interaction of the generated final-state particles with the sensitive and

non-sensitive detector material. Decays of non-stable final-state particles are also

taken into account. To study the detector response for a wide range of physics

processes and scenarios, a detailed simulation has been implemented to produce an

output in a format that is identical to that of the true detector.

There are two different ways of simulating a particle interaction with the ATLAS

detector, the full and fast simulation.

The full simulation uses a virtual high precision geometry model of the entire

detector, the GEANT4 detector simulation [46] as well as physics laws describing

the passage of particles through matter. The event reconstruction is done after

digitisation of the hits in the full detector simulation. Track finding algorithms and

pattern recognition (e.g. cluster finding algorithms in the calorimeters) work on

digit banks to reconstruct the 4-vector momentum and the vertex coordinates, and

to determine the particle type.

The principle of the fast simulation (ATLFAST-II [47]) is to replace the calorime-

ter portion of the full simulation with a faster method which involves adding average

energy deposits per particle instead of running GEANT 4.

4.4 Reconstruction

The offline event reconstruction software which is implemented in the ATLAS soft-

ware framework ATHENA, processes the physics event in many different stages.

The outcome can be interpreted generally as final state objects with related four

momenta in the form of charged tracks, electrons, photons, jets and muons. This

section will only contain a brief description of the principle of the reconstruction

algorithms, a more detailed description of reconstruction and performance can be

found in [5].
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4.4.1 Reconstruction of Charged Particle Tracks

The track reconstruction software [48] includes features covering the requirements of

both the inner detector and muon spectrometer reconstruction. In the inner detector

the track reconstruction is logically divided into three stages:

• A pre-processing stage, in which the raw data from the pixel and SCT detectors

are converted into clusters and the TRT raw timing information is translated

into calibrated drift circles. The SCT clusters are transformed into space-

points by using a combination of the cluster information from opposite sides

of a SCT module.

• A track-finding stage, in which different tracking strategies, optimised for dif-

ferent applications, are implemented.

• A post-processing stage, in which a dedicated vertex finder is used to re-

construct primary vertices. This is followed by algorithms dedicated to the

reconstruction of photon conversions and secondary vertices.

The pattern recognition and track finding task is more difficult in a dense jet

environment, in particular because hits can be shared between different tracks. This

decreases the track reconstruction efficiency and increases the fake rate for tracks

reconstructed inside jets. The details on the performance of track reconstruction for

isolated charged particles as well as charged particles in jets can be found in [5].

4.4.2 Electron Identification

The default electron identification algorithm starts with a cluster in the electromag-

netic (EM) calorimeter, with a transverse energy above 3 GeV and a matching inner

detector track. The following criteria have to be satisfied:

• the EM cluster and extrapolated track have to be in the window of ∆η×∆φ =

0.05× 0.10;

• the ratio E/p of the cluster energy and track momentum is required to be

lower than 10 to ensure that the electron candidates are relatively isolated.
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The standard identification algorithm for high-pT electrons is then based on a combi-

nation of cuts, with three reference sets, loose, medium and tight, providing different

electron efficiency versus jet rejection power.

Loose Electron Identification

The loose identification criteria are based on limited information from the calorime-

ters and provide excellent identification efficiency, but low background rejection.

Cuts are applied on the hadronic leakage, the ration of ET of the first sampling of

the hadronic calorimeter to EM cluster ET and on shower shape variables, derived

from only the middle layer of the EM calorimeter. These are the lateral width of

the shower and also the ratios in η (φ) of cell energies in 3× 7 (3× 3) versus 7× 7

(3× 7) cells [5].

Medium Electron Identification

The medium selection criteria increase the jet rejection by a factor of 3− 4 with re-

spect to the loose identification, reducing the electron selection efficiency by ∼10%.

This is achieved by adding cuts on shower shapes in the first layer of the EM calorime-

ter and on the tracking variables. Cuts on the strips in the first layer of the EM

calorimter are effective in the rejection of π0 → γγ decays due to their characteristic

energy-deposit pattern of two maxima close together. To reject these decays, a sec-

ond maximum in energy is looked for in the cells of the first EM layer in a window

of ∆η × ∆φ = 0.125 × 0.2 around the cell with the highest ET . Quality cuts are

then applied on various variables (see Ref. [5]). In addition to that, cuts are applied

to the track matched to the EM calorimeter cluster, including the number of hits

in the pixels, the number of silicon hits (pixel + SCT) and the transverse impact

parameter.

Tight Electron Identification

In addition to the cuts used in the medium set, cuts are applied on the number of

vertexing-layer hits (to reject electrons from conversions), on the number of hits in

the TRT, on the ratio of high-threshold hits to the number of hits in the TRT (to
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reject the dominant background from charged hadrons), on the difference between

the cluster and the extrapolated track positions in η and φ, and on the ratio of cluster

energy to track momentum. Different final selections are available in this category:

the tight (isol) selection, where an additional energy isolation cut is applied to the

cluster within a cone of ∆R < 0.2 around the electron candidate and the tight (TRT)

selection, which applies tighter cuts on the TRT information to further remove the

background from charged hadrons.

Performance

Table 4.1 shows the expected performance of the mentioned identification criteria.

The first two criteria (loose and medium) will be used in the Higgs search analyses

presented in this thesis. In the analysis further isolation requirements are applied

to reject background from QCD multi-jet events with leptons from heavy flavour

decays.

4.4.3 Jet Reconstruction

High quality and highly efficient jet reconstruction is an important tool for almost

all physics analyses to be performed with the ATLAS experiment. The principal

detector for jet reconstruction is the ATLAS calorimeter system which has been

described in Section 2.2.2.

Calorimeter Jets

The ATLAS calorimeter system has about 200 000 individual cells of various sizes

with different readout technologies and electrode geometries. For jet finding it is

necessary to combine these cell signals into larger signal objects with physically

meaningful four-momenta. There are two concepts available, one which is provided

by a set of four-momenta representing the energy deposited in calorimeter towers of

0.1 × 0.1 in ∆φ×∆η, the so-called calorimeter signal towers. The other concept is

based on topological cell clusters (also called topoclusters), which attempts to build

up more complex three-dimensional clusters of energy. In this thesis, the input to

jet finding are topoclusters; a description of the signal towers can be found here [5].



49

Cuts ET > 17 GeV

Efficiency (%) Jet rejection

Z → ee b, c→ e

Loose 87.9 ± 0.1 50.8± 1 567 ± 1

Medium 77.3 ± 0.1 30.7 ± 1 2184 ± 1

Tight (TRT) 61.7 ± 0.1 22.5 ± 0.4 (8.9 ± 0.3)·104

Tight (isol) 64.2 ± 0.1 17.3 ± 0.4 (9.8 ± 0.4)·104

Table 4.1: Expected efficiencies for isolated and non-isolated electrons and corre-

sponding jet background rejections for the loose, medium and tight electron identi-

fication. The results shown are for simulated inclusive jet samples corresponding to

ET -thresholds of the electron candidates of 17 GeV. Taken from Ref. [5].

The latter approach has been adopted as the new standard for jet reconstruction

and will therefore be described briefly here.

The clustering starts with seed cells with a signal-to-noise ratio Ecell/σnoise,cell > 4.

All directly neighbouring cells of these seed cells, in all three dimensions, are col-

lected into the cluster. Neighbours of neighbours are considered for those added cells

which have a signal-to-noise-ratio above 2. Finally, a ring of guard cells with signal

significances above 0 is added to the cluster. After the initial clusters are formed,

they are analysed for local signal maxima and split between those maxima if any

are found.

Jet Finding Algorithms

The topoclusters are then used as input to the jet finding algorithms. Two main

types of algorithms are implemented in ATLAS, seeded fixed cone and sequential

recombination algorithms. The theoretical motivations and limitations of the various

jet finding algorithms can be found in Ref. [49]. The analyses presented in this

thesis make use of the sequential recombination algorithms Anti-kT [50, 51] and the

Cambridge/Aachen (C/A) algorithm [52, 53], therefore a brief description of both

will be given here.

The most common sequential recombination algorithm is the inclusive kT algo-
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rithm. All pairs of input objects are analysed with respect to their distance measure,

defined as:

dij = min(p2
T,i, p

2
T,j)

∆R2
ij

R2
, ∆R2

ij =
√

∆φ2
ij + ∆y2

ij , (4.1)

where R is a cone-radius like parameter which determines the size of the jets and y

the rapidity. In addition, also the distances of the objects i with respect to the beam

are considered, since divergences in QCD branching also show up between initial

state and final state partons and they are defined as diB = p2
T,i. The minimum

dmin of all dij and diB is determined. If dmin is among one of the dij , then the

corresponding objects i and j are merged into a single new object using four-momenta

recombination, while if dmin is one of the diB, the object i is considered to be a jet by

itself and removed from the list. This procedure is repeated iteratively, updating all

distances at each iteration step. The four-momenta recombination scheme is usually

chosen to be the simple sum of the two four momenta of the objects i and j. The

advantage of the kT algorithm is that it is by construction collinear and infrared

safe, however, it is also more sensitive to picking up soft contributions from pile-up

and the underlying event.

The kT algorithm can be generalised by introducing the following particle-particle

and particle-beam measures:

dij = min(p2r
T,i, p

2r
T,j)

∆R2
ij

R2
, ∆R2

ij =
√

∆φ2
ij + ∆y2

ij , (4.2)

di = p2r
T,i, (4.3)

where r is a parameter which is 1 for the kT algorithm.

Two different algorithms can be obtained: the C/A algorithm by choosing a value

of r = 0 and the Anti-kT algorithm by choosing a value of r = −1. The C/A algo-

rithm recombines objects close in ∆R iteratively and reflects the angular ordering of

QCD radiation, hence it is ideally suited to reconstruct and decompose the various

decay components of heavy objects like the Higgs boson [4] or top quarks [54]. It

will therefore be used to study boosted Higgs boson decays into a pair of b-quarks

in the analysis of jet substructure presented in this thesis (see Chapter 7).

Contrary to the kT algorithm, the Anti-kT algorithm first clusters hard objects

together, resulting in more regular jets with respect to the kT and C/A algorithms:
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it was recently made the new standard algorithm for jet finding in ATLAS [55],

replacing a fixed-cone algorithm which is collinear unsafe. The Anti-kT algorithm

will be used in the cut-based version of the Higgs search analysis in this thesis.

4.4.4 Identification of b-quark Jets

The identification of jets originating from bottom-quarks (b-tagging) is important

for the high-pT physics program of ATLAS, for example for top physics and Higgs

boson searches and studies. The identification of b-jets takes advantage of several

of their properties which makes it possible to distinguish them from jets containing

only lighter quarks:

• The fragmentation is hard and the b-hadron retains about 70% of the original

b quark momentum [5].

• The mass of b-hadrons is relatively high (> 5 GeV), therefore their decay

products have a large transverse momentum with respect to the jet axis and

the opening angle of the decay products is large enough to allow separation.

• The lifetime of b-hadrons is relatively long, of the order of 1.5 ps (cτ ≈ 450 µm).

The resulting displaced vertices can be identified by measuring the impact

parameters of the track from the b-hadron decay products. Figure 4.1 shows a

schematic drawing of the impact parameter. The transverse impact parameter

d0 is the distance of closest approach of a track to the primary vertex point in

the r − φ direction. The longitudinal impact parameter z0 is the z coordinate

of the track at the point of closest approach in r − φ.

• The semileptonic decays of b-hadron can be used by tagging the lepton in

the jet which will, due to the hard fragmentation and the high mass, have a

relatively large transverse momentum.

The following will briefly describe the relevant b-tagging algorithms used for the

Higgs search analyses in this thesis.

On the basis that the decay point of the b-hadron must lie along its flight path,

the impact parameter is signed to further discriminate the tracks originating from a
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Figure 4.1: Schematic drawing of the impact parameter, the closest approach of a

track to the primary vertex.

b-hadron decay from tracks from the interaction point (primary vertex). The signifi-

cance of the impact parameters of all tracks in a jet is then computed. Three tagging

algorithms are defined in this way: IP1D relies on the longitudinal impact parame-

ter, IP2D on the transverse impact parameter whereas IP3D uses two-dimensional

histograms of the longitudinal versus transverse impact parameters.

To further increase the discrimination between b-jets and light jets, the secondary

vertex (SV) formed by the decay products of the b-hadron is considered.

In the following, two b-tagging algorithms, the two dimensional SV and the

JetFitter algorithm, are considered. Both are used in combination with the impact

parameter based algorithm IP3D.

According to the conventional definition in ATLAS, a jet is labelled a jet of a

certain quark flavour (b, c or light) by exploiting the MC truth information. This

labelling procedure is not unambiguous. A jet is labelled as a b-jet if a b quark with

pT > 5 GeV is found in a cone of size ∆R= 0.3 around the jet direction. The various

labelling hypotheses are tried in this order: b quark, c quark and τ lepton. When
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no heavy flavour quark nor τ lepton satisfies these requirements, the jet is labelled

as a light-jet. No attempt is made to distinguish between u, d, s quarks and gluon

since such a label is even more ambiguous.

A difficulty arises as soon as the jet multiplicity is high and various jet flavours

are present in a single event: a jet with ∆R (jet-b) = 0.31 is labelled as a light

jet, although tracks from b-hadron decay with high lifetime content are likely to be

associated to it. This leads to a decrease of the estimated performance, not related to

the b-tagging algorithm itself but to the labelling procedure which strongly depends

on the activity of the event. In order to obtain a more reliable estimation of b-

tagging performance, a purification procedure has been devised: light jets for which

a b quark, a c quark or a τ lepton is found within a cone of size ∆R = 0.8 around

the jet direction are not used to compute the rejection [5]. Figure 4.2 shows the

rejection of light and c-jets with and without purification versus b-jet efficiency for

tt̄ events.

Combined b-tagging Algorithm (COMB)

The main idea of the inclusive secondary vertex reconstruction used in the COMB

tagger is to maximise the b/c-hadron vertex detection efficiency, keeping the proba-

bility low to find a light jet.

The secondary vertex (SV) is found by evaluating all two-track vertices formed

by tracks far enough from the primary vertex. Vertices compatible with vertex from

K0
s and λ0 decays, γ → e+e− conversions or hadronic interactions in the material

are rejected. All tracks from the remaining two-track vertices are then combined

into a single inclusive vertex using an iterative procedure removing the worst track

until the χ2 of the vertex fit is good. Once the secondary vertex is found, three

of its properties are exploited: the invariant mass of all tracks associated to the

vertex, the ratio of the sum of the energies of the secondary vertex tracks to the

sum of the energies of all tracks in the jet and the number of two-track vertices.

Two SV tagging algorithms make different use of these properties: SV1 relies on

a 2D-distribution of the two first variables and a 1D-distribution of the number of

two-track vertices, while SV2 is based on a 3D-histogram of the three properties.
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Figure 7: Rejection of light jets and c-jets with and without purification versus b-jet efficiency forWH
(mH =120 GeV) and tt̄ events, using the tagging algorithm based on 3D impact parameter and secondary
vertex.

4.1.1 V 0 and secondary interactions rejection

The preselection cuts on impact parameters reject a large fraction of long-lived particles and secondary
interactions. Among the remaining tracks, the ones identified by the secondary vertex search (sec-
tion 4.1.3) as likely to come from V 0 decays are rejected (they amount to between 1% and 3% of the
tracks in light and b-jets respectively). To do so, the search starts by building all two-track pairs that
form a good vertex. The mass of the vertex is used to reject the tracks which are likely to come from
Ks,Λ decays and photon conversions. The radius of the vertex is compared to a crude description of
the innermost pixel layers to reject secondary interactions in material. The cuts and performance of this
selection are described in Ref. [4].

4.1.2 Impact parameter tagging algorithms

For the tagging itself, the impact parameters of tracks are computed with respect to the primary vertex (cf.
section 2.2). On the basis that the decay point of the b-hadron must lie along its flight path, the impact
parameter is signed to further discriminate the tracks from b-hadron decay from tracks originating from
the primary vertex. The sign is defined using the jet direction !Pj as measured by the calorimeters (cf.
section 2.3), the direction !Pt and the position !Xt of the track at the point of closest approach to the primary
vertex and the position !Xpv of the primary vertex:

sign(d0) = (!Pj×!Pt) ·
(
!Pt× (!Xpv−!Xt)

)

The experimental resolution generates a random sign for the tracks originating from the primary vertex,
while tracks from the b/c hadron decay tend to have a positive sign. The sign of the longitudinal impact
parameter z0 is given by the sign of (η j−ηt)× z0t where again the t subscript refers to quantities defined
at the point of closest approach to the primary vertex.
The distribution of the signed transverse impact parameter d0 is shown on Figure 8, left plot, for

tracks coming from b-jets, c-jets and light jets. The right plot shows the significance distribution d0/σd0

9

b-TAGGING – b-TAGGING PERFORMANCE

10

406

Figure 4.2: Rejection of light jets and c-jets with and without purification versus b-jet

efficiency for tt̄ events, using the tagging algorithm based on 3D impact parameter

and secondary vertex. The distribution for c-jets and purified c-jets (both green

lines) are on top of each other.

The default b-tagging algorithm COMB in ATLAS is a likelihood combination

of the impact parameter IP3D and the secondary vertex SV1 algorithms, where the

weight of a jet is found as the sum of the weights for each of the algorithms. A

description of the method can be found in Ref. [56].

For the combination of the SV1 and IP3D, a likelihood ratio method is used: the

measured value Si of a discriminating variable is compared to pre-defined smoothed

and normalised distributions for b- and light jet hypotheses, b(Si) and u(Si). The

ratio of these probabilities defines the track or vertex weight, which can be combined

into a jet weight Wjet:

Wjet =
NT∑

i=1

lnWi =
NT∑

i=1

ln
b(Si)
u(Si)

(4.4)

JetFitter Vertex Reconstruction Algorithm (JetFitterCOMBNN)

The JetFitter algorithms (JetFitterCOMBNN) [57] uses a new inclusive secondary

vertex reconstruction algorithm combined with the pure impact parameter based

algorithm IP3D. The combination of the JetFitter and IP3D algorithm is realised by

using a neural network. This secondary vertex reconstruction algorithm [57] exploits
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the topological structure of weak b- and c-hadron decays inside a jet. The default

secondary vertex based b-tagging algorithm in ATLAS selects displaced tracks and

fits a single vertex [58]. But the underlying hypothesis of having a single geometrical

vertex is not correct. If the distance between the decay vertices of the b- and c-hadron

is significant compared to the vertex resolution in the flight direction, the tracks from

one of the two vertices can be lost in the fit.

The JetFitter algorithm assumes that the b- and c-hadron decay vertices lie on

the same line defined through the b-hadron flight path. All charged particle tracks

from either the b- or c-hadron decay thus intersect this b-hadron flight axis. From

the physics point of view this hypothesis is justified through the kinematics of the

particles involved as defined through the hard b-quark fragmentation function and

the masses of b- and c-hadrons. The lateral displacement of the c-hadron decay

vertex from the b-flight path is small enough to not get resolved due to the tracking

detector resolution and therefore not to violate the basic assumption. More details

about the implementation of this algorithm can be found in Ref. [57].

4.4.5 Muon Identification

There are two main strategies to identify and reconstruct muons and only the base-

line algorithms adopted as standard in the reconstruction will be briefly described

here. The direct approach is to reconstruct muons standalone by finding tracks in

the muon spectrometer and to extrapolate them then to the beam line. The other

approach which yields combined muons, is to match standalone muons to inner detec-

tor tracks and to then combine the two measurements. Some efficiency is recovered

and tagged muons are found by extrapolating all tracks reconstructed in the inner

detector and looking for unused hits in the muon system along their extrapolated

path.

The reconstruction of the standalone muons starts from building track segments

in each of the three muon stations. These segments are then linked together and the

track is extrapolated to the beam line. The enlargement of the track parameter errors

due to multiple scattering in the detector material has to be taken into account.

Standalone muons can be reconstructed up to |η| = 2.7, extending the inner detector
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6.2.2 Precision chambers

The precision chamber acceptance is computed on the basis of so-called ‘superpoints’. A super-
point is a coincidence of at least six hits in six different sensitive planes in one chamber. Such a
hit multiplicity requirement fully exploits the tracking resolution in most chambers, and en-
sures local vector measurement capability. A ‘half-superpoint’ is a coincidence of at least three
hits in the adjacent layers that form a multi-layer; it allows for momentum measurement, albeit
with slightly degraded resolution.

Figure 6-6 Acceptance for the requirements of one superpoint (dash-dotted line) and three superpoints (solid
line) in the three stations of the precision chamber system, as a function of pseudorapidity and averaged over
azimuthal angle. The acceptance for a coincidence of two superpoints is nearly indistinguishable from that for
one superpoint, and is not shown in the figure.

Figure 6-7 Comparison of acceptance for three superpoints (solid line) and three half-superpoints (dashed line)
in the precision chamber system, as a function of pseudorapidity and averaged over azimuthal angle. The dash-
dotted line shows the difference between the two categories.
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Figure 4.3: Acceptance for the requirements of one superpoint (dash-dotted line) and

three superpoints (solid line) in the three stations of the precision chamber system

as a function of pseudorapidity and averaged over azimuthal angle. A superpoint

is a coincidence of at least six hits in six different sensitive planes in one chamber.

Taken from [14].

coverage of up to |η| = 2.5, but with the most dominant acceptance holes around

the central gap at η = 0 and at |η| = 1.2 where the barrel/end-cap boundary is.

Figure 4.3 shows the limitations of the barrel system.

The combination of standalone muons and inner detector tracks relies on a χ2
match

which is defined by the probability that the track parameters of the inner detector

and muon system standalone tracks are compatible with each other within their

experimental errors. A simple statistical combination of the two tracks is then

performed. Combined muons reduce the rate of so-called fake muons by around

40%. Fake muons originate mainly from muons produced by π and K decays in the

calorimeter.

4.4.6 Missing Transverse Energy

Missing energy at a hadron collider can only be measured in the transverse plane

(EmissT ), since an unknown fraction of the longitudinal momenta of the incoming

protons is carried away by the proton remnants leaving the detector outside its

acceptance region after the hard scattering has occurred. EmissT is primarily recon-

structed from energy deposits in the calorimeter and reconstructed muon tracks.
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Apart from the hard scattering process of interest, many other sources, such as the

underlying event, multiple interactions, pile-up and coherent electronics noise, lead

to energy deposits and/or muon tracks. Classifying the energy deposits into various

types (e.g. electrons or jets) and calibrating them accordingly is the essential key for

an optimal EmissT measurement. In addition, the loss of energy in dead regions and

readout channels make the EmissT measurement a real challenge. Simulation studies

on typical physics events show that the EmissT can be reconstructed with a response

which is linear to within 5%.



58

Chapter 5

Cut-based Analysis of the

tt̄H0(H0→ bb̄) Channel

5.1 Introduction

The search for the Higgs boson will be one of the major tasks of the experiments

at the LHC. In the low Higgs boson mass range (up to about mH0 = 135 GeV)

the decay mode with the highest branching fraction is H0 → bb̄. The analysis of

reconstructing the associated production of a Higgs boson with a top quark pair in

the semileptonic final state is presented in this chapter.

A recent study of the tt̄H0(H0 → bb̄) channel presented in [5] (which will be re-

ferred to as the CSC analysis) uses cut- and likelihood-based approaches to separate

signal and backgrounds. The study was carried out at a centre-of-mass energy of
√
s = 14 TeV. The cut-based approach lead to an accepted cross-section of about

1 fb at a signal-to-background ratio of roughly 10% and a statistical significance of

S/
√
B = 1.82 for an integrated luminosity of 30 fb−1.

The LHC run plan had foreseen a centre-of-mass energy of
√
s= 10 TeV for the

first physics run. The cut-based analysis which is presented here follows previous

work [5] and aims at exploiting the sensitivity of the tt̄H0(H0 → bb̄) channel at this

centre-of-mass energy. It has been performed with Monte Carlo samples produced

at a centre-of-mass energy of
√
s = 10 TeV and an assumed integrated luminosity

of 100 fb−1, using a realistic detector simulation. The signal samples have been
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generated using the full detector simulation, whereas the background samples have

been generated using the fast simulation (see Section 4.3 for details).

