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     Abstract- This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing 

(VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant 

controller ensuring trajectory tracking for the nonlinear uncertain system represented by Takagi-Sugeno (T-S) 

model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the 

faults and the faulty system states. Based on Lyapunov theory and ℒ2 optimization, the trajectory tracking 

performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of 

linear matrix inequalities (LMI). Simulation results show that the proposed controller is robust with respect to 

uncertainties on the mechanical parameters that characterize the model and secures global convergence. 

       Keywords: TS fuzzy systems, fault and state estimation, PI, ℒ2 norm, VTOL aircraft, LMI. 

 

1. Introduction 
 

       In the last three decades, the need for increased flight safety and aircraft reliability has been and will 

continue to be an important issue in commercial aviation industry. All pilots undergo widespread training to help 

them to be able to react to unexpected difficulties that may happen during a flight in uncertain conditions. 

Furthermore, advanced fault-tolerant control (FTC) systems are designed to help pilots overcome abnormal 

situations that previously might have resulted in catastrophic events.  

       Aircrafts today handle fault detection and isolation via redundant actuators and sensors. Voting schemes 

based on the health of independent channels are used to detect component failures. Command and control often 

have triplex or quad redundancy of critical flight control hardware including actuators, sensors and the flight 

control computer ensure a fault tolerant architecture. The importance of FTC has helped to simulate a growing 

body of research work in the area. A recent paper by Zhang and Jiang [1] provides a classification and 

bibliographical review of FTC in general, especially for the so-called active FTC [2]. In terms of flight control 

applications, the survey paper of [3] describes the latest development in this subarea. The paper [4 ], represents 

some of the most important recent research in the field of flight fault tolerant control using sliding-mode 

techniques. In [5 ] , the problem of the FT control of aircraft in the presence of both unknown input 

disturbance and sensor failure is presented. The sensor faults are detected by a full-order unknown input 

observer (UIO ), and then the faults are isolated by a bank of UIO s in the framework of the generalized 

observer scheme. 

       FTC is a control technique that allows the ability to conserve overall system stability and satisfactory 

performance in the occurrence of component failures [6-8]. FTC problem for linear systems have been widely 

studied [7], [9] and have been extended to the nonlinear and descriptor systems [10-12]. Regrettably, the design 

of FTC for nonlinear systems is far more complicated. Fortunately, as shown in [13], Takagi-Sugeno (T-S) fuzzy 

modeling concepts can be used to overcome this defect for the nonlinear plant systems [35-36]. Consequently 

fault tolerant controls, for several kind of T-S fuzzy model have been strongly investigated and a lot of works, 

involving various specifications, are now available. Among this literature we find FTC for uncertain and 

disturbed models [14-15], time delay models with and without uncertainties [16-17], uncertain descriptor delay 

models [18-19].  

        Despite numerous works presented, a few authors have dealt with the tracking problem for uncertain T-S 

and faulty models. For example, in [20] an adaptive fault tolerant tracking control scheme is developed based on 

the online estimation of actuator faults. In [21] a fault tolerant control law is designed for T-S models with 
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unmeasurable premise variable using a proportional integral observer. The aims were to compensate the actuator 

faults and allowing the system states to track a reference corresponding to a fault free situation. The objective of 

this study is to exploit the effectiveness of the FTC law for the trajectory tracking problem of a VTOL aircraft 

system such that the closed loop fuzzy uncertain system can maintain stability and performances for the actuator 

fault case. The main contribution of the paper is the proposition of a LMI formulation to derive the proposed 

FTC law for an aircraft system with respect to uncertainties on the mechanical parameters that characterize the 

model. 

       The paper is organized as follows: in the next section, an uncertain T-S fuzzy representation for the VTOL 

aircraft system is obtained from nonlinear model. Hence, the entire VTOL system can be structured as several 

interconnected subsystems. The problem of fault tolerant controller design is formulated in section 3. The 

reference model, observer and T-S fuzzy uncertain faulty models are then presented. An active FTC approach is 

considered where the stability conditions for the whole closed-loop system derived in LMI formulation are 

developed. Finally, simulation results, showing the tracking performance of the VTOL aircraft model are given 

in the last section. 

