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ABSTRACT 

The effective porosity, saturated sonic velocity and saturated uniaxial compressive strength 

were determined on a large number of Borrowdale Volcanic Group volcaniclastic core 

samples from three boreholes at Sellafield, Cumbria. The worked formed part of the UK 

Nirex Limited site investigation into whether the Sellafield area could be suitable as a 

repository for intermediate and low level radioactive waste. Most of the intact samples were 

of low to very low effective porosity, had a high sonic velocity and were very strong to 

extremely strong. However, a proportion of values deviated significantly from this. Bivariate 

analysis showed a negative relationship exists between sonic velocity and effective porosity. 

The cross plots of these two parameters with uniaxial compressive strength showed a wide 

range of strength values for samples of low effective porosity and high sonic velocity. 

Six failure types were identified during the uniaxial compressive strength tests. The strongest 

samples tended to fail through the matrix and the weakest rock samples tended to fail through 

haematized material or along haematized veins. Effective porosity and sonic velocity 

measurements could not distinguish between those samples that failed through the matrix and 

those that failed along discrete narrow veins. The presence of narrow haematized veins has a 

major effect on the intact rock strength. 

INTRODUCTION 

Underground disposal of radioactive waste was contemplated in the vaults of an engineered 

repository in a low permeability host formation, (Davies & Mellor 1996). As part of the UK 

Nirex off-site core characterisation programme core was gathered from the host rock-mass 

for laboratory tests to provide key data to evaluate the performance of the engineered 

structure during construction and operation phases, (NIREX, 1997a). This included 

geotechnical and geophysical measurements on intact rock samples of Borrowdale Volcanic 

Group (BVG) from the Sellafield area, Cumbria, North-West England. The results presented 

are effective porosity, uniaxial compressive strength and sonic velocity of samples from 

Nirex’s Sellafield Boreholes 2, 4 and 5, the deep boreholes from the potential repository zone 

(PRZ) (Figure 1). These data provided basic geophysical and geotechnical property 

information of the intact rock. Effective porosity and sonic velocity data were used to aid the 

calibration and interpretation of the downhole wireline geophysical logs for the investigation 
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of the spatial variability of rock mass properties in the PRZ (NIREX, 1997b). The uniaxial 

compressive strength data provided index values for rock mass rating systems, the 

unconfined value in triaxial compression tests (used to establish the triaxial failure envelope 

and quantifying failure criterion for intact rock) and to compare with downhole wireline 

geophysical logs (NIREX, 1997b, Brereton et al., 1998). This required a large number of tests 

and over two hundred and fifty effective porosity and sonic velocity and over one hundred 

and fifty uniaxial compressive strength tests were carried out on core from the three 

boreholes. 

 

Rock porosity can be determined from a number of down-hole logs. Normally this is done 

with the neutron ‘porosity’ logging tool by applying various corrections to compensate for 

incorporating ‘bound’ water of crystallisation. Resistivity, density and sonic velocity logs are 

also used. The sonic velocity of a rock increases with decreasing effective porosity. The sonic 

tool response is affected by the formation porosity, fluid and matrix; if these properties and 

degree of saturation are known or can be determined, the tool response can be related to 

porosity. The porosity may be determined from the sonic logs using the Wyllie time-average 

equation in which porosity is directly proportional to the inverse of the sonic velocity (Wood, 

1941). This equation is usually used for clean and cemented formations, with uniformly 

distributed small pores and moderate porosity (Schlumberger, 1989). More complex formulae 

have been developed to relate a wider range of porosity to sonic velocity Brereton & McCann 

(1990) and Brereton (1992). However, as sonic velocity of the rock mass is also affected by 
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discontinuities caused for example by fractures, jointing and infilled mineral veins, it can be 

used as a part of the assessment of the rock mass such as Rock Quality Designation (RQD) 

(Glenn & Nelson, 1979, McCann 1990). McCann et al. (1981) introduced the concept of a 

simplified rock mass classification system based on the dynamic bulk modulus of the rock 

mass from sonic and shear velocity. 

 

Differences are expected between rock property measurements made on core samples in the 

laboratory and those derived from wireline logging tools in a borehole. The effects of scale 

are important when comparing borehole and laboratory measurements, and relate to the 

volume and condition of the rock mass sampled during measurement. The laboratory samples 

are essentially point data from known depths. A number of tests may be carried out on the 

same core specimen under known conditions. The fabric of the test specimen can be 

described and any influences on the test results, such as mineral veins or alteration products. 

However, the volume of laboratory samples are small and distance between tests much 

greater than in wireline logs which may have a sample size of 5 to 10 m
3
 and sampling 

intervals of about 15 cm, providing a nearly continuous downhole profile under in situ 

conditions (Brereton et al., 1998). Also, material for laboratory testing may be restricted due 

to drilling disturbance, and samples failing during preparation. This tends to bias the results 

in favour of stronger more competent material and against highly altered very weak to weak 

rock.  