This chapter is organised as follows. First, the simulated samples which have

been used are described. Then the analysis itself is described, starting with the

lepton and jet preselection, the trigger requirements and the reconstruction of the

tt̄ system before finally reconstruction the Higgs boson. The reconstruction of the

tt̄H0 final state is followed by the significance estimation together with a comparison

of the results to the previously performed CSC analysis performed at
√
s= 14 TeV.

Finally the systematic uncertainties are discussed.

5.2 Simulated Samples

The signal and all background samples have been generated at leading order with

a centre-of-mass energy of 10 TeV, a Higgs boson mass of mH = 120 GeV and

a top quark mass of mtop = 172.5 GeV [36]. As backgrounds, those described in

Chapter 3.4.4 have been considered. Section 5.2.2 will give a brief explanation of

the choice of centre-of-mass energy.

5.2.1 Signal and Background Samples

The signal sample has been generated using Pythia 6.401 [44] separately, depending

on the charge sign of the lepton from the semileptonic top decay. A lepton filter

is applied, requiring the lepton to have a transverse momentum of plT ≥ 10 GeV

and to be within |η| ≤ 2.7. The simulated samples for the signal processes of the

semileptonic channel tt̄H0(H0 → bb̄) are summarised in Table 5.1.

The irreducible tt̄bb̄ background via QCD or electroweak (EW) interactions have

been generated in two separate samples. AcerMC [59] has been chosen as matrix

element (ME) generator for the irreducible EW tt̄bb̄ background sample. Extra

decays, parton showering, fragmentation and hadronisation have been modelled by

Pythia as the supervising generator. The top quarks have been forced to decay

semileptonically. The hard process of the likewise irreducible tt̄bb̄ QCD background

has been generated by ALPGEN [60], interfaced to HERWIG 6.5 [61] as supervising

generator and JIMMY [43] to model the underlying event. The generated processes
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Dataset number 105870 105871

Process

Semileptonic Semileptonic

tt̄H0(H0 → bb̄) tt̄H0(H0 → bb̄)

(positive lepton) (negative lepton)

Production mode gg, qq̄

tt̄ decays included Semileptonic (e, µ)

Q scale (m2
T = m2 + p2

T ) max(m2
T (t),m2

T (t̄))

PDF set used CTEQ6L1

Supervising generator Pythia 6.401

Cross-section (fb)
21.64 21.52

Detector simulation Full

Filter type LeptonFilter

Filter efficiency 0.96 0.96

Decays Semileptonic (e, µ)

Final cross-section (fb) 20.77 20.72

Table 5.1: Summary of the simulated tt̄H0 signal sample produced in two separate

sub-samples depending on the charge sign of the lepton from the W decay.

are pp → tt̄bb̄ +X with all tt̄ system decays possible. The ATLAS Monte Carlo

event filter TTbarPlusJetsFilter has been applied at generator level to both samples.

The filter ensures that only events with a minimum number of jets are selected to

enrich the samples with high multiplicity jet events for the tt̄H0 analysis. It applies

loose cuts on hadron-level jets, which are reconstructed using a seeded fixed-cone

algorithm with a cone size of ∆R = 0.4 (see Jet Reconstruction Performance Chapter

in [5]):

• at least 6 jets with pT > 15 GeV and |η| < 5.2 to ensure that the minimum

number of final state jets is present in the event,

• at least 3 jets with pT > 15 GeV and within the inner detector acceptance of

|η| < 2.7, to be able to b-tag the jets.

Additionally, a cut on all other jets of |η| < 6 has been applied at matrix element
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level. Since the tt̄bb̄ QCD samples contain all tt̄ decays, a selection for semileptonic

events with electrons and muons was applied and the cross-sections are summarised

in Table 5.2.

Dataset 109627 109626

Process tt̄bb̄(QCD) tt̄bb̄(EW)

Production mode gg, qq̄ gg

tt̄ decays included All All

ME generator ALPGEN 2.13 AcerMC

ME cross-section (fb) 3703.5 195.4

Q scale (m2
T = m2 + p2

T ) 232.5 GeV ŝ

PDF set used CTEQ6L1 CTEQ6L

Cuts |ηlight jet| < 6 -

ME cross-section
3703.5 315.2

at Q=232.5 GeV (fb)

Supervising generator HERWIG Pythia

Enforced decays - Semileptonic e, µ

Cross-section before filter (fb) 3703.5 90.78a

Detector simulation ATLFAST II

Filter type TTbarPlusJetsFilter TTbarPlusJetsFilter

Filter efficiency 0.72 0.78

Semileptonic e,µ
0.2492 1.0

selection efficiency

Final cross-section (fb) 661.53 70.99

Table 5.2: Summary of the simulated tt̄bb̄ background samples contributing as irre-

ducible backgrounds.
aby-hand multiplication of ME cross-section with semileptonic (e, µ) BR based on current PDG

values: 28.8%

The reducible tt̄X background has been generated in four sub-samples containing

between zero and three additional light partons, where a light parton is defined here

as g, u, d, s or c. These samples have been generated with ALPGEN 2.13 [60] as
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Dataset 109620 109621 109622 109623

Process (tt̄ + X partons) tt̄ + 0 tt̄ + 1 tt̄ + 2 tt̄ + 3

Production mode gg,qq̄

tt̄ decays included Semileptonic (e,µ, τ)

ME generator ALPGEN 2.13

ME cross-section (fb) 95360 121220 91370 50480

Q scale (m2
T = m2 + p2

T )
∑
m2
T over all (final state partons)

PDF set used CTEQ6L1

Cuts
plight jet
T > 20 GeV, |ηlight jet| < 6

∆R(light jet, light jet) > 0.7

ME cross-section
105196 139197 108649 62880

at Q=232.5 GeV (fb)

MLM matching efficiency 0.39 0.29 0.22 0.16

Supervising generator HERWIG

Cross-section before filter (fb) 41363.1 39893.9 23479.0 10274.6

Detector simulation ATLFAST II

Filter type TTbarPlusJetsFilter

Filter efficiency 0.17 0.45 0.80 0.97

AOD cross-section (fb) 6920.05 17868.48 18665.81 9930.40

Semileptonic e,µ
0.5394 0.5910 0.6417 0.6607

selection efficiency

Cross-section after filter (fb) 3732.67 10560.27 11977.85 6561.02

Cross-section after
3588.44 10060.23 11261.51 6011.77

overlap removal (fb)

Table 5.3: Summary of the simulated tt̄X background samples, simulated in four

sub-samples containing between zero and three additional light partons. The cross-

sections after removing the overlap (see text and Chapter 6 for details) are also

given.
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ME generator, interfaced to HERWIG [42, 61] and Jimmy [43]. The events in the

samples correspond to the processes pp → tt̄ → qq̄′blνb with l = e, µ, τ . The four

samples are made exclusive by MLM matching [62] between the additional light

partons and jets found in the HERWIG event record after processing. The necessity

for applying MLM matching is due to the separate generations and the difficulty

to unambigously separate the components of the event which belong to the hard

process from those developing during its evolution (described by parton shower).

The MLM matching procedure is therefore applied to avoid double counting of events

by matching partons from matrix element calculations to jets reconstructed after the

pertubative shower. Events that are not fully matched are rejected.

Additional cuts on the light partons not coming from the tt̄ system are applied

at ME level:

• pT > 25 GeV and |η| < 6

• ∆R > 0.7 between jets.

These cuts are applied to ensure the possibility of reconstructing these light partons

by requiring the partons to not be too close together or be too soft.

The reducible tt̄X and irreducible tt̄bb̄ background contributions have been gen-

erated separately from each other to be able to study their contributions and be-

haviour individually. However, this creates an overlap of events since the addition of

b-quarks to tt̄ events via parton showering in HERWIG produces events that are in-

cluded in the matrix-element cross-section calculation for the tt̄bb̄ sample. Therefore

it was necessary to develop a procedure to remove this overlap which is described

in detail in Chapter 6. This overlap removal procedure is applied to the tt̄X back-

ground and the cross-sections of the simulated samples after the overlap removal are

given in Table 5.3.

5.2.2 Centre-of-mass Energy Considerations

The LHC is designed to collide proton beams with a centre-of-mass energy of
√
s= 14 TeV. However, for the first physics run in the beginning of the LHC op-

eration a centre-of-mass energy of
√
s= 7 TeV has been chosen. At the time of
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generating the MC samples for this thesis, the run plan had foreseen a longer run

with
√
s= 10 TeV, which is why the MC samples used in this thesis were generated

at
√
s= 10 TeV.

In order to compare results of this thesis with results previously obtained with

simulated data at a centre-of-mass energy of
√
s= 14 TeV, a simple preselection has

been applied to tt̄H0 events, generated with Pythia 6.4 [44] and with
√
s = 7 TeV,

10 TeV and 14 TeV. The cuts are applied at parton level, with jets reconstructed

with the cone jet algorithm using an R-parameter of 0.4. The cuts applied are

similar to the preselection cuts applied in the following cut-based analysis to ensure

the presence of the basic physics objects used. An event passes the preselection if

exactly one lepton with pT > 15 GeV and |η| < 2.5 and at least six jets with a

minimum transverse momentum of pT> 20 GeV in |η| < 5 are found. At least four

of which have to be b-tagged (assumed b-tagging efficiency 70%, light-jet efficiency

1%) and lie within |η| <2.5.

The cross-sections before and after preselection as well as the efficiencies for the

lepton and jet preselection are summarised in Table 5.4. The resulting cross-section

scaling factor for signal S and backgrounds B between the 10 TeV and 14 TeV sample

is 2.05 and 2.71 between the 7 TeV and 10 TeV sample. Since the significance is

S/
√
B and both S and B scale by 2.05, the obtained significances for this analysis

have to be scaled by a factor of
√

2.05 = 1.43 to compare them to the significances

obtained in the 14 TeV analysis carried out in the CSC note [5].

The method of obtaining a scaling factor to adapt for the different centre-of

mass energies is an approximate method, that assumes no change in the analysis

efficiencies after the preselection and also that both signal and background scale

by the same amount. The first assumption seems reasonable since the preselection

efficiencies themselves are quite close together (as shown in Table 5.5).

5.3 Analysis Overview

The analysis of the tt̄H0(H0 → bb̄) channel aims at reconstructing the complete

final state of the event to minimise the combinatorial background when assigning

two of the four b-jets to the Higgs boson decay. The cut-based method consists of
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√
s

cross-section preselection efficiency cross-section

before preselection lepton jet after preselection

7 TeV 8.12 fb 65.62% 10.85% 0.58 fb

10 TeV 21.98 fb 63.91% 11.16% 1.57 fb

14 TeV 51.96 fb 62.92% 9.85% 3.22 fb

Table 5.4: Cross-sections before and after the preselection carried out at parton

level for simulated tt̄H0 events at centre-of-mass energies of
√
s = 7 TeV, 10 TeV,

14 TeV and the selection efficiencies of the lepton and jet preselection. The resulting

cross-section scaling factor between the 10 TeV and 14 TeV sample is 2.05 and 2.71

between the 7 TeV and 10 TeV sample.

three steps:

• A preselection to ensure the fundamental physics objects like leptons and jets

necessary to reconstruct the tt̄H0 system are present and reconstructed in the

event.

• The reconstruction of the tt̄ system.

• The reconstruction of the Higgs decay.

The identification and association of decay products is directly related to the quality

of the reconstructed Higgs boson signal. It mainly suffers from the mis-association

of the four b-tagged jets to the original partons.

In the following analysis the concept of correct jets is defined by finding the

closest reconstructed jet to each parton, after the final state radiation. The jets are

matched to partons in ∆R and must be closer than 0.2. A W or Higgs boson is

correctly matched if both of the jets used to reconstruct the candidate are associated

to the partons from its decay, while for a top quark the matching refers to the b

quark jet only.

5.4 Preselection

To select only events compatible with the signal topology of four b-jets, two light

jets and one lepton, a preselection is applied and requires:
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• exactly 1 isolated lepton, where a lepton can be either an electron or a muon

(` = e, µ); taus are not considered in this analysis

• at least 6 jets of which at least 4 must be tagged as b-jets.

5.4.1 Lepton Preselection

Leptons (electrons and muons) have to pass the kinematic and geometrical cuts on

the transverse momentum pT > 15 GeV and pseudorapidity |η| < 2.5 as well as some

lepton-type specific cuts to be accepted as a candidate electron or muon coming

from the semileptonic decay of the tt̄ system. These cuts were chosen following

the recommendations of the dedicated electron and muon identification groups in

ATLAS.

Electrons are required to pass the ATLAS loose electron-ID selection (isEM =

ElectronLoose) (see Section 4.4.2 for more detail). An isolation cut is also applied

to the candidate electrons in the form an upper limit of 0.15 on the ratio of the

transverse momentum of additional tracks inside a cone of size ∆R = 0.2 around

the electron track to the electron pT :

pT,cone(∆R = 0.2)
pT (e)

< 0.15 (5.1)

Figure 5.1 shows the pT , η, and track isolation for all reconstructed electrons and

those which could be matched to an electron from the semileptonic top decay.

For a muon to be accepted as the candidate lepton from the semileptonic top

decay, it must be reconstructed using a combination of the inner detector and muon

spectrometer, a so-called combined muon (see Section 4.4.5). Additionally, a loose

isolation criterion on the ratio between the transverse energy deposited inside a cone

of size ∆R = 0.2 around the muon track and the muon pT is required to be satisfied:

ET,cone(∆R = 0.2)
pT (µ)

< 0.3 (5.2)

To remove muons generated by the decay of long-lived mesons, a cut on the trans-

verse impact parameter of 0.05 is applied. Figure 5.2 shows the distributions of the

muons properties which are used to select the candidate muon.
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Figure 5.1: pT , η and track isolation distribution for all reconstructed electrons and

those which could be matched to an electron from the semileptonic top decay in the

signal sample. Distributions are normalised to unit area.

If more than one lepton passes the selection cuts, the event will be rejected.

Vetoing events with two or more isolated leptons is intended to remove additional

sources of background, like e.g. the fully leptonic tt̄ process. Figure 5.3 shows the

number of reconstructed leptons for cases when one or more than one lepton are

found in the signal sample. The lepton preselection efficiency in the signal is 61.3%,

efficiencies for all samples can be found in Table 5.5.

5.4.2 Jet Preselection

The Anti-kT jet algorithm is used to reconstruct jets using an R parameter of

R = 0.4, with topoclusters as input. This jet algorithm was found to exhibit the best

jet reconstruction efficiency for jets at low pT and, specifically for the Higgs recon-
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Figure 5.2: pT , η, energy isolation and transverse impact parameter distribution

for all reconstructed muons and those which could be matched to a muon from the

semileptonic top decay in the signal sample. Distributions are normalised to unit

area.

struction in the tt̄H0 channel, to give the best mass reconstruction and the highest

signal efficiency [55]. Jets are required to have a transverse momentum pT > 20 GeV

and be within the pseudorapidity of |η| < 5. At least six jets are required to recon-

struct the signal state, four of which have to be b-tagged and therefore lie within

the inner detector acceptance of |η| < 2.5.

b-tagging

Two b-tagging algorithms have been considered in this analysis: the “JetFitter”

based algorithm (JetFitterCOMBNN) and the combined b-tagging algorithm (COMB)

(see Section 4.4.4). Both b-taggers are based on a weight which is trained to get the
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found in the signal sample.

best possible separation of of b-jets from light-quark jets.

In order to determine the optimal b-tagging strategy for the present analysis,

the significance S√
B

has been analysed as a function of the b-tagging weight of the

JetFitterCOMBNN and COMB tagger. This is shown in Figure 5.4 (left), the sig-

nificances are obtained by applying the tt̄ and Higgs reconstruction as described in

the CSC analysis. Based on this, the b-tagging algorithm chosen for this analysis is

the JetFitterCOMBNN and jets are tagged as b-jets if the cut on the weight of the

jet Wjet > 1 is satisfied.

Figure 5.5 shows the distribution of b-tagging weights for the JetFitterCOMBNN

for jets passing the kinematic and acceptance cuts and matched to b, c or light (u, d, s)

quarks.

The efficiency εb to tag a jet of flavour q as a b-jet is defined as:

εb =
Number of jets tagged as b-jets

Number of b-jets
(5.3)

Usually εb is called tagging efficiency whereas εudsc is called mistagging rate. The

so-called b-tagging rejection is the inverse of the mistagging rate: rudsc = 1/εudsc.

A light (c-) jet rejection of 100 translates as one light (c-) jet in a hundred being

mistagged as a b-jet.

The b-tag efficiency of the two considered algorithms versus the b-tagging weight

is shown in Figure 5.4 (right) and Figure 5.6 shows the light (left) and c (right) jet
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Figure 5.4: Left: Statistical significance as a function of the b-tagging weight corre-

sponding to a certain cut on the b-tagging weight for the two considered b-tagging

algorithms COMB and JetFitterCOMBNN, for the tt̄H0 samples. Right: b-tagging

efficiency versus b-tagging weight for the b-tagging algorithms JetFitterCOMBNN

and COMB.
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Figure 5.5: Distribution of b-tagging weight for b−, c− and light jets in tt̄H0 events,

using the JetFitterCOMBNN tagger.

rejection factor versus the b-tagging efficiency. For Wjet > 1, using the JetFitter-

COMBNN algorithms, the b-tagging efficiency is 58.3%, with a light jet rejection

factor of 73.6 and a c-jet rejection factor of 8.6. The highest significance for the

COMB tagger is at Wjet = 4.5 which implies a b-tagging efficiency of about 55.3%,

a light jet rejection factor of 83.2 and a c-jet rejection factor of 9.7.
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Figure 5.6: Left: Light jet rejection versus b-tagging efficiency of the b-tagging

algorithms JetFitterCOMBNN and COMB. Right: c-jet rejection versus b-tagging

efficiency of the b-tagging algorithms COMB and JetFitterCOMBNN.

Jet-electron Overlap Treatment

Most electrons are also reconstructed by the jet algorithm due to the electromagnetic

showers they leave in the calorimeters. It therefore becomes necessary to identify

these jets and remove them in order to avoid double counting. Each jet matching

an electron which passed the electron preselection cuts (see Section 5.4.1) within a

∆R of 0.2 and for which the ratio of the electron to the jet transverse momenta is

greater than 0.75 [5], is discarded from the sample. About 4% of the jets in the

signal sample are removed by this procedure, 99% of them being true electrons.

Low pT Muons Treatment

About 20% of the time a B-hadron decay cascade gives rise to a muon. With a four

b-jet signature in this channel, these so-called soft muons are present in about 2/3

of the events [5]. In order to improve the estimate of the momentum of the original

b quark, these muons must be used to correct the jet four-momenta by adding the

muon four-momentum to a jet. Any muons found within ∆R < 0.4 of the jet axis

are considered for addition into the jet. More details and the resulting effects of the

jet correction on the reconstructed Higgs boson mass can be found in [5].
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Multiplicities and Selection Efficiencies

Additionally to jets originating from the hard process, there can be jets from initial-

or final-state gluon radiation which increases the combinatorial problem when as-

signing reconstructed objects to the particles from the hard process. This is visible

when looking at Figure 5.7 (left) which shows the jet multiplicity of all reconstructed

jets without any kinematic or quality cuts applied compared to Figure 5.7 (right)

which shows all jets with pT > 20 GeV and |η| < 5. Most of the jets from Fig-

ure 5.7 (left) have low momentum and therefore do not pass the preselection cuts.

Figure 5.8 shows the number of b-tagged jets (left) and light jets (right) with a mo-

mentum pT > 20 GeV and |η| < 2.5 for b-jets and |η| < 5 for light jets for signal and

background events. The mean number of jets passing the kinematic cuts is 6.3 and

on average 2.2 b-jets are found in tt̄H0 events. The jet preselection efficiency for

events which passed the lepton preselection in the signal sample is 6.6%, efficiencies

for all samples can be found in Table 5.5.

5.5 Trigger Requirements

The presence of one high-pT lepton, together with missing transverse momentum, is

a distinct signature of W boson production. These leptons can generally be used to

trigger on W production with high efficiency.

An important concept of the trigger system are the trigger menus. Trigger menus

are combinations of objects, which pass different thresholds and are then grouped

together depending on the physics they aim to cover. The trigger menu considered

here is the menu which was foreseen for a luminosity of 1031 cm−2s−1. It contains

various relevant lepton trigger signatures but also various jet and missing energy

signatures. The signatures considered here are unpresecaled unless stated otherwise.

A prescale of N entails that only one in N passed events are sent to the next level

for further processing.

Trigger menus are constantly evolving in order to achieve the optimal final ef-

ficiencies and rejection factors and will also be updated during the running of the

experiment, even when the detector performance is well understood. The study
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Figure 5.7: Jet multiplicities for all jets (left) and for jets with pT > 20 GeV,

reconstructed with the Anti-kT algorithm. Both distributions are normalised to

30 fb−1.
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reconstructed with the Anti-kT algorithm. Distributions are normalised to 30 fb−1.
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Step of analysis tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD

Lepton preselection
61.3% 60.3% 59.2%

(61.3%) (60.3%) (59.2%)

Jet preselection
6.6% 4.3% 3.4%

(4.0%) (2.6%) (2.0%)

Leptonic W
95.7% 96.8% 97.1%

(3.8%) (2.5%) (1.9%)

Hadronic W
69.6% 72.7% 68.4%

(2.7%) (1.8%) (1.3%)

tt̄ system
91.9 % 91.6% 90.6%

(2.5%) (1.7%) (1.2%)

Higgs
95.9% 96.3% 97.6%

(2.4%) (1.6%) (1.1%)

Step of analysis tt̄+ 0 tt̄+ 1 tt̄+ 2 tt̄+ 3

Lepton preselection
61.7% 60.7% 59.4% 56.6%

(61.7%) (60.7%) (59.4%) (56.6%)

Jet preselection
0.03% 0.04% 0.09% 0.2%

(0.02%) (0.02%) (0.05%) (0.10%)

Leptonic W
100% 98.9% 95.1% 97.2%

(0.02%) (0.02%) (0.05%) (0.10%)

Hadronic W
54.2% 47.7% 52.3% 65.7%

(0.01%) (0.01%) (0.03%) (0.06%)

tt̄ system
76.9% 90.2% 81.2% 84.1%

(0.01%) (0.01%) (0.02%) (0.05%)

Higgs
100.0% 97.3% 91.5% 97.0%

(0.01%) (0.01%) (0.02%) (0.05%)

Table 5.5: Efficiencies of each step of the analysis for the signal and tt̄bb̄ backgrounds

(top) and tt̄X samples (tt̄ + 0, 1, 2, 3 extra partons) (bottom). The efficiencies are

calculated on a tool-by-tool basis and as cumulative efficiencies in brackets. The

Higgs reconstruction efficiency quoted is for the reconstruction method using the

two b-jets with the highest b-weight.
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presented here is aimed at providing feedback to the ATLAS trigger group in order

to optimise the performance of the various trigger signatures.

The efficiencies for the three trigger levels have been studied in the fully-simulated

tt̄H0 samples only since the fast-simulated background samples have no trigger simu-

lation. In order to provide feedback of the performance of various lepton signatures,

the efficiencies are calculated from events after the preselection. That way, the pres-

ence of an offline reconstructed isolated lepton is ensured and the actual signature

efficiency is determined.

Furthermore the study of the trigger signatures at this step of the analysis is based

on higher statistics than after the tt̄ and Higgs reconstruction and the tt̄ and Higgs

reconstruction have been found to not interfere significantly with the trigger effi-

ciency due to the offline lepton preselection.

The trigger signatures can be classified into categories of which those relevant

for this thesis are:

• Primary trigger: a trigger used to acquire the data sample for a physics or

performance study.

• Supporting trigger: a trigger used to measure some property of a primary

trigger, including trigger efficiency measurements, monitoring HLT decisions,

studying the tracking, studying the isolation for use at higher luminosities and

multi-object trigger for use at higher luminosity.

• Test trigger: a trigger used only in the Monte Carlo menu for testing purposes.

