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Abstract 26	
  

Lipid nutrition of marine fish larvae has focused on supplying essential fatty acids (EFA) at high 27	
  

levels to meet requirements for growth and development. However, some deleterious effects have 28	
  

been reported suggesting that excessive supply of EFA might result in insufficient supply of energy 29	
  

substrates, particularly in species with lower EFA requirements such as Senegalese sole. This study 30	
  

addressed how the balance between EFA and non-EFA (better energy sources) affects larval 31	
  

performance, body composition and metabolism and retention of DHA, by formulating enrichment 32	
  

emulsions containing two different vegetable oil sources (olive oil or soybean oil) and three DHA 33	
  

levels. DHA positively affected growth and survival, independent of oil source, confirming that for 34	
  

sole post-larvae it is advantageous to base enrichments on vegetable oils supplying higher levels of 35	
  

energy, and supplement these with a DHA-rich oil. In addition, body DHA levels were generally 36	
  

comparable considering the large differences in their dietary supply, demonstrating that the 37	
  

previously reported ∆4 fatty acyl desaturase operates in vivo and that DHA was synthesized at 38	
  

physiologically significant rates through a mechanism involving transcriptional up-regulation of 39	
  

∆4fad, which was significantly up-regulated in the low DHA treatments Furthermore, data 40	
  

suggested that DHA biosynthesis may be regulated by an interaction between dietary n-3 and n-6 41	
  

PUFA, as well as by levels of LC-PUFA, and this may, under certain nutritional conditions, lead to 42	
  

DHA production from C18 precursors. The molecular basis of putative fatty acyl ∆5 and ∆6 43	
  

desaturation activities remains to be fully determined as thorough searches have found only a single 44	
  

(Δ4)Fads2-type transcript. Therefore, further studies are required but this might represent a unique 45	
  

activity described within vertebrate fads. 46	
  

 47	
  

 48	
  

 49	
  

  50	
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Introduction 51	
  

Until now, the major focus in lipid nutrition of marine fish larvae has been to study requirements 52	
  

for essential fatty acids (EFA), particularly for the long-chain polyunsaturated fatty acids (LC-53	
  

PUFA), docosahexaenoic (DHA), eicosapentaenoic (EPA) and arachidonic (ARA) acids. These LC-54	
  

PUFA are important components of biomembranes and dietary levels, particularly of DHA, have 55	
  

been associated with increased visual acuity and the capacity of larvae to capture prey(1), higher 56	
  

growth and survival, and reduced pigmentation abnormalities, abnormal behavior and susceptibility 57	
  

to disease and stress (increased immunity) in several species of marine fish larvae(2-5). In most 58	
  

cases, providing high dietary levels of LC-PUFA, achieved through enrichment of live prey with 59	
  

specialist oils and dried single cell products, is crucial to cultivate marine fish species as it promotes 60	
  

larval growth and increases survival(6,7). Nonetheless, in some instances, deleterious effects of 61	
  

dietary LC-PUFA have also been reported, including reduced growth of sole, Solea spp.(8-12). A 62	
  

hypothesis put forward to explain this negative effect was the possibility that excessive levels of 63	
  

dietary LC-PUFA, which have higher susceptibility to peroxidation, would result in oxidative 64	
  

stress(13,14) and/or in an insufficient supply of energy substrates, given that LC-PUFA, and 65	
  

especially DHA, are relatively poorly oxidized(15). 66	
  

Fish larval stages are characterized by extremely high growth rates (10-100% per day;16) and 67	
  

intense organogenesis, which both imply high metabolic and membrane synthesis demands. 68	
  

Therefore, it has become clear that increased attention should be given to the balance between EFA 69	
  

and other dietary fatty acids, which are the main source of metabolic energy, and to determine 70	
  

suitable ratios leading to optimized utilization (absorption and retention) of EFA, while covering the 71	
  

energetic needs of fast growing and developing fish larvae. Senegalese sole (Solea senegalensis) 72	
  

larvae and post-larvae are an interesting biological model in which to study interactions between 73	
  

dietary EFA (LC-PUFA) and non-essential fatty acids. Besides the high commercial interest of this 74	
  

species for aquaculture diversification in the South of Europe(17,18), this species is also unique 75	
  

amongst cultivated carnivorous marine fish species, given the particularly low LC-PUFA 76	
  

requirements observed during the larval and post-larval stages(9,10,19). This was recently explained at 77	
  

a molecular level by the cloning and functional characterization of a fatty acyl desaturase with ∆4 78	
  

activity (∆4fad) and a fatty acyl elongase (elovl5), which together provide Senegalese sole with the 79	
  

enzymatic machinery required for DHA synthesis from EPA(19). This discovery shortly followed the 80	
  

first description of a fatty acyl desaturase presenting ∆4 activity in a vertebrate species, also in a 81	
  

marine fish, the herbivorous rabbitfish Siganus canaliculatus(20). However, neither of the previous 82	
  

studies could demonstrate whether the pathway is active in vivo(19,20).  83	
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In the present study, the primary aim was to investigate the appropriate balance between the dietary 84	
  

supply of LC-PUFA as structural components of membranes and other fatty acids as energetic fuel 85	
  

in Senegalese sole. This was addressed by determining the effects of Artemia enrichment emulsions 86	
  

containing different DHA levels (low, medium and high), in combination with vegetable oil sources 87	
  

including olive oil, rich in the monounsaturated fatty acid oleic acid (OA-18:1n-9), and soybean oil, 88	
  

rich in the short-chain PUFA linoleic acid (LOA-18:2n-6), on body fatty acid composition and 89	
  

DHA metabolism (absorption and catabolic oxidation) of post-larvae.   90	
  

 91	
  

Materials and methods 92	
  

Larval rearing and experimental diets 93	
  

Larvae were obtained from IPMA Aquaculture Research Centre (Olhão, Portugal) at 19 days post 94	
  

hatching (dph), with an average dry weight of 0.56 + 0.25 mg. Until this age larvae were fed rotifers 95	
  

enriched with a mixture of microalgae (Nannochloropsis sp. and Isochrysis sp.), up to 5dph, 96	
  

Artemia AF nauplii up to 10dph and Artemia EG enriched with Red Pepper (BernAqua NV, 97	
  

Belgium) from 11dph onwards. At 19dph larvae were transferred to a recirculation system in the 98	
  

