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15 

ABSTRACT 16 

17 

Loch Flemington is a shallow lake of international conservation and scientific importance. In recent decades its 18 

status has declined as a result of eutrophication and the establishment of non-native invasive aquatic 19 

macrophytes. As previous research had identified the lake bed sediments as an important source of phosphorus 20 

(P), the P-capping material Phoslock® was applied to improve water quality. This paper documents the 21 

responses of the aquatic macrophyte community by comparing data collected between 1988 and 2011. Summer 22 

water-column total P concentrations decreased significantly and water clarity increased following treatment. 23 
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Aquatic plant colonisation depth increased and plant coverage of the lake bed extended. However, the 24 

submerged vegetation remained dominated by the non-native Elodea canadensis Michx. Aquatic macrophyte 25 

community metrics indicated no significant change in trophic status. Species richness and the number of 26 

‘natural’ eutrophic characteristic species remained broadly similar with no records of rare species of 27 

conservation interest. Loch Flemington is still classified as being in ‘unfavourable no change’ condition based 28 

on its aquatic macrophytes despite the water quality improvements. The implications of these results are 29 

discussed in relation to the future management of Loch Flemington and in the wider context of trying to 30 

improve our understanding of lake restoration processes.  31 

KEYWORDS: Eutrophication, Loch Flemington, lake restoration, P-capping material, aquatic macrophytes, 32 

lake management 33 

34 

INTRODUCTION 35 

36 

Eutrophication is regarded as being one of the most important factors causing degradation of lakes throughout 37 

Europe (Withers & Haygarth, 2007) and the rest of the world (Bennett et al., 2001; Schindler, 2006).  In shallow 38 

(< 3 m depth) freshwater lakes, elevated nutrient inputs from the catchment, resulting from agricultural, cultural 39 

and industrial activity, are the primary cause of this eutrophication (Scheffer, 2004). Increased loadings of 40 

phosphorus (P) commonly result in a shift from macrophyte to planktonic production, with associated 41 

phytoplankton blooms (particularly cyanobacterial), leading to deterioration in water quality and associated 42 

changes in the biological communities. European legislation has led in the UK to the setting of P targets for high 43 

alkalinity, shallow lakes to achieve ‘favourable condition’ (JNCC, 2005) under the Habitats Directive (Council 44 

of the European Communities, 1992) and ‘good’ and ‘high’ ecological status (UKTAG, 2008) under the Water 45 

Framework Directive (WFD) (Council of the European Communities, 2000). However, many shallow lakes in 46 

Europe, because of a legacy of eutrophication, already have nutrient concentrations which exceed these targets 47 

(EEA, 2012). For shallow lakes, designated to be of conservation importance, this deterioration in condition is 48 

also indicated by the decline or disappearance of rare and scarce vascular plants and/or assemblages of notable 49 

vascular plants and charophytes (JNCC, 2005). 50 



On a global scale, research on eutrophication in relation to lake management has received considerable attention 51 

(Jeppesen et al., 2003). Successful lake restoration depends on a good understanding of the site-specific drivers 52 

of eutrophication and using targeted management strategies which are based on good scientific evidence. In 53 

many  lakes the main factor limiting phytoplankton abundance is P availability, so it is this nutrient which is 54 

usually targeted for control by most lake restoration strategies, although nitrogen (N) limitation in the summer 55 

months can also be important (Fisher et al., 2009; May et al., 2010). Reducing the external P load from a lake 56 

catchment is often the preferred remedial option where P is the limiting factor.  However, its effectiveness is 57 

often reduced or delayed by internal recycling of P from the lake sediments (Søndergaard et al., 2007). In such 58 

cases, alternative approaches to lake recovery must be used, coupled with reducing the external P load, such as 59 

bio-manipulation, biomass harvesting, lake flushing, sediment removal, vertical mixing, and P inactivation 60 

(Cooke et al., 2005). The latter technique has in the past relied on adding iron, aluminium or similar salts to bind 61 

and precipitate available dissolved P from the water-column to the lake sediments. This prevents internal 62 

loading by maintaining, for example, a layer of iron over the sediments, but, often, after short-term success, pre-63 

treatment levels of P release return within a few years (e.g. Foy, 1985). There have also been concerns that such 64 

techniques may have adverse effects on lake ecosystems (Randall et al., 1999; Spears et al., 2013a). A range of 65 

P-capping materials have been proposed for use in the UK (Spears et al., 2013b). Phoslock® is a lanthanum (La) 66 

modified bentonite clay designed to enhance the capacity of lake sediments to adsorb dissolved (i.e. bio-67 

available) P and significantly reduce its subsequent release (manufacturers reported binding capacity of 100g 68 