Following these categorisations the only primary trigger signatures which can be con-

sidered for this analysis are the e20 loose and mu10 trigger. For instance, e20 loose

means that 1 electron with pT > 20 GeV is required and loose calorimeter and

tracking identification cuts are applied, whereas mu10 means that 1 muon with pT

> 10 GeV is required. Table 5.6 summarises the L1 item and HLT chains for all

considered signatures. Table 5.7 gives the detailed cuts for the primary signatures

for each trigger level.
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Other signatures which in principle could be used to trigger on tt̄H0 events are

the e20i loose (supporting trigger) as well as the test trigger signatures e25i loose,

e25 loose, e22i tight for electrons and mu20 and mu20i loose for muons. Each trigger

signature consists of a L1 item and L2 and EF chains. Chains are list of sequences

at each trigger level, each sequence consisting of executing a series of algorithms.

All these trigger signatures have been studied and their efficiencies have been

calculated as:

ε =
number of events with a lepton passing the L1/L2/EF trigger

number of events with a lepton from aW decay (truth)
. (5.4)

Table 5.8 summarises the single electron and single muon trigger efficiencies respec-

tively.

The primary lepton signatures chosen for combination through a logical OR

are the e20 loose as electron trigger and the mu10 signature as trigger for muons.

Figure 5.9 and 5.10 show the efficiencies for each trigger level versus the pT and η

of the truth lepton in the event for both signatures.

The non-flat efficiency in η of the e20 loose L2 and EF chain can be explained

by observed losses in the inner detector end-caps in data.

The mu10 trigger efficiency as a function of η is not completely flat due various

inefficiencies around η = 0. These inefficiencies arise from the geometrical coverage

of the muon trigger detector system [16] which limits the overall acceptance for

triggering on muons at L1, as shown in Figure 5.11. The barrel trigger system

covers approximately 80% of the |η| < 1.0 region, while the end-cap trigger extends

over approximately 96% of the relevant η − φ space. The limitations of the barrel

system can be seen in Figure 4.3 and are dominated by the crack at |η| < 0.1 (largely

to accommodate inner-detector and calorimeter services), by the regions occupied

by the feet of the experiment at |η| ≈1 and by the space taken by the barrel toroid

ribs.

The efficiencies for the logical OR combination of the lepton trigger signatures

mu10 and e20 loose are given in Table 5.9. The trigger efficiency is approximately

82.0% for those semileptonic tt̄H0 events which would otherwise pass the offline

analysis. The trigger efficiencies obtained with the lepton triggers will not be applied

to the analysis presented in this thesis to not interfere with the actual reconstruction
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Signature L1 item
HLT chain

explanation
(L2 / EF )

e20 loose L1 EM18 e20 loose 1 electron with pT > 20 GeV

e20i loose L1 EM18I e20i loose 1 isolated electron with pT > 20 GeV

e25 loose L1 EM18 e25 loose 1 electron with pT > 25 GeV

e25i loose L1 EM18I e25i loose 1 isolated electron with pT > 25 GeV

e22i tight L1 EM18I e22i tight 1 isolated electron with pT > 22 GeV

mu10 L1 MU10 mu10 1 muon with pT > 10 GeV

mu20 L1 MU20 mu20 1 muon with pT > 20 GeV

mu20i loose L1 MU20 mu20i loose 1 isolated muon with pT > 20 GeV

Table 5.6: The studied trigger signatures with their corresponding L1 items and

HLT chain name.

efficiencies and also to not further limit the statistics of the simulated samples.

5.6 Reconstruction of the tt̄ System

To be able to reconstruct the tt̄ system, the hadronically and leptonically decaying

W bosons have to be reconstructed. b-jets are then associated with the W candidates

to form top candidates. All jets considered b-tagged satisfy the weight cut of 1. If

more than four b-tagged jets (Wjet > 1) are found, the jets with the highest weight

are used for the reconstruction.

5.6.1 Leptonic W Reconstruction

To fully reconstruct the leptonic W decay, the four-vector of the neutrino momentum

has to be reconstructed using the missing transverse energy. Due to the incomplete

coverage of the detector around the beam pipe, the z-component of the neutrino

momentum pz cannot be estimated directly from measured quantities. However it is
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Trigger level e20 loose mu10

L1 ET > 18 GeV ET > 10 GeV

L2 ET (cluster)> 19 GeV pT > 9.8 GeV for 0 < |η| ≤ 1.05

ET (hadronic) < 3 GeV pT > 9.5 GeV for 1.05 < |η| ≤ 1.5

Rcore > 0.89 pT > 9.6 GeV for 1.5 < |η| ≤ 2.0

Eratio > 0.6 pT > 9.7 GeV for 2.0 < |η| ≤ 2.5

pT (track) > 3 GeV

∆η(track-cluster) < 0.03

∆φ(track-cluster) < 0.15

EF ET > 20 GeV pT > 9.77 GeV for 0 < |η| ≤ 1.05

pT > 9.67 GeV for 1.05 < |η| ≤ 1.5

pT > 9.62 GeV for 1.5 < |η| ≤ 2.0

pT > 9.57 GeV for 2.0 < |η| ≤ 2.5

Table 5.7: Cuts applied at L1, L2 and EF to the primary trigger signatures e20 loose

and mu10. ET (cluster) is the transverse energy calculated from the energies in the

electromagnetic calorimeter layers in ∆η×∆φ = 3× 7, ET (hadronic) is the leakage

into the hadronic calorimeter within ∆η × ∆φ = 0.2 × 0.2. Rcore is the ratio of

energy contained in a ∆η × ∆φ = 3 × 7 window to that in a 7 × 7 window in

the second sampling of the EM calorimeter. Eratio is the ratio of the first energy

peak to any second energy peak, to discriminate against π → γγ decays. ∆η(track-

cluster) and ∆φ(track-cluster) is the difference in η and φ between the cluster and

the extrapolated track to the calorimeter surface. The transverse energy at EF is

calculated using the energies of all EM calorimeter layers in ∆η ×∆φ = 3× 7.

possible to recover some information by solving the equation for the W boson mass:

M2
W = (Eν + El)2 − (pνx + plx)2 − (pνy + ply)

2 − (pνz + plz)
2

= m2
l − 2(pνxp

l
x + pνyp

l
y)

+ 2El
√

((EmissT )2 + (pνz)2)− 2(pνzp
l
z) (5.5)

with pνx = pmissx , pνy = pmissy and assuming the neutrino to be massless, mν = 0

so that Eν = | ~pν |. Due to the limited measurement resolution on the transverse
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Trigger level e20 loose e20i loose e22i tight e25 loose e25i loose

L1 99.9% 91.4% 91.4% 99.9% 86.1%

L2 80.7% 73.6% 68.6% 75.7% 68.8%

EF 77.4% 72.6% 68.0% 72.1% 67.8%

Trigger level mu10 mu20 mu20i loose

L1 91.5% 85.8% 85.8%

L2 88.2% 76.8% 57.3%

EF 86.4% 74.4% 55.3%

Table 5.8: Single electron (top) and muon (bottom) trigger efficiencies for each

trigger level. The efficiencies are calculated according to Eq. 5.4 for events with a

truth electron or muon from a W d ecay and after the lepton and jet preselection.

Trigger level mu10 OR e20 loose

L1 (95.6 ± 0.1)%

L2 (84.6 ± 0.1)%

EF (82.0± 0.1)%

Table 5.9: Efficiencies for the combination of the mu10 and e20 loose trigger using

a logical OR. This trigger combination is used to select tt̄H0(H0 → bb̄) events.

missing energy, for a significant fraction of events the quadratic constraint equation

does not have a real solution. In this case two different approximations can be

made: The “(∆ = 0) approximation” by dropping the imaginary part of solutions

with complex roots or the “collinear approximation” by assuming that the W boson

decay products are produced preferentially in the same direction due to the large top

quark mass boosting the W boson. For the collinear approximation the assumption

plz = pνz is made.

In the CSC analysis, it was found that 72% of the time pz,ν has real solutions

with a resolution of 19.5 GeV. In this case, both solutions are carried forward into

the analysis and the best performing final state solution is used. In the other 28%

of cases with no real solutions, the approximations mentioned can be used. In this

analysis the “∆ = 0” approximation is used which was found to have a pz,ν resolution
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Figure 5.9: Trigger efficiency for each trigger level for the e20 loose signature shown

for the truth pT and η of the lepton from the top decay.
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Figure 5.10: Trigger efficiency for each trigger level for the mu10 signature shown

for the truth pT and η of the lepton from the top decay.

of 40 GeV and therefore to perform better than the collinear approximation where

the pz,ν resolution is 54 GeV.

Since the mass constraint is lost when using the “∆ = 0 approximation” (the

same would be true for the collinear approximation), there is an actual cut on

the reconstructed W boson mass. To remove extreme cases, only W candidates of

mW < 140 GeV are considered [5]. The reconstructed leptonic W boson mass is

shown in Figure 5.12 (right) together with the numbers of reconstructed leptonic W

candidates per event (left).
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Figure 10.114: Expected differential spec-
trum for single jets as a function of the re-
constructed ET of the leading jet. The solid
line shows the distribution after applying the
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Figure 10.115: Efficiency as a function of
the true jet ET (as defined for a cone of
size ∆R = 0.4) for each of the single-jet L1
menu items shown in table 10.8.
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Figure 10.117: Estimated EF output rates for
muons as a function of pT -threshold at a lumi-
nosity of 1031 cm−2 s−1, integrated over the full
η-range covered by the L1 trigger, |η | < 2.4.

The rates of muons at the output of the EF have been computed at a luminosity of
1031 cm−2 s−1, by summing the contributions from the barrel and end-cap regions of the muon
spectrometer. As shown in figure 10.117, several physics processes contribute significantly to the
rate. The rates given as a function of the pT -threshold are for an inclusive muon selection, without
applying an isolation requirement. The largest contributions to the total rate in the pT -range from 4
to 6 GeV are from charm, beauty and in-flight decays of charged pions and kaons. Isolation, as well
as refined matching requirements between the tracks in the inner detector and muon spectrometer,
can be used to further reduce the rates.

– 367 –

Figure 5.11: Acceptance in the η − φ space for the L1 muon trigger, which covers

the η-range |η| < 2.4. The black points represent regions not instrumented with L1

trigger detectors because of the presence of various supports and services. Taken

from [16].
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Figure 5.12: Left: Number of reconstructed leptonic W candidates in the signal

sample. Right: Invariant mass spectrum of the leptonically decaying W bosons

where the “∆ = 0 approximation” is used.

5.6.2 Hadronic W Reconstruction

For the reconstruction of the hadronic W decay only jets not tagged as b-jets are

considered. All possible two-jet combinations are formed and jet-pairs within mjj =

mW± 25 GeV are kept. Due to the many jet-jet combinations, the W candidate

multiplicity is rather high, for the signal sample on average about 4 W candidates are
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found. Figure 5.13 shows the multiplicity and mass distribution of all W candidates.

In the CSC analysis, the nominal value mW = 80.4 GeV was used to select the

reconstructed candidates. Although the jets used for reconstruction are calibrated

for instrumental effects with the jet energy scale (JES) being independent of detector

effects, they are not corrected for physics effects. There are a number of effects that

can contribute to this energy loss such as clustering, fragmentation, initital and

final state radiation, underlying event and from energy lost outside the jet (out-of-

cone energy) etc. have to be in principle applied [5]. When reconstructing massive

objects such as the W boson, the effect of the energy loss of uncalibrated jets will

be reflected in a lower mass peak than the nominal W mass. In the CSC analysis,

a residual calibration was applied to account for these effects. It was derived from

full simulation, so that the jet four-momentum was corrected by a flavour dependent

rescaling factor. This calibration improved the mass peak location of the Higgs boson

and improved (together with the treatment of low pT muons) the significance by 0.3.

Such a calibration has not been derived and applied to jets in this analysis, instead

the mean mass of the reconstructed objects (W and Higgs boson, top quarks) has

been determined and the mass window was chosen around this mean mass instead

of the nominal value.

Therefore the mean mass of the correctly reconstructed jet pairs is used to place

the mass window of ±25 GeV instead of the nominal W boson mass as in the CSC

analysis. Figure 5.14 shows the mass of the reconstructed W candidates, where the

correct jets have been used for reconstruction. Based on the Gaussian fit applied,

the mass distribution peaks at 75.4 GeV and has a width of 10.9 GeV.

At this point of the analysis all combinations of jet pairs inside the acceptance

window are kept and the decision, which pair is chosen for the hadronic W boson

reconstruction is made in the process of the top quark reconstruction. The efficien-

cies for reconstructing the hadronic W boson for signal and background samples are

given in Table 5.5.
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Figure 5.13: Left: Number of reconstructed hadronic W candidates within 25 GeV of

the true W mass in the signal sample. Right: Invariant mass spectrum of the two-jet

combinations to reconstruct the hadronic W . The red line shows the combinations

where the jets from the W are correctly matched.
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Figure 5.14: Invariant mass spectrum of the correctly reconstructed W candidates

to which a Gaussian distribution has been fitted.

5.6.3 tt̄ Reconstruction

After the reconstruction of the leptonic and hadronic W decays, the appropriate

b-jets from the decay of the top quark have to be found. The reconstruction of the

tt̄ system is done simultaneously for both top quarks by finding the combination of

one charged lepton, the solution for pνz , two b-jets and two light jets which minimise
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the χ2 expressed as:

χ2 =

(
mjjb −mhad

top

σmjjb

)2

+

(
mlνb −mlep

top

σmlνb

)2

(5.6)

where σmjjb and σmlνb are the reconstructed mass resolutions. Figure 5.15 shows

the invariant mass of the reconstructed hadronic and leptonic top candidates where

the b-jets have been correctly assigned. The peaks around 130 GeV and 220 GeV in

Figure 5.15 (left) might be due to W candidates which have been matched to a truth

W boson in ∆R space but do not match in energy. The σmjjb and σmlνb have been

found to be on average 17.8 GeV and 25.4 GeV respectively based on the Gaussian

fit applied. The fit windows have been chosen to be 100− 210 GeV for the hadronic

and 100− 200 GeV for the leptonic top. The nominal top mass of 172.5 GeV is not

used in the χ2 given in Equation 5.6, instead the mean masses of the hadronic and

leptonic tops are also taken from the Gaussian fit, so that mhad
top = 158.6 GeV and

mlep
top = 163.4 GeV.

Figure 5.16 shows the resulting distributions of the reconstructed top massesmjjb

and mlνb for the tt̄ system with the smallest χ2 value. The tails of the mass distri-

butions are dominated by events with incorrect pairing. Such events are rejected by

requiring that the reconstructed top quark masses lie within |mjjb−mhad
top | <25 GeV

and |mlνb −mlep
top| <25 GeV. A Gaussian fit to the mass peaks for the correctly re-

constructed hadronic and semileptonic tops has been applied and the mass peaks for

the hadronic and leptonic top mass window cut are found to be mhad
top = 160.2 GeV

and mlep
top = 164.4 GeV (see Figure 5.17).

The efficiencies for the reconstruction of the tt̄ system for signal and background

samples are given in Table 5.5. For the signal sample, in about 91.9% of events with

a hadronic and leptonic W , a the tt̄ system can be reconstructed.

5.7 Higgs Reconstruction

The two remaining b-tagged jets are now assigned to the Higgs boson candidate. In

case of more than two remaining b-jets, two different approaches are considered: the

reconstruction of the Higgs boson with the two highest pT b-jets (CSC approach) or

with the two b-jets with the highest b-weight.
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Figure 5.15: Reconstructed invariant masses for all correct hadronic (right) and

semileptonic tops (left) for signal events where the b-jet has been assigned correctly.

A Gaussian has been fitted to both distributions.
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Figure 5.16: Reconstructed invariant mass for selected semileptonic tops (left) and

hadronic tops (right) for signal events, forming the best tt̄ system found, normalised

to 30 fb−1. The red line indicates candidates formed by assigning the correct b-jets

to the tt̄ system considered.

5.7.1 Transverse Momentum Ordering

The approach of choosing the two highest pT remaining b-jets and combining them

to form a Higgs candidate was used in the CSC analysis. The resulting Higgs

boson mass for the signal sample is shown in Figure 5.18 (left) and the signal and

background distributions for the invariant Higgs mass are shown in Figure 5.19.

Here, no clear mass peak is visible, showing the difficulty of the analysis, requiring
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Figure 5.17: Reconstructed invariant mass for selected hadronic tops (left) and

semileptonic tops (right) for signal events, forming the best tt̄ system found in the

event where the correct b-jets has been assigned to the top candidates. A Gaussian

fit has been applied to both distributions.

dedicated studies to measure the background normalisation and its shape in data.

For estimating the significance and signal-to-background ratio, the CSC analysis

applied a mass window cut of ± 30 GeV around the nominal mass of the Higgs boson

for which the signal samples had been generated. Given the uncalibrated jets used to

reconstruct the Higgs candidate, a Gaussian fit is applied to those Higgs candidates

which have been correctly reconstructed to estimate the mean reconstructed Higgs

mass. The result of this fit is shown in Figure 5.18 (right), a mass peak at 108.8 GeV

has been found. Based on this, the mass window in which the significance is going

to be calculated is chosen to be 80 GeV < mH < 140 GeV. A significance of is S√
B

= 0.94σ (1.72σ) and signal-to-background ratio of S
B = 0.09 (0.09) for an integrated

luminosity of 30 fb−1 (100 fb−1) is found.

A Higgs candidate is found in 95.9% of the events which passed the tt̄ reconstruc-

tion. Out of these events, in 12.4% the correct b-jets have been used for the Higgs

candidate reconstruction and 34.3% of the reconstructed candidates were found to

lie within the Higgs mass window.
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Figure 5.18: Left: Invariant Higgs boson mass reconstructed from the two highest

pT b-jets for the signal sample for mH0 = 120 GeV. The red line indicates Higgs can-

didates formed by assigning the correct b-jets and the distribution is normalised to

30 fb−1. Right: Gaussian fit applied to the correctly reconstructed Higgs candidates

(from the highest two pT jets) formed by assigning the correct b-jets.

5.7.2 b-weight Ordering

An alternative to using the two highest pT b-jets is to use the pair with the highest

b-weights. The reconstructed Higgs boson mass for the signal sample is shown in

Figure 5.20 (left). Figure 5.21 shows the reconstructed Higgs mass spectrum for

signal and backgrounds after the cut-based selection.

For the final significance estimation of the cut-based analysis and to discriminate

against tt̄ events where no Higgs boson is produced, only events in a mass window of

±30 GeV around the mean Higgs boson mass of the correct combinations are consid-

ered. Figure 5.20 (right) shows the invariant mass of correctly reconstructed Higgs

candidates to which a Gaussian fit is applied with a mass peak at 108.7 GeV with

a width of 14.5 GeV. This implies a mass window of (110±30) GeV to evaluate the

significance, but given the tail towards lower masses of the correctly reconstructed

Higgs candidates, a mass window of (105±30) GeV may also be a sensible choice.

The highest significance of this analysis is achieved with a mass window of

(105±30) GeV and is found to be S√
B

= 1.10 σ (2.01σ) for an integrated lumi-

nosity of 30 fb−1 (100 fb−1) and a signal-to-background ratio of S
B = 0.09 (0.09).

The results only vary slightly if the mass window is chosen to be (110±30) GeV
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Figure 5.19: The reconstructed Higgs boson mass from the two highest pT b-jet

combination for signal and backgrounds, normalised to 30 fb−1.

with a significance of S√
B

= 1.06σ (1.95σ) for an integrated luminosity of 30 fb−1

(100 fb−1) and a signal-to-background ratio of S
B = 0.09 (0.09).

In about 95.9% of tt̄H0 events where the tt̄ system has been reconstructed suc-

cessfully, a Higgs candidate has been found. Out of these events, 44.5% lie within

the Higgs mass window of (105±30) GeV. Overall 19.4% of the Higgs candidates

were found to be reconstructed from the correct b-jets. The Higgs reconstruction

efficiencies of all background samples are given in Table 5.5.

With this Higgs reconstruction, a higher proportion of events are found to lie

within the Higgs mass window compared to the CSC analysis as well as a higher

fraction of correctly identified Higgs candidates.

5.8 Significance Estimate and Comparison of Results

The statistical significance for the tt̄H0(H0 → bb̄) channel is computed with the

number of remaining Higgs candidates (one per event) in the Higgs boson mass win-

dow of 30 GeV around Higgs boson mass of (105±30) GeV obtained from a Gaussian

fit in Section 5.7.2. Higgs candidates have been reconstructed from the two remain-

ing b-jets with the highest b-weight in the event. This statistical significance for the
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Figure 5.20: Left: Invariant Higgs boson mass reconstructed from the two b-jets

with the highest b-weight for the signal sample for mH0 = 120 GeV, the red line

indicates Higgs candidates formed by assigning the correct b-jets. The distribution

is normalised to 30 fb−1 Right: Gaussian fit applied to the correctly reconstructed

Higgs candidates formed by assigning the correct b-jets.

tt̄H0(H0 → bb̄) channel in which the signal and backgrounds are very much alike, is

not the most relevant figure of merit, but it is still useful to compare this analysis

to the CSC analysis [5] and the boosted tt̄H0 analysis presented in Chapter 7.

Table 5.10 summarises the number of signal and background events found for

the analysis using the highest b-weighted jets to reconstruct the Higgs candidate for

an integrated luminosity of 30 fb−1 and 100 fb−1. A significance of 1.1σ and 2.01σ

for an integrated luminosity of 30 fb−1 and 100 fb−1, respectively, is achieved with

a signal-to-background ratio of 0.09.

integrated luminosity Signal
Backgrounds

S/B S/
√
B

tt̄bb̄ QCD tt̄bb̄ EW tt̄X

30 fb−1 13.6 67.0 11.2 75.0 0.09 1.10

100 fb−1 45.4 223.4 37.2 249.9 0.09 2.01

Table 5.10: Number of signal and background events, signal-to-background ratio

S/B and the statistical significance S/
√
B for the analysis presented in this thesis

using the highest b-weighted jets for the Higgs reconstruction and a mass window of

(105±30) GeV for an integrated luminosity of 30 fb−1 and 100 fb−1.
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Figure 5.21: The reconstructed Higgs boson mass from combining the two b-jets

with the highest b-weight for signal and backgrounds, normalised to 30 fb−1.

In order to compare the results of the analysis carried out in this thesis to the cut-

based CSC analysis, a scaling factor has to be applied due to the different centre-of-

mass energies at which the simulated data has been generated and therefore different

cross-sections of the samples. This cross-section scaling factor was determined to be

2.05 between the 10 TeV and 14 TeV sample (see Section 5.2.2). Therefore to obtain

the significance for a centre-of-mass energy of 14 TeV, the analysis presented here

has to be scaled by a factor of
√

2.05 = 1.43, resulting in a statistical significance of
S√
B

= 1.57 for an integrated luminosity of 30 fb−1.

The significance achieved with the cut-based CSC analysis was found to be 1.82

with a signal-to-background ratio of 0.11 for an integrated luminosity of 30 fb−1 at

a centre-of-mass energy of 14 TeV.

The results of the analysis presented in this thesis and the result obtained with

the cut-based CSC analysis are not in perfect agreement, with the presented analysis

performing slightly worse. However, there are various differences in Monte Carlo

samples used in the analyses, as well as in the reconstruction of the events, which

can explain those discrepancies. The Monte Carlo datasets used in the CSC analysis
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have been generated with different generators and settings: The tt̄H0(H0 → bb̄)

sample was generated in same same way as the sample used in this analysis. It has

been generated with PYTHIA 6.403 and a lepton filter was applied, requiring at

least one lepton (electron or muon) with pseudorapidity |η| < 2.7 and transverse

momentum pT > 10 GeV.