Centre of Marine Sciences (University of Algarve, Faro, Portugal) consisting of eighteen 3-litre flat 99	
  

bottom trays with 240 larvae each. Photoperiod was 14h light:10h dark, salinity was around 35 and 100	
  

temperature 18.5+ 0.9 ºC. 101	
  

 Larvae were fed one of six experimental treatments, consisting of Artemia metanauplii enriched 102	
  

with different oil emulsions, in triplicate trays. The emulsions were formulated with 5 g/100g 103	
  

soybean lecithin (MP Biomedicals, LLC, Illkirch, France), 3 g/100g Tween 80 (Panreac Quimica 104	
  

S.A., Castellar de Vallès, Spain), 2 g/100g alginic acid (MP Biomedicals), 1 g/100g vitamin E (MP 105	
  

Biomedicals) and 0.7 g/100g vitamin C (Rovimix STAY-C-35, DSM Nutritional Products Inc., 106	
  

Basel, Switzerland) as constant ingredients, and differed in the oil base that was used (olive oil or 107	
  

soybean oil – from 64 to 80 g/100g), and on the level of DHA supplemented in the form of 108	
  

Algatrium® (Brudy Technology, Barcelona, Spain; 5 to 24 g/100g), a specialist tuna oil providing 109	
  

high levels of LC-PUFA, mainly DHA triacylglycerols (>70% DHA; 6-8% EPA and 5-8% DPA, 110	
  

22:5n-3). Enrichments were conducted at a density of 200 nauplii/ml, over 16h, and with 0.6 g 111	
  

emulsion/l. A single batch of enriched Artemia was produced for each treatment and kept frozen at -112	
  

20ºC for the duration of the trial. Larvae were fed the Artemia, after thawing in seawater, in excess 113	
  

four times daily. At 19dph and 31dph, twenty larvae were collected from each tray for the 114	
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determination of individual dry weight. Samples were rinsed in distilled water, frozen in liquid 115	
  

nitrogen and freeze-dried. 116	
  

Animal manipulations were carried out in compliance with the Guidelines of the European Union 117	
  

Council (86/609/EU) and Portuguese legislation for the use of laboratory animals. Protocols were 118	
  

performed under license of Group-1 from the General Directorate of Veterinary (Ministry of 119	
  

Agriculture, Rural Development and Fisheries, Portugal).  120	
  

Fatty acid analysis 121	
  

Triplicate samples of Artemia from each treatment were thoroughly washed, flash-frozen and kept 122	
  

in liquid nitrogen pending fatty acid (FA) analysis. Similarly, twenty larvae were collected from 123	
  

each tray at 31dph. Total lipids were extracted in chloroform/methanol (2:1, v/v) containing 0.01% 124	
  

BHT(21,22). Subsequently, total lipids were subjected to acid-catalyzed transmethylation at 50 ºC for 125	
  

16-20 h. The fatty acid methyl esters (FAME) obtained were purified by thin-layer chromatography 126	
  

(TLC) and visualized with iodine in chloroform (1%, v/v)(22). FAME were separated and quantified 127	
  

using a gas chromatograph (Shimadzu GC 2010) equipped with a flame ionization detector (280 ºC) 128	
  

and a silica glass capillary column (SupraWax-280; 15m x 0.1 mm I.D.). The initial oven 129	
  

temperature was 100°C, raised to 250°C (at a rate of 20ºC min-1) and maintained at this temperature 130	
  

for 8 min. FAME were identified using standard mixtures (C4C24 and Mehaden oil by Supelco, 131	
  

Sigma-Aldrich, U.S.A.) as reference. 132	
  

Tube feeding procedure and metabolic trial 133	
  

To examine the absorption and metabolism of DHA, a tube feeding trial was conducted with 134	
  

larvae at 30dph using [1-14C] DHA (1.48-2.22GBq/mmol in ethanol, 37x10-6 GBq/ml, American 135	
  

Radiolabelled Chemicals Inc., St Louis, MO, USA), following the methodology and experimental 136	
  

procedures described previously(23,24). Briefly, an oil mixture was prepared containing 20µl of 137	
  

soybean oil to which 74x10-6 GBq of the radioactive tracer was added and the excess solvent 138	
  

evaporated under a stream of oxygen-free nitrogen. On the day preceding the metabolic trial, 5 139	
  

larvae from each triplicate tank were removed to smaller trays in the nutrient flux laboratory, where 140	
  

larvae were acclimated and kept unfed overnight. Before tube feeding, enriched Artemia from each 141	
  

treatment were added to the corresponding tray and larvae were allowed to feed for 1h. Ten larvae 142	
  

from each treatment were first sedated with tricaine methanesulfonate (MS-222, Sigma-Aldrich, 143	
  

U.S.A.) and then tube fed 18.4nl 14C-DHA mixture. Each larva was then individually incubated for 144	
  

24 h in vials containing 5ml of seawater in a sealed system, linked up by a capillary to a CO2 145	
  

metabolic trap (5 ml 0.5 mol/1 KOH) (23). In order to determine body retention of the label, whole 146	
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larvae were sampled and dissolved in 0.5 ml of aqueous based solubilizer (Solvable™, 147	
  

PerkinElmer, U.S.A.) at 40°C for 24h. After acidification (with 1 ml 0.1 M HCl) of the incubation 148	
  

water, the fraction of the label that was catabolized by the larvae and became entrapped in seawater 149	
  

by conversion to HCO-
3, was recovered in the metabolic trap as 14CO2 that diffused out of the water. 150	
  

Finally, the label remaining in the water corresponds to label that was evacuated unabsorbed. The 151	
  

larval dissolved tissues were prepared for scintillation counting by adding 5 ml of scintillation 152	
  

cocktail (Ultima Gold XR, PerkinElmer, USA), and the incubation water and metabolic trap by 153	
  

adding 15 ml. The samples were counted in a liquid scintillation counter (Tri-Carb 2910TR, 154	
  

PerkinElmer, U.S.A.) and the results presented as a percentage of disintegrations per minute (dpm) 155	
  

in each fraction (retained in body and catabolized) in relation to the total absorbed radiolabel (total 156	
  

tube fed minus evacuated). 157	
  

Expression of fatty acyl desaturase and elongase genes by real time quantitative PCR (qPCR)  158	
  

In order to analyze the expression of genes involved in the LC-PUFA biosynthesis pathway, 159	
  

samples of 10 post-larvae per tray were collected into RNALater (Sigma-Aldrich, USA) at 31dph. 160	
  

For RNA extraction, samples were transferred into 2-ml screw-cap tubes containing 1ml of TRIzol 161	
  