Phoslock®: 1 g of P). La3+ ions that are strongly bound within the clay matrix react with dissolved P to form the 69 

mineral rhabdophane (LaPO4), a compound that is expected to be stable in the environment (i.e. beyond the pH 70 

range 4 – 9; Ross et al., 2008).  71 

The expected general responses of the aquatic macrophyte community, following eutrophication management, 72 

have recently been summarised in a literature review which incorporated long-term data from oligotrophication 73 

case studies (Jeppesen et al., 2005; Verdonschot et al., 2011). Typical macrophyte community responses 74 

included increases in colonisation depth, species richness (including relative characean abundance), the number 75 

of nutrient intolerant species and species distribution as TP concentrations decreased. Submerged macrophyte 76 

vegetation becomes increasingly restricted to shallower waters in response to decreasing light levels at the 77 

sediment surface as phytoplankton population levels increase. One simple measure of macrophyte abundance in 78 

lakes is maximum macrophyte growing depth (MMGD). MMGD is sensitive to eutrophication (Jupp & Spence, 79 

1977; May & Carvalho, 2010; Søndergaard et al., 2005; Spears et al., 2009) and can provide a direct measure of 80 



the success of lake management measures to shift primary production in lakes from a phytoplankton-dominated 81 

to a more macrophyte-dominated state (Sas, 1989). 82 

This paper examines how the aquatic macrophyte community in Loch Flemington responded following the 83 

application of the P-capping material Phoslock® to the lake bed sediments and, on the assumption that growing 84 

conditions will improve as a result of better water quality, tested the following hypotheses: 85 

• There will be no negative impacts of the Phoslock® application on aquatic macrophyte community 86 

• Macrophyte maximum growing depth and coverage of lake bed will increase 87 

• Species diversity will increase and species of conservation interest will re-appear 88 

• Aquatic macrophyte community attributes and metrics will indicate a change towards improvement in 89 

Loch Flemington’s condition and trophic status 90 

•  Mechanical control of non-native aquatic species Elodea canadensis Michx. may encourage the 91 

recovery of native aquatic macrophyte species when used in combination with Phoslock® 92 

 93 

METHODS 94 

Study site 95 

Loch Flemington (N 570 32.570’, W 30 59.399’) is a shallow (mean and maximum depths of 0.75 m and 2.9 m), 96 

lowland (altitude 46 m), high alkalinity (1240 μeql-1), eutrophic lake, of glacial origin situated near Inverness in 97 

Scotland, UK (Figure 1). It has a surface area of 15 ha, a maximum fetch of 0.75 km and a perimeter of 2.7 km 98 

(UKLakes Database). The lake is situated in an area consisting of glaciofluvial sand and gravel within the 99 

Kildrummie Kames esker system (Gordon & Auton, 1993). Significant hydrological modifications were made to 100 

the lake in the 19th century by blocking the natural surface-water outflow and significantly increasing the surface 101 

area and depth of the loch (May et al., 2001). Today, the lake has no natural surface water outflow and the Croy 102 

Burn is the only surface water inflow. Water leaves the lake by evaporation and by percolating through 103 

permeable gravels along the northwest shore, leading to an estimated water retention time of around 40 days 104 

(May et al., 2001). 105 



Loch Flemington lies within the Kildrummie Kames Site of Special Scientific Interest (SSSI) which was 106 

notified in 1974, in part, for Loch Flemington’s eutrophic lake habitat and for supporting populations of aquatic 107 

macrophyte species of conservation interest:  the Nationally Rare Potamogeton rutilus Wolfg. and the 108 

Nationally Scarce Potamogeton filiformis Pers. In addition, macrofossils of the Nationally Scarce and European 109 

Protected Species Najas flexilis (Willd.) Rostk. & W. L. E. Schmidt (listed in Annexes II and IV of the Habitats 110 

Directive (Council of the European Communities, 1992)) have recently been recorded in Loch Flemington 111 

(Bennion et al., 2008). From the 1960s onwards Loch Flemington had become increasingly eutrophic due to 112 

nutrient-laden waste entering from the catchment  resulting in a lake flora dominated by three submerged 113 

species E. canadensis, Myriophyllum spicatum L. and Potamogeton crispus L. (May et al., 2001). 114 

Palaeolimnological records indicated that the aquatic macrophyte community had actually changed from a rich 115 

macrophyte flora characteristic of mesotrophic conditions before 1850 towards a more species poor community 116 

indicative of nutrient enrichment (Bennion et al., 2008). This resulted in a build up of P within the lake which 117 

caused, by the mid 1970s, troublesome algal blooms to develop and fish kills to occur. Nuisance algal blooms, 118 

particularly those dominated by cyanobacteria, continued throughout the 1980s and 1990s with increasing 119 

frequency, threatening the conservation status of the lake. By 2003/04 the SSSI eutrophic lake habitat feature 120 

was found to be in ‘unfavourable condition’. The main reasons for this negative classification were the lake’s 121 

continuing poor water quality and the domination of the submerged vegetation by the non-native E. canadensis 122 

plus the disappearance of all the aquatic macrophyte species of national conservation interest. Restoration 123 

efforts at Loch Flemington up to this point had been focussed solely on improving water quality by reducing 124 

catchment point sources of nutrients. An assessment of total P (TP) loads to the lake indicated that, by 2001, 125 

diffuse (mainly agricultural) sources, represented ~ 80% and septic tanks ~ 18% of the external TP load, 126 

respectively  (May et al., 2001). However, the same study also found that the internal, sediment-driven load to 127 

the water-column (680 kg TP yr-1) was probably far greater than the external load from the catchment (120 kg 128 