For both tt̄bb̄ QCD and EW samples AcerMC (version 3.4 for tt̄bb̄ QCD and

version 3.3 for tt̄bb̄ EW for the hard process) was used and interfaced to PYTHIA

6.403 for the initial and final state radiation, hadronisation and decay. The lepton

filter is also applied to these samples. In this analysis, only the EW tt̄bb̄ sam-

ple has been generated with AcerMC, interfaced to PYTHIA, while the QCD tt̄bb̄

sample has been generated with ALPGEN and interfaced to HERWIG (see Sec-

tion 5.2.1 for more details). The reducible tt̄ background events are generated with

the MC@NLO [63] 3.1, interfaced to HERWIG 6.510 (parton showering, hadronisa-

tion) and Jimmy (underlying event). The lepton filter is applied with an increased

cut on the transverse momentum of pT >14 GeV compared to the filter applied in

this analysis. Additionally, requirements on jets are applied which are reconstructed

using a seeded-cone algorithm with a cone size of ∆R = 0.4. At least six jets with

pT > 14 GeV and |η| > 5.2 and four jets with pT > 14 GeV and |η| > 2.7. The

tt̄ background in this thesis has been generated at LO with ALPGEN interfaced to

HERWIG, with the TtbarPlusJetsFilter applied (see Section 5.2.1 for details).

The properties and settings of the samples generated for the CSC analysis and the

analysis presented here are summarised in Table 5.11, as well as the cross-sections for

each sample. The biggest reason for the difference of cross-sections of the different

samples is the centre-of-mass energy used to generate the samples.

To have a common factorisation and renormalisation scale Q in the simulated

datasets used for this thesis, it has been scaled to Q = 232.5 GeV for all samples,

while no common scale has been chosen to the samples used in the CSC analysis.

While the full cross-section of a process is independent of the scale Q2, the lower

order approximations used on the way to an all-orders calculation can strongly

depend on the chosen scale [64], [59]. A sensible choice of Q2 is therefore important

when generating events at leading order (LO). The Q2 value should reflect the
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energy scale of the physical final state and is generally chosen to be around half

the transverse mass of the final state. This choice is based on observations that

lower values of Q2 result in a LO cross-section that is closer in magnitude to that

obtained at higher orders.

Another more general difference between the simulated datasets of the current

analysis and the CSC analysis is the top quark mass used in the generation. The

CSC samples have been generated with a top mass of mt = 175 GeV, while the

samples from the current analysis have been generated with a top mass of mt =

172.5 GeV. Figure 5.22 shows the total tt̄ cross-section as a function of the top mass

mt. Using a top mass of mt = 172.5 GeV will result in a cross-section which is

roughly 10% higher than generating tt̄ events with a top mass of mt = 175 GeV.

The overlap arising for the separate generation of the tt̄X and tt̄bb̄ (QCD) back-

grounds has been treated differently in both analyses. The approach in the CSC

analysis was to remove all events with b-quarks from the tt̄X sample resulting in

removing about 10% of the events from the tt̄X sample. The approach taken in

this analysis was to distinguish between the origin of the b-quarks coming from the

hard process or the underlying events (see Chapter 6 for details). With the new

and more refined approach 5.6% of the events have been identified as tt̄bb̄ events

and have been removed and the difference in significance between applying and not

applying the overlap removal to the tt̄X sample has been found to be 0.02σ higher

when applying the overlap removal. This means that in the CSC analysis, events

which could have potentially passed the final selection have been removed, under-

estimating the background contribution of the tt̄X background. Unfortunately a

difference in significance between applying and not applying the overlap removal to

the tt̄X of the CSC analysis had not been evaluated at that time, therefore no esti-

mate of how much this contributes to the observed difference in significance between

the two analyses can be made, however it is expected to be rather small.

To account for higher order effects (next-to-leading order (NLO), next-to-next-

to-leading order (NNLO) etc.), cross-sections are typically multiplied by a k-factor

which usually takes values between 1 and 2. The cross-sections for the processes

considered in this analysis have been calculated at leading order. No k-factors have
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Figure 14: Thett̄ total cross section to NLO QCD as a function ofmt for Tevatron at
√

S= 1.96 TeV and
CDF data [123] formt = 171 GeV (left) and LHC at

√
S= 14 TeV (right). The solid line is the central value

for µ = mt , the dashed lower and upper lines correspond toµ = 2mt andµ = mt/2, respectively. The band
denotes the additional PDF uncertainty of the CTEQ6.5 set [124].

In Fig. 14 we show the NLO QCD predictions for the total cross-section oftt̄-pair production
at Tevatron and LHC. The band denotes the scale variation in the usual range (mt/2≥ µ≥ 2mt)
as well as uncertainties related to the parton luminosity. At Tevatron, the theory error budget at
NLO in QCD is slightly asymmetric+12%/−15% which breaks down to a scale uncertainty of
+5%/− 10% and a PDF uncertainty of+7%/− 5%. The latter one is due to the PDFs being
sampled in the large-x region, where especially the gluon is poorly constrained. At LHC, the
total theory error is 15% which consists of a scale uncertainty of 11% and a much smaller PDF
uncertainty of 4%. Here, the cross section is sensitive to the gluon PDF in a range well covered
by HERA (see Fig. 5). Different sets of global PDFs agree within the given error bands, although
it should be pointed out that there can be sizable shifts in the central values. For example, there is
a 3% shift in the central value between the CTEQ6.5 and CTEQ6.6 sets [48] with correct heavy
flavor treatment and the older set CTEQ6.1M (see also [125] for a recent discussion).

The theoretical prediction can be improved in specific kinematical regions. Near threshold a
Sudakov resummation can be performed [126–128], which stabilizes perturbative predictions if
the tt̄-pairs are produced close to partonic threshold as for instance at Tevatron and, perhaps, to
a lesser extent at LHC. Further improvements of the theoretical accuracy need the NNLO QCD
corrections, which are mandatory for a precision of better thanO (10%) as envisaged by the LHC
experiments. First steps in this direction have been undertaken by evaluating the interference of the
one-loop QCD corrections [129] and by deriving the virtual contributions to heavy-quark hadro-
production at two loops in the ultra-relativistic limitm2 ≪ s, t,u [130, 131] based on a simple
relation of massive and massless amplitudes in the limitm→ 0 [132] (see also the review [133]).
A precise understanding of the kinematical regionm→ 0 beyond NLO is of immediate relevance
also bottom-pair production over a large kinematical rangeand heavy flavor production at largept .
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Figure 5.22: The tt̄ cross-section to next-to-leading oder (NLO) QCD as a function

of mt at the LHC. The solid line is the central value for µ = mt , the dashed lower

and upper lines correspond to µ = 2mt and µ = mt/2, respectively. The band

denotes the additional PDF uncertainty of the CTEQ6.5 set. Taken from [65].

been applied. In the CSC analysis most processes have been calculated to leading

order (LO) with the exception being the tt̄X sample in the CSC analysis which has

been generated at NLO.

As for more reconstruction-specific differences between the analyses, the domi-

nant differences lie within the jet reconstruction. The jet reconstruction algorithm

was chosen to be a seeded fixed-cone algorithm with a cone size of ∆R = 0.4 for the

CSC analysis, while for the analysis presented in this thesis the Anti-kT algorithm

with a R-parameter of 0.4 has been chosen. The Anti-kT algorithm has been found

to exhibit the best jet reconstruction efficiency for small and large jets at low pT

[55]. In particular, it gives the best performance for event topologies with close-by

jets and the smallest flavour dependence. For high pT isolated jets, all algorithms

perform well. Specifically for the Higgs reconstruction in the tt̄H0 channel, the Anti-

kT algorithm gives the best mass reconstruction and the highest signal efficiency.

However, the study carried out in [55] does not evaluate the efficiencies of the back-

grounds nor the difference in significance when using Anti-kT jets, so it is unclear

whether usage of Anti-kT jets actually improves the significance.

Finally, in the CSC analysis, an improvement in significance of 0.3 was found by

adding low pT muons and the residual jet calibration. The jet calibration is Monte
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CSC analysis at
√
s = 14 TeV

Process Generator σ (fb)
Factorisation and

PDF set
Renormalisation Scale

tt̄H0 (LO) Pythia 100 Q2 = m2
t + max(p2

T,t, p
2
T,t̄) CTEQ6L1

tt̄bb̄ QCD (LO) AcerMC,
2371

Q = mH/2 +mt
CTEQ6L1

Pythia = 232.5 GeV

tt̄bb̄ EW (LO) AcerMC,
255

Q = mH/2 +mt
CTEQ6L1

Pythia = 232.5 GeV

tt̄X (NLO) MC@NLO,
109487 Q2 = m2

t + 1
2(p2

T,t + p2
T,t̄) CTEQ6M

HERWIG

Analysis at
√
s = 10 TeV

tt̄H0 (LO) Pythia 41.49 Q2 = max(p2
T,t, p

2
T,t̄) CTEQ6L1

tt̄bb̄ QCD (LO) ALPGEN,
661.53

Q = mH/2 +mt
CTEQ6L1

HERWIG = 232.5 GeV

tt̄bb̄ EW (LO) AcerMC,
70.99 Q2 = ŝ CTEQ6L

Pythia

tt̄X (LO) ALPGEN,
30921.95 Q2 =

∑
m2
T CTEQ6L1

HERWIG

Table 5.11: Summary of the different samples used for the CSC analysis (top) and for

the cut-based analysis presented in this thesis (bottom). The cross-sections include

the branching fractions and filter efficiencies (see Section 5.2) and the scaling to Q

= 232.5 GeV (bottom only). A Higgs mass of mH = 120 GeV and a top mass of

mt = 175 GeV (CSC) (mt = 172.5 GeV for this analysis) are used. max(p2
T,t, p

2
T,t̄)

corresponds to the higher of the two values of p2
T when both the top and anti-top

quark are considered. Taken from [5].

Carlo based and has been derived to take residual calibrations such as out-of-cone

and neutrinos into account. Such a calibration has not been applied at the stage of

the jet preselection. Therefore it is likely that fewer jets and therefore events pass

the jet preselection cuts. Lowering the pT cut on the jets is not possible because a

cut on light jets of pT (light jets) > 20 GeV has been applied to the tt̄X samples.
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To correct for the effects of using non-calibrated jets, later on in the analysis the mass

window cuts for the W boson, the top and the Higgs boson have been adjusted to the

mean mass found by fitting a Gaussian distribution to the correctly reconstructed

objects.

5.9 Systematic Uncertainties

The systematic uncertainties affecting this channel are of vital importance to this

analysis and a comprehensive treatment was made in the CSC study, which will be

summarised here. A robust method to determine background shapes and normali-

sation from data is necessary and still has to be developed. While the theoretical

uncertainties for the signal and background normalisation are quite large, their im-

pact can be reduced by making direct measurements in data.

The estimation of systematic uncertainties due to the standard detector effects

is summarised in Table 5.12. It is noticeable how important the jet uncertainties are

for both signal and background. Indeed the knowledge of the jet energy and of the

b-tagging performance have a crucial impact on the kinematic quantities used for the

reconstruction of the tt̄ system and for the correct identification of the b-jets used for

the analysis. The lack of statistics for the tt̄X sample give rise to large fluctuations on

the background estimations, resulting in a relative statistical error up to 20%. The

large systematic uncertainties estimated in Table 5.12 provide a clear indication that

a data driven background estimation is necessary. The knowledge of the jet energy

and of the b-tagging performance have a crucial impact on the kinematic quantities

used for the reconstruction of the tt̄ system and for the correct identification of the

b-jets used for the analysis. Large fluctuations on the background estimations arise

due to the lack of statistics for the tt̄X sample, giving rise to a relative statistical

error up to 20%.

To understand how the background uncertainty propagates into the sensitivity

of this channel, the statistical uncertainty on the background
√
B is summed up in

quadrature with the systematic uncertainty ∆B. The corrected significance then

takes the form S√
B+∆B

. This corrected significance is shown in Figure 5.23 as a

function of ∆B
B . The statistical significance of 1.1σ is found to be reduced to about



96

Source signal background

Electron

energy scale ± 0.5% ± 2%

resolution ± 0.5% ± 0.6%

efficiency ± 0.2% ± 2%

Muon

energy scale ± 0.7% ± 3%

resolution ± 0.8% ± 0.6%

efficiency ± 0.3% ± 0.1%

Jet

energy scale ± 9% ± 5%

resolution ± 0.3% ± 7%

b-tag ± 16% ± 20%

b-mis-tag ± 0.8% ± 5%

summed in quardature ± 18% ± 22%

Table 5.12: Effect of the various systematic uncertainties on the signal and back-

ground efficiencies. Taken from [5].

0.7σ in the case of a 10% uncertainty and to roughly 0.4σ in the case of a 20%

uncertainty on the background for an integrated luminosity of 30 fb−1.

5.10 Conclusion

The analysis presented here is a baseline sensitivity study for the detection of a

Standard Model Higgs boson in the tt̄H0(H0 → bb̄) channel. After a preselection

to ensure the presence of the fundamental objects in the event, a cut-based analysis

has been carried out, based on the reconstruction of the W candidate masses, tt̄

system and finally the Higgs candidates in the remaining events.

The statistical significance obtained is 1.10 (2.01) for an integrated luminosity of

30 fb−1 (100 fb−1) at a signal-to-background ratio of 0.09. When scaling the results

from 10 TeV to 14 TeV, a significance of 1.57 for an integrated luminosity of 30 fb−1

is obtained.

The results presented in this thesis can be compared with a previous ATLAS

study [5] performed at a centre of mass energy of
√
s = 14 TeV which resulted

in a significance of 1.82 and a signal-to-background ratio of 1.1 for an integrated
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Figure 5.23: Discovery significance for a 120 GeV Higgs boson as a function of the

systematic uncertainty on the background ∆B
B for an integrated luminosity of 30 fb−1

for the cut-based analysis. No further systematic uncertainties are considered here.

luminosity of 30 fb−1. The main differences are discussed in Section 5.8 and are

namely the different generators used for the Monte Carlo production, a refined tt̄bb̄

overlap removal procedure (see Chapter 6) and the lack of jet calibration.

One of the possible areas for improvement for this analysis is the development of

a strong b-tagging algorithm which is important to suppress the tt̄X background and

also helps to reduce the combinatorial background by improving the hadronically

decaying W boson and the Higgs candidates. Furthermore, as the result of the

reconstruction of the Higgs candidates using the two highest b-weighted jets performs

better than when using the two highest pT jets, more studies can be made in terms

of varying the b-weight cut on preselected jets, as well as jets used for the tt̄ and

Higgs reconstruction.

Additionally to improving the analysis, different ways of reconstructing the tt̄H0

channels can be exploited as well. A recent study has shown that exploiting a highly

boosted Higgs boson can help to indeed extract this channel with a reasonable statis-

tical significance and a much reduced sensitivity to systematics. The implementation
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of this analysis in the ATLAS environment and the results are described in Chapter 7

of this thesis. Chapter 8 then studies the complementarity of the low pT analysis,

described in this chapter, and high pT analysis, described in Chapter 7, and how a

combination of the two analyses can improve the significance.
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Chapter 6

Removal of the Overlap between

the Matrix Element and Parton

Shower in tt̄X Backgrounds

6.1 Introduction

The main background for the tt̄H0(H0 → bb̄) process is the production of tt̄ events.

This background can be divided into a reducible and an irreducible component,

depending on whether or not the final state particles are identical to those in

tt̄H0(H0 → bb̄) (see Section 3.4.4).

The reducible background is the tt̄ background with extra jets from the hadroni-

sation of light quarks and will be described as the tt̄X background in the following,

whereas the irreducible background arises from tt̄bb̄ production via QCD and elec-

troweak (EW) interactions.

To be able to study the contributions and behaviour of these backgrounds indi-

vidually (especially with respect to their different b-tagging response), they are all

simulated separately from each other, resulting in three different Monte Carlo (MC)

samples: the reducible tt̄X sample and the irreducible samples tt̄bb̄ (EW) and tt̄bb̄

(QCD).

However, this creates an overlap of events since the addition of b-quarks to tt̄

events via parton showering in HERWIG produces events that are included in the
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matrix-element cross-section calculation for the tt̄bb̄ sample. This is illustrated in

Figure 6.1 which shows example Feynman diagrams for events in which the b-quark

pair could be produced by parton showers or matrix elements and can be found in

both MC samples.

This chapter describes a new procedure for the overlap removal developed for

the study of the tt̄H0(H0 → bb̄) channel as an improvement to the technique used

in the CSC analysis [5].

Section 6.2 gives a brief description of the parton shower and matrix element

approaches. The generated background samples which are relevant for this study

are described in Section 6.3, Section 6.4 gives details about the identification of

overlapping events and Section 6.5 describes the effect of the overlap removal on

the tt̄H0(H0 → bb̄) analysis. Section 6.6 contains a discussion of these results and

prospects for future background treatments in tt̄H0.

6.2 Parton Shower and Matrix Elements

Monte Carlo event generators model events in different stages as briefly described

in chapter 4.2.

There are two ways of modelling partons in an event: One is to include them

in the hard process and calculate the hard interaction and its cross-section pertur-

batively using the matrix element approach. Matrix element calculations give a

description of a specific parton topology, which is valid when the partons are ener-

getic and well separated. Furthermore, it includes interference between amplitudes

with the same external partons but different internal structure. However, for soft

and collinear kinematics, the description in terms of a fixed order of emissions is not

valid, because it does not include the interference between multiple gluon emissions

which cannot be resolved. The latter effect is known as Sudakov suppression. How-

ever, the computational work required for this increases approximately factorially

with the order, so it is not realistically possible to calculate high-multiplicity events

using purely this method.

Another way to add partons to an event is through parton showers. Here the
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Figure 6.1: Example of events in which the b-quark pair could be produced by either

parton showers or matrix elements (left) and which would only be found in a matrix

element tt̄bb̄ sample (right) [66].

starting point is a fixed-order matrix element calculation with a final state of nME

partons. The parton shower acts iteratively by causing successive i→ jk branchings,

driven by an evolution variable. This variable can either be the virtuality of the

incoming parton (for Q2 ordered parton showers), the relative transverse momentum

of the two partons (pT ordered) or the angle between the two partons.

Specifically, the HERWIG parton shower evolution is done in terms of the par-

ton energy fraction zj = Ej
Ei

and an angular variable xjk = (pj ·pk)
(EjEk) . The values of z

are chosen according to the Altarelli-Parisi splitting functions [67, 68] which math-

ematically express the probability of gluon radiation (q → qg) and gluon splitting

(g → gg) taking place. The distribution of xij values is determined by the Sudakov

form factor. The Sudakov form factor expresses the probability that no splittings

take places between a starting scale Qstart and the splitting scale Qsplit. It basi-

cally normalises the branching distributions to give the probabilistic interpretation

needed for a Monte Carlo simulation.

The full available phase space is restricted to an angular-ordered region. Angular

ordering implies that each x value must be smaller than the x value for the previous

branching of the parent parton.

In our case, the tt̄bb̄ (QCD) events are generated using the matrix element cal-

culations. However, it is possible that events with the same final state arise from
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parton showers in the tt̄X sample. This overlap between the two samples has to be

removed to avoid overestimating the background contribution for this channel.

6.3 Monte Carlo Samples and Cross-sections

The simulated signal and background samples used in this study have been described

in detail in Section 5.2. All samples have been generated at leading order with a

centre-of-mass energy of 10 TeV, a Higgs boson mass (mH) of 120 GeV and a

top quark mass (mtop) of 172.5 GeV. Tables 5.2 and 5.3 summarise the relevant

samples for this study, the irreducible tt̄bb̄ QCD background and the reducible tt̄X

background.

6.4 Identification of Overlapping Events and their Re-

moval

After HERWIG and JIMMY have run, the events are converted to a HepMC event

record [69] which stores the events in a graph structure, physically similar to a

physics event as shown in Figure 6.2. Entries within the event record are separated

into particles and vertices. The vertices are the connection nodes between particles

and are a container class for particles. Therefore each particle belongs to at least

one vertex. Particles and vertices are, amongst other things, composed of a particle

identification number, status information and a unique barcode. The barcode is an

integer which is meant to be a persistent label for a particular instance.

The approach taken in this study to identify the overlap is to first look at the

number of all pairs of b-quarks originating from a common vertex. Events with one

or more such bb̄ pairs could reasonably be considered as overlap events and removed

from the tt̄X background.

Figure 6.3 shows the multiplicity of all bb̄ pairs found for each tt̄X sample (right)

and compares the bb̄ pair multiplicity for the tt̄X and tt̄bb̄ backgrounds. The back-

ground samples have been scaled according to their cross-sections. It is clear that

the number of b pairs increases with the number of extra partons. Events from the

tt̄bb̄ sample have a minimum of one bb̄ pair as expected, since there must be one pair



103without having to interpret complex parent/child relationship codes or re-shuffle the rest of the
event record.

f(x,Q2) f(x,Q2)
Parton
Distributions

Hard
SubProcess

Parton
Cascade

Hadronization

Decay

+ Minimum Bias
Collisions

HepMC
→ + Minimum Bias

Collisions

Figure 2: Events in HepMC are stored in a graph structure (right), similar to a physicist’s visuali-
sation of a collision event (left).

1.1 Features of the HepMC Event Record

• simple - easy access to information provided by iterators

• minimum dependencies

• information is stored in a graph structure, physically similar to a collision event

• allows specification of momentum and length units

• allows for the inclusion of spin density matrices

• allows for the tracing of an arbitrary number of flow patterns

• ability to store the state of random number generators (as integers)

• ability to store an arbitrary number of event weights

• ability to store parton distribution function information

• ability to store heavy ion information

• strategies for conversion to/from HEPEVT (Ref. [4]) which are easily extendible to support
other event records

• strategies for input/output to/from Ascii files which are easily extendible to support other
forms of persistency

2 HepMC 2

Since January 2006, HepMC has been supported as an LCG external package. The official web site
is now http://savannah.cern.ch/projects/hepmc/, and compiled libraries for supported platforms
are available at /afs/cern.ch/sw/lcg/external/HepMC.

Historically, HepMC has used CLHEP (Ref. [6]) Lorentz vectors. Some users wished to use
a more modern Lorentz vector package. At the same time, there was concern about allowing

4

Figure 6.2: Events in the HepMC are stored in a graph structure (right), similar to

a physicist’s visualisation of a collision event (left). Taken from Ref. [69].
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Figure 6.3: Multiplicity of bb̄ pairs comparing all tt̄ backgrounds (left) and the tt̄X

and tt̄bb̄ backgrounds (right). These histograms include bb̄ pairs from the underlying

event.

produced in the hard process.

It is also found that b-pairs can originate from the additional g − g interaction

vertices put in by JIMMY to model underlying event. bb̄ pairs originating from such

a vertex should not be considered in the overlap removal procedure as they do not

form part of the diagrams contributing to the tt̄bb̄ matrix element calculation.

Figure 6.4 shows a sketch of a proton-proton collision at high energies. The

signal (hard) process is shown in red, the underlying event in pink. The additional

scatters from the underlying event can be easily identified in the HepMC record as

particles with the id 0 and status 120, which represent the total 4-momentum of the
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Process tt̄+0p tt̄+1p tt̄+2p tt̄+3p tt̄X tt̄bb̄

Dataset 109620 109621 109622 109623 109627

total number of events 140321 378529 412334 238391 1169575 48275

overlapping events 5422 17924 24660 20005 68011

(in %) 3.86% 4.74% 5.98% 8.39% 5.57%

tt̄bb̄ cross-section (fb) 144.23 500.05 716.35 549.25 1909.88 661.53

Table 6.1: Cross-sections of the removed overlap events from the simulated tt̄X

background compared to the total cross-section of the tt̄bb̄ sample.

centre-of-mass frame of the extra vertex.

Taking this into account, the tt̄bb̄ overlap sample is now defined as tt̄X events

that contain at least one bb̄ pair whose parent does not have id 0 and status 120.

Table 6.1 summarises the cross-sections of the overlap events for the tt̄X back-

ground. As a cross check we can compare the cross-section of the removed events

with the cross-section of the full tt̄bb̄ background sample (see Table 6.1). We find

the tt̄X overlap cross-section to be almost 3 times larger than the tt̄bb̄ sample. This

large disparity may be due to the fact that b-quarks added by parton showers are

more likely to be softer and collinear than those predicted by the matrix element

approach. In high multiplicity final states such as tt̄H0(H0 → bb̄), where the num-

ber of emitting partons is higher, we may expect this effect to be most significant.