 

Improved assessments of the engineering performance of the Borrowdale Volcanic Group 

can be gained from a greater understanding of formation rock mass properties and also any 

relationship between individual properties of the intact rock matrix. To this end, data from the 

laboratory tests described in this paper have been analysed for a series of relationships 

between the parameters including effective porosity, sonic velocity, effective porosity and 

uniaxial compressive strength. The relationship between uniaxial compressive strength and 

sonic velocity was investigated by D’Andrea et al (1965) for various rock types from the 

United States of America and by McCann et al (1990) for a wide range of British rock types. 

McCann et al. (1990) found a good coefficient of regression (r
2
 of 0.88, 150 data points) for a 

power model (y = ax
b
). However, the individual points were well scattered, particularly at 

low porosity values. The variation in strength at low effective porosity and high sonic 

velocity may be due to differences in fabric and texture and, in some rocks, mineral veins will 

also affect the rock strength. 
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The paper presents a number of bivariate plots and relationships for the laboratory effective 

porosity and sonic velocity, sonic velocity and uniaxial compressive strength and, effective 

porosity and uniaxial compressive strength. The effects of mineral veins and alteration 

products on the behaviour of the BVG are also considered. 

 

GEOLOGY 

The rocks of the Borrowdale Volcanic Group, in the three boreholes (Boreholes 2, 4, 5, see 

Figure 1), are dominated by a highly complex and variable sequence of pyroclastic flow 

deposits with minor thicknesses of volcaniclastic sedimentary rocks and intrusive andesite. 

The formations and members encountered in each borehole are listed with depths (in maOD) 

in Table 1 (Ambrose et al., 1992a, b; Millward et al., 1992). A summary of the geology is in 

Millward et al. (1994) and Michie (1996). 

 

Typically, the Fleming Hall Formation comprises massive, homogeneous, geochemically 

uniform, andesitic, mainly densely welded tuff and lapilli tuff. Breccia and volcanic 

sediments as rocks are also present as minor components. There are also zones of alteration 

and faulting within this formation. The Brown Bank Formation comprises relatively thin 

ignimbrite sheets; the lower part is often brecciated. The Bleawath Formation is made up of 

two or three welded ignimbrite sheets each separated by a generally thin layer of volcanic 

sandstones. Borehole 2 contains two other Formations: the Broom Farm Formation and the 

Moorside Farm Formation. The former is a massive to medium to thickly bedded, red, 

coarse-grained and pebbly volcanic sandstone, and the latter is a massive, unbedded, poorly 

sorted, lapilli tuff and matrix- to clast-supported coarse breccia. The intrusive rocks are 

usually andesitic but in Borehole 4 the upper intrusive sheets are basalt or basaltic andesite. 

 

Within the Borrowdale Volcanic Group there are zones of alteration that contain variable 

amounts of haematized material and veins. A secondary mineral assemblage variably replaces 

the primary minerals and includes sericite, chlorite, haematite and carbonate. Some sections 

are extensively veined and the mineralogy of the veins includes carbonate, epidote, feldspar 

and haematite veins. This is most noticeable in fault zones, but reddened and haematized and 

grossly altered and fractured rock occur at various levels within each borehole. 
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In Borehole 2 the main zones of alteration are indicated by fracturing and reddening. Within 

the Fleming Hall Formation the fault zones are at -562 to -588 maOD, -728.3 maOD and 

-798.5 to -807 maOD. The Brown Bank Formation is locally reddened, haematized and 

grossly altered with many fractures notably at the top and reddening occurs at some levels 

throughout. The base of the formation consists of haematized, heterolithic volcanic 

sedimentary rock. The Bleawath Formation in this borehole is characterised by systematic 

chemical zonation. Reddened zones occur at the top, in a volcanic sandstone, and in other 

zones elsewhere (Ambrose et al., 1992a). 

 

Many haematized and carbonate-filled steep faults and veins have been identified in the 

Borrowdale Volcanic Group of Borehole 4, particularly within the Fleming Hall Formation. 

Some faults are sheared and slickensided. Faults in the Brown Bank and Bleawath 

Formations contain narrow shear zones with mylonitic material. Within the Longlands Farm 

Member, from -530 to -684 maOD, is an extensively altered tuff. A fine, steeply dipping, 

millimetre-scale, mesh-like pattern pervades the rock, obliterating the original texture 

throughout much of the sequence. The unit contains many, generally narrow, faults.  

 

The rocks of the Fleming Hall Formation in borehole 5 contain zones of intensive but 

intermittent alteration from -424.5 to -454.5 maOD and -479.5 to -499.5 maOD. The rock is 

faulted and has a fine, steeply dipping, millimetre-scale, mesh-like pattern. The lower part of 

the Brown Bank Formation is totally brecciated and the middle of the Bleawath Formation 

contains irregular veins with medium to coarse-grained tuff and fine breccia. The associated 

fractures are commonly filled with chlorite and some sulphide mineralisation. 