TP yr-1).  129 

Phoslock® application  130 

Phoslock® was applied to Loch Flemington by Phoslock® Europe GmbH over a three day period, March 13th – 131 

15th 2010. A pilot study had estimated that the dosage of Phoslock® required to be applied to Loch Flemington 132 

was 25 tonnes in order to control a maximum of ~ 22 kg total phosphorus (TP) in the water column and ~ 210 133 



kg TP in the upper 3 cm of lake sediment, on the basis that 100 g of Phoslock® binds 1 g of phosphorus (Meis et 134 

al., 2012).  135 

Pre- and post-application water quality and ecological (non-aquatic macrophyte) monitoring 136 

A range of water quality and ecological (non-aquatic macrophyte) parameters were monitored at Loch 137 

Flemington on a monthly basis, pre- and post-application of Phoslock®, at five open water sampling sites 138 

between May 2009 and March 2011, and at three of these sites from April 2011 to November 2011, with the 139 

exception of July 2011 when all five sites were sampled. Field water quality measurements included surface 140 

water pH, conductivity, temperature and dissolved oxygen concentrations while water clarity was assessed using 141 

a Secchi disc. Water samples were collected for later analysis. Parameters measured included soluble reactive P 142 

(SRP), TP, total lanthanum (TLa), soluble lanthanum, chlorophyll a and phytoplankton abundance, community 143 

composition and bioassessment of biovolume. Crustacean zooplankton and macroinvertebrates were also 144 

collected for later analysis at the open water sample sites. For further details of sampling processing and 145 

analyses see Spears et al. (2012). In this paper only the mean annual surface water TP and chlorophyll a 146 

concentration results are reported on. 147 

Aquatic macrophyte community monitoring 148 

Assessment of the aquatic macrophyte communities at Loch Flemington, pre - and post - application of 149 

Phoslock®, involved three separate but related sampling monitoring programmes: Site Condition Monitoring 150 

(SCM) surveys, monthly qualitative assessments of the submerged vegetation and monitoring of the maximum 151 

macrophyte growing depths. Aquatic macrophyte data from a comprehensive 1988 survey of Loch Flemington, 152 

carried out by the Nature Conservancy Council Scottish Loch Survey team (NCC, 1988), were used to help 153 

draw historical comparisons. 154 

Site Condition Monitoring (SCM) surveys 155 

The Site Condition Monitoring (SCM) survey method followed the Common Standards Monitoring (CSM) 156 

protocols produced by the UK Joint Nature Conservation Committee (JNCC) for assessing the aquatic 157 

macrophyte communities of standing waters of conservation importance (JNCC, 2005; JNCC, 2009). Pre-158 

Phoslock® application SCM surveys were carried out in 2003/04 and 2009 and post-Phoslock® application 159 

aquatic macrophyte surveys were carried out in 2010 and 2011 (Table 1). Although the sampling effort differed 160 

slightly between these different SCM-style surveys, the resultant data are considered to be broadly comparable. 161 



The SCM aquatic macrophyte survey techniques employed at Loch Flemington involved three main elements 162 

and are described in detail by (Gunn et al., 2010; JNCC, 2005; JNCC, 2009). These were as follows: (1) 163 

perimeter strandline searches; (2) shore-wader depth transect surveys; and (3) boat-based depth transect surveys. 164 

All three methods were based on representative 100 m sections or sectors selected around the perimeter of the 165 

lake in areas thought to be suitable for sustaining good aquatic macrophyte populations.  Both the shore-wader 166 

and boat-based depth transects involved 20 sampling points per survey sector. These SCM methods were 167 

designed to produce data which are statistically robust (Gunn et al., 2010). 168 

Qualitative assessments of aquatic macrophyte vegetation 169 

Seven monthly pre-application and thirteen monthly post-application qualitative assessments of the aquatic 170 

macrophyte community composition and abundance were carried out at Loch Flemington between May 2009 171 

and July 2011. These assessments involved random searches, by boat, for a fixed period of two hours. These 172 

searches were standardised by starting at a fixed point and going back and forth across the lake in straight 173 

transect lines sampling the submerged vegetation en route  using a double-headed rake and/or using a 174 

bathyscope.  175 

Macrophyte maximum growing depth (MMGD) monitoring 176 

The MMGD of submerged macrophytes at Loch Flemington were assessed using a boat along five fixed 177 

transects that were evenly spaced around the deepest, north-eastern bay of the lake. Pre-application monitoring 178 

of the MMGD was carried out on a monthly basis from July 2009 to November 2009 and just before the 179 