This is discussed further in Section 6.6.

To minimise the effect of the different b-quark kinematics between the two sam-

ples, we compare the cross-sections after applying the jets and lepton preselection

of the semileptonic tt̄H0(H0 → bb̄) analysis. A description of the analysis and the

resulting cross-sections are given in the following section.



105

Figure 6.4: Sketch of a proton-proton collision [70].

6.5 Impact of the Overlap Removal on the tt̄H0(H0 → bb̄)

Analysis

The tt̄H0(H0 → bb̄) analysis consists of an initial preselection requirement which

is applied to the events to ensure that the fundamental physics objects from the

decays of the top quark pair and the Higgs boson are present. Three different

analysis techniques are then implemented to reconstruct the top quark pairs and

the Higgs boson [5]. The analysis technique used in this study is the cut-based

approach. Differences with respect to the baseline analysis [5] are detailed below.

6.5.1 Preselection

For this study, the preselection includes off-line criteria that require the presence

of exactly one isolated, identified electron or muon and at least six jets with pT >

20 GeV. Jets have been reconstructed with a ∆R = 0.4 Anti-kT algorithm [50, 51].

No trigger requirements have been applied.

At least four jets have to be identified by a b-tagging algorithm whose discrimi-
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nating variable is a weight based on the impact parameters and secondary vertices

of tracks in each jet, exploiting the long decay lifetime of b-quarks [56]. Only the

four jets with the largest b-tag weights are then treated as b-jets.

Table 6.2 compares the tt̄X cross-sections of the removed events before and after

the preselection cuts to the total tt̄bb̄ cross-section. We now find the cross-section

of the removed events to be about 0.8 times the cross-section of tt̄bb̄ events passing

the preselection. This is much closer than before and implies that parton showers

and matrix elements agree much better at higher transverse momentum. The factor

of 0.8 may be consistent with the expectation that the tt̄bb̄ cross-section should be

slightly higher due to additional diagrams that cannot be reproduced by simply

adding extra b-quarks using the parton shower approach.

6.5.2 Cut-based Analysis

The cut-based approach to the tt̄H0(H0 → bb̄) analysis starts with the reconstruc-

tion of the hadronic and leptonic W bosons. The W candidates are then paired with

b-jets to reconstruct the top quark candidates, applying a mass cut on the hadronic

W boson and the top quark masses to reduce the considered number of combina-

tions. A χ2 is defined to evaluate the deviation of the reconstructed top masses

from their nominal values. The combination with the smallest χ2-value is selected.

The two remaining b-jets are then assigned to the Higgs boson decay. Figure 6.5

shows the invariant mass of the reconstructed Higgs boson for the signal and all

Process tt̄+0p tt̄+1p tt̄+2p tt̄+3p tt̄X tt̄bb̄

Dataset 109620 109621 109622 109623 109627

tt̄bb̄ cross-section (fb)
144.23 500.05 716.35 549.25 1909.18 661.53

before preselection

tt̄bb̄ cross-section
0 0.22 1.98 2.59 4.77 5.92

after preselection (fb)

Table 6.2: Cross-sections of the removed overlap events before and after the prese-

lection for the simulated samples tt̄X and tt̄bb̄ (QCD).
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backgrounds before and after the overlap removal is applied to the tt̄X sample.

Figure 6.6 shows a comparison of the distribution for the overlapping events

from the tt̄X sample with the distribution of tt̄bb̄ events in the invariant Higgs

mass spectrum. As indicated in Table 6.2, the cross-sections of the two samples are

similar. The reasons for this are discussed in the Section 6.6.

The statistical significances have been calculated for two cases: firstly in which

the tt̄X sample including the tt̄bb̄ events is used instead of the tt̄bb̄ QCD sample and

secondly in which the overlap from the tt̄X sample has been removed and the tt̄bb̄

QCD sample is used to describe the tt̄bb̄ events. For the first case, the significance

is 1.01σ, whereas for the second case, the significance is 1.03σ.

6.6 Concerns and Further Improvements

A procedure has been developed for removing the fraction of the tt̄X sample that

overlaps with the tt̄bb̄ QCD sample. It has been shown that the ratio of the cross-

sections of the removed overlap and the tt̄bb̄ QCD sample is almost 3, reducing to

0.8 after the analysis preselection is applied. The b-quarks in the final state not

originating from top decays are introduced via parton showers in the tt̄X sample

and matrix elements in the tt̄bb̄ (QCD) sample and this needs to be explored further

to understand the different cross-sections.

Figures 6.7 and 6.8 show the pT (b) and ∆R(bb̄) distributions for b-quark pairs

in the tt̄bb̄ and tt̄X sample before any selection cuts have been applied. They have

been plotted for different regions of∆R(bb̄)and pT (b) respectively. It is observed in

Figure 6.7 that while tt̄X dominates the regions up to ∆R < 0.7, the tt̄bb̄ domi-

nates the region of high pT (above 30 GeV) and high ∆R (> 0.7). More generally,

Figure 6.8 demonstrates that tt̄bb̄ is quite evenly distributed in ∆R(bb̄)while tt̄X is

peaked towards lower values. This may be consistent with expectations since there

are regions of phase space where the bb̄ pair is more correctly modelled by the par-

ton shower approach and others where the leading order matrix element approach

is expected to be more correct. For parton showering, this is expected to be the

low ∆R(bb̄), low pT (b) region and for the matrix element approach the region of

high ∆R(bb̄) and high pT (b). It is often the case that a region exists where both
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Figure 6.5: Invariant Higgs mass before (left) and after (right) the overlap removal

for the tt+X sample.
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Figure 6.6: Comparison of the invariant Higgs mass distribution of the overlapping

events from tt+X sample and the events from the tt̄bb̄ sample.

approaches behave similarly although this is not evident here.

The same plots are shown in Figures 6.9 and 6.10 after applying the analysis

preselection. Due to the decrease in statistics, it is very difficult to draw conclusions

except that it is still possible to see the parton shower bb̄ pairs peaking toward lower

values in ∆R(bb̄).

It is clear that the b-quark pairs from parton showers and matrix elements in

the tt̄bb̄ final state exhibit kinematic differences. In fact, the problem of accurately

combining parton shower and matrix element results is not restricted to this analy-

sis and has been extensively investigated in many recent publications, such as [71].

It is recommended by the authors that when generating tt̄ + jets backgrounds for

tt̄H0(H0 → bb̄) in future, priority should be given to selecting a Monte Carlo genera-
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tor that can most accurately combine the parton shower and matrix element b-quark

contributions in a single sample. This would remove the need for an overlap removal

and would improve accuracy.

With the background samples considered here, there is no clear way to accurately

combine the parton shower and matrix element tt̄bb̄ samples. The approach taken

will therefore be to apply the overlap removal technique presented in this thesis

and use the difference in signal significance given in Section 6.5 to represent the

uncertainty. This is 1.03σ − 1.01σ = 0.02σ, so not significant.

6.7 Conclusion

In this study a way of removing the overlap from irreducible and reducible tt̄ + jets

background Monte Carlo samples for the semileptonic tt̄H0(H0 → bb̄) channel has

been presented. Overlapping events in the tt̄ + jets sample have been identified as

events that contain at least one bb̄ pair that does not originate from the underlying

event and the procedure of how to remove those events has been described.

It has also been shown that the overlapping events have a relatively large ef-

fect on the final invariant Higgs mass plot due the additional bb̄ pairs as they can

mimic the bb̄ pair from the Higgs decay. Therefore applying this overlap removal

is very important as otherwise it may lead to an overestimation of the background

contribution and underestimation of the significance.

It has been shown that the parton shower and matrix element tt̄bb̄ samples

behave differently and it is recommended that future tt̄H0(H0 → bb̄) analyses use a

background generator that combines these components automatically and removes

the need for an overlap removal. An uncertainty of 0.02σ is assigned to the signal

significance here to account for any effects introduced by the overlap removal.
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Figure 6.7: Numbers of b quark pairs distributed in pT for the different regions of

phase space for the tt̄bb̄ and tt̄X sample before any analysis cuts have been applied.
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Figure 6.8: Numbers of b quark pairs distributed in ∆R(bb̄) for the different regions

of phase space for the tt̄bb̄ and tt̄X sample before any analysis cuts have been applied.
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Figure 6.9: Numbers of b quark pairs distributed in pT for the different regions of

phase space for the tt̄bb̄ and tt̄X sample after analysis cuts have been applied.
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Figure 6.10: Numbers of b quark pairs distributed in ∆R(bb̄) for the different regions

of phase space for the tt̄bb̄ and tt̄X sample after analysis cuts have been applied.



112

Chapter 7

Fat Jets Analysis

7.1 Introduction

The associated production of a top quark pair with a Higgs boson in combination

with the Higgs decaying to b-quarks was expected to be one of the leading discovery

channels for a light Higgs boson. Reconstructing the tt̄H0 system typically involved

the identification of a semileptonically and a hadronically decaying top including

four jets, two of which are tagged as b-jets, a lepton and missing energy and ad-

ditionally two jets tagged as b-jets from the Higgs decay. The main problems are

the combinaFtorial background of b-jets and the lack of truly distinctive kinematic

feature of the Higgs decay jets.

A recently published paper [3] (which will be referred to as hadron or truth level

analysis) investigated the tt̄H0(H0 → bb̄) channel in a boosted regime, in which the

Higgs and top quarks are emitted at large transverse momenta. One of the keys to

successfully exploiting the boosted tt̄H0 channel lies in the use of jet-finding geared

to identifying the characteristic structure of a Higgs boson with high momenta that

decays to bb̄ pair in a common neighbourhood in angle. This region corresponds to

only a small fraction of the total tt̄H0 cross-section, but the signal acceptance is

larger, while the backgrounds are significantly reduced. The paper shows how jets

from the decay of massive particles and reconstructed with a large R-parameter, can

help to indeed extract this channel with a reasonable statistical significance and a

much reduced sensitivity on systematics. These jets are called fat jets.
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Fat jets have been studied in the framework of searches for strongly interacting

W bosons [72, 73, 74, 75], supersymmetric particles [76, 77, 78] and heavy reso-

nances decaying to strongly boosted top quarks [79, 80, 81], as well as the WH/ZH

production channels with tt̄H0, for which a significance of 3.7σ (considering only

statistical errors) using 30 fb−1 for a Higgs boson mass of 120 GeV using a realistic

ATLAS detector simulation has been found [4, 35].

It is now of great importance to confirm that the Higgs boson signal extraction

is indeed possible in such a boosted environment in a detailed study based on a

realistic detector simulation. This chapter presents a first detector level study of

the fat jets analysis for the tt̄H0(H0 → bb̄) channel. The procedure of finding the

substructure of a fat jet is described in Section 7.2. The hadron level based analysis

for the tt̄H0(H0 → bb̄) channel [3] is summarised in Section 7.3. The feasibility of

this analysis in the ATLAS detector and the Monte Carlo samples used is discussed

in Section 7.4, followed by a comparison of the results in Section 7.5.

7.2 Substructure Finding and Filtering

When a highly boosted particle like a top quark or a Higgs boson decays, it can be

reconstructed as a single fat jet containing the decay products. While the identifica-

tion of a high pT top quark has been studied elsewhere [54], the reconstruction of a

high pT Higgs boson decaying into a pair of b-quark jets is a more challenging task.

Due to the high boost, the two decay products will be increasingly close in ∆R for

increasing pT as shown in Figure 7.1. The ∆R dependency can approximately be

expressed in terms of Higgs mass and transverse Higgs momentum:

∆R(b, b̄) ≈ 2 ·mH

pT,H
. (7.1)

This behaviour of the Higgs decay products makes the identification more challenging

and requires optimised jet finding and b-tagging for this specific kinematic region.

The procedure of finding the jet substructure used in [3] has been derived from

the study presented in [4]. It has been adapted so that the same algorithm can be

used for the reconstruction of a boosted top. In the following, the jet substructure

finding is explained by the means of the boosted Higgs boson.
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Figure 7.1: Distance in ∆R =
√

∆φ2 + ∆η2 between the two b-quarks from the

Higgs boson with a Higgs boson mass of mH = 120 GeV as a function of the

Higgs boson transverse momentum. ∆φ represents the distance in azimuthal an-

gle, while ∆η is the distance in pseudo-rapidity. The normalisation is arbitrary.

Taken from [82].

The jet algorithm used to reconstruct those fat jets is the Cambridge/Aachen

algorithm [52, 53], specifically to flexibly adapt to the fact that the decay products

(bb̄) angular separation varies significantly with the transverse momentum pT of the

particle (Higgs) and decay orientation.

The C/A jet finding algorithm uses an iterative procedure to cluster all pairs

of particles. The angular distance ∆Ri,j =
√

(yi − yj)2 + (φi − φj)2 where y is

the rapidity and φ the azimuthal angle is calculated between all pairs of objects

(particles) i and j, combining the closest pair. The set of distances is updated and

the procedure is repeated until all objects are separated by a ∆Ri,j > R, where R

is a parameter of the algorithm. The algorithm provides a hierarchical structure for

the clustering in angles.

The event reconstruction starts with reconstructing C/A jets from topological

cell clusters (see Section 4.4.3) using an R parameter of R = 1.5. Those jets sat-

isfying pT >200 GeV and |y| < 2.5 are then further decomposed. The recursive

decomposition procedure involves two parameters: a mass drop fraction µ which
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helps to distinguish between jets from the underlying event or soft QCD emission

with a value between 0 and 1; a maximum subjet mass mmax as a cut-off parameter

which terminates the algorithm (typical value around 30 GeV). The main stages are

given below:

1. Undo the last stage of clustering by splitting the jet j into two subjets j1, j2,

such that mj1 > mj2 .

2. In case of a significant mass drop mj1 > µmj (0 < µ < 1), discard j2 (j2

comes from the underlying event or from soft QCD emission) and only keep

j1, otherwise keep both j1 and j2.

3. If the mass of the subjet ji is smaller than a maximum subjet mass mji < mmax

add this jet to list of relevant substructures, otherwise redefine j to be equal

to ji and go back to step 1.

The parameters µ and mmax are chosen individually for the top and Higgs tagger.

All two-subjet configurations of the resulting set of relevant substructures are

then examined to try to reconstruct a two-body decay candidate, like a W or a

Higgs boson. Those two-jet configurations are then re-clustered or filtered to reduce

contamination from the underlying event. The procedure of re-clustering or filtering

of the candidate was first developed for the tagging of the Higgs boson in the WH

analysis [4]. However, in the fat jet analysis for tt̄H0 it is also used in the top

tagger to filter the W candidate and top candidate. The following description of

this procedure is based on the tagging of the Higgs boson.

The angular distance ∆Rbb̄ between two subjets j1, j2 defines the distance be-

tween two b-quarks. A reliable separation and reconstruction of the two b-subjets is

needed, so that the direction of the two b-subjets can be considered as a reasonable

approximation for the direction of the outgoing b-partons after eventual QCD final

state radiation. This is important for obtaining a good b-tagging performance as

the two subjets have to be correctly associated to the their charged particle tracks

reconstructed in the inner detector.

The effective size of the combined subjets j will be just big enough to contain
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the QCD radiation from the Higgs decay. Because of angular ordering [83, 84, 85]

this radiation will almost entirely be emitted in the two angular cones of size Rbb̄

around the b-quarks. Therefore it makes sense to re-cluster or filter the candidate

with this radius Rbb̄, which sets the angular scale of the Higgs decay on a candidate-

by-candidate basis.

To filter the candidate, the C/A algorithm is rerun with a finer angular scale

Rfilt < Rbb̄ on the constituents of the two subjets which make up the candidate. The

three hardest objects are taken, one capturing the dominant O(αs) radiation from

the decay, while most of the contamination from the underlying event is eliminated.

In this analysis, Rfilt is chosen to be Rfilt = min(0.3, Rbb̄/2) [18].

7.3 Hadron Level Analysis

The strategy for a tt̄H0(H0 → bb̄) search is based on the high transverse momentum

of the leading top quark and the Higgs boson; their spectra are shown in Figure 7.2.

To reconstruct the Higgs candidate, several analysis steps have to be taken first.

The outline of the analysis is as follows [3]:

- Event preselection: Ensuring the presence of fundamental physics objects

for the following analysis, requiring two jets and one lepton.

- Top tagger: One of the two jets should pass the top tagger. If two jets pass,

then the one closer to the top mass is chosen.

- Higgs tagger: Run over the remaining jets with |y(H)
l | < 2.5 (y being the

rapidity), including a double b-tag for the substructure pairings reconstructing

the Higgs to reduce the leading tt̄jj topology.

- Triple b-tag: To improve the signal-to-background ration S/B and remove

the impact of the tt̄ + jets background, a third b-tag can be applied in a

separate jet analysis.

- Mass window cut: A cut on the Higgs mass window of mrec
bb = mH±10 GeV

is applied.
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Signal and backgrounds — We consider associated top
and Higgs production with one hadronic and one leptonic
top decay. The latter allows the events to pass the Atlas
and CMS triggers. The main backgrounds are

pp→ tt̄bb̄ irreducible QCD background
pp→ tt̄Z irreducible Z-peak background
pp→ tt̄ + jets include fake bottoms (2)

To account for higher-order effects we normalize our to-
tal signal rate to the next-to-leading order prediction of
702 fb for mH = 120 GeV [21]. The tt̄bb̄ continuum back-
ground we normalize to 2.6 pb after the acceptance cuts
|yb| < 2.5, pT,b > 20 GeV and Rbb > 0.8 of Ref. [22]. This
conservative rate estimate for very hard events implies a
K factor of σNLO/σLO = 2.3 which we need to attach
to our leading-order background simulation — compared
to K = 1.57 for the signal. Finally, the tt̄Z background
at NLO is normalized to 1.1 pb [23]. For tt̄ plus jets
production we do not apply a higher-order correction be-
cause the background rejection cuts drives it into kine-
matic configuration in which a constant K factor cannot
be used. Throughout this analysis we use an on-shell top
mass of 172.3 GeV. All hard processes we generate using
MadEvent [24], shower and hadronize via Herwig++ [25]
(without g → bb̄ splitting) and analyze with FastJet [26].
We have verified that we obtain consistent results for sig-
nal and background using Alpgen [27] and Herwig 6.5 [28]

An additional background is W+jets production. The
Wjj rate starts from roughly 15 nb with pT,j > 20 GeV.
Asking for two very hard jets, mimicking the boosted
Higgs and top jets, and a leptonic W decay reduces this
rate by roughly three orders of magnitude. Our top
tagger described below gives a mis-tagging probability
around 5% including underlying event, the Higgs mass
window another reduction by a factor 1/10, i.e. the final
Wjj rate without flavor tags ranges around 100 fb.

Adding two bottom tags we expect a purely fake-
bottom contribution around 0.01 fb. To test the gen-
eral reliability of bottom tags in QCD background re-
jection we also simulate the Wjj background including
bottom quarks from the parton shower and find a re-
maining background of O(0.1 fb), well below 10% of the
tt̄+jets background already for two bottom tags. For
three bottom tags it is essentially zero, so we neglect it
in the following.

The charm-flavored Wcj rate starts off with 1/6 of
the purely mis-tagged Wjj rate. A tenfold mis-tagging
probability still leaves this background well below the
effect of bottoms from the parton shower. Finally, a
lower limit mrec

bb > 110 GeV keeps us safely away from
CKM-suppressed W → bc̄ decays where the charm is
mis-identified as a bottom jet.

Search strategy — The motivation for a tt̄H search
with boosted heavy states can be seen in Fig. 1: the
leading top quark and the Higgs boson both carry size-
able transverse momentum. We therefore first cluster

10
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FIG. 1: Normalized top and Higgs transverse momentum
spectra in tt̄H production (solid). We also show pT,H in
W−H production (dashed) and the pT of the harder jet in
W−jj production with pT,j > 20 GeV (dotted).

the event with the Cambridge/Aachen (C/A) jet algo-
rithm [29] using R = 1.5 and require two or more hard
jets and a lepton satisfying:

pT,j > 200 GeV |y(H)
j | < 2.5 |y(t)

j | < 4

pT,ℓ > 15 GeV |yℓ| < 2.5 . (3)

The maximum Higgs jet rapidity y
(H)
J is limited by the

requirement that it be possible to tag its b-content. For
lepton identification and isolation we assume an 80% ef-
ficiency, in agreement with what we expect from a fast
Atlas detector simulation. The outline of our analysis is
then as follows (cross sections at various stages are sum-
marized in Tab. I):

(1) one of the two jets should pass the top tagger (de-
scribed below). If two jets pass we choose the one whose
top candidate is closer to the top mass.
(2) the Higgs tagger (also described below) runs over all
remaining jets with |y| < 2.5. It includes a double bottom
tag.
(2’) a third b tag can be applied in a separate jet analysis
after removing the constituents associated with the top
and Higgs.
(3) to compute the statistical significance we require
mrec

bb = mH ± 10 GeV.

In this analysis, QCD tt̄ plus jets production can fake
the signal assuming three distinct topologies: first, the
Higgs candidate jet can arise from two mis-tagged QCD
jets. The total rate without flavored jets exceeds tt̄bb̄
production by a factor of 200. This ratio can be balanced
by the two b tags inside the Higgs resonance. Secondly,
there is an O(10%) probability for the bottom from the
leptonic top decay to leak into the Higgs jet and combine
with a QCD jet, to fake a Higgs candidate. This topology
is the most dangerous and can be essentially removed by
a third b tag outside the Higgs and top substructures.
Finally, the bottom from the hadronic top can also leak

Figure 7.2: Normalised top and Higgs transverse momentum spectra in tt̄H0 pro-

duction (solid). The pHT in W−H production (dashed and the pT of the harder jet

in W−jj production with pjT > 20 GeV (dotted) is also shown. Taken from [3].

7.3.1 Simulated Signal and Background Samples

For the signal sample, associated top and Higgs production with one hadronic and

one leptonic top decay have been generated. To account for higher-order effects, a

k-factor has been applied to the the signal sample, normalising it to the next-to-

leading (NLO) order prediction of 702 fb for a Higgs mass of mH = 120 GeV. The

main backgrounds considered in this analysis are:

- irreducible QCD background pp→ tt̄bb̄

- irreducible Z production background pp→ tt̄Z

- jets misstagged as b-quarks pp→ tt̄ + jets

The NLO cross-section of the irreducible tt̄bb̄ background is 2.6 pb after the accep-

tance cuts of |yb| < 2.5, pT,b >20 GeV and Rbb > 0.8. The tt̄Z background has a

NLO cross-section of 1.1 pb. For the tt̄ plus jets production no k-factor is applied

(see [3] for more details).

All hard processes were generated using MadEvent [86], shower and hadronisa-

tion via HERWIG++ [87] (without g → bb̄ splitting) and analysed with FastJet [88].



118

7.3.2 Lepton and Jets Preselection

The event preselection ensures the presence of fundamental physics objects which

are necessary to carry out the following analysis. At least two hard jets satisfying

pT >200 GeV and |yHiggs| < 2.5 (for the jet to be tagged as Higgs), |ytop| < 4 (for the

jet to be tagged as the top) and a lepton with pT, lepton >15 GeV and |ylepton| < 2.5

are required. For lepton identification and isolation a 80% efficiency was used. The

maximum Higgs jet rapidity yHiggs is limited so that the tagging of the b-content is

possible.

7.3.3 Top Tagger

For a top candidate with typically a jet mass above 200 GeV, a complex hard

substructure inside the fat jet is assumed. To analyse the jet’s substructure, the

procedure in Section 7.2 is applied. The value for the mass drop fraction is chosen

to be µ = 0.8 and a value of mmax < 30 GeV is chosen for the mass cut-off [3]. The

choice of the cuts is motivated by the default values from the VH analysis [4] which

have been shifted to accommodate the generically larger jet multiplicity in the tt̄H0

channel.

First, all two-subjet configurations are then examined to reconstruct a W boson.

Those two-jet configurations are then filtered (see Section 7.2) and the W candidate

is formed from the three hardest subjets, assuming two jets to be from the decay

of the W boson and the third jet to be from QCD radiation. The mass of the

substructure pair is required to be in the range mrec
W = 65− 95 GeV.