(Ambion, Life Technologies, Madrid, Spain) and approximately 50 mg of 1mm diameter zirconium 162	
  

glass beads and homogenized (Mini-Beadbeater, Biospec Products Inc., U.S.A.). Solvent extraction 163	
  

was performed following manufacturer’s instructions and RNA quality and quantity were assessed 164	
  

by gel electrophoresis and spectrophotometry (GeneQuant Pro, GE Healthcare, U.K.) using a 165	
  

nanovette microliter cell (Beckman Coulter Inc., U.S.A.). For RT-qPCR, 2 µg of total RNA per 166	
  

sample were reverse transcribed into cDNA using the High-Capacity cDNA RT kit (Applied 167	
  

Biosystems, Life Technologies, U.S.A.), following manufacturer’s instructions, but using a mixture 168	
  

of random primers (1.5 µl as supplied) and anchored oligo-dT (0.5 µl at 400 ng/µl, Eurogentec, 169	
  

Cultek, S.L., Madrid, Spain). Negative controls (containing no enzyme) were performed to check 170	
  

for genomic DNA contamination. A similar amount of cDNA was pooled from all samples and the 171	
  

remaining cDNA was diluted 60-fold with water. Quantification of the expression of fatty acyl 172	
  

desaturase (Δ4fad) and elongase (elovl5) was performed using primers reported previously(19) and 173	
  

three reference genes (ubiquitin - ubq; 40S ribosomal protein S4 - rpsa; and elongation factor 1 174	
  

alpha – ef1a1) previously validated in studies with larval Senegalese sole(25). Amplifications were 175	
  

carried out in duplicate (7300 Real time PCR System, Applied Biosystems, U.S.A.) in a final 176	
  

volume of 20 µl containing 5 µl (target genes) or 2 µl (reference genes) of diluted (1/60) cDNA, 0.5 177	
  

µM of each primer and 10 µl SYBR GREEN qPCR Master Mix (Applied Biosystems) and included 178	
  

a systematic negative control (NTC-non template control). The qPCR profiles contained an initial 179	
  

activation step at 95 °C for 10 min, followed by 35 cycles: 15 s at 95 °C, 15 s at 60ºC and 15 s at 72 180	
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°C (3-step PCR for target genes) or 15 s at 95 °C and 30 s at 70 °C (2-step PCR for reference 181	
  

genes). After the amplification phase, a melt curve was performed enabling confirmation of the 182	
  

amplification of a single product in each reaction. Non-occurrence of primer-dimer formation in the 183	
  

NTC was also confirmed. The amplification efficiency of the primer pairs was assessed by serial 184	
  

dilutions of the cDNA pool, which also allowed conversion of threshold cycle (Ct) values to 185	
  

arbitrary copy numbers. The reference genes showing the most stable expression were rpsa and 186	
  

ef1a1 and hence expression of the target genes was normalized using a factor calculated by geNorm 187	
  

for the average expression of these two genes(26).  188	
  

 Statistical analysis 189	
  

In order to examine the effects of “lipid source” and “DHA level” results were analyzed by two-190	
  

way ANOVA. Whenever an interaction was detected between the two factors, or if the “DHA 191	
  

level” was found to significantly affect the results (P<0.05), a Tukey’s multiple comparisons test 192	
  

was performed. All statistical analyses were performed with SPSS 15.0 software (IBM, New York, 193	
  

USA). Data are given as means and standard deviations (SD). 194	
  

Results  195	
  

The different dietary treatments led to significant differences in terms of growth and survival (Figs. 196	
  

1 and 2). With regards to growth, both lipid source and DHA level induced significant differences 197	
  

(P < 0.001), with dry weight being higher when larvae were fed olive oil-based diets and also 198	
  

increasing significantly with DHA level. Hence, the significantly highest growth was achieved in 199	
  

larvae fed olive oil/high DHA, and the lowest was in larvae fed soybean oil/low DHA, while no 200	
  

significant differences were found between the remaining treatments. In terms of mortality, only 201	
  

DHA level had a significant effect (P < 0.001) and the lowest mortalities were obtained with the 202	
  

two high DHA treatments, irrespective of lipid source. 203	
  

The FA compositions of the dietary treatments (enriched Artemia; Table 1) were as expected 204	
  

considering the formulation of the enrichment emulsions. Artemia enriched with the olive oil 205	
  

treatments presented higher levels of monounsaturated FA (due to the OA content), lower levels of 206	
  

n-6 PUFA (mainly related to the LOA content) and increasing percentages of LC-PUFA, 207	
  

particularly DHA, from low to high DHA supplements (0.3, 0.8 and 4.0% of total FA). In contrast, 208	
  

the soybean oil treatments showed lower levels of OA and higher levels LOA, but also presented 209	
  

increasing levels of DHA from low to high DHA treatments (0.1, 0.6 and 2.6%). Irrespective of the 210	
  

enricher, Artemia showed high levels of α-linolenic acid (ALA) that decreased as DHA level 211	
  

increased. In addition, in comparison with the low and medium DHA treatments, the high DHA 212	
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treatments presented generally lower levels of saturated FA and stearidonic acid (18:4n-3, SDA), 213	
  

and higher levels of OA, LOA, and LC-PUFA including ARA, EPA, DPA, 22:5n-6 and DHA. 214	
  

The FA compositions of the post-larvae generally reflected their diet, but there were some 215	
  

interesting deviations (Table 2). Larval DHA levels showed significant differences between 216	
  

treatments but, overall, were higher than would be expected based on diet composition. In larvae 217	
  

fed the olive oil treatments, the DHA level was significantly higher in the high DHA treatment but  218	
  

the highest level of larval DHA was obtained in the soybean oil/low DHA treatment. The EPA 219	
  

content showed a similar tendency but was less marked with fewer significant differences. The 220	
  

soybean oil/low DHA treatment was the one that least reflected the diet composition, showing much 221	
  

lower levels than expected of ALA and SDA and higher than expected levels of all LC-PUFA 222	
  

including EPA, DPA and DHA, as well as of ARA and 22:5n-6. 223	
  

The tube feeding trial revealed no significant differences between individual treatments in 224	
  

absorption, retention and catabolism of the DHA radiotracer (Fig. 3). However, two-way ANOVA 225	
  

indicated a significant effect of oil source in DHA retention, which was generally higher in larvae 226	
  

fed the soybean oil treatments (P=0.029).  227	
  

A significant effect of DHA was observed in the expression of ∆4fad (P < 0.001), which was down-228	
  

regulated by increasing levels of dietary DHA, irrespective of the oil base (Fig. 4). In contrast, no 229	
  

significant differences between treatments were observed in the expression of elovl5, despite a 230	
  

significant interaction between the two factors (P=0.040) with a trend for higher expression in 231	
  

larvae fed the olive oil/high DHA and soybean oil/low DHA treatments.  232	
  

 233	
  

Discussion 234	
  

 235	
  

Lipids have multiple key roles including being major sources of metabolic energy, critical 236	
  

components maintaining the structural and functional integrity of cell membranes, and precursors of 237	
  

important metabolites such as eicosanoids(27). However, in the context of larval fish nutrition, and 238	
  

given that the main bottleneck in rearing marine fish is the poor nutritional quality of live prey 239	
  

commonly used as feeds in hatcheries(28), most research has focused on increasing dietary levels of 240	
  