Phoslock® application on the 11th March 2010. Post-application monitoring of MMGD was also carried out on a 180 

monthly basis from April 2010 through to March 2011 with an additional monitoring occasion in July 2011 181 

using methods as described by Jupp et al. (1974). Water depth and plant occurrence were measured at about 2 m 182 

horizontal intervals along each transect until a point was reached at which no plants were collected. MMGD was 183 

corrected for changes in water level by measuring water level at a common datum and subtracting water level 184 

height from the measured MMGD. The common datum was fixed at an average water depth of 0.38 m (range 185 

0.14 to 0.69 m). The methodology followed Spears et al. (2009). Data sets were arranged into seasons consisting 186 

of three months in line with the standard meteorological definition (Trenberth, 1983) resulting in four seasons: 187 

summer (June – August), autumn (September – November), winter (December – February) and spring (March – 188 

May). Statistical analyses were conducted using the software package Minitab 16 (Minitab® 16.1.1, Minitab 189 



Ltd., Coventry, UK). Data sets of MMGD were not normally distributed (Anderson-Darling test, α < 0.05) even 190 

after a range of transformations (including x′ = log (x), x′ = ln (x), x′ = sqrt (x), x′ = x2). Therefore a non-191 

parametric Mann-Whitney U-test (MWU) was used to test for significant variation in MMGD between years for 192 

a given season, for seasons consisting of at least two out of three possible months as it is assumed that at least 193 

two months are required to represent a season. This procedure resulted in the following statistical comparisons: 194 

summer 2009 vs. summer 2010 and autumn 2009 vs. autumn 2010.  195 

Clear-cutting experiment to mechanically control E. canadensis  196 

To assess the response of native macrophytes species in the absence of the non-native E. canadensis in Loch 197 

Flemington, a replicated clear-cutting experiment was carried out (summer 2010) following the application of 198 

Phoslock®. A diver manually cleared five 4 m2 plots of E. canadensis and marked a further five plots as 199 

controls. The percentage volume inhabited (PVI) and the aquatic plant community composition were tracked in 200 

each plot over the growing season (May till October) using visual underwater inspection. Statistical analyses 201 

were conducted using Minitab 16 (Minitab® 16.1.1, Minitab Ltd., Coventry, UK). Data sets were normally 202 

distributed (Anderson-Darling test, α > 0.05) but failed of a test for equal variance (Levene's test, α < 0.05) even 203 

after a range of transformations (including x′ = log (x), x′ = ln (x), x′ = sqrt (x), x′ = x2). Therefore, a non-204 

parametric MWU test was used to test for significant variation in PVI between clear cut plots and controls (both 205 

n = 5) in a given month.  206 

Condition assessment of Loch Flemington based on aquatic macrophyte monitoring, pre- and post-207 

Phoslock® application 208 

Loch Flemington was judged against the targets set for each of the attributes listed for natural lakes with 209 

Magnopotamion or Hydrocharition-type vegetation in the UK CSM Guidance for Standing Waters (JNCC 210 

2005; JNCC, 2009). To be classified as being in ‘favourable condition’ Loch Flemington should have an aquatic 211 

macrophyte community with species characteristic of a natural eutrophic lake and comply with the specific 212 

aquatic macrophyte community composition and structure targets for that type of standing water (JNCC 2005; 213 

JNCC, 2009).  214 

In order to evaluate if there has been any change in the trophic status in Loch Flemington, following the 215 

application of Phoslock®, the whole lake macrophyte assemblages recorded in the pre-and post-application 216 

surveys were assessed using two indices: the Trophic Ranking Score (TRS) (Palmer, 1992; Palmer et al., 1992) 217 



and the Plant Lake Ecotype Index (PLEX) (Duigan et al., 2006; Duigan et al., 2007). Both scoring systems are 218 

based around assigning a score to species based on their affiliation to particular trophic conditions. Scores of 219 

qualifying species can be summed for a site, and an average score per taxon can be calculated to give a site 220 

TRS/PLEX score.   221 

 222 

RESULTS 223 

Summary of  key water quality findings from pre- and post-Phoslock® application monitoring 224 

The application of Phoslock® led to a significant decrease in annual mean TP concentrations to levels below the 225 