 

2. Plant Model and T-S Modeling 

 

2.1. VTOL aircraft model 

 

       The purpose of this paper is the design of fault tolerant control law for a VTOL aircraft model. As in [22] a 

simplified model describing the motion of this aircraft in the vertical lateral plane is the following one. Let     

and   denote, respectively, the horizontal and vertical position of the center of mass   and the roll angle of the 

aircraft with respect to the horizon, as in fig.1. The control inputs are the thrust   directed out the bottom of the 

aircraft and the rolling moment produced by a couple equal forces   acting at the wingtips.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Forces acting on the aircraft. 

 

 

 

     Their direction is not perpendicular to the horizontal body axis, but titled by some fixed angle  . if   denotes 

the mass of the aircraft,   the moment of inertia about the center of mass,   the distance between the wingtips and 

  the gravitational acceleration, the motion of the aircraft on the lateral-vertical plane is modeled by the 

equations: 
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Choosing     ,     ̇,     ,     ̇,     ,     ̇ yields the sixth dimensional system 
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In order to obtain the best possible performance from this highly nonlinear system, the following sub-section 

gives a T-S fuzzy representation of the system (3) 

 

2.2. Takagi-Sugeno model representation 

 

       Note that a T-S model is not unique for a given nonlinear system. Using the well-known sector nonlinearity 

approach [23], a T-S model structure is obtained where the nonlinear entries of the input matrix are considered as 

"premise variables" and denoted  ( )(       ). For   premise variables,      submodels will be obtained. 

The above model is constituted by two nonlinearities: 
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For the premise variables choice (7),  ( )  [  ( )   ( )]
   is measurable. The local weighting functions are 
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Finally, the weighting functions of the derived T-S model are given by: 
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Fig.2. Membership functions evolution 

 

The constant matrices    defining the 4 submodels, are determined by replaycing the premise variables    in the 

matrices  ( ( )) with the scalars  
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In definitions (11), the indexes    
 
(         and        )  are equal to min or max and indicates which 

partition of the     premise variable (  
  or   

 ) is involved in the     submodel. Consequently the nonlinear 

model (3) can be proposed as: 
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Consider the model (12), we assume that only (  ( ),   ( ),   ( )) are measurable. This gives the following 

matrix C: 
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2.3. Faulty uncertain T-S model  

 

       In order to point up the proposed approach additional actuator faults are used, and are injected to the T-S 

model (12) representing the VTOL aircraft. We assumed that at     (   ) , due to the occurrence of fault, the 
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actuator    starts providing half of the thrust it is required to. Independently, at     (   ), the control action 

provided by the other actuator is reduced to 95% of its nominal value. We model these two faults with the 

signals [32] 
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      The control strategy described in this paper is aimed-among other things-at offsetting the effect of major 

parameter uncertainties, such as those regarding the mass   of the aircraft (and hence its moment of inertia    
about the center of mass). in view of this, we set in what follows: 
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where   ,    represent nominal values. Consequently, the structure of the T-S model (12) representing the 

VTOL aircraft model involved parameter uncertainties of   and   in the coefficient   of the matrix  . The 

variation of these parameters is 20% and 25% for the nominal values of   and   respectively. The uncertain part 

   separated from the perfectly known part   is given by: 

 

   

[
 
 
 
 
 
  
  
  
  
  
             ]

 
 
 
 
 

                                                                                                                                

(17) 
 

Considering the uncertainties structure    is written under the form           with: 
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where   ( ) has the following property   ( )   ( )   .  Thus, the equation (12) is modified as follows: 
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Let us see in the next section the proposed FTC approach.  