The top candidate is reconstructed: to tag the top quark, a third subjet is added

to the two-subjet configuration which was used to reconstruct the W candidate.

These three subjets are now filtered and the five hardest objects are taken to form

the top candidate. Three of the five jets represent the decay products of the top

quark (t → Wb, W → jj) and the remaining two jets take the QCD radiation into

account. Their mass is required to be mrec
t = 150− 200 GeV.

Additionally the W helicity angle θ with respect to the top candidate should

satisfy cos θ < 0.7 [54]. The helicity angle is a standard observable in top decays,
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used to determine the Lorentz structure of the top-W coupling. It is defined as the

angle, measured in the rest frame of the reconstructed W , between the reconstructed

top quark’s flight direction and one of the W decay products. If more than one top

tag was found in the event, the tag with the smaller mass difference |mrec
t −mpole

t |+
|mrec

W −m
pole
W | is chosen. Figure 7.3 shows the reconstructed W and top quark mass

distributions for signal and background samples.

7.3.4 Higgs Tagger

The Higgs tagger runs on the remaining jets which have not been tagged as top

quarks, using the same decomposition procedure with a mass cut off mji < 40 GeV

and a mass drop fraction of µ = 0.9. All pairs of subjets are then ordered by the

modified Jade distance [76, 77, 78]:

J = pT,1pT,2(∆R12)4 (7.2)

similar to the mass of the hard splitting but shifted towards larger jet separation.

The three pairs with the highest Jade distance are filtered and considered as Higgs

candidates. They have to explicitly pass a cut pT,H & 200 GeV.

At this stage, flavour tags are included to control the tt̄ +jets and W + jets

backgrounds. Two bottom tags for the substructure pairings which form the Higgs

candidate are required in order to reduce the tt̄ + jets topology. In the hadron level

analysis, a 70% b-tagging efficiency with a 1% mis-tagging probability is assumed.

7.3.5 Triple b-tag

With the top tagger, the hadronically decaying top from the tt̄ system has been

identified. To improve the signal-to-background ratio S/B and remove the impact

of the tt̄ + jets background, it is now attempted to find the b quark from the

semileptonically decaying top by applying a third b-tag to the event.

Firstly, all constituents from the Higgs and top candidates are removed from

the event before the remaining particles are clustered using the C/A algorithm with

R = 0.6. These jets have pass the acceptance cuts of pT > 30 GeV and |η| < 2.5 and
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signal tt̄Z tt̄bb̄ tt̄+jets
events after acceptance eq.(3) 24.1 6.9 191 4160
events with one top tag 10.2 2.9 70.4 1457
events with mrec

bb = 110− 130 GeV 2.9 0.44 12.6 116
corresponding to subjet pairings 3.2 0.47 13.8 121
subjet pairings two subjet b tags 1.0 0.08 2.3 1.4
including a third b tag 0.48 0.03 1.09 0.06

TABLE I: Number of events or mrec
bb histogram entries per

1 fb−1 including underlying event, assuming mH = 120 GeV.
The third row gives the number of events with at least one
subjet pairing in the Higgs mass window while the fourth
row (and below) gives the number of entries according to our
algorithm based on the three leading modified Jade distances.

into the Higgs jet after being replaced by a QCD jet with
the appropriate kinematics in the top reconstruction.

These three distinct topologies appear in the tt̄ back-
ground because of the unusually large QCD jet activity
which we corresponds to the huge QCD correction to the
total rate. The impact of these background configura-
tions on our analysis critically depends on the detailed
simulation of QCD jet radiation in tt̄ events. We there-
fore perform our entire analysis for the minimal two b
tags as well as for a safe scenario with three b tags, to
achieve a maximal reduction of this background.

Top and Higgs taggers — In contrast to other Higgs
physics [9] or new physics [15, 16] applications our Higgs
and top taggers cannot rely on a clean QCD environ-
ment: on the one hand their initial cone size has to be
large enough to accommodate only mildly boosted top
and Higgs states, so additional QCD jets will contam-
inate our fat jets [30]. On the other hand, the small
number of signal events does not allow any sharp rejec-
tion cuts for dirty QCD events. Therefore, the taggers
need to be built to survive busy LHC events.

Our starting point is the C/A jet algorithm with
R = 1.5. For a top candidate, which typically has a
jet mass above 200 GeV, we assume that there could be
a complex hard substructure inside the fat jet. To reduce
this fat jet to the relevant substructures we apply the fol-
lowing recursive procedure. The last clustering of the jet
j is undone, giving two subjets j1, j2, ordered such that
mj1 > mj2 . If mj1 > 0.8 mj (i.e. j2 comes from the un-
derlying event or soft QCD emission) we discard j2 and
keep j1, otherwise both j1 and j2 are kept; for each sub-
jet ji that is kept, we either add it to the list of relevant
substructures (if mji < 30 GeV) or further decompose it
recursively.

In the resulting set of relevant substructures, we ex-
amine all two-subjet configurations to see if they could
correspond to a W boson: after filtering as in Ref.[9]
to reduce contamination from the underlying event, the
mass of the substructure pair should be in the range
mrec

W = 65 − 95 GeV (shown in Fig. 2). To tag the top

tt̄Z
tt̄bb̄
tt̄H

mrec
tmrec

W
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FIG. 2: Individually normalized mrec
W and mrec

t distributions
for signal and background (with underlying event).

quark, we then add a third subjet and, again after filter-
ing [9], require mrec

t = 150 − 200 GeV. We additionally
require that the W helicity angle θ with respect to the
top candidate satisfies cos θ < 0.7, as in Ref.[19]. For
more than one top tag in the event we choose the one
with the smaller |mrec

t − mpole
t | + |mrec

W − mpole
W |. The

resulting top tagging efficiency in the signal, including
underlying event, is 43%, with a 5% mis-tagging proba-
bility in W+jets events. Note that these values hold for
only slightly boosted tops and in a particularly complex
QCD environment.

In contrast to the top tagger which identifies a top
quark using its known mass and properties, our Higgs
tagger [9] has to search for a Higgs peak in the re-
constructed mrec

bb without any knowledge of the Higgs
mass. We use the same decomposition procedure de-
scribed above (but now with a mass cutoff at 40 GeV and
a mass drop threshold of 0.9). We then order all possible
pairs of subjets by the modified Jade distance [16]

J = pT,1pT,2 (∆R12)
4 , (4)

similar to the mass of the hard splitting, but shifted to-
wards larger jet separation. The three leading pairings
we filter and keep for the Higgs mass reconstruction. For
these events we explicitly confirm that indeed we are
dominated by pT,H

>∼ 200 GeV.

Double vs triple bottom tag — At this stage we have
not yet included any flavor tags to control the tt̄+jets
and W+jets backgrounds. To reduce the leading tt̄jj
topology we first require two bottom tags for the sub-
structure pairings reconstructing the Higgs. Based on
the detector-level study [10] we assume a 70% efficiency
with a 1% mis-tagging probability for b tags of filtered
Higgs subjets.

We then apply a ±10 GeV mass window, after check-
ing that the tails of the signal distribution drop sharply
in particular towards larger mass values. In the double
b-tag analysis we find for an integrated luminosity of
100 fb−1:

Figure 7.3: Individually normalised mrec
W and mrec

t distributions for signal and back-

ground (with underlying event). Taken from [3].

are then b-tagged assuming a b-tagging efficiency of 60% and purity of 2%. To ensure

that the b-tagged does not originate from the hadronically decaying top or the Higgs

boson, a minimum distance of ∆Rb,j > 0.4 between the subjets from the Higgs and

top candidate is required. Figure 7.4 shows the reconstructed Higgs mass for signal

(mH = 120 GeV) and backgrounds with (lower) and without (upper) underlying

event after the third b-tag has been applied.

7.3.6 Results

The results for the double b-tag analysis (Higgs tag including a double b-tag and

mrec
H = 110− 130 GeV) and the triple b-tag analysis for an integrated luminosity of

100 fb−1 and a generated Higgs mass of mH = 120 GeV can be found in Table 7.1.

stage of analysis S B S/B S/
√
B

double b-tag 100 380 1/3.2 6.2

triple b-tag 48 115 1/2.4 4.5 (5.1)

Table 7.1: Results for the double and triple b-tag analysis for an integrated lumi-

nosity of 100 fb−1. The number in parenthesis is without underlying event. Taken

from [3].
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S B S/B S/
√

B
mH = 115 GeV 120 380 1/3.2 6.2

120 GeV 100 380 1/3.8 5.1
130 GeV 51 330 1/6.5 2.8

This result shows that we can extract the tt̄H signal
with high significance. On the other hand, similar to the
original Atlas and CMS analyses it suffers from low S/B,
the impact of the poorly understood tt̄+jets background
with its different kinematic topologies, its large theory
uncertainty and potentially large next-to-leading order
corrections, and the missing underlying event.

To improve the signal-to-background ratio S/B and
remove the impact of the tt̄+jets background (at the ex-
pense of the final significance) we can apply a third b
tag. Targeting the second tt̄+jets topology we remove
the Higgs and top constituents from the event and cluster
the remaining particles into jets using the C/A algorithm
with R = 0.6, considering all jets with pT > 30 GeV.
Amongst these jets we require one b tag with η < 2.5
and a distance ∆Rb,j > 0.4 to the Higgs and top sub-
jets, assuming 60% efficiency and 2% purity. The last
row of Table I confirms that requiring three bottom tags
leaves the continuum tt̄bb̄ production as the only relevant
background.

In Fig. 3 we show the signal from the three leading (by
modified Jade distance) mrec

bb entries of double-b-tagged
combinations; our Higgs tagger returns a sharp mass
peak. The bigger tail towards small mrec

bb we can reduce
by only including the two leading jet combinations.
This does not change the significance but sculpts the
background more. Assuming that at this stage we
will know the Higgs mass, we estimate the background
from a clean right and a reasonably clean left side bin
combined with a next-to-leading order prediction. The
result of the triple b-tag analysis is then (again assuming
100 fb−1):

S B S/B S/
√

B
mH = 115 GeV 57 118 1/2.1 5.2 (5.7)

120 GeV 48 115 1/2.4 4.5 (5.1)
130 GeV 29 103 1/3.6 2.9 (3.0)

The numbers in parentheses are without underlying
event. While removing the highly uncertain tt̄+jets back-
ground has indeed lowered the final significance, the
background of the three b-tag analysis is completely dom-
inated by the well-behaved tt̄bb̄ continuum production.

Further improvements — One of the problems in this
analysis is that higher-order QCD effects harm its reach.
Turning this argument around, we can use the additional
QCD activity in the signal and continuum tt̄bb̄ back-
ground to improve our search. Before starting with the
fat-jet analysis we can for example analyze the four lead-
ing jets with a radius R = 0.6 and pT < 40 GeV and
require a set of jet-jet and jet-lepton separation crite-
ria [32]: we reject any event for which one of the three
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FIG. 3: Reconstructed bottom-pair mass mrec
bb for signal

(mH = 120 GeV) and backgrounds without (upper) and in-
cluding (lower) underlying event. The distributions shown
include three b tags.

conditions holds

cos θ∗j2j1 < −0.4 and ∆kT j3ℓ ǫ [70, 160] GeV

cos θ∗j3ℓ > 0.4 and ∆Rj2j3 > 2.5

∆Rjℓ > 3.5 for any of the four leading jets. (5)

θ∗P1P2
is the angle between ~p1 in the center-of-mass frame

of P1+P2 and the center of mass direction (~p1+~p2) in the
lab frame. It is not symmetric in its arguments; if the two
particles are back to back and |~p1| > |~p2| it approaches
cos θ∗ = 1, whereas for |~p1| < |~p2| it becomes −1 [32].
The kT distance between two particles is (∆kT jℓ)2 =
min(p2

T,j , p
2
T,ℓ)∆R2

jℓ. At this stage and with our limited
means of detector simulation this QCD pre-selection at
least shows that there are handles to further improve
S/B from 1/2.4 to roughly 1/2 (for mH = 120 GeV)
with hardly any change to the final significance.

In addition, we can envisage improving the analysis in
several ways in the context of a full experimental study,
including data to help constrain the simulations:
(1) Replace the mrec

bb side bins by a likelihood analysis of
the well-defined alternative of either tt̄H signal or tt̄bb̄
continuum background after three b tags. This increases
the final number of events, our most severe limitation.
(2) Provided the events can be triggered/tagged, include
two hadronic or two leptonic top decays. This more than
triples the available rate and includes a combinatorical
advantage of requiring one of two tops to be boosted.
(3) Without cutting on missing energy as part of the
acceptance cuts use its measurement within errors to as-
sign the correct jet to the leptonic top and become less
dependent on the third b tag.

Outlook — In this paper we have presented a new
strategy to extract the Higgs production process tt̄H with
the decay H → bb̄ at the LHC. After long debates this

Figure 7.4: Reconstructed b-pair mass for signal (mH = 120 GeV) and backgrounds

with (lower) and without (upper) underlying event after the third b-tag has been

applied. Taken from [3].

7.4 Detector Level Analysis

The hadron level analysis has indicated that at high transverse momenta the tt̄H0

channel can be recovered as a promising search channel for the Standard Model

Higgs boson discovery around 120 GeV using state-of-the-art jet reconstruction and

decomposition techniques.

This section presents an investigation of the feasibility of this analysis using a

realistic simulation of the ATLAS detector. The selection applied has been chosen

to be close to that in the hadron level analysis to be able to directly compare the

results of the hadron and detector level analysis (except for b-tagging and applied

mass windows).

In the following, truth matching is applied where applicable, meaning that a

reconstructed particle is matched to a MC truth particle of a certain kind, i.e. the

lepton from a semileptonic top decay. Hereby the distance in ∆R is calculated

and where not stated otherwise, a match is considered a correctly reconstructed

candidate when ∆R < 0.15. The ∆R distribution is not a sharp distribution due to

the process of hadronisation, therefore this value has been chosen as a compromise
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between efficiency and purity.

7.4.1 Event Samples and Detector Simulation

All event samples have been generated at leading order with a centre-of-mass energy

of
√
s = 10 TeV and a top quark mass of mtop = 172.5 GeV. Although

√
s =

10 TeV is not the nominal centre-of-mass energy, it is the energy at which it was

originally expected to collect a first sizeable amount of data. A brief study towards

the comparability of the results obtained with 10 TeV simulated data to 14 TeV

data is given in Section 7.4.1.

Signal and Background Samples

The tt̄H0(H0 → bb̄) sample used in this analysis is the same as in the cut-based

analysis and described in detail in Section 5.2 and Table 5.1.

The main background processes considered are the same as those in the cut-based

analysis and the hadron level analysis:

• irreducible electroweak background pp→ tt̄bb̄

• irreducible QCD background pp→ tt̄bb̄

• jets misstagged as b-quarks tt̄ + jets

The tt̄bb̄ (QCD and EW) and tt̄X samples were generated in the same way as

those described in detail in Section 5.2 with the only difference that the TtbarPlus-

JetsFilter, which applies multiplicity, pT and η requirements to 0.4 cone sized jets

(see Section 5.2 for details), has not been applied. Tables 7.2 and 7.3 summarise the

details of the background samples including the final cross-sections.

Centre-of-mass Energy Considerations

As already mentioned in Chapter 5.2.2, at the time of generating the MC samples

for this thesis, the LHC run plan had foreseen a longer run with
√
s = 10 TeV.

Therefore the MC samples used in this thesis were generated at
√
s = 10 TeV.

For this analysis it is of interest to compare the results with the result from

the
√
s = 14 TeV hadron level analysis but also to the

√
s = 10 TeV cut-based
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Dataset 109627 109626

Process tt̄bb̄(QCD) tt̄bb̄(EW)

Production mode gg, qq̄ gg

tt̄ decays included All All

ME generator ALPGEN 2.13 AcerMC

ME cross-section (fb) 3703.5 195.4

Q scale (m2
T = m2 + p2

T ) 232.5 GeV ŝ

PDF set used CTEQ6L1 CTEQ6L

Cuts |ηlight jet| < 6 -

ME cross-section
3703.5 315.2

at Q=232.5 GeV (fb)

Supervising generator HERWIG Pythia

Enforced decays - Semileptonic e, µ

Cross-section before filter (fb) 3703.5 90.78a

Detector simulation ATLFAST II

Semileptonic e,µ
0.2492 1.0

selection efficiency

Final cross-section (fb) 1270.13 90.78

Table 7.2: Summary of the simulated tt̄bb̄ background samples contributing as irre-

ducible backgrounds.
aby-hand multiplication of ME cross-section with semileptonic (e, µ) BR based on current PDG

values: 28.8%

result. A simple preselection has been applied to tt̄H0 events, generated with Pythia

6.4 [44] and with
√
s = 7 TeV, 10 TeV and 14 TeV. The preselection cuts are applied

at hadron level and jets have been reconstructed using the cone jet algorithm using

an R-parameter of 1.5. An event passes the preselection if it contains exactly one

lepton with pT > 15 GeV and |η| < 2.5 and at least two jets with pT > 200 GeV

and |η| < 4.0.

The cross-sections before and after preselection as well as the efficiencies for the

lepton and jet preselection are summarised in Table 7.4. The resulting cross-section
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Dataset 109620 109621 109622 109623

Process (tt̄ + X partons) tt̄ + 0 tt̄ + 1 tt̄ + 2 tt̄ + 3

Production mode gg,qq̄

tt̄ decays included Semileptonic (e,µ, τ)

ME generator ALPGEN 2.13

ME cross-section (fb) 95360 121220 91370 50480

Q scale (m2
T = m2 + p2

T )
∑
m2
T over all (final state partons)

PDF set used CTEQ6L1

Cuts
plight jet
T > 20 GeV, |ηlight jet| < 6

∆R(light jet, light jet) > 0.7

ME cross-section
105196 139197 108649 62880

at Q=232.5 GeV (fb)

MLM matching efficiency 0.39 0.29 0.22 0.16

Supervising generator HERWIG

Cross-section before filter (fb) 41363.1 39893.9 23479.0 10274.6

Detector simulation ATLFAST II

Semileptonic e,µ
0.5394 0.5910 0.6417 0.6607

selection efficiency

Cross-section after filter (fb) 27771.74 26725.8 15580.81 9557.76

Cross-section after
27105.23 25630.04 14677.13 8754.9

overlap removal (fb)

Table 7.3: Summary of the simulated tt̄X background samples, simulated in four

sub-samples containing between zero and three additional light partons. The cross-

sections after removing the overlap (see text and Chapter 6 for details) are also

given.

scaling factor between the 10 TeV and 14 TeV sample is 2.47 and 3.01 between

the 7 TeV and 10 TeV sample. This means that the obtained significances for this

analysis have to be scaled by a factor of
√

2.47 = 1.57 to compare them to the

significances obtained in the 14 TeV hadron level analysis.
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√
s

cross-section preselection efficiency cross-section

before preselection lepton jet after preselection

7 TeV 8.12 fb 65.62% 41.54% 2.21 fb

10 TeV 21.98 fb 63.91% 47.48% 6.66fb

14 TeV 51.96 fb 62.92% 50.29% 16.44 fb

Table 7.4: Cross-sections before and after the preselection carried out at parton level

for simulated tt̄H0 events at centre-of-mass energies of
√
s = 7 TeV, 10 TeV, 14 TeV

and the selection efficiencies of the lepton and fat jet preselection. The resulting

cross-section scaling factor between the 10 TeV and 14 TeV sample is 2.47 and 3.01

between the 7 TeV and 10 TeV sample.

7.4.2 Preselection

To ensure that the required physics objects are present in the event, a preselection

as a first step of the analysis is applied. It requires at least two jets, reconstructed

using the Cambridge/Aachen (C/A) jet algorithm with R = 1.5 and one isolated

lepton.

Lepton Preselection

Leptons (electrons and muons) have to pass the kinematic and geometrical cuts on

the transverse momentum pT > 15 GeV and pseudorapidity |η| < 2.5 as well as

some electron- and muon-specific cuts to be accepted as a candidate lepton coming

from the semileptonic decay of the tt̄ system. The lepton preselection is the same

as applied in the cut-based analysis (Chapter 5) and more details can be found in

Section 5.4.1.

The lepton preselection efficiency in the signal is 61.3%, the efficiencies for all

samples can be found in Table 7.5.

Jet Preselection

The event passes the preselection if at least two jets satisfy pT >200 GeV and

|ηHiggs| < 2.5, |ηtop| < 4. The jet preselection efficiency in the signal is 25.7%;

efficiencies for all samples can be found in Table 7.5 .
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Step of analysis tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD

Lepton preselection
61.3% 61.1% 60.4%

(61.3%) (61.1%) (60.4%)

Jet preselection
25.7% 19.2% 12.0%

(15.8%) (11.7%) (7.3%)

Top tagging
57.5% 50.8% 48.9%

(9.1%) (6.0%) (3.6%)

Higgs tagging
12.7% 6.6% 8.1%

(1.1%) (0.4%) (0.3%)

Triple b-tag
39.1% 43.0% 30.8%

(0.5%) (0.2%) (0.1%)

Step of analysis tt̄+0p tt̄+1p tt̄+2p tt̄+ >3p

Lepton preselection
64.2% 62.3% 60.0% 56.8%

(64.2%) (62.3%) (60.0%) (56.8%)

Jet preselection
2.7% 6.7% 13.3% 25.9%

(1.7%) (4.2%) (8.0%) (14.7%)

Top tagging
41.1% 43.3% 47.2% 53.8%

(0.7%) (1.8%) (3.8%) (7.9%)

Higgs tagging
0.6% 0.9% 1.2% 1.6%

(0.0004%) (0.02%) (0.05%) (0.1%)

Triple b-tag
0% 5.6% 6.6% 13.3%

(0%) (0.001%) (0.003%) (0.02%)

Table 7.5: Efficiencies of each step of the analysis for the signal and tt̄bb̄ (top) and

the tt̄X samples (bottom). The efficiencies are calculated on a tool-by-tool basis

and as overall efficiencies (in brackets).

7.4.3 Trigger Requirements

The presence of one high-pT lepton, together with missing transverse momentum, is

a distinct signature of the W boson production. These leptons can generally be used

to trigger on W production with high efficiency. The trigger menu considered here
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is the the menu which was foreseen for a luminosity of 1031 cm−2s−1. It contains

various relevant lepton trigger signatures but also various jet and missing energy

signatures.

The efficiencies for the three trigger levels have been studied in detail in Sec-

tion 5.5. A combination of the electron trigger e20 loose and the muon trigger

mu10 has been chosen to select semileptonic tt̄H0 events. The efficiencies for the

logical OR combination of these lepton trigger signatures are given in Table 5.9.

The trigger efficiency at EF level is approximately 82.0% for those semileptonic

tt̄H0 events which would otherwise pass the offline analysis. The efficiencies have

been calculated after the preselection of the cut-based analysis described in Chap-

ter 5 but it is not expected that the difference in the jet preselection between the

cut-based and the fat jet analysis interfere with the trigger efficiencies. The trigger

efficiencies are not included in the efficiency calculation for this analysis.

7.4.4 Top Tagger

To tag the preselected jets as top candidates, their substructure is considered fol-

lowing the recursive procedure described in Section 7.2. The mass drop fraction is

chosen to be µ = 0.8 and the maximum subjet mass to be mji < 30 GeV.

The first step is to reconstruct the W candidate by forming all possible two-

subjet combinations. To reduce the contamination from the underlying event, the

subjet combination is filtered (see Section 7.2) and the W candidate is reconstructed

from three highest pT filtered subjets.

Figure 7.5 (left) shows the mass distribution of all reconstructed W candidates

and those which could be matched to a W boson in the MC truth in the signal

sample, Figure 7.5 (right) shows the truth matched W bosons to which a Gaussian

has been fitted to. The mean W mass is found to be mW = 78.8 GeV which, given

the error of ±0.4 GeV, is not in agreement with the nominal W mass of 80.4 GeV.

This is probably due to the difference in jet energy scale for which the subjets have

not been corrected for. W candidates within a mass window of ±25 GeV around

the nominal W mass are kept to then further reconstruct the top candidates. This

is a difference to the hadron level analysis where a mass window of only mW = 80
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± 15 GeV was chosen in order to account for experimental resolution effects.