WFD target for the lake (Table 2). This led, in turn, to a significant reduction in algal levels in Loch Flemington, 226 

as indicated by decreases in annual mean chlorophyll a concentrations (to below the WFD target (Table 2)) and 227 

by 77% (P <0.001) and 95% (P <0.001) reductions in summer chlorophyll a concentrations in 2010 and 2011, 228 

respectively. There was also an increase in Secchi disc water clarity (from <0.5 m in summer 2009 to c. 1.4 m in 229 

summer 2011) (Spears et al., 2012).  230 

Monthly estimates of MMGD between 2009 and 2011 showed that the aquatic macrophyte colonisation depth 231 

had significantly increased following the application of Phoslock®. An increase in MMGD was observed in 232 

summer (57% deeper; W = 55; p < 0.001; n1 = 10, n2 = 15) and autumn 2010 (15% deeper; W = 162; p < 0.01; 233 

n1 = n2 = 15) when compared to 2009, indicating an overall improvement in water quality corresponding with 234 

the increase in water clarity (Figure 2). With the lowering of the seasonal and annual mean chlorophyll a 235 

concentrations (Table 2), following the Phoslock® application, it is estimated that the depth limits of the 236 

dominant elodeid plant functional group (i.e. E. canadensis) increased (depending on the background light 237 

attenuation) from c. 1.4 - 1.6 m in 2009 to c. 2.3 - 2.9 m in 2011. Linked to this increase in MMGD, the 238 

coverage of aquatic macrophytes was estimated to also have increased by between 30 and 40% to c. 80% of the 239 

lake bed, after the application of Phoslock®.  240 

Condition assessment of Loch Flemington based on aquatic macrophyte monitoring, pre- and post-241 

Phoslock® application 242 

The number and abundance of ‘natural eutrophic’ characteristic species recorded in the post-application 2010 243 

and 2011 SCM surveys marginally increased. Although three characteristic eutrophic species were recorded in 244 



these surveys, occurring in 28% and 36% of sampling points, respectively (Table 3), this was well below the 245 

target of six characteristic species occurring in at least 60% of sampling points. Nevertheless, this was an 246 

improvement on the situation in 1988 and 2003 (at a frequency of occurrence of 13% of sampling points), when 247 

only one characteristic species, Potamogeton obtusifolius Mert. & W. D. J. Koch was recorded and two in 2009 248 

(at a frequency of occurrence of 16% of sampling points) (Table 3). Two other characteristic species, 249 

Potamogeton perfoliatus L. and P. x zizii W. D. J. Koch ex Roth were recorded on the monthly qualitative 250 

assessments in 2009 and assessed as “rare” (Table 3). Overall, the aquatic macrophyte community, as indicated 251 

by the 2010 and 2011 post-Phoslock® application surveys, remained broadly similar in terms of species 252 

composition and richness to the 2009 pre-application surveys and improved compared with the 1988 and the 253 

2003/04 surveys (Table 3). There were no obvious negative impacts of the Phoslock® application on the aquatic 254 

vegetation. However, the submerged vegetation of Loch Flemington remained dominated by the non-native E. 255 

canadensis, which occurred at a frequency well above the 25% target threshold in the SCM survey sampling 256 

points (Table 3).  257 

Analysis of the monthly qualitative assessments of the aquatic macrophyte vegetation indicated that the relative 258 

abundance of E. canadensis and another invasive non-native Crassula helmsii (Kirk) Cockayn had increased 259 

following the Phoslock® application, although this was not statistically significant. C. helmsii was first recorded 260 

as having colonised areas of shallows and margins along the northern shore Loch Flemington in 2009, prior to 261 

the Phoslock® application.  In addition, none of the three species of national conservation value N. flexilis, P. 262 

filiformis and P. rutilus were re-recorded during any of the post-application aquatic macrophyte surveys 263 

including the extensive targeted searches carried out as part of the 2010 SCM survey. Overall, on the basis of 264 

the above assessments, measured against the set targets for a naturally eutrophic lake, Loch Flemington would 265 

still be classified as being in ‘unfavourable no change’ condition, post-Phoslock® application.  266 

Table 3 summarises all the species and their abundances as recorded in the various different aquatic macrophyte 267 

surveys in Loch Flemington over the period of 1988-2011 plus their associated TRS and PLEX scores. Overall, 268 

there had been a decline in both the TRS and PLEX average score per taxon values between 1988 and 2011, 269 

reflected in the re-appearance of Apium inundatum (L.) Rchb, f., Chara virgata Kütz. and Myriophyllum 270 

alterniflorum DC., species characteristic of more mesotrophic conditions (Preston & Croft, 1997; Stewart, 2004) 271 

although M. alterniflorum was recorded in the lake before the Phoslock® application. Pre- and post application 272 

the mesotrophic characteristic species Potamogeton gramineus L. has also regularly been recorded. Recordings 273 



of these more mesotrophic species are consistent with the palaeoecological results which indicated the lake 274 

supported mesotrophic species in the past (Bennion et al., 2008). However, Loch Flemington on the basis of its 275 

current aquatic plant community would still be classified as a Type 10 eutrophic standing water body (Palmer, 276 