EFA, particularly DHA, and many commercial products are available for this purpose. However, 241	
  

the use of different enrichment products, which differ in physical form, ingredients and nutrient 242	
  

composition, has led to variable results both between related species as well as within the same 243	
  

species(29-32). It has long been suggested that not only total levels of EFA, but also the ratio between 244	
  

them should be considered and, furthermore, more attention should be given to the balance between 245	
  

levels of LC-PUFA and energy-yielding FA(4). This area of research is challenging and generally 246	
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little progress has been made due to the fact that marine fish larvae do not accept or perform well on 247	
  

formulated microparticulate diets. Therefore, studies require the manipulation of the biochemical 248	
  

composition of live prey, part of which is fixed, with the variable portion subject to alteration by 249	
  

their metabolism or affected by culture conditions and variability within the population(28). In the 250	
  

present study we addressed the question of how the balance between EFA and non-EFA (as better 251	
  

sources of metabolic energy) affected larval performance, body composition and the metabolism 252	
  

and retention of DHA, by formulating enrichment emulsions containing two different vegetable oil 253	
  

sources (olive oil, supplying mostly OA; and soybean oil, supplying mostly LOA) and three 254	
  

different DHA levels. It is generally well established that saturated and monounsaturated FA 255	
  

(including OA) are preferential substrates for mitochondrial and peroxisomal β-oxidation in marine 256	
  

and freshwater fish(33,34). In rainbow trout, PUFA are also readily oxidized(35) but LOA and ALA, 257	
  

which are EFA in freshwater fish and can be elongated and desaturated to LC-PUFA, have a slower 258	
  

oxidation rate(34). In the marine teleost Myoxocephalus octodecimspinosus, mitochondrial selectivity 259	
  

for PUFA was less than 10% that of palmitoyl CoA (16:0) and the presence of polyunsaturated acyl 260	
  

CoA esters  inhibited the oxidation of palmitoyl CoA by intact peroxisomes by up to 70 %(33). In 261	
  

Senegalese sole post-larvae, catabolic oxidation of a tube fed DHA radiotracer was found to be 262	
  

minimal, while OA was mostly oxidized, at similar or higher levels than stearic acid (18:0)(24). In 263	
  

the present study, the oil base of the diets appeared to affect growth as larval weights were higher in 264	
  

fish fed the olive oil treatments. However, this study was hindered by the common difficulties in 265	
  

trying to manipulate precisely the biochemical composition of live preys as mentioned above and, 266	
  

unfortunately, these treatments also provided higher levels of DHA than the equivalent soybean oil-267	
  

based treatments. Hence, it cannot be unequivocally determined whether the effect was due to the 268	
  

higher OA of the olive oil diets that might be a better energy source that LOA. In contrast, it was 269	
  

clear that dietary DHA level significantly and positively affected growth and survival, independent 270	
  

of the base oil used in the enrichers. In previous studies, high dietary DHA levels were not always 271	
  

beneficial for growth and survival of Senegalese sole larvae and it was hypothesized that this may 272	
  

be due to an excessive supply of LC-PUFA, relative to the low requirements of the species, that 273	
  

reduced dietary space for other FA with higher energy availability(9,10). The present experiment 274	
  

confirms that for rearing Senegalese sole larvae it is advantageous to base enrichment emulsions on 275	
  

vegetable oils, which supply higher levels of energy substrates, and to supplement these with a 276	
  

DHA-rich oil, to achieve a correct balance between dietary energy and EFA. 277	
  

Recently, we cloned and functionally characterized two enzymes of the LC-PUFA biosynthesis 278	
  

pathway, including a fatty acyl desaturase (Fad) with ∆4 activity(19). Although ∆4 desaturation 279	
  

represents the simplest and most direct route for biosynthesis of DHA from EPA, for several 280	
  

decades the presence of this pathway could not be demonstrated, other than in lower 281	
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eukaryotes(36,37). Furthermore, Sprecher and co-workers in the early 1990s revealed a Δ4-282	
  

independent pathway for DHA synthesis, involving two sequential elongations of EPA to 24:5n−3 283	
  

followed by Δ6 desaturation and limited peroxisomal β-oxidation(38,39),which for long remained the 284	
  

only accepted mechanism for DHA biosynthesis in vertebrates (Fig. 5). This view changed recently, 285	
  

when Li et al. reported a gene coding for ∆4 Fad in the marine herbivorous rabbitfish Siganus 286	
  

canaliculatus(20), shortly followed by the discovery of a similar gene in Senegalese sole(19). 287	
  

However, both studies used a heterologous (yeast) expression system to assay function and thus it 288	
  

was not possible to determine whether such activity is present and operates in vivo. In the sole 289	
  

study, a nutritional trial with larvae and post larvae tested extreme diets with either very high 290	
  

(Artemia enriched with a commercial product) or very low (non-enriched Artemia) LC-PUFA 291	
  

contents(19) but the body composition (DHA content) still reflected the dietary FA composition, 292	
  

with significantly lower levels of DHA being found in larvae and post-larvae fed the non-enriched 293	
  

Artemia, in spite of an up-regulation of ∆4fad expression in fish fed this treatment. In the present 294	
  

study, we provide for the first time evidence that the LC-PUFA pathway is indeed active in vivo in 295	
  

sole larvae and that DHA is synthesized from EPA at physiologically significant rates through a 296	
  

mechanism involving the transcriptional up-regulation of ∆4fad when dietary DHA is limiting. This 297	
  

is evidenced by the fact that, even although larval DHA contents showed significant differences 298	
  

between treatments, these levels were generally higher than would be expected based on diet 299	
  

compositions. In addition, the present results suggest that sole larvae also appear to be capable of 300	
  

biosynthesizing DHA from ALA, particularly under dietary conditions of low supply of DHA and 301	
  

high availability of the C18 precursor. Thus, although DHA levels in larvae fed the olive oil 302	
  

treatments were higher in larvae fed the high DHA diet, it was quite unexpected that the highest 303	
  