The top candidate is reconstructed by adding a third subjet to the two original,

non-filtered subjets which form the W candidate. These three subjets are then

filtered and the five highest pT filtered subjets form the top candidate.

For each top candidate, the W helicity angle θ (see Section 7.3.3) with respect

to the top candidate is calculated and has to satisfy cos θ < 0.7. For top jets, the

distribution is expected to be basically flat: since the W boson decays on-shell, its

decay products are almost isotropically distributed in the W boson rest frame. In

contrast, for light quark or gluon jets, the distribution diverges (at the parton level)

as 1/(1− cos θ). This corresponds to a soft singularity in the QCD matrix elements

for emitting an additional parton. Example distributions are shown in Figure 7.6

(left). Figure 7.6 (right) shows the helicity angle distribution for top candidates and

candidates matched to truth for the signal sample after the top mass window cut

has been applied.

Jets with very high transverse momentum (pT > 1000 GeV) have a broader

mass distribution than lower pT jets due to increased radiation from QCD. There-

fore, the mass window cuts will have to be adjusted depending on the pT of the jet.

Ref. [54] suggests to choose the mass cuts on the top and W to pT /20 + 155 GeV

and pT /40 + 70 GeV, respectively. Figure 7.7 shows the pT distribution of the top

candidates after the helicity cut but before the mass window cut has been applied.

It can be seen that most top candidate have a pT < 1000 GeV, therefore the pT

dependent mass window cut has not been used in this analysis.

Figure 7.8 (left) shows all reconstructed and truth matched top candidates after

applying the selection cuts with the exception of the top mass window cut, Figure 7.8

(right) shows a Gaussian fitted to the truth matched top candidate mass distribution.

The shoulder at lower masses in this distribution is due to candidates which could be

matched to a truth top in ∆R space but where the subjets which form the candidate

are not the correct ones, i.e. not all decay products are used and instead subjets
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Figure 7.5: Left: Mass distribution of all reconstructed W candidates and the candi-

dates which could be matched a W boson in the MC truth in signal sample. Right:

Mass distribution of truth matched W candidates to which a Gaussian has been

fitted. All distributions are normalised to 100 fb−1.

To check the efficacy of this method, we calculate the
efficiency for correctly tagging a top jet �t and the effi-
ciencies for mistagging light-quark or gluon jets as top
quarks �q and �g, respectively. These are shown in Fig. 3.

There are a few important qualitative observations one can
make about this plot. For very large pT , the top tagging
efficiency goes down. This is because these jets are so
highly boosted that the calorimeter can no longer distin-
guish the subjets. As pT goes below 900 GeV, the top
tagging efficiency also decreases. This is due to some of
the top jets becoming too fat for the initial R ¼ 0:8 cluster-
ing. (This somewhat tight choice was made to suppress the
mistag efficiency, which grows faster than the top tag
efficiency with increasing R.) Examples of the sequential
effects of the individual cuts are shown in Table I. The
clustering R’s and kinematic cuts can be varied to increase
the tagging and mistagging efficiencies, as desired for a

particular S=
ffiffiffiffi

B
p

goal.

One important concern is whether the Monte Carlo
simulation generates the t�t and dijet distributions correctly.
To test this possibility, we redid our analysis using samples
generated with various shower parameters, with the ‘‘new’’
pT-ordered dipole shower in PYTHIA and with HERWIG

V.6.510 [14]. We find a 50% variation in �q and �g and a

negligible change in �t. We also ran PYTHIA with multiple
interactions and initial state radiation turned off, individu-
ally and together. Effects on �q and �g are at the 10% level

or less, indicating that the QCD jet substructure relevant
for top tagging is mostly controlled by final state parton
branchings.
One might also be worried about whether, since we are

looking at multi(sub)jet backgrounds, it would be impor-
tant to include full matrix element calculations. However,
since the events are essentially two jet events, the sub-
structure is due almost entirely to collinear radiation,
which the parton shower should correctly reproduce [15].
To confirm this, we have also simulated background events
using MADGRAPH V.4.2.4 [16]. Using events with 2 ! 4
matrix elements in a region of phase space where 1 parton
recoils against 3 relatively collinear partons, we repeated
our analysis without showering or hadronization. The re-
sulting mistag efficiencies were consistent with those from
the PYTHIA study to within 10%, which provides justifica-
tion for both the parton shower approximation and the
robustness of our algorithm.
One possible way to verify the Monte Carlo predictions

for jet substructure would be to use data directly. For
example, the efficiency of the top tagging algorithm can
be calibrated by comparing the rate for t�t events where one
top quark decays semileptonically with the rate in the all-
hadronic channel. The background rejection efficiency can
also be studied by looking in sidebands where the jet
invariant mass is not close to mt.
Top tagging may be particularly useful in the search for

new physics in t�t resonances. In the all-hadronic channel,
the biggest background for t�t is dijets, so in Fig. 4 we show
the dijet and t�t invariant mass distributions before and after
top tagging both jets. It is evident that, after top tagging,
the dijet sample is reduced to the level of the t�t sample. As
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FIG. 3 (color online). The efficiencies for correctly tagging a
top jet (�t) and mistagging a gluon jet (�g) or a light-quark jet

(�q). The quark and gluon efficiencies are of order 1% and have

been scaled in the plot by a factor of 10 for clarity.

TABLE I. Incremental efficiencies for top, gluon, and light-
quark jets passing the subjets, invariant mass, and helicity angle
cuts for jets in three different pT windows.

pT (GeV) Subjets mt mW �h

500–600 0.56 0.43 0.38 0.32

�t 1000–1100 0.66 0.52 0.44 0.39

1500–1600 0.40 0.33 0.28 0.25

500–600 0.135 0.045 0.027 0.015

�g 1000–1100 0.146 0.054 0.032 0.018

1500–1600 0.083 0.038 0.025 0.015

500–600 0.053 0.018 0.011 0.005

�q 1000–1100 0.063 0.023 0.013 0.006

1500–1600 0.032 0.015 0.010 0.006
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FIG. 2 (color online). Distribution of helicity angle for top jets,
gluon jets, and light-quark jets for pT > 700 GeV. These dis-
tributions are after the subjet requirement, top-quark mass cut,
and W mass cut have been imposed.
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Figure 7.6: Left: Helicity angle distribution for top jets, gluon jets and light-quark

jets for pT > 700 GeV, taken from Ref. [54]. The distributions are normalised to

unit area. Right: Helicity distribution for the signal sample of all reconstructed top

candidates and for all candidates which have been matched to a truth candidate

after the top mass window cut has been applied. Distributions are normalised to

100 fb−1.
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Figure 7.7: Transverse momentum distribution for all reconstructed top candidates

after the helicity cut, before the mass window cut has been applied. Distributions

are normalised to unit area.

from the underlying event or soft QCD radiation is pulled in. Ideally, to avoid the

matching of incorrectly reconstructed candidates to truth particles in ∆R space,

the subjets of the massive jet should be matched to the truth partons individually.

However, this becomes an extremely challenging task at high energies as the partons

which make up the jet are very close together. The Gaussian fit has a mean value

of 159.6 ± 1.2 GeV and a width of 22.3 GeV. One of the reasons for the low mean

mass value could be the incorrectly matched candidates mentioned above, causing

the distribution to shift towards lower values. Another reason could be the use of

subjets which have not been corrected for physics effects, i.e. energy loss due to out-

of-cone effects (see Section 5.6.2 for details). Therefore, top candidates are required

to be within a mass window of mt = (160± 25) GeV.

It is possible that more than one hadronic top candidate is found in the event.

Either more than one top candidate per jet due to the various subjet combinations

has been found or more than one preselected fat jet has been tagged as a top candi-

date. If more than one top candidate has been found, the candidate which minimises

the mass difference |mrec
t −mt| + |mrec

W −mW | is chosen, with mt = 160 GeV and

mW = 80.4 GeV for consistency with the W reconstruction described above. This

mass difference is shown in Figure 7.9 for the signal sample. The distribution peaks
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Figure 7.8: Left: Mass distribution of all reconstructed and truth matched top

candidates in signal sample. Right: Gaussian fitted to the mass distribution of

truth matched top candidates. All distributions are normalised to 100 fb−1.

at around 25 GeV due to the size of the mass windows chosen to be ±25 GeV around

the W and top masses. Optimising the W and top reconstruction could probably

help to shift the peak towards smaller masses, implying a better mass resolution of

the the reconstructed candidates.

The mass distribution for the best W -top combination is shown in Figure 7.10

which compares well with the distribution obtained in the hadron level analysis (Fig-

ure 7.3). The resulting top tagging efficiency in the signal is 57.5%. The efficiencies

for all samples can be found in Table 7.5.

7.4.5 Higgs Identification

The remaining preselected fat jets within η < 2.5 which have not been tagged as a

top jet are now recursively decomposed as described in Section 7.2 with a maximum

subjet mass of mji < 40 GeV and a mass drop fraction of µ = 0.9. For all two-subjet

combinations the modified Jade distance is calculated (see Eq. 7.2) and the filtering

procedure is applied to the three pairings with the highest Jade distance. A cut of

pT > 200 GeV is re-applied to the filtered four-momentum computed from the three

highest pT filtered subjets which form the Higgs candidate. Figure 7.11 shows the

pT , η, invariant mass and Jade distance distributions for the Higgs candidates at

this step of the analysis.
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Figure 7.9: Mass difference for the signal sample for all reconstructed W -top com-

binations.
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Figure 7.10: Mass distribution for the best W -top combination for the signal sample

for reconstructed and truth matched combinations. Distributions are normalised to

100 fb−1.
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Figure 7.11: Transverse momentum pT , pseudorapidity η, invariant mass m and

Jade distance for the up to three in Jade distance leading Higgs candidates for the

signal sample. At this point, b-tagging has not been applied. The distributions for

all reconstructed and truth matched are normalised to 100 fb−1.

As a next step, the two highest pT subjets out of the three which form the Higgs

candidate, are required to be tagged as b-jets. The b-tagging weight distribution,

b-tagging efficiency versus weight cut, light jet rejection and c-jet rejection versus

b-tagging efficiency for the JetFitter-based tagger (JetFitterCOMBNN) and the AT-

LAS default combined tagger (COMB) (see Chapter 5.4.2) are shown in Figures 7.12

and 7.13.

The b-tagging algorithm chosen for this analysis is JetFitterCOMBNN, an algo-

rithm which combines impact parameter information with the explicit determination

of an inclusive secondary vertex. This algorithms has been used and optimised for

the environment of boosted Higgs decays in a similar study [35]. Given the differ-
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b-tagging algorithm for the signal sample. Right: b-tagging efficiency versus b-
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b-tagging efficiency

0.5 0.6 0.7 0.8 0.9 1

Li
gh

t j
et

 r
ej

ec
tio

n

1

10

210 B-tagging algorithm

JetFitterCOMBNN

COMB

b-tagging efficiency

0.5 0.6 0.7 0.8 0.9 1

c 
je

t r
ej

ec
tio

n

1

10

B-tagging algorithm

JetFitterCOMBNN

COMB

Figure 7.13: Light jet (left) and c-jet (right) rejection versus b-tagging efficiency for

the JetFitterCOMBNN and COMB b-tagging algorithms for the signal sample.

ent weight cuts for the COMB and JetFitterCOMBNN tagger (COMB: Wjet > 4;

JetFitterCOMBNN: Wjet > 1) it can be seen from Figures 7.12 and 7.13 that both

taggers have a similar performance in terms of light and c-jet rejection at a given

b-tagging efficiency. Jets are required to have a weight Wjet > 1 to be tagged as

b-jets. This corresponds to a b-tagging efficiency of 63.0%, a light jet rejection of

72.5 and a c-jet rejection of 7.3. Figure 7.14 shows the pT , η and Jade distance

distributions for the Higgs candidates with at least two b-tagged subjets.

If more than one Higgs candidate is found for an event with a top-tagged jet,
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Figure 7.14: Transverse momentum pT , pseudorapidity η and Jade distance for the

up to three in Jade distance leading Higgs candidates for the signal sample after the

b-tagging has been applied and the two highest pT jets are tagged as b-jets. The

distributions for all reconstructed and truth matched candidates are normalised to

100 fb−1.

all of these candidates are considered. This means all entries in the reconstructed

invariant bb̄ mass histograms are counted, assuming they are statistically indepen-

dent. Figure 7.15 shows the number of Higgs candidates for signal and all considered

background processes.

The invariant mass distribution for the best Higgs candidates and their truth

matches is shown in Figure 7.16 (left). A Gaussian has been fitted to the truth

matched Higgs mass distribution with a peak at 114.2 ± 1.1 GeV and a width of

15.4 GeV (see Figure 7.16).

Figure 7.17 (left) compares the shape of the mass distribution of all Higgs can-
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Figure 7.15: Multiplicity of Higgs candidates after all Higgs tagging cuts have been

applied for all samples considered, normalised to 100 fb−1.

didates found for signal and all background events and in Figure 7.17 (right) added

up corresponding to their cross-sections, normalised to 100 fb−1. It can be seen

that invariant Higgs mass spectrum is largely dominated by the tt̄X background,

implying the necessity to apply the third b-tag.

The selection efficiency for the signal sample for the Higgs tagging is 12.7%. The

corresponding efficiencies for all background samples can be found in Table 7.5.

7.4.6 Triple b-tag

The third b-tag is applied to the event to further suppress the tt̄X background and

thereby to enhance the signal-to-background ratio. The constituents of the Higgs

and top candidates are removed from the event and the remaining constituents are

clustered using the C/A algorithm. The event passes the selection if at least one

b-tagged jet with a certain distance in ∆R from the Higgs and top subjets has been

found.

In the hadron level analysis, the C/A jets are reconstructed with a parameter of

R = 0.6. Only jets passing the cuts of pT > 30 GeV and |η| < 2.5 are considered

for b-tagging.

In order to select the best jet reconstruction and b-tagging strategy for the third b-

tag, the significance, defined as S√
B

has been analysed as a function of the cut applied

on the b-tagging weight for three different R parameters of the C/A algorithms,
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Figure 7.16: Left: Invariant mass distribution of all Higgs candidates and their truth

matches reconstructed in signal events. Right: Gaussian distribution fitted to the

truth matched Higgs candidates. All distributions are normalised to 100 fb−1.
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Figure 7.17: Higgs mass distribution of all Higgs candidates found for signal and all

background events, normalised to unit area (left) and added up corresponding to

their cross-sections, normalised to 100 fb−1.

R = 0.4, 0.5, 0.6. The result is shown in Figure 7.18. The b-tagging weights of 0 to

4 correspond to b-tagging efficiencies of roughly 70% down to 40%.

The combination of using a R parameter of R = 0.4 and a cut on the b-tagging

weight of 2 achieves the highest significance of 0.92σ for an integrated luminosity of

100 fb−1.

Jets are tagged using the JetFitterCOMBNN and considered b-jets if their weight

is greater than a weight Wjet > 2 which corresponds to a b-tagging efficiency of
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Figure 7.18: Significance versus b-tagging weight cut for jets reconstructed with the

C/A algorithm using an R parameter of R = 0.4, 0.5 and 0.6.

65.8%, a light jet rejection of 96.6 and a c-jet rejection of 10.2.

If at least one b-tagged jet with a distance of ∆R > 0.4 to the subjets of the

reconstructed Higgs and top candidates is found, the event passes the selection.

The resulting number of Higgs candidates from events with such a b-jet is shown in

Figure 7.19.

The invariant mass distribution of the remaining Higgs candidates and their

truth matches after the third b-tag is shown in Figure 7.20 (left). Figure 7.20 (right)

shows the mass distribution of truth matched Higgs candidates to which a Gaussian

fit has been applied. The Gaussian peaks at a mass of 112.3 ± 1.7 GeV and has a

width of 15.1 GeV.

Figure 7.21 shows the final selection of Higgs candidates for signal events in

comparison to all background events normalised normalised to 100 fb−1. It can be

seen that the shape of the distribution is not ideal for identifying a signal peak due

to the very low selection efficiency in the tt̄X sample leading to low statistics. The

selection efficiency for applying a third b-tag for signal events is 39.1%. 69.1% of

these events lie in a mass window of mH = (115 ± 30) GeV. All other efficiencies

can be found in Table 7.5.



139

multiplicity

1 1.5 2 2.5 3 3.5 4
E

nt
rie

s
-210

-110

1
n Higgs cand 

ttH 
ttbb QCD
ttbb EW
ttX

Figure 7.19: Multiplicity of Higgs candidates after the third b-tag requirement has

been applied for all samples considered, normalised to 100 fb−1.
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Figure 7.20: Left: Invariant mass distribution of all Higgs candidates and their

truth matches found for signal events. Right: Invariant mass distribution of truth

matched Higgs candidates to which a Gaussian has been fitted. All distributions are

normalised to 100 fb−1.

7.4.7 Results of the Fat Jet Analysis in ATLAS

The baseline of the fat jet analysis was implemented according to the selection in [3].

For this analysis the sensitivity after an integrated luminosity of L = 100 fb−1 of

data, considering only statistical errors and a Higgs boson mass of 120 GeV is

S/
√
B = 0.92σ and a signal-to-background ratio of S/B = 0.07. Table 7.6 sum-

marises the number of reconstructed Higgs candidates, the signal-over-background

ratio and the significance after applying the Higgs tag and after the third b-tag.
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Figure 7.21: Higgs mass distribution of all Higgs candidates after the third b-tag

has been applied including signal and all backgrounds normalised to 100 fb−1.

The number of background candidates has been reduced by 88.1%, with the biggest

fraction being tt̄X candidates, leading to a higher signal-to-background ratio and

significance after applying a third b-tag.

Step of analysis Signal
Backgrounds

S/B S/
√
B

tt̄bb̄ QCD tt̄bb̄ EW tt̄X

Higgs tagging 28.0 152.0 15.8 1173.7 0.02 0.76

Triple b-tag 11.7 50.8 6.8 105.0 0.07 0.92

Table 7.6: Number of signal and background events, signal-over-background ratio

and significance after tagging a Higgs jet and after applying the third b-tag for an

integrated luminosity of L = 100 fb−1.
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7.5 Comparison of the Hadron and Detector Level Anal-

yses

The obtained significance of the hadron level analysis of 4.5σ and the signal-to-

background ratio of S/B = 1/2.4 for an integrated luminosity of 100 fb−1, a Higgs

boson mass of 120 GeV and a centre-of-mass energy of
√
s = 14 TeV has been a

promising result in extracting the Higgs production process tt̄H0(H0 → bb̄).

The implementation of this analysis in the ATLAS detector environment using

simulated data with a centre-of-mass energy of
√
s = 10 TeV and a Higgs boson mass

of 120 GeV has yielded a statistical significance of 0.92σ and signal-over-background

ratio of S/B = 1/13.3. With the scaling factor of
√

2.47 = 1.57 obtained from

the centre-of-mass energy considerations in Section 7.4.1, the significance scales to

1.45σ assuming signal and background scale the same for a centre of mass energy of
√
s = 14 TeV.

Table 7.7 lists the efficiencies obtained for the hadron level analysis (top) which

can be directly compared to those of the detector level analysis (bottom). The

selection efficiencies for the top tagger are higher for the detector level analysis due

the larger mass window cut which was applied to the reconstructed top and W

candidates. Generally the detector level analysis is roughly twice as efficient as the

hadron level analysis for signal events. For tt̄bb̄ EW and QCD backgrounds, the

overall efficiency of the detector level analysis is about 4 and 2 times higher, for tt̄X

background even 40 times higher.

The number of Higgs candidates per 1 fb−1 after the Higgs tagging and after

applying the third b-tag for both analysis are compared in Table 7.8. The reduction

factor of entries after the Higgs tagging and the third b-tag is roughly the same

for the tt̄H0 and tt̄bb̄ EW dataset, however for the tt̄bb̄ QCD and the tt̄X sample

it differs by quite a lot, with the detector level analysis having an almost 3 times

higher reduction rate for tt̄bb̄ QCD but a 2 times lower reduction rate of tt̄X events.

A plausible explanation for these differences can be found in the differences of the

Monte Carlo samples used in the analysis, which are discussed in more detail below.
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Hadron level
tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD tt̄X

analysis

Top tag 42.3% (42.3%) 42.0% (42.0%) 36.8% (36.8%) 35.0% (35.0%)

Higgs tag 9.8% (4.1%) 2.8% (1.2%) 3.2% (1.2%) 0.1% (0.03%)

Triple b-tag 48.0% (2.0%) 37.5% (0.4%) 47.4% (0.6%) 4.3% (0.001%)

ATLAS level
tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD tt̄X

analysis

Top tag 57.5% (57.5%) 50.8% (50.8%) 48.9% (48.9%) 46.4% (46.4%)

Higgs tag 14.2% (8.1%) 7.1% (3.6%) 8.7% (4.2%) 1.2% (0.6%)

Triple b-tag 46.1% (3.7%) 47.8% (1.7%) 33.3% (1.4%) 6.9% (0.04%)

Table 7.7: Selection efficiencies for the top tagging, Higgs tagging and the third

b-tag for the hadron level analysis (top) and the detector (ATLAS) level analysis

(bottom). The overall efficiencies for the analysis are given in brackets.

The large difference in the performance of the hadron and detector level analysis

can be traced back to the differences between the Monte Carlo samples used in the

analyses and the performance assumptions of lepton identification and isolation and

b-tagging efficiency and purity.

The most significant differences of the simulated samples used in the hadron level

analysis are the following:

• tt̄bb̄ QCD sample: Acceptance cuts |yb| < 2.5, pT,b >20 GeV and Rbb̄ > 0.8

have been applied to this sample in the hadron level analysis. This is possibly

the reason for the higher reduction rate observed in the detector level analysis

when applying the third b-tag, since no Rbb̄ has been applied to the samples

used.

• A so-called k-factor has been applied to the signal and tt̄bb̄ background samples

used in the hadron level analysis to account for higher-order effects (next-to-

leading order effects (NLO)). For tt̄bb̄ QCD, a k-factor of 2.3 has been applied

(after the acceptance cuts mentioned above have been applied), compared to

k = 1.57 for the signal. The k-factor applied to the tt̄bb̄ EW sample is k =
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Hadron level analysis tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD tt̄X

Higgs tagging 1.0 0.08 2.3 1.4

Triple b-tag 0.48 0.03 1.09 0.06

reduction factor 2.1 2.7 1.2 23.3

Detector level analysis tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD tt̄X

Higgs tagging 0.28 0.16 1.52 11.74

Triple b-tag 0.12 0.07 0.51 1.05

reduction factor 2.3 2.3 3.0 11.2

Table 7.8: Number of Higgs candidates per 1 fb−1 after the Higgs tagging and after

applying the third b-tag for the hadron level analysis (top) and the detector level

analysis (bottom). The last row of each table gives the reduction factor when the

third b-tag is applied.

1.35 [89]. For tt̄+ jets production no higher-order correction has been applied

because the background rejection cuts drive it into kinematic configuration

in which a constant k-factor cannot be used. Using these k-factors enhances

the significance by roughly 0.5σ for an integrated luminosity of 100 fb−1. The

significance for the hadron level analysis without applying k-factors is therefore

found to be 4.0σ.

• No g → bb̄ splitting has been included to any of the samples in the hadron level

analysis. In the analysis presented here, g → bb̄ splitting has been applied,

which means it is more likely for background events to pass the Higgs recon-

struction and the third b-tag requirement due to a higher b-jet multiplicity.

This would then result in a lower reduction rate of entries for the detector

level analysis when the third b-tag is applied.

• The centre-of-mass energy at which the hard process was simulated is
√
s =

14 TeV. This can be compensated by applying a scaling factor in order to

compare results (see Section 7.4.1).