1992; Palmer et al., 1992) and as a species-poor example of a Group G Central and Eastern, above neutral, 277 

lowland lake with Lemna minor, Elodea. canadensis, Potamogeton natans and Persicaria amphibia (Duigan et 278 

al., 2006; Duigan et al., 2007).  279 

Clear-cutting experiment to mechanically control E. canadensis 280 

The result of the replicated clear-cutting experiment on E. canadensis indicated that although the PVI was 281 

reduced significantly (W = 5; p < 0.05; n1 = n2 = 5) in the cleared plots the presence of E. canadensis was not 282 

reduced and no desirable macrophyte species began to colonise the cleared patches (Figure 3).  283 

 284 

DISCUSSION  285 

The application of Phoslock® to Loch Flemington led to a reduction in water column P concentrations and 286 

summer algal blooms, resulting in increased water clarity which potentially improved the light climate for 287 

aquatic macrophytes. As expected, the treatment appeared to have had no negative effect on the aquatic 288 

macrophyte community. However, although the light climate had significantly improved the only evidence of 289 

changes in the diversity of the aquatic macrophyte community were several new records of mesotrophic species 290 

(reflected in a slight decline in the average TRS/PLEX metric scores). Analysis of  plant macrofossils taken 291 

from a sediment core, collected from the littoral zone of Loch Flemington in 2006, indicated  a greater diversity 292 

of species characteristic of meso-eutrophic conditions in the years post-1850 than in more recent times (Bennion 293 

et al., 2008). These findings suggest that a recovering Loch Flemington should exhibit greater species diversity 294 

with more species present which are indicative of meso-eutrophic lakes, including Chara species, Isoetes 295 

lacustris L. N. flexilis, Nitella species and Potamogeton praelongus Wulfen. Overall, Loch Flemington, post-296 

Phoslock® application, remains classified as a eutrophic lake in ‘unfavourable’ condition on the basis of its 297 

failure to achieve a number of its set conservation targets. These included the continued absence of species of 298 

conservation interest, N. flexilis, P. filiformis and P. rutilus and the continued dominance of the aquatic 299 

vegetation by the non-native E. canadensis and the recent colonisation by the invasive C. helmsii.  300 



Although in the short-term the Loch Flemington aquatic macrophyte community has yet to show the response to 301 

the Phoslock® treatment that are consistent with community shifts reported in other re-oligotrophication studies 302 

(e.g. Jeppesen et al., 2005), this is perhaps not surprising. Verdonschot et al. (2011), in their literature review on 303 

the ecological recovery of macrophyte communities from eutrophication, indicated that full recovery of species 304 

composition was rarely recorded, often as a result of physical barriers to distribution and/or the loss of nutrient 305 

intolerant seed banks in cases where eutrophic conditions had been prevalent for many years. At a structural 306 

level, macrophyte colonisation responses are generally observed relatively quickly (i.e. less than five years) after 307 

reductions in TP load, as was the case in this study. However, at a community composition level, the recovery 308 

timescales for macrophytes to shift from eutrophic to more mesotrophic conditions were generally reported to 309 

take place on a longer time-scale from 2 to 40+ years than reported here for Loch Flemington. Verdonschot et 310 

al. (2011) highlighted a number of factors which could explain such delayed responses in shallow lakes 311 

including the following: the suppression of native aquatic macrophyte species by the invasion of more 312 

competitive species; constant disturbance of lake sediments, e.g. by wind, linked to changes in climatic 313 

conditions (Spears & Jones, 2010), leading to a turbid state predominating (e.g. Lake Apopka, USA; Havens et 314 

al., 2001); recovery of macrophyte community being, in part, dictated by the presence of individual species seed 315 

banks, growth traits,  distribution networks and pathways with species characterised by being slower growing, 316 

having higher root: shoot ratios, and being longer lived becoming increasingly prevalent as nutrient 317 

concentrations reduce (Riis & Biggs, 2011).  318 

In the case of Loch Flemington the recovery of the aquatic macrophyte community may have been hampered by 319 

the presence of the invasive species E. canadensis and C. helmsii.  E. canadensis holds a competitive advantage 320 

over many native species because it can maintain some above-sediment plant growth in the winter (Simpson, 321 

1984) enabling it to outcompete other non-evergreen species that have to regenerate totally from turions or 322 

seeds. E. canadensis can also utilise bicarbonate rather than carbon dioxide for photosynthesis (Bowmer et al., 323 

1995; Maberly, 1983), which may give it a competitive advantage over species such as N. flexilis, which is 324 

reliant on carbon dioxide (Wingfield, et al., 2005). N. flexilis is an annual plant which spreads by underwater 325 

pollination and cannot reproduce vegetatively, relying instead on seed production to survive (Wingfield et al., 326 