 

TEST METHODS 

Most of the samples selected were either typical of the formation or adjacent core and 

includes core from more altered rock. Damaged core and core that could not be prepared was 

not selected. Test samples were prepared from full diameter core lengths of 20 to 25 cm. The 

average sampling distance was about 10 m. Uniaxial compressive strength tests were carried 

out at an average of one test per 17 m.  

Two right-cylinder specimens, nominally 38 mm in diameter and 76 mm long were prepared 

from each piece of selected core. This allowed two side-by-side specimens to be prepared 

parallel to the borehole axis from the original 95 mm diameter core. Density and porosity 

determinations were carried out on one sample and the other was used for a variety of tests 
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including sonic velocity and uniaxial compressive strength test as required. The ends of each 

sample were surface ground to be flat and parallel within 20 m. Some saturated uniaxial 

compressive strength determinations were carried out on full diameter core, nominally 95 

mm in diameter and over 190 mm in length. The uniaxial compressive strengths of these 

samples were similar to the values for the smaller samples. 

Laboratory determinations 

Effective porosity, uniaxial compressive strength and sonic velocity test methods were based 

on Anon. (1981). The effective porosity is the volume of interconnected pore space to the 

bulk volume and is expressed as a percentage. It was determined using the vacuum saturation 

and buoyancy technique and is usually reported to 0.1%, however they are reported to 0.01% 

here. This has little effect on the bivariate analysis. Sonic velocity and uniaxial compressive 

strength samples were vacuum saturated and surface dried with a damp cloth prior to testing. 

The laboratory and wireline sonic velocity tests employ essentially the same basic principles 

in that an acoustic source transmits sonic wave impulses into the rock, which are monitored 

for their arrival time, after transit over a known distance through the rock. The laboratory 

measurements were made with a portable ultrasonic apparatus.  

The strength classification used is from Anon. (1999). Two hundred and seventy seven 

effective porosity, one hundred and seventy seven uniaxial compressive strength and two 

hundred and sixty one sonic velocity test were successfully completed on core from the three 

boreholes. 

Statistical analysis 

The analysis of the data was carried out in two ways: by bivariate plotting, regression and 

correlation analysis and by use of percentiles and box and whisker plots. The regression lines 

were calculated using the least-squares technique and applied to the three relationships: 

uniaxial compressive strength vs. effective porosity, uniaxial compressive strength vs. sonic 

velocity and sonic velocity vs. effective porosity. The former of each pair is considered here 

to be the dependant variable and the latter the independent variable. Four different regression 

models were used: linear, exponential, log10 and power. The models that had the highest 

coefficients of regression for each relationship are presented here. 

The box and whisker plots were used to compare the medians, upper and lower quartiles, 

ranges and extreme values of each group. Figure 2a is a distribution plot of the uniaxial 

compressive strength data and Figure 2b is the box and whisker plot, which divides the data 

into four areas of equal frequency. The box encloses the middle fifty percent of values, lower 
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and upper quartile. The median is drawn as a horizontal line inside the box. Vertical lines, 

“whiskers”, extend from each end of the box. The lower whisker is drawn from the lower 

quartile to the smallest data point within 1.5 quartile ranges from the first quartile. The other 

whisker is drawn from the upper quartile to the highest data point within 1.5 quartile ranges 

of the upper quartile. Points that lie outside the whiskers are depicted by a plus sign (+). 

RESULTS 

The basic statistical data for the effective porosity, uniaxial compressive strength (U.C.S) and 

sonic velocity are summarised in Table 2.  

There were two hundred and seventy seven effective porosity determinations. The results 

varied between 0.01% and 15.7% with a mean of 0.98% and median of 0.51%. A majority of 

the values were less than 1%. These results show that the Borrowdale Volcanic Group is 

generally low to very low porosity material but there are some samples with higher effective 

porosities. One hundred and seventy seven uniaxial compressive strength tests were 

completed on samples of Borrowdale Volcanic Group rock from the three boreholes. The 

lowest value was 6.1 MPa and the highest value was 496.6 MPa. A majority of the samples 

were ‘very strong’ or ‘extremely strong’ (more than 100 MPa). However, over a quarter of 

the samples were ‘moderately strong’ to ‘strong’. Only a few samples had uniaxial 

compressive strength values of less than 25 MPa. The maximum and minimum of the two 

hundred and sixty one sonic velocity tests were 6.39 and 3.40 km/s respectively. The majority 

of values were greater than 5.75 km/s. However, about ten percent of values were less than 5 

km/s. 
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The data shows that the Borrowdale Volcanic Group is typically low to very low porosity, 

very strong or extremely strong and of high sonic velocity; however, there are anomalous 

values for each parameter.  