 

3. Fault Tolerant Controller Design 

 

       Let us consider the following T-S model corresponding to the reference model with measurable premise 

variable  ( ):   
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where: r is the number of fuzzy rules,   ( ( )) are the weighting functions verifying the convex sum property 

    ( ( ))  and   ∑   ( ( ))   
 
   .  

 ( )    ,   ( )    , and  ( )     represent respectively the state, the measured output and the bounded 

input vectors, {       } are the submodels matrices. Recall that actually different ways to perform the T-S 

model (21) from non linear models existed. An interesting approach is the well-known nonlinear sector 

transformation [23]. In fact this technique allows obtaining an exact T-S representation without information loss 

on a compact set of the state space. 

 

      In the sequel,   ( ) denotes the Hermetian of the matrix  , i.e.  ( )      . The single or double sums 

can be rewritten as:  
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The symbol indicates the transposed element in the symmetric positions of a matrix and     (       ) is a 

block diagonal matrix which diagonal entries are defined by        . To obtain our result we need the 

following lemmas. 

 

Lemma 1 [26]: Consider two real matrices   and Y with appropriate dimensions, for any positive scalar the 

following inequality is verified: 
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The faulty uncertain disturbed system is inferred as follows: 
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  and  ( )       represent respectively the faulty state, faulty 

measured output vectors, the fault tolerant control signal, and the bounded input disturbance vectors.   depict 

fault directly affecting the input.     and     are the uncertainty matrices (with appropriate dimensions) 

corresponding to the i
th

 subsystem.  

      

Assumption: the parameter uncertainties considered here are norm-bounded, in the form:     
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  are known real constant matrices of appropriate dimension.   
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known Lebesgue measurable matrix satisfy: 
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In which   is the identity matrix of appropriate dimension. The aim is to design a fault tolerant controller 

ensuring the tracking trajectory performance of the faulty uncertain system to the reference one. The FTC law is 

given by the following structure: 
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where:     
    are the state feedback gain matrices to be determined. In order to derive the FTC law an 

additional PI observer is added and has the usual form: 
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where   
       and   

       are the observer’s gain matrices to be determined to estimate f t and   ( ). 

A first solution to this problem without uncertainties was proposed in [24]. For simplification we assume that:  
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The FT controller design methodology is illustrated by the following scheme. 

 

 

 

 

 

 

 

 

 

 

 
Fig.3. Tracking fault tolerant controller design methodology 

 

With this controller structure, one can remark that fault detection and isolation are performed since an estimate 

of the fault affecting the system is available. 

 

Let us respectively define the state and fault estimation errors defined by: (
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also define the state tracking error, and the output estimation error given by: (
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result , by adding and subtracting     ( ) (28) can be rewritten as: 
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 A “virtual dynamics” is introduced in the output error   ( ) to avoid the crossing terms resulting from the 

observer’s gains   
  and system matrices   multiplication [25]. This latter can be expressed as given by (34), 

where 0     is a zero matrix. Since the faults affecting the system in this approach are supposed to be constant 

(     ̇( )   )  the dynamics of the fault estimation error is given by (35). 
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The combination of (32), (33), (34), and (35) allows the formulation of the dynamics   ( )   ( )   ( ), and 

  ( ) with    ( ) in a descriptor form [28],[29]: 
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      The objective is now to compute the gains    and    from  ̃   described in (37) to ensure the stability of the 

closed loop model (36) guaranteeing the tracking performance for all  ̃( ). A basic result is summarized in the 

following theorem.  