The hadron level analysis assumes a lepton identification and isolation efficiency
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of 80% which is, compared to the lepton preselection efficiency in signal events

about 20% higher. A more severe assumption the hadron level analysis makes is the

b-tagging performance in the Higgs tagger of 70% with a mistagging probability of

1% which corresponds to a light jet rejection of 100. The b-tagging efficiency in the

detector level Higgs tagger is 63.0% with a light jet rejection of 72.5 and a c-jet re-

jection of 7.3. So there is quite a difference in b-tagging performance, causing fewer

signal events to pass due to the lower b-tagging efficiency but also more background

events to go through due to the reduced light jet rejection. For the third b-tag, a

b-tagging efficiency of 60% with purity of 2%, corresponding to a light jet rejection

of 50, is assumed. In the detector level analysis the b-tagging efficiency of 65.8%, a

light jet rejection of 96.6 and a c-jet rejection of 10.2 has been chosen to reduce the

number of selected tt̄X events.

Overall the differences in the simulated samples as well as the b-tagging perfor-

mance in the Higgs tagger and the lepton identification and isolation efficiency can

explain the observed difference in performance between the two analyses reasonably

well.

7.6 Systematic Uncertainties

The fat jets analysis is expected have a significant reduction in the systematic uncer-

tainties compared to the cut-based analysis presented in Chapter 5. The reason lies

in the way of reconstructing the event which differs significantly from the cut-based

analysis: By applying three instead of four b-tag, the b-tagging uncertainty will be

reduced. Additionally, the lower multiplicity of required jets with a very high trans-

verse momentum (two jets compared to six in the cut-based analysis) will reduce

the jet energy scale uncertainty contribution. The estimation of systematic uncer-

tainties due to the standard detector effects has been investigated for the cut-based

CSC analysis [5] and is summarised in Table 5.12.

Additionally to the systematic uncertainties from detector effects, the analysis

of the tt̄H0 channel suffers mainly from the large uncertainty in the prediction

of the background from top quark pairs with additional jets. The leading-order
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cross-section calculation is very sensitive to the choice of the renormalisation and

factorisation scale [60]. This indicates a significant contribution from higher order

corrections, it is therefore essential to measure the rate of the tt̄X background from

real data and to tune the Monte Carlo generators accordingly. For an extraction

of the tt̄H0 signal peak in the mbb̄ mass spectrum it is likewise important to know

the shape of the background, especially that of the irreducible tt̄bb̄ background. A

robust method to infer background shapes and normalisation from data has yet to

be developed for this analysis.

However, it is possible to investigate the impact of the systematic uncertainties

in the background prediction and their effect on the statistical significance. The

statistical significance S√
B

evaluated in Section 7.4.7 is based on simple counting

of Higgs candidates and gives a first evaluation of the discovery sensitivity of the

tt̄H0(H0 → bb̄) analysis to a Standard Model Higgs boson with a mass around

120 GeV. However, this significance can only be realised under the assumption that

the number of expected background events is known very precisely. Depending on

the uncertainty in the theoretical prediction of the differential cross-section of the

backgrounds in the selected region of phase space and depending on the uncertainty

on the background acceptance as predicted by Monte Carlo simulations, this uncer-

tainty ∆B on B, can be very high. To understand how this uncertainty propagates

into the sensitivity of this channel to the discovery of a Higgs boson, the statistical

uncertainty on the background
√
B is summed up in quadrature with the system-

atic uncertainty ∆B. The corrected significance then takes the form S√
B+∆B

. This

corrected significance is shown in Figure 7.22 as a function of ∆B
B after applying

the third b-tag. The significance of 0.92σ in the perfect case is found to be reduced

to about 0.6σ in the case of a 10% uncertainty and to roughly 0.45σ in the case

of a 15% uncertainty on the background. These background uncertainty values are

not unrealistic as the systematic uncertainties are expected to be reduced in this

analysis from the 22% quoted in Table 5.12.
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Figure 7.22: Discovery significance for a 120 GeV Higgs boson as a function of

the systematic uncertainty on the background ∆B
B for an integrated luminosity of

100 fb−1 after applying the third b-tag. No further systematic uncertainties are

considered here.

7.7 Conclusion

A first study of the ALTAS sensitivity to the associated tt̄H0 production at high-

pT for a low mass Standard Model Higgs boson using a realistic simulation of the

the ATLAS detector has been presented. The analysis follows closely that of [3].

For the analysis presented here, a sensitivity of 0.92σ for an integrated luminosity

of 100 fb−1 and a centre-of-mass energy of 10 TeV was achieved. If the major

backgrounds have a systematic uncertainty of around 10% this sensitivity drops to

0.6σ for
√
s = 10 TeV.

The achieved sensitivity corresponds to a statistical sensitivity of 1.45σ for an

integrated luminosity of 100 fb−1 at a centre-of-mass energy of 14 TeV. The hadron

level analysis yielded a significance of 4.5σ, which is much higher than the detector

level analysis but it is possible to explain the discrepancy with the choice of the

settings for the simulated data and the performance of the b-tagging and lepton
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identification and isolation efficiency (see Chapter 7.5).

All numbers are based on signal and background processes generated at LO

and normalised to their respective LO cross-sections. The use of dedicated NLO

generators, whenever possible, is foreseen for a future update of the analysis.

Further improvements can be expected in this analysis with respect to refined

reconstruction methods such as the top or Higgs tagging. Generally, the necessity of

a strong b-tagging algorithm emerges from this study, as it is of great importance for

the Higgs reconstruction as well as for the suppression of the tt̄X background. Since

two steps of the analysis rely heavily on b-tagging, efforts might be made in terms

of calibration and further optimising for this specific kinematic region, resulting in

a higher b-tagging efficiency while at the same time preserving a similar light- and

charm-jet rejection. No jet calibrations have been applied in this analysis, there-

fore the development of a calibration to these specific jets will improve the mass

resolutions of the reconstructed objects. The sensitivity could be additionally en-

hanced by using more sophisticated and advanced multivariate techniques compared

to presented cut-based analysis presented here.

In addition, this channel could give information on the H → bb̄ coupling and

therefore be an important channel together with the WH/ZH channels to determine

parameters of the Higgs sector [90]. More importantly it will give direct access to

the top-Higgs Yukawa coupling. Although it has been shown by recent CMS and

ATLAS studies that the combinatorial backgrounds (in the low pT analyses) make

it very hard to observe this decay in the tt̄H0 production, it may still be realisable

when considering possible improvements to this analysis and combining the subjet

analysis together with the cut-based analysis (or any more sophisticated analysis)

for the low-pT region. This combination of low- and high-pT analyses is further

exploited in Section 8.

In conclusion, the reinstatement of the tt̄H0(H0 → bb̄) channel in the high-pT

region as a promising search and measurement channel for the low-mass Standard

Model Higgs boson using a realistic ATLAS detector simulation as predicted by the

hadron level analysis paper [3] has not been possible to confirm. Further improve-

ments of the detector analysis have to be done, including the use of sophisticated
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multivariate techniques to enhance the sensitivity compared to the relatively simple

cut-based analysis.



149

Chapter 8

Combining the Low pT and High

pT Analyses

8.1 Motivation

The combination of the low pT (cut-based) analysis (see Chapter 5) and the high

pT (fat jets/boosted) analysis (see Chapter 7) is performed. This has been done as

events are selected in complementary regions of phase space, thereby increasing the

sensitivity of the tt̄H0(H0 → bb̄) channel.

8.2 Analyses Performance on a Common Dataset

The results of both analyses are reviewed in this chapter when run separately on the

same simulated data described in Chapter 7.4.1. These datasets have been generated

for the purpose of performing the fat jet analysis; no requirements on the minimum

number of jets in form of the TtbarPlusJetsFilter (see Section 5.2.1 for details) is

made compared to the simulated data used in the cut-based analysis.

8.2.1 Cut-based Analysis

The cut-based analysis has been described in detail in Chapter 5. The selection

efficiencies for the different steps of the analysis are summarised in Table 8.1. The

efficiencies for the signal sample are expected to be the same, but since the TtbarPlus-
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Step of analysis tt̄H0 tt̄bb̄ EW tt̄bb̄ QCD

Lepton preselection
61.3% 61.1% 60.4%

(61.3%) (61.1%) (60.4%)

Jet preselection
6.6% 3.6% 2.2%

(4.0%) (2.2%) (1.3%)

leptonic W
95.7% 96.8% 95.8%

(3.8%) (2.1%) (1.3%)

hadronic W
69.6% 69.1% 66.8%

(2.7%) (1.5%) (0.8%)

tt̄ system
91.9 % 90.8% 89.1%

(2.5%) (1.3%) (0.7%)

Higgs 95.9% 95.6% 93.8%

(2.4%) (1.3%) (0.7%)

Step of analysis tt̄+0p tt̄+1p tt̄+2p tt̄+ >3p

Lepton preselection
64.2% 62.3% 59.9% 56.8%

(64.2%) (62.3%) (59.9%) (56.8%)

Jet preselection
0.002% 0.02% 0.08% 0.2%

(0.001%) (0.01%) (0.05%) (0.1%)

leptonic W
93.3% 95.7% 97.7% 96.7%

(0.001%) (0.01%) (0.05%) (0.1%)

hadronic W
57.1% 44.4% 49.2% 70.7%

(00.01%) (0.005%) (0.02%) (0.07%)

tt̄ system
62.5% 80.0% 82.3% 87.5%

(0.0005%) (0.004%) (0.02%) (0.06%)

Higgs
100.0% 96.9% 93.0% 94.6%

(0.0005%) (0.004%) (0.02%) (0.06%)

Table 8.1: Efficiencies of each step of the analysis for signal and tt̄bb̄ backgrounds

(top) and tt̄X samples (bottom). The efficiencies are calculated on a tool-by-tool

basis and as overall efficiencies in brackets. The Higgs reconstruction efficiency

quoted is for the reconstruction method using the two b-jet with the highest b-

weight, and the mass window applied is optimised to this approach.
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JetsFilter has not been applied to the background datasets, they have a lower overall

selection efficiency.

The resulting invariant Higgs mass spectrum for signal and background events

added up is shown in Figure 8.1.

In the mass window of (105±30) GeV the statistical significance is found to be
S√
B

= 1.75σ (0.96σ) for an integrated luminosity of 100 fb−1 (30 fb−1) and a signal-

to-background ratio of S
B = 0.07 (0.07), the number of signal and background events

are listed in Table 8.2. For a mass window of (110±30) GeV the significance is S√
B

= 1.69σ (0.93σ) for an integrated luminosity of 100 fb−1 (30 fb−1) with a signal-

to-background ratio of S
B = 0.07 (0.07). Compared to the results in Chapter 5, the

significance and signal-to-background ratio are lower when running on simulated

datasets which were generated without the TtbarPlusJetsFilter. This is probably

due to the choice of jet algorithms applied in the TtbarPlusJetsFilter at hadron

level, where a seeded fixed-cone algorithm was used to reconstruct jets whereas in

the analysis, the Anti− kT algorithm has been used. While the number of signal

events remains the same (no jet filter applied to this sample), more events from the

background samples are selected.

8.2.2 Fat Jets Analysis

The fat jet analysis has been described in detail in Chapter 7. The selection ef-

ficiencies for the different steps of the analysis are summarised in Table 7.5. The

resulting invariant Higgs mass spectrum after the three b-tag analysis for signal only

and signal and background events added up is shown in Figure 8.2.

For this analysis the sensitivity after an integrated luminosity of 100 fb−1, con-

sidering only statistical errors and a Higgs boson mass of 120 GeV, is 0.93σ and

a signal-to-background ratio of S/B = 0.07 evaluated for a Higgs mass window of

mH = (115± 30) GeV.
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Figure 8.1: Left: The Higgs boson mass reconstructed from the two b-jets with the

highest b-weight for the signal sample for mH0 = 120 GeV given in cross-sections,

the red line indicates Higgs candidates formed by assigning the correct b-jets. Right:

Signal and background events added up corresponding to their cross-sections. Both

mass distributions are normalised to 100 fb−1, the simulated datasets used have no

minimum number of jets requirement applied.

8.3 Evaluation of Overlap between the Low and High

pT Analysis

When running the two analyses on a common dataset, for some events, Higgs candi-

dates are reconstructed by both; This has to be treated with care when combining

the analyses.

Table 8.3 lists the number of events for signal and background datasets which

were reconstructed by both analyses at different steps of the analyses: after the

preselection since the selection of leptons is the same in both analyses; after the

jet preselection which selects slightly different areas of phase space; after the Higgs

reconstruction; and for the mass windows which were chosen for the significance

estimates. It is important to note that for the fat jet analysis it is indeed possible

to reconstruct more than one Higgs candidate per event, whereas for the cut-based

analysis, only one Higgs candidates per event is reconstructed.

The invariant Higgs mass distribution for all overlapping events after the Higgs

reconstruction is shown in Figure 8.3 for signal and all background samples. From
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analysis
integrated

Signal
Backgrounds

S/B S/
√
B

luminosity tt̄bb̄ QCD tt̄bb̄ EW tt̄X

cut-based
30 fb−1 13.6 83.0 12.1 106.2 0.07 0.96

100 fb−1 45.4 275.6 40.5 354.1 0.07 1.75

fat jet
30 fb−1 3.5 15.2 2.0 30.5 0.07 0.51

100 fb−1 11.7 50.8 6.8 101.6 0.07 0.93

Table 8.2: Number of signal and background events, signal-to-background ratio S/B

and the statistical significance S/
√
B for the cut-based and fat jet (including the

third b-tag) analyses presented in this thesis using a mass window of (105±30) GeV

for the cut-based analysis and a mass window of (115±30) GeV for the fat jets

analysis. Results are shown for an integrated luminosity of 30 fb−1 and 100 fb−1.
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Figure 8.2: Invariant mass distribution of all Higgs candidates for the fat jets anal-

ysis. Left: All Higgs candidates and their truth matches found for signal events.

Right: Higgs candidates of signal and all backgrounds normalised to 100 fb−1.

these distributions it can be seen that especially for the signal sample, more Higgs

candidates can be found around the generated Higgs mass for the fat jets analysis

than for the cut-based analysis. The distributions of overlapping events for the tt̄bb̄

QCD sample have different shapes, with the candidates reconstructed with the fat

jet analysis peaking around 100 GeV, due to the the signal selection cuts such as

the W and top mass windows. The tt̄bb̄ EW and tt̄X overlap distributions suffer

from low statistics, a shape comparison is therefore not possible.
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analysis step Signal
Backgrounds

tt̄bb̄ QCD tt̄bb̄ EW tt̄X

Preselection 85.5 (2.8%) 541.9 (0.46%) 136.4 (2.3%) 45.23 (0.01%)

(event based) 85.5 (13.1%) 541.9 (5.9%) 136.4 (12.8%) 45.23 (0.08%)

Higgs
5.6 (5.6%) 31.8 (3.6%) 3.9 (3.2%) 9.4 (0.7%)

6.4 (34.6%) 32.7 (29.1%) 3.8 (25.2%) 9.4 (3.1%)

Higgs in 2.0 (4.4%) 5.4 (1.9%) 0.9 (2.2%) 4.4 (0.9%)

mass window 2.1 (17.7%) 5.4 (10.6%) 1.0 (14.8%) 4.4 (5.3%)

Table 8.3: Number of events and Higgs candidates (for the fat jet analysis) for signal

and background datasets after three different steps in the analysis. The first line

corresponds to the cut-based analysis, the second to the fat jet analysis. The number

in brackets give the percentage of overlapping events/candidates in each analysis.

For the cut-based analysis only one Higgs candidate per event can be reconstructed

whereas for the fat jet analysis more than one is possible. The mass window for the

Higgs candidates for the cut-based analysis was chosen to be (105±30) GeV and for

the fat jet analysis (115±30) GeV. Numbers are normalised to 100 fb−1.

The signal-to-background ratios evaluated for this overlap for the corresponding

mass windows for the fat jet and the cut-based analysis are 1/5.1 and 1/5.4, respec-

tively. Both signal-to-background ratios are close together, so no conclusion about

with which analysis the overlap should be identified can be drawn. Therefore the

reconstruction of the overlapping events with both analyses will be studied.

8.4 Combination of Analyses

To evaluate an overall significance for the tt̄H0(H0 → bb̄) channel, the results of the

analysis must be combined. The combination of the WH/ZH channels presented

in [35] uses a profile likelihood method (see Higgs Boson Chapter in [5]). From

this combination it was concluded that the observed median significance obtained

through the profile likelihood method is consistent with what would be expected

from adding the S/
√
B in quadrature, assuming perfect understanding of the back-

grounds.
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Figure 8.3: Invariant mass distribution of Higgs candidates for the tt̄H0 (top left),

tt̄bb̄ EW (top right), tt̄bb̄ QCD (bottom left) and tt̄X (bottom right) samples, nor-

malised to 100 fb−1.

Therefore, the estimation of the overall significance of the analyses presented

here will be achieved by adding the obtained S/
√
B in quadrature. The treatment

of events in which both analyses reconstructed Higgs candidates will be done by

first running the fat jets (cut-based) analysis on the common dataset, and then

running the cut-based (fat jets) analysis on the remaining events, in which no Higgs

candidate has been found.

8.4.1 Fat Jets and Cut-based Combination

First the fat jets analysis is run on the dataset and the remaining events, in which

no Higgs candidate has been found, are then analysed with the cut-based analysis.

Figure 8.4 shows the Higgs mass distributions for the fat jets analysis and the cut-
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based analysis for signal and background.

The significance calculation is done separately for both distributions, since the

mass windows used are different for the two analyses. Table 8.4 summarises the

number of signal and background events, the signal-to-background ratio and the

significance obtained separately for the two analyses.

Both significances are added up in quadrature and result in an overall statistical

significance of S/
√
B =

√
(0.93)2 + (1.67)2 = 1.91σ for an integrated luminosity of

100 fb−1. This corresponds to a statistical significance of 2.80σ for a centre-of-mass

energy of
√
s = 14 TeV, using the scaling factors obtained in Chapters 5.2.2 and

7.4.1 for the two analyses.

This way of evaluating the overall significance is also consistent with treating

the two sets of signal and backgrounds obtained from the two analyses as one set,

as if obtained from a single analysis.

8.4.2 Cut-based and Fat Jets Combination

Now the cut-based analysis is run first, then the remaining events are reconstructed

with the fat jets analysis. Figure 8.5 shows the Higgs mass distributions for the fat

jets analysis and the cut-based analysis for signal and background.

The significance is again calculated separately for both distributions due to the

different mass windows applied in the two analyses. The number of signal and

background events, the signal-to-background ratio and the significance obtained are

summarised in Table 8.5.

Both significances are added up in quadrature and result in an overall statistical

analysis Signal
Backgrounds

S/B S/
√
B

tt̄bb̄ QCD tt̄bb̄ EW tt̄X

fat jets 11.7 50.8 6.8 101.6 0.07 0.93

cut-based 42.9 268.3 39.3 353.5 0.06 1.67

Table 8.4: Number of signal and background events, signal-to-background ratio

and significance, normalised to 100 fb−1, for the fat jets and cut-based analysis.

Overlapping events have been reconstructed with the fat jets analysis.
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Figure 8.4: Invariant Higgs mass distribution for the fat jet analysis (left) and cut-

based analysis (right) for all signal and background events when first reconstructing

events with the fat jets analysis and the remaining events with the cut-based analysis.

Distributions are normalised to 100 fb−1.
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Figure 8.5: Invariant Higgs mass distribution for the fat jet analysis (left) and cut-

based analysis (right) for all signal and background events when first reconstructing

events with the cut-based analysis and the remaining events with the fat jets analysis.

Distributions are normalised to 100 fb−1.
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analysis Signal
Backgrounds

S/B S/
√
B

tt̄bb̄ QCD tt̄bb̄ EW tt̄X

cut-based 7.6 34.3 4.9 96.0 0.06 0.65

fat jets 45.5 276.6 40.5 358.0 0.07 1.75

Table 8.5: Number of signal and background events, signal-to-background ratio

and significance, normalised to 100 fb−1, for the fat jets and cut-based analysis.

Overlapping events have been reconstructed with the cut-based analysis.

significance of S/
√
B =

√
(0.65)2 + (1.75)2 = 1.87σ for an integrated luminosity of

100 fb−1. The significances can be scaled separately to a centre-of-mass energy of
√
s = 14 TeV (see Chapters 5.2.2 and 7.4.1) resulting in a statistical significance of

2.70σ for an integrated luminosity of 100 fb−1.

8.5 Results and Conclusion

The combination of both analysis, the boosted fat jets analysis and the low pT cut-

based analysis has been presented in this Chapter. It was found that the combination

achieves the best result in terms of statistical significance when the events in which

Higgs candidates are both reconstructed from the fat jets and cut-based analysis, are

actually reconstructed by the fat-jet analysis. A statistical significance of 1.9σ has

been obtained for an integrated luminosity of 100 fb−1 for a centre-of-mass energy of
√
s = 10 TeV. This result scales to 2.8σ for a centre-of-mass energy of

√
s = 14 TeV

for 100 fb−1 and to 1.5σ for 30 fb−1.

This is in fact a lower significance than achieved by the cut-based analysis in

Chapter 5, however it was found that the TtbarPlusJetsFilter applied when gener-

ating the events, seems to remove events from the samples which would be otherwise

reconstructed by the analysis.



159

Chapter 9

Conclusions

Searches for the Higgs boson have been one of the primary pursuits at past and

present particle accelerators. The tt̄H0(H0 → bb̄) channel is one of the most chal-

lenging processes which could contribute to a Higgs discovery in the low mass range.

This region is particularly difficult and various channels have to be studied to achieve

a 5σ observation. More importantly, once this channel has been discovered, it will

give direct access to the top-Higgs Yukawa coupling.

This thesis presented two search strategies for a Higgs boson mass of 120 GeV

in a realistic simulation of the ATLAS detector at a centre-of-mass energy of
√
s =

10 TeV. In a previous run plan of the Large Hadron Collider (LHC), a longer run

period at this centre-of-mass energy had been foreseen. Both studies rely on Monte

Carlo events generated with LO Monte Carlo generators.

One analysis focuses on the complete reconstruction of the two top-quarks in the

event to reduce the large backgrounds. To identify the top quark pairs and the Higgs

boson through their decay products, a cut-based approach has been implemented.

In the most recent study [5], the expected statistical significance for this analysis

was found to be 1.82σ for a Higgs boson mass of 120 GeV at a centre-of-mass energy

of
√
s = 14 TeV and an integrated luminosity of 30 fb−1. The updated analysis

presented in this thesis found a statistical significance of 1.1σ at a centre-of-mass

energy of
√
s = 10 TeV for an integrated luminosity of 30 fb−1. Based on a cross-

section study, the significance can be scaled to a centre-of-mass energy of
√
s =

14 TeV, resulting in a significance of 1.57σ.
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The second analysis presented in this thesis is a first detector level study of the

tt̄H0(H0 → bb̄) search channel which is based on a new method employing state-

of-the-art jet reconstruction and decomposition techniques where the tt̄ pair and

Higgs boson are required to have large transverse momenta and can therefore be

reconstructed as massive, fat jets. The identification of the Higgs boson relies on a

recently proposed algorithm [4] which has been adapted in [3] by constructing Higgs

and top taggers for tagging in busy environments at moderately high transverse

momentum. The hadron level study gives a statistical significance of at least 4.5σ

for a Higgs boson mass of 120 GeV and a centre-of-mass energy of
√
s= 14 TeV for an

integrated luminosity of 100 fb−1. The statistical significance of the implementation

of the analysis in the ATLAS environment was found to be 0.92σ for a centre-of-mass

energy of
√
s = 10 TeV and integrated luminosity of 100 fb−1, scaling to a 1.45σ

significance for a centre-of-mass energy of
√
s = 14 TeV. If the major backgrounds

have a systematic uncertainty of around 10% this sensitivity drops to 0.6σ for
√
s =

10 TeV. More work towards an improvement of the sensitivity has to be done and

can certainly be expected.

The feasibility of a combination of the two analyses was investigated. The best

result in terms of statistical significance was obtained by reconstructing the overlap

with the fat jets analysis. For an integrated luminosity of 100 fb−1 and for a centre-

of-mass energy of
√
s = 10 TeV a statistical significance of 1.91σ was found. This

result scales to 2.80σ for a centre-of-mass energy of
√
s = 14 TeV for 100 fb−1 and

to 1.53σ for 30 fb−1.
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