DHA level was obtained in larvae fed the soybean oil/low DHA treatment. This cannot be explained 304	
  

simply by higher retention of DHA supplied by the diet, as the tube feeding trial showed that, even 305	
  

though 14C-DHA retention was generally higher in larvae fed the soybean oil treatments, this was 306	
  

not particularly accentuated in the soybean oil/low DHA treatment. Additionally, larvae fed this 307	
  

treatment did not directly reflect diet composition, showing higher than expected levels EPA, DPA, 308	
  

DHA, ARA and 22:5n-6 and much lower than expected levels of ALA, LOA and SDA. The 309	
  

biosynthesis of ARA and EPA from LOA and ALA, respectively, involves an initial ∆6 310	
  

desaturation, followed by chain elongation, and a further ∆5 desaturation(7). Therefore, the FA 311	
  

composition of larvae fed the soybean oil/low DHA treatment shows higher levels than expected of 312	
  

LC-PUFA products of not just ∆4-desaturation activity (DHA and 22:5n-6), but also of ∆5 313	
  

desaturation activity (EPA and ARA) and lower levels of substrates of ∆6 desaturase (ALA and 314	
  

LOA).  315	
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The molecular basis of putative fatty acyl ∆5 and ∆6 desaturation activities in Senegalese sole 316	
  

remains to be fully determined. Previously, functional characterization of the sole ∆4 Fad showed 317	
  

that the enzyme also displayed ∆5 activity at a level around 15 % of the ∆4 activity for n-3 318	
  

substrates(19). This may be biologically relevant but only trace levels (0.3-0.6 % conversion) of ∆6 319	
  

activity were reported to be associated with the ∆4 Fad. However, as vertebrate ∆4 activity was 320	
  

highly novel, the yeast functional assay was repeated using a different ORF clone and, in this assay, 321	
  

all activities were slightly higher and ∆6 activity (1.0-4.7% conversion) was clearly present 322	
  

(unpublished). However, a single enzyme protein expressing all three (∆6, ∆5 and ∆4) fatty acyl 323	
  

desaturase activities is unprecedented. To put this in context, in the only other vertebrate where ∆4 324	
  

fatty acyl desaturase has been reported so far, the rabbitfish, two separate Fads2-related genes have 325	
  

been characterized, one having ∆6/∆5 activity and the other with ∆4 activity(20). Although the Fads1 326	
  

(∆5) gene is believed to have been lost from the teleost lineage, at least one ∆6fad has been found in 327	
  

all teleost species examined so far(40). Atlantic salmon (Salmo salar) have separate ∆5 and ∆6 328	
  

genes(41,42), being both of the Fads2-type(40). In contrast, the freshwater teleost, zebrafish (Danio 329	
  

rerio), has a single bifunctional desaturase with both ∆5 and ∆6 activities(43). In both these cases, ∆5 330	
  

activity is believed to have evolved subsequent to the loss of the Fads1-∆5 gene, through mutations 331	
  

(duplication/diversification) of Fads2-∆6-type genes(40). Despite serious efforts to find another Fad 332	
  

with predominant ∆6 activity in Senegalese sole, both through cloning using degenerated primers 333	
  

for ∆6fad genes, and in silico searches of a Solea transcriptome next-generation 454 sequencing 334	
  

database (generated from different tissues, developmental stages or stimuli treatments) with a global 335	
  

assembly containing >4 million reads and >250K UniGenes (SoleaDB, 336	
  

http://www.juntadeandalucia.es/agriculturaypesca/ifapa/soleadb_ifapa/home_page;44), only the 337	
  

single previously characterized (Δ4)Fads2-type transcript has been found(19).  338	
  

Castro et al. (40) suggested that the evolution and variability found in teleost Fads2-type genes might 339	
  

be linked to habitat-specific food web structures in different environments, and we had previously 340	
  

commented on the natural dietary regime of S. senegalensis that, due to its benthic lifestyle, differs 341	
  

from other commonly cultivated carnivorous fish species, having a diet generally poor in lipid and 342	
  

with substantially higher levels of EPA than DHA(19). Further studies are required for confirmation 343	
  

but, at present, our results suggest that in this species there is a single Fads2-type gene which has a 344	
  

predominant ∆4 activity but that, under particular dietary conditions of low DHA levels combined 345	
  

with high levels of C18PUFA, may act also on ∆6 and ∆5 substrates to biosynthesize DHA from C18 346	
  

precursors. This appears to be tightly regulated given that biochemical signs of desaturation and 347	
  

elongation of C18PUFA, associated with the highest up-regulation of ∆4fad transcription, were only 348	
  

observed in post-larvae fed the dietary treatment (soybean oil/low DHA) with lowest DHA, highest 349	
  

ALA, and also high LOA. 350	
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It should be noted that the other enzyme involved in the LC-PUFA biosynthesis pathway and 351	
  

cloned from S. senegalensis, elovl5, has wide substrate specificity and can elongate C18 up to C22
(19) 352	
  

and, hence, this enzyme would be capable of performing all of the elongations necessary in the 353	
  

biosynthesis pathway of DHA from ALA,  via a Δ4Fad. As shown previously, the expression of 354	
  

elovl5 does not appear to be significantly regulated by diet, although a trend of higher expression in 355	
  

the soybean oil/low DHA treatment, resulting in significant interaction between the two factors, 356	
  

lipid source and DHA level, was observed.  357	
  

In conclusion, DHA positively affected growth and survival in this study, independently of the oil 358	
  

source used. The difficulty in manipulating precisely the biochemical composition of live preys, 359	
  

which unfortunately is quite common in larval nutrition studies, did not enable ascertaining whether 360	
  

one oil type improved growth relative to the other. Nonetheless, results show that for sole post-361	
  

larvae it is advantageous to base enrichments on vegetable oils supplying higher levels of energy, 362	
  

and supplement these with a DHA-rich oil, at least at the inclusion levels tested here. Finally, an 363	
  

unexpected outcome of the results was to point out that this marine teleost may be capable of DHA 364	
  

synthesis from ALA. This hypothesis requires to be fully tested but, if proved, would be highly 365	
  

novel and would establish Senegalese sole as an interesting model in which to study this important 366	
  

pathway and its regulation by dietary composition in lower vertebrates.   367	
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Table 1. Fatty acid composition (% total FA) of Artemia metanauplii enriched with the different experimental emulsions. Represented are also p-1	
  

values of the 2-way ANOVA analysis and, whenever a significant interaction was found, a Tukey test was performed (numbers with different 2	
  

letters within the same row are significantly different, at P<0.05). 3	
  

  Olive oil     Soybean oil     2-way ANOVA 

 

Low DHA 

 

Medium DHA 

 

High DHA 

  

Low DHA 

 

Medium DHA 

 

High DHA 

  

Oil base 

 

DHA level 

 

Oil*DHA 
Fatty acids (%) Mean 

 
SD 

 

Mean 

 

SD 

 

Mean 

 

SD 

  

Mean 

 

SD 

 

Mean 

 

SD 

 

Mean 

 

SD 

       

14:0 0.6 

 

0.0 b 0.6 

 

0.0 c 0.4 

 

0.0 e 
 

0.7 

 

0.0 a 0.5 

 

0.0 d 0.4 

 

0.0 e 
 

n.s. 