2004). Whilst it is possible that some seeds may survive in the seed bank for more than one year, their longevity 327 

is not well understood (Wingfield et al., 2004). However, although no survey of contemporary aquatic 328 

macrophyte communities have ever recorded N. flexilis in Loch Flemington, a recent palaeoecological study 329 

found macrofossils of the species in the lake sediments indicating that it had been present for a minimum of 100 330 



years (Bennion et al., 2008). This suggests that there would be a readily available seed bank for N. flexilis, 331 

depending on seed longevity, to extend its coverage in the lake should suitable areas of the lake bed be opened 332 

up from E. canadensis dominance. Like N. flexilis, P. rutilus is typically found in unpolluted mesotrophic lakes 333 

in northern Scotland (Preston, 1995) and as such it might be expected to re-establish itself naturally in Loch 334 

Flemington if there were any local sources from which the plant could re-colonise. Partly because it is rare and 335 

partly because it grows often in deeper water where it is difficult to locate (Preston & Croft, 1997), little is 336 

known about the long-term survival of P. rutilus turions in the sediment. However, it is apparent from the clear-337 

cutting experiment carried out at Loch Flemington, following the Phoslock® application, that local scale 338 

mechanical control methods did not help the process of re-establishing the native aquatic macrophyte 339 

community, at least in the short term. 340 

While E. canadensis is well established at the site and is the dominant submerged macrophyte species, C. 341 

helmsii appears to be in the early stages of colonisation having first been recorded in Loch Flemington in 2009, 342 

prior to the Phoslock® application. Therefore, the options for management of these two species are very 343 

different. In the case of E. canadensis, although P concentrations in Loch Flemington have significantly dropped 344 

following the Phoslock® application, they are still too high to cause a decline in the population, as the species is 345 

known to exist in a wide range of nutrient concentrations in the UK (Preston & Croft, 1997). Although 346 

mechanical control methods such as clear-cutting may be used to contain the spread of E. canadensis it requires 347 

implementation on a regular basis, is often labour intensive and even then success in achieving long-term 348 

control is unlikely (Howard-Williams et al., 1996). Wade (1990) showed that the recovery of pre-existing 349 

submerged vegetation is often rapid after being cut, particularly by species such as E. canadensis, which can re-350 

colonise and spread quickly from undifferentiated plant fragments left behind and which is even less susceptible 351 

to control by cutting compared to other competitive disturbance-tolerant species such as Myriophyllum spicatum 352 

(Abernethy et al., 1996). As well as clear cutting a number of other measures have been proposed for the control 353 

of dense stands of E. canadensis, including the use of jute mats (Caffrey et al., 2010), and in extreme cases, 354 

draw-down followed by the application of a herbicide (Cooke et al., 2005) but as far as the authors are aware, 355 

there have been no examples of the successful complete eradication of E. canadensis from lakes similar to Loch 356 

Flemington. In contrast to E. canadensis, an opportunity to eradicate C. helmsii from the lake exists as it is not 357 

abundant or widespread. In 2011, colonies of C. helmsii were restricted to shoreline areas and had not yet 358 

reached the open water areas of the lake. Control measures of C. helmsii, so far, have focused on the use of 359 

shading. This has involved identification and mapping existing colonies of C. helmsii prior to laying plastic 360 



sheeting in an attempt to shade out some of the colonies but this work is extremely time consuming and labour 361 

intensive but important, particularly as it may aid the potential re-colonisation by the Nationally Scarce P. 362 

filiformis, which typically grows in shallow open water areas such as where the C. helmsii populations are 363 

currently concentrated. Future efforts to manage the C. helmsii population, during these early stages of 364 

colonisation, are likely to focus on the continued use of plastic sheeting supplemented by the possible use of 365 

selective herbicides.  366 

The sediment treatment work in Loch Flemington has, so far, been shown to be successful in reducing P 367 

concentrations and summer algal blooms, and improving macrophytes growing conditions without any 368 

noticeable negative impacts on the ecology of the aquatic macrophyte community. However, it is also clear that 369 

the biological community, as exemplified by the aquatic macrophytes, will take longer than the water chemistry 370 

to recover. This study shows that reducing P loading is not sufficient in itself to rapidly restore the aquatic 371 

macrophyte species diversity of a lake, including the desirable re-colonisation of species of conservation value, 372 

if there is a pre-existing problem with invasive, non-native species or if there is a lack of plant propagules. In the 373 

case of Loch Flemington, while C. helmsii can be hopefully eradicated before becoming fully established, 374 

management of E. canadensis will need to focus on control and containment, with the aim of facilitating the 375 

recovery of some of the former aquatic macrophyte species diversity, for which the site was renowned. It is also 376 

important to emphasise that without reducing nutrient loads from the catchment, the water quality improvements 377 

so far brought about by the application of a P-capping agent such as Phoslock®, may not persist. Therefore, it is 378 

crucial that catchment nutrient sources continue to be monitored and managed where necessary.  379 
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 585 