 

Theorem 1: The system (36) that generates tracking error   ( ), fault   ( ) and the state   ( ) estimation errors 

is stable and the ℒ -gain of transfer from  ̃( ) to  ̃( ) is bounded if there exists some matrices        
     

   ,             
   ,  ̅ 

 ,  ̅ 
     , jointly with positive scalars    

      
      

      
    

   
      

       
       

       
      

   and  ̅ solution to the following optimization problem: 

 

   
               ̅ 

   ̅ 
    

 ̅       (  ) 

 

    [
   
(   ) ( )

   
(   )  (   )

]                                                                                                                                (38a) 

with 

 

   
(   )  

[
 
 
 
 
 
 
 
 
    

(   )       

  
   

    
(   )      

   
    

(   )    
(   )     

   
(   )     

(   )    

     
       

(   )   

      
       

(   )  

   
   

      
      

       ̅ ]
 
 
 
 
 
 
 
 
 

                                 

                                              

 

   
(   )   (   )   (     )    

   
   (   

   (   
  )

  
  )  

   
   

   
(   )   (   )   (     )    

   
   (   

   (   
  )

  
  )  

   
   

   
(   )   (    )     

    
   

      

   
(   )    ̅ 

     
     

  
(   )     

    ̅ 
  

   
(   )  (   

      
  )  

    
    

   
(   )    (   )    



                                                                   

   
(   )   (     )  (     

      
  )  

    
     

     
    

  

   
(   )    ̅  (   

        
       

   )  
    

                                                                                                    (38b) 

 

and 

 (   )       [  (   
      

      
  )    

  

      (   
      

  ) (   
  )

  
(   

       
   (   

  )
  
)

   
     

     

   
  (   

    (   
  )

  
 (   

  )
  
)]

                                                                                                         (38c) 

 

   
(   )

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
     

         

  
        

  
       

   
      

   
       

   
       

    
       

       
      

     

      
     ]

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                            (38d) 

 

The observer gains are computed from: 
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The attenuation level of transfer from  ̃( ) to  ̃( ) is obtained by    √ ̅. 

 

Proof: Let us choose the following candidate quadratic Lyapunov function as: 

 

 ( ̃( ))   ̃ ( )   ̃( )                                                                                                                                      (40) 

 

with                                                                                                                                                      (41) 

 

and        [             ]. According to (40), it follows that      
         

        

   
           

    and     is a free slack matrix. The time derivative of the function  ( ̃( )) is then: 

 

 ̇( ̃( ))   ̇̃ ( )   ̃( )   ̃ ( )   ̇̃( )                                                                                                       (42) 

 

With (36) and (40), the inequality (42) becomes: 

 

 ̃ ( )( ̃  
      ̃  ) ̃( )   ̃

 ( )     ̃( )   ̃
 ( )   

   ̃( )                                                              (43)                                                                                                         

 

We note here that the term  ̃( ) depends on   ( )  ( ) which are bounded, then it is also bounded. So, the 

objective is to minimize the ℒ -gain of the transfer from  ̃( ) to the state vector  ̃( ), this is formulated by: 

 

‖ ̃‖    
‖ ̃‖ 
‖ ̃‖ 

                                                                                                                                                                (  ) 

 

Then we are seeking to ensure asymptotic convergence toward zeros if  ̃( )    and to guarantee a bounded ℒ -

gain if  ̃( )   . This problem can be formulated as follows: 
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Using the uncertainties structure defined in (27) and the well-known lemma 1,      can be bounded as follows: 

 

         [                     ]                                                                                   (51)                                                  

 

where 

 

     ((   
  )

  
 (   

  )
  
 (   

  )
  
)    

   
    

     (   
  )

  
  
   

    
    (   

  )
  
  
   

  

 (   
   (   

  )
  
 (   

   )
  
)  

   
   

 

     

 

(*) 

(0) 

(*) 



                                                                   

     ((   
  )

  
 (   

  )
  
)  

   
    

    (   
  )

  
    

   
        

    
   

  

 (   
      

   (   
  )

  
 (   

   )
  
)     

   
     

     (   
      

  )  
    

     
    

    
  (   

   )
  
     

   
      

 

     (   
  )

  
     

   
      (   

      
   (   

   )
  
)      

   
      (   

      
      

  )  
    

 

    
     

    
  

 

     (   
       

       
   )  

    
  

 

Applying lemma 1 on the terms,    
(   )    
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 by considering         , we obtain the inequality (52) with:  
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Finally applying Schur complement [30] on the BMI terms of (52) the sufficient LMI conditions proposed in the 

theorem 1 are obtained. 
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Remark: At last recall that using weighting functions depending on the nominal control input  ( ) as a 

measurable premise variable for the faulty uncertain system seems to be critical especially in the case of actuator 

faults affecting the system. A further solution is to consider faulty premise variables as illustrated by [31], [34]. 
 