 

<0.0001 

 

0.0001 
16:0 11.8 

 

0.3 ab 11.9 

 

0.4 a 9.8 

 

0.1 d 
 

11.9 

 

0.3 a 11.0 

 

0.1 c 11.1 

 

0.1 bc 
 

n.s. 

 

<0.0001 

 

<0.0001 
18:0 5.1 

 

0.1 b 5.1 

 

0.1 b 4.5 

 

0.1 c 
 

5.4 

 

0.2 a 5.1 

 

0.0 b 5.0 

 

0.1 b 
 

<0.0001 

 

<0.0001 

 

0.0063 
Other SFA 2.6 

 

0.0 
 

2.5 

 

0.1 
 

1.9 

 

0.0 
  

3.0 

 

0.1 
 

2.7 

 

0.2 
 

2.0 

 

0.0 
  

0.0004 

 

<0.0001 

 

n.s. 
Total - SFA 20.0 

 

0.4 ab 20.0 

 

0.6 ab 16.5 

 

0.2 d 
 

21.0 

 

0.5 a 19.4 

 

0.3 bc 18.5 

 

0.2 c 
 

0.0028 

 

<0.0001 

 

0.0005 
16:1 2.9 

 

0.0 b 2.7 

 

0.0 c 2.3 

 

0.0 e 
 

3.0 

 

0.0 a 2.5 

 

0.0 d 1.6 

 

0.0 f 
 

<0.0001 

 

<0.0001 

 

<0.0001 
18:1 31.2 

 

0.3 c 31.9 

 

0.3 b 45.7 
 

0.2 a 
 

26.8 

 

0.1 e 26.9 

 

0.2 e 29.5 

 

0.1 d 
 

<0.0001 

 

<0.0001 

 

<0.0001 
20:1 0.6 

 

0.0 
 

0.6 

 

0.0 
 

0.5 

 

0.0 
  

0.7 

 

0.2 
 

0.6 

 

0.1 
 

0.6 

 

0.0 
  

0.0194 

 

n.s. 

 

n.s. 
Other MUFA 0.9 

 

0.1 
 

0.9 

 

0.1 
 

0.5 

 

0.0 
  

0.9 

 

0.2 
 

1.0 

 

0.0 
 

0.5 

 

0.1 
  

n.s. 

 

<0.0001 

 

n.s. 
Total - MUFA 35.6 

 

0.3 b 36.1 

 

0.3 b 49.0 

 

0.2 a 
 

31.4 

 

0.2 d 31.1 

 

0.4 d 32.2 

 

0.1 c 
 

<0.0001 

 

<0.0001 

 

<0.0001 
18:2n - 6 5.9 

 

0.1 de 5.7 

 

0.1 e 6.3 

 

0.1 d 
 

8.0 

 

0.1 c 13.4 

 

0.2 b 24.4 

 

0.2 a 
 

<0.0001 

 

<0.0001 

 

<0.0001 
18:3n - 6 0.1 

 

0.2 
 

0.1 

 

0.2 
 

0.1 

 

0.1 
  

0.1 

 

0.2 
 

0.1 

 

0.2 
 

0.1 

 

0.1 
  

n.s. 

 

n.s. 

 

n.s. 
20:3n - 6 0.1 

 

0.0 
 

0.0 

 

0.0 
 

0.0 

 

0.0 
  

0.0 

 

0.0 
 

0.0 

 

0.0 
 

0.0 

 

0.0 
  

n.s. 

 

n.s. 

 

n.s. 
20:2n - 6 0.2 

 

0.0 
	
  

0.2 

 

0.0 
	
  

0.2 

 

0.0 
	
   	
  

0.2 

 

0.0 
	
  

0.2 

 

0.0 
	
  

0.2 

 

0.0 
	
   	
  

<0.0001 

	
  

0.0015 

 

n.s. 
20:4n - 6 0.2 

 

0.0 b 0.2 

 

0.0 b 0.3 

 

0.0 a 
 

0.2 

 

0.0 b 0.2 

 

0.0 b 0.2 

 

0.0 b 
 

<0.0001 

 

<0.0001 

 

<0.0001 
22:5n - 6 0.0 

 

0.0 c 0.0 

 

0.0 c 0.2 

 

0.0 a 
 

0.0 

 

0.0 c 0.0 
 

0.0 c 0.1 

 

0.0 b 
 

<0.0001 

 

<0.0001 

 

<0.0001 
Total n - 6 PUFA 6.5 

 

0.1 e 6.2 

 

0.1 e 7.0 

 

0.1 d 
 

8.6 

 

0.2 c 14.0 

 

0.0 b 25.0 

 

0.1 a 
 

<0.0001 

 

<0.0001 

 

<0.0001 
18:3n - 3 26.1 

 

0.7 ab 25.4 

 

0.7 b 15.2 

 

0.2 c 
 

27.5 

 

0.5 a 24.7 

 

0.5 b 14.3 

 

0.2 c 
 

n.s. 

 

<0.0001 

 

0.0059 
18:4n - 3 3.8 

 

0.2 
 

3.8 

 

0.3 
 

1.8 

 

0.0 
  

3.8 

 

0.2 
 

3.5 

 

0.1 
 

1.6 

 

0.0 
  

0.0413 

 

<0.0001 

 

n.s. 
20:3n - 3 0.8 

 

0.0 a 0.8 

 

0.0 a 0.5 

 

0.0 b 
	
  

0.8 

 

0.0 a 0.8 

 

0.0 a 0.4 

 

0.0 c 
	
  

n.s. 

	
  

<0.0001 

	
  

0.0002 
20:4n - 3 0.7 

 

0.0 
 

0.7 

 

0.0 
 

0.4 

 

0.0 
  

0.7 

 

0.0 
 

0.7 

 

0.0 
 

0.5 

 

0.0 
  

n.s. 