Fig. 1. Bathymetric Map of Loch Flemington 586 



587 

Fig. 2. Seasonal variation in macrophyte maximum growing depth (MMGD) in Loch Flemington. Dashed 588 
vertical line indicates timing of the Phoslock® application, error bars represent standard error of the mean  (n = 589 
variable) and seasons in which no sampling occurred are marked with ‘X’. Significant differences (**, p < 0.01; 590 
***, p < 0.001) in a season between pre- and post-application years and percent change are indicated 591 

592 



593 

594 

Fig. 3. Seasonal variation in percentage volume inhabited (PVI) of Elodea canadensis following clear-cutting in 595 
five 4 m2 plots compared with five uncut 4 m2  plots  in Loch Flemington in 2010. Error bars represent the 596 
standard error of the mean. 597 

 598 

Table 1. Summary of SCM aquatic macrophyte surveys carried out at Loch Flemington, pre- and post-599 
Phoslock® application. 600 

SCM surveys pre-Phoslock® application  SCM surveys post-Phoslock® application 

3 July 2003 + 5 

August 2004 
12 August 2009 26/27 July + 2/3 

August 2010 
18/19th July 2011 

Number of 
perimeter strandline 
searches 

4 4 5 4 

Number of shore-
wader depth 
transects 

4 4 3 3 

Number of boat-
based depth 
transects 

- 1 2 2 

Other Targeted search for 
rare species in 

open-water 

- Targeted search for 
rare species in open 

water 

- 

601 



Table 2. Summary table of annual mean surface water TP and chlorophyll a concentrations, pre - and post- 602 
Phoslock® application 603 

Year Mean TP concentrations (μg P l-1) 
(n = variable) 

Mean  chlorophyll a concentrations  (μg l-1) 
(n = variable) 

WFD target 32 16 

2009 (Pre-application ) 60 51 

2010 (Post-application) 31 25 

2011 (post-application) 27 12 

604 

605 

606 

607 

608 

609 

610 

611 

612 

613 

614 

615 

616 

617 

618 

619 

620 

621 

622 

623 

624 

625 



Table 3. Summary of aquatic macrophyte species occurrence, species abundance (% of SCM survey sampling 626 
points), Trophic Ranking Scores (TRS) and Plant Lake Ecotype Complex (PLEX) scores for Loch Flemington 627 
from 1988 - 2011. 628 

Pre - Phoslock® application Post – Phoslock® 

application 

Species TRS PLEX 1988a 2003/04 2009c 2010c 2011c

Apium inundatum 7.00 7,50 - - - 1% present 
Chara virgatad 7.30 7.69 - - - present - 
Crassula helmsii X X - - present present present 
Elodea canadensis 8.50 7.95 LD 56% 62% 52% 51% 
Lemna minord 9.00 8.85 - - 3% 5% 28% 
Littorella uniflora 6.70 4.23 O 6% 3% 3% present 
Myriophyllum alterniflorum 5.50 4.23 - - 14% 9% 7% 
Myriophyllum spicatum 10.00 8.85 - 1% 1% present - 
Persicaria amphibia 9.00 7.95 LD 28% 33% 16% 22% 
Potamogeton gramineus 7.30 7.31 - present 3% present 1% 
Potamogeton natans 6.70 4.23 - 7% 17% 8% 6% 
Potamogeton obtusifoliusd 7.30 6.54 O-F 13% 13% 27% 9% 

Potamogeton perfoliatusd 7.30 7.69 - - present - present 
Potamogeton x ziziid Xb 7.69 - - present - - 
Ranunculus aquatilis 8.50 7.95 R - - - - 
Total number of species 5 7 12 12 11 
Mean number of species per 
SCM survey transect (wader & 
boat) 

N/A 3.75 4.00 4.17 4.20 

Total number of characteristicd 
species 

1 1 4 3 3 

% frequency of sampling points 
with characteristicd species 

N/A 13 16 28 36 

Total TRS 40 55.50 77.3 84.3 74.3 
Total PLEX 34.62 47.07 75.52 75.33 66.48 
Mean Score Per Taxon - TRS 8.00 7.93 7.73 7.66 7.43 
Mean Score Per Taxon - PLEX 6.92 6.72 6.87 6.85 6.65 

629 

a in 1988 DAFOR (Dominance, Abundant, Frequent, Occasional, Rare) abundance scale used; LD = Locally 630 
Dominant 631 

b X indicates no scores allocated to species 632 

c species list includes data from monthly qualitative assessments in addition to SCM survey data – only SCM 633 
survey data used for  abundances 634 

d characteristic species of natural eutrophic lakes with Magnopotamion or Hydrocharition-type vegetation 635 
(JNCC 2005; JNCC, 2009) 636 

637 

638 
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