4. Simulation results 

 

       In this section, numerical simulations have been performed on the VTOL  aircraft model (2) with numerical 

values given in Table 1. The T-S model constructed in Section 2 representing the aircraft model with premise 

variables depend on measurable input variable is used to build the observer. An unknown disturbance  ( ) with 

band-limited white noise as given by fig.4 is considered where    and   corresponding matrices are given by: 
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We considered the case in which the aircraft is controlled so as to move from initial steady state hover 

(        )  (     ), to another steady state hover  (        )  (      ) assuring a predefined trajectory 

tracking. For that reason, we used a normalized control law [32]: 
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System failure is modeled by an actuator piecewise constant fault  ( ) normalized as given by fig.5. Notice that 

even if the assumption  ̇( )    is not satisfied, the PIO is able to reconstruct time varying signals with slow 

variation [33]. 

 

Table1 

Numerical values of a VTQL aircraft 

 

Parameters Description Numerical value 

  Mass of the aircraft         

  Moment of  the aircraft inertia            

  The distance between the wingtips and the center 

of mass 
   

  The gravitational acceleration 9.81m/s
2 

  The angle between the direction of application of the 

forces F and the vertical body axis 
   

 

 
Fig.4. disturbance  ( ) 

 

 

      Applying Theorem 1, the observer (29) and the fault tolerant controller (28) are designed by finding 

symmetric and positive definite matrices         , matrices      ̅ 
   ̅ 

    , jointly with positive scalars 

   
      

      
      

      
      

       
       

       
      

    that are not given here-such that the convergence conditions 

given in Theorem 1 hold. The value of the attenuation rate from the input vector  ̃( ) to the state vector  ̃( ) is  

 ̅      .  

 

     The top of the fig.5 shows the time evolution of the faults with their estimate values, whereas the bottom part 

illustrates the nominal control inputs together with the FTC algorithm. Both the state estimation errors and the 

state tracking errors are given by Fig.6. Due to the convergence property of the observer, the reconstructed states 

fully represent the state of the process. Simulations of Fig.7 allow the comparison of the reference model states, 

to the faulty uncertain and estimated model states. These simulation results show the effectiveness of the 

synthesized observer and FTC controller, since the fault and the system states are estimated and the tracking 

between the faulty system states and the reference model ones is ensured.  

 

 

0 10 20 30 40 50
-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time (sec)



                                                                   

  
 

  
 

Fig. 5. Faults and their estimates (Top), Nominal control and FTC (bottom) 

 

 
 

Fig.6. State estimation errors (left), State tracking errors (right) 
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Fig.7. Comparison between reference model states, states of the uncertain faulty system with FTC and states of the estimated 

system  

5. Conclusion 

 

       This paper has presented a fault tolerant tracking controller for a VTOL aircraft flight in uncertain 

conditions. The considered system contains structured uncertainties which affect the mechanical parameters of 

the air vehicle. The VTOL aircraft system is then presented as a faulty T-S uncertain disturbed model. An 

efficient control law is designed in order to ensure from one side the tracking between the faulty uncertain 

system and one healthy reference model, and the stability convergence of the closed loop system from the other 

side. Using Lyapunov theory and ℒ2 optimization, the LMI formalism used virtual dynamics on the output error 

which allows decoupling the observer gains and system matrices. Results obtained under simulation show that 

the proposed approach is able to cope with the actuators faults occurrence during the motion control of the 

aircraft on the lateral vertical. 
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