 

<0.0001 

 

n.s. 
20:5n - 3 0.7 

 

0.1 c 0.8 

 

0.1 c 1.8 

 

0.1 a 
 

0.7 

 

0.1 c 0.8 

 

0.0 c 1.3 

 

0.0 b 
 

0.0001 

 

<0.0001 

 

<0,0001 
22:5n - 3 0.0 

 

0.0 d 0.1 

 

0.0 c 0.5 

 

0.0 a 
 

0.0 

 

0.0 d 0.0 

 

0.0 d 0.3 

 

0.0 b 
 

<0.0001 

 

<0.0001 

 

<0.0001 
22:6n - 3 0.3 

 

0.0 d 0.8 

 

0.0 c 4.0 

 

0.2 a 
 

0.1 

 

0.1 d 0.6 

 

0.0 c 2.6 

 

0.1 b 
 

<0.0001 

 

<0.0001 

 

<0.0001 
Total n - 3 PUFA 32.9 

 

1.0 ab 32.8 

 

1.2 ab 24.6 

 

0.5 c 
 

34.2 

 

0.8 a 31.6 

 

0.7 b 21.2 

 

0.3 d 
 

0.0123 

 

<0.0001 

 

0.0009 
DHA/EPA 0.4 

 

0.1 
 

0.9 

 

0.1 
 

2.3 

 

0.0 
  

0.2 

 

0.1 
 

0.7 

 

0.0 
 

2.1 

 

0.1 
  

0.0004 

 

<0.0001 

 

n.s. 
Total PUFA 39.9   0.6 c 39.6   0.8 c 31.9   0.5 d   43.1   0.6 b 45.8   0.7 a 46.5   0.3 a   <0.0001   <0.0001   <0.0001 
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Table 2. Fatty acid composition (% total FA) of Solea senegalensis post-larvae (31dph) fed the different experimental treatments. Represented 1	
  

are also p-values of the 2-way ANOVA analysis and, whenever a significant interaction was found, a Tukey test was performed (numbers with 2	
  

different letters within the same row are significantly different, at P<0.05). 3	
  

  Olive oil     Soybean oil     2-way ANOVA 

 
Low DHA 

 

Medium DHA 

 

High DHA 

  

Low DHA 

 

Medium DHA 

 

High DHA 

  

Oil base 

 

DHA level 

 

Oil*DHA 
Fatty acids Mean 

 

SD 

 

Mean 

 

SD 

 

Mean 

 

SD 

  

Mean 

 

SD 

 

Mean 

 

SD 

 

Mean 

 

SD 

       

14:0 0.6 

 

0.1 ab 0.6 

 

0.0 ab 0.5 

 

0.1 b 
 

0.8 

 

0.1 a 0.6 

 

0.1 ab 0.6 

 

0.2 ab 
 

0.0119 

 

n.s. 

 

n.s. 
16:0 12.8 

 

0.9 b 12.8 

 

0.7 b 12.5 

 

0.7 b 
 

15.7 

 

0.9 a 13.2 

 

0.7 b 13.6 

 

1.0 b 
 

<0.0001 

 

0.0026 

 

0.0076 
18:0 7.8 

 

0.8 b 8.0 

 

0.6 b 7.4 

 

0.7 b 
 

10.3 

 

0.8 a 8.4 

 

0.7 b 8.0 

 

0.3 b 
 

<0.0001 

 

0.0003 

 

0.0026 
Other SFA 3.4 

 

0.6 bc 3.6 

 

0.3 bc 2.9 

 

0.5 c 
 

4.6 

 

1.1 a 3.8 

 

0.7 b 3.1 

 

0.9 c 
 

0.0010 

 

<0.0001 

 

0.0031 
Total - SFA 24.7 

 

2.2 b 25.0 

 

1.5 b 23.4 

 

1.4 b 
 

31.3 

 

1.8 a 25.9 

 

1.7 b 25.4 

 

1.7 b 
 

<0.0001 

 

0.0002 

 

0.0018 
16:1 2.8 

 

0.2 ab 2.9 

 

0.3 a 2.5 

 

0.2 ab 
 

2.4 

 

0.4 ab 2.5 

 

0.2 ab 1.9 

 

0.2 c 
 

<0.0001 

 

<0.0001 

 

n.s. 
18:1 28.4 

 

1.1 b 26.0 

 

1.3 c 34.8 

 

0.8 a 
 

22.6 

 

1.0 d 23.1 

 

1.5 d 24.2 

 

2.1 cd 
 

<0.0001 

 

<0.0001 

 

<0.0001 
20:1 1.0 

 

0.0 a 0.9 

 

0.1 ab 0.8 

 

0.1 ab 
 

0.8 

 

0.2 ab 0.8 

 

0.1 ab 0.7 

 

0.2 b 
 

0.0166 

 

n.s. 

 

n.s. 
Other MUFA 0.5 

 

0.2 abc 0.7 

 

0.2 a 0.3 

 

0.1 c 
 

0.4 

 

0.2 abc 0.5 

 

0.1 ab 0.4 

 

0.2 bc 
 

n.s. 

 

0.0001 

 

0.0703 
Total - MUFA 32.6 

 

1.3 b 30.5 

 

1.5 b 38.3 

 

1.0 a 
 

26.3 

 

1.1 c 26.9 

 

1.5 c 27.2 

 

0.7 c 
 

<0.0001 

 

<0.0001 

 

<0.0001 
18:2n-6 7.3 

 

0.4 b 5.9 

 

0.2 b 6.4 

 

0.3 b 
 

6.7 

 

0.9 b 11.1 

 

0.7 ab 14.1 

 

6.8 a 
 

0.0005 

 

0.0496 

 

0.0101 
18:3n-6 0.0 

 

0.0 
 

0.0 

 

0.0 
 

0.0 

 

0.0 
  

0.2 

 

0.3 
 

0.1 

 

0.2 
 

0.0 

 

0.0 
  

0.0462 

 

n.s. 

 

n.s. 
20:3n-6 0.2 

 

0.0 ab 0.2 

 

0.0 ab 0.0 

 

0.1 c 
 

0.3 

 

0.0 a 0.2 

 

0.0 ab 0.1 

 

0.1 bc 
 

0.0088 

 

0.0001 

 

n.s. 
20:2n-6 0.3 

 

0.0 bc 0.3 

 

0.1 c 0.3 

 

0.0 c 
 

0.3 

 

0.1 bc 0.5 

 

0.1 a 0.4 

 

0.1 ab 
 

0.0002 

 

n.s. 

 

0.0145 
20:4n-6 1.8 

 

0.3 bc 1.9 

 

0.2 bc 1.5 

 

0.1 c 
 

2.8 

 

0.3 a 2.0 

 

0.1 b 1.9 

 

0.3 bc 
 

<0.0001 

 

<0.0001 

 

0.0003 
22:5n-6 1.1 

 

0.2 bc 1.1 

 

0.1 bc 0.9 

 

0.0 c 
 

1.7 

 

0.2 a 1.2 

 

0.1 bc 1.3 

 

0.4 b 
 

<0.0001 

 

0.0024 

 

0.0185 
Total n - 6 PUFA 10.7 

 

0.4 bc 9.4 

 

0.3 c 9.2 

 

0.4 c 
 

12.1 

 

1.2 bc 15.1 

 

0.5 ab 17.8 

 

6.2 a 
 

<0.0001 

 

n.s. 

 

0.0143 
18:3n-3 15.5 

 

1.8 ab 17.4 

 

0.8 a 12.7 

 

0.5 bc 
 

11.5 

 

1.6 c 15.0 

 

1.0 abc 13.4 

 

4.0 bc 
 

0.0115 

 

0.0021 

 

0.0313 
18:4n-3 2.6 

 

0.4 a 2.9 

 

0.2 a 1.7 

 

0.1 c 
 

1.2 

 

0.3 c 2.4 

 

0.2 ab 1.8 

 

0.7 bc 
 

0.0001 

 

<0.0001 

 

0.0002 
20:3n-3 1.4 

 

0.1 
 

1.4 

 

0.1 
 

1.1 

 

0.0 
  

1.3 

 

0.1 
 

1.4 

 

0.1 
 

1.2 

 

0.4 
  

n.s. 

 

0.0121 

 

n.s. 
20:4n-3 0.9 

 

0.1 ab 1.0 

 

0.1 a 0.6 

 

0.0 c 
 

0.7 

 

0.1 abc 0.9 

 

0.1 abc 0.7 

 

0.3 bc 
 

n.s. 

 

0.0004 

 

n.s. 
20:5n-3 1.5 

 

0.2 c 1.7 

 

0.2 abc 2.1 

 

0.2 a 
 

2.0 

 

0.3 ab 1.6 

 

0.2 bc 1.8 

 

0.2 abc 
 

n.s. 

 

0.0158 

 

0.0057 
22:5n-3 1.0 

 

0.1 d 1.0 

 

0.1 d 1.5 

 

0.1 a 
 

1.3 

 

0.1 b 1.1 

 

0.1 cd 1.2 

 

0.1 bc 
 

n.s. 

 

<0.0001 

 

<0.0001 
22:6n-3 5.6 

 

0.9 c 5.6 

 

0.5 c 7.0 

 

0.3 ab 
 

7.5 

 

0.7 a 6.0 

 

0.4 bc 6.4 

 

0.5 bc 
 

0.0050 

 

0.0013 

 

0.0001 
Total n - 3 PUFA 29.1 

 

2.0 ab 31.6 

 

1.4 a 27.1 

 

1.2 ab 
 

26.3 

 

1.3 b 28.9 

 

1.0 ab 27.0 

 

5.5 ab 
 

n.s. 

 

0.0236 

 

n.s. 
DHA/EPA 3.6 

 

0.4 
 

3.3 

 

0.4 
 

3.4 

 

0.2 
  

3.9 

 

0.5 
 

3.7 

 

0.4 
 

3.6 

 

0.7 
  

n.s. 

 

n.s. 

 

n.s. 
Total PUFA 40.4   2.0 b 41.4   1.5 b 36.3   1.1 c   39.1   0.9 b 44.6   1.3 a 45.3   1.5 a   <0.0001   0.0001   <0.0001 
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Figure legends 

 

Fig. 1. Dry weight (mg/larva) of Senegalese sole post-larvae fed each dietary treatment 

at the end of experimental period (31dph). Different letters represent significant 

differences between treatments (Tukey test; P<0.05). Results are means (n=60) with 

SD. 

 

Fig. 2. Larval mortality (%) of Senegalese sole larvae fed each dietary treatment at the 

end of experimental period (31dph). Different letters represent significant differences 

between treatments (Tukey test; P<0.05). Results are means (n=3) with SD. 

 

Fig. 3. Absorption (black), retention (dark grey) and catabolism (light grey) of DHA in 

Senegalese sole larvae tube-fed 14C-DHA at 30dph. Absorption is expressed as % of 

total label that was tube fed, and retention and catabolism correspond to the percentage 

of label found in the body and metabolic trap compartments, respectively, in relation to 

total absorption. Soybean oil lead to a significantly higher DHA body retention than 

olive oil (two-way ANOVA, P= 0.029). Results are means (n=10) with SD. 

 

Fig. 4. Nutritional regulation of fatty acyl desaturase (∆4fad; black) and elongase 

(elovl5; grey) expression in whole Senegalese sole post-larvae at 31dph, determined by 

qPCR. Results were normalized by a normalizing factor representing average 

expression of rpsa and ef1a1. Different letters represent significant differences between 

treatments for ∆4fad (Tukey test; P<0.05); no significant differences were found for 

elovl5. Results are means (n=3) with SD. 

 

Fig. 5. Schematic representation of the LC-PUFA biosynthesis pathway, including the 

complement of enzymes intervening in the different steps (not all are necessarily present 

in a same species). 
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Fig1. Dry weight (mg/larva) of Senegalese sole larvae fed olive oil (a) and soybean (b) treatments at the end of 
experimental period (31 DAH). Letters mean statistical differences due to treatments (one-way ANOVA, Tukey test; 
P<0.05). 

 
 

 
Fig2. Larvae mortality (%) of Senegalese sole larvae fed each treatment at the end of experimental period (31 DAH). 
Letters mean statistical differences due to treatments (one-way ANOVA; Tukey test; P<0.05). 
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Fig4. Absorption (dark), retention (dark grey) and catabolism (light grey) of DHA in Senegalese sole larvae tube-fed 
14C-DHA at 30 DAH. Soybean oil lead to a significantly higher DHA retention than olive oil (two-way ANOVA, P= 
0.029). 

 

 
 

Fig5. qPCR results for elongase elovl5 (grey) and desaturase d4fad (black) enzymes in larvae fed olive oil (a) and 
soybean oil (b) treatments. Results were normalized using two genes; ELF1A1+RPSA, with D-T4. Letters mean 
statistical differences in d4fad values due to treatments, elovl5 did not show significant differences (one-way 
ANOVA; Tukey test; P<0.05). 

 

 

Fig6. Schematic representation of the LC-PUFA biosynthesis pathway, including the complement of enzymes 
intervening at the different steps (note: not all are necessarily present in a same species). 
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