The cross plot of log effective stress and sonic velocity (Figure 3) shows a general trend of 

increasing sonic velocity with decreasing effective porosity. However, there is little change in 

sonic velocity when the effective porosity is less than about 0.3%. This is probably due to the 

sonic wave moving along a shortest path through the rock without encountering any water 

filled pore. The regression coefficients (r
2
) of the three relationships (Table 3) are all above 
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0.7 for 256 points. The highest r
2
 value is for the Log10 regression line, which is plotted on 

Figure 3, but this relationship overestimates the values of sonic velocity when the effective 

porosity is less than about 0.3%. 

The results of the sonic velocity and uniaxial compressive strength (Figure 4) confirm the 

non-linear relationship as shown by D’Andrea et al. (1965) and McCann et al. (1990). The 

plot suggests that the sonic velocity may be used to find a limiting maximum strength. 

However, there is a wide scatter, particularly when the sonic velocity is greater than about 5.8 

km/sec and here samples may be strong, very strong or extremely strong. The exponential 

relationship has the highest regression coefficient (r
2
 = 0.53 for 142 points). 
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The plot of effective porosity and log10 uniaxial compressive strength plot (Figure 5) shows a 

trend of increasing uniaxial compressive strength with decreasing effective porosity but with 

increasing scatter. Samples with an effective porosity of about 1% are generally strong to 

very strong whereas those with an effective porosity of 0.3% may be strong, very strong or 

extremely strong. It also indicates a lower boundary and an upper boundary. This is probably 
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due to fabric and structural differences between samples. The regression coefficient of the 

exponential relationship is similar to that of sonic velocity and uniaxial compressive strength 

(r
2
 = 0.53 for 144 points). 

 

DISCUSSION 

The laboratory data presented here show that the effective porosity can be estimated for a 

measured sonic velocity. However, uniaxial compressive strength cannot be estimated with 

any confidence from these two parameters for the low effective porosities and high sonic 

velocities typical of these rocks. This has major implications for modelling in situ rock 

strength from downhole wireline geophysical data. Some understanding of this can be gained 

from observations of how the samples fail and how this relates to the properties of the intact 

rock 

The failed samples were classified by type of material that failed. Six classes were identified:  

Class Description 

   1 Failed through the matrix of the samples 

   2 Failed partly along a white vein 

   3 Failed along white vein 

   4 Failed along a number of white veins 



Paper: GEGE2166-RAD 

 12 

   5 Failed partly along haematized vein or through haematized zone 

   6 Failed along haematized vein 

The white mineral is predominantly carbonate, either calcite or dolomite but may be quartz in 

some instances. Class 1 includes samples with white veins along which failure did not occur. 

Failure along the white veins generally occurs between the vein and the matrix, both of which 

may be intact. Most of the veins in the samples range from hairline to a millimetre or so in 

thickness. Failure along haematized veins, and sometimes through a haematized matrix, 

produces a fine red powder along the failure surfaces. Some of the samples in Class 6 

comprise mainly unaltered rock, with narrow veins of altered rock containing haematized 

material, sometimes with calcite.  

The basic statistics of the uniaxial compressive strength for each of the failure type classes 

are given in Table 4 and the box and whisker plot is presented in Figure 6. Most of the 

samples are in the first three classes but there are thirty-four from Class 5. Only a few 

samples failed along a number of white veins or along a haematized vein. The data show that 

the strongest samples tend to be from Class 1 followed by Classes 2, 3. The weakest 

specimens failed along haematized material. 
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Similar multiple box and whisker plots of effective porosity and sonic velocity are presented 

in Figures 7 and 8 respectively. Failure Classes 1, 2 and 3 have similar, generally low, 

effective porosity. Rocks that have been altered and reddened, Class 5, tend to have the 

highest effective porosity values. The plot for Class 6 suggests two different rock types; one 

of low effective porosity, typical of material from classes 1, 2 and 3, and the other of high 

effective porosity, similar to samples from class 5. Figure 8 shows a similar but inverse 

distribution for sonic velocity. Classes 1, 2 and 3 comprise mainly high sonic velocity, 

whereas class 5 has mainly lower values and class 6 has a number of higher values similar to 

those of classes 1, 2 and 3 and low values similar to class 5. 

The uniaxial compressive strength varies between classes 1, 2 and 3 but there is little 

difference in effective porosity and sonic velocity between these classes. The presence of the 

narrow carbonated or quartz veins is not detected either by the effective porosity or sonic 
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velocity. Variation in strength within classes 2 and 3 may reflect different vein orientations 

and vein thicknesses as well as effective porosity.  

 

The higher effective porosity and lower sonic velocity samples are usually associated with 

altered rock, particularly haematized material. However, samples in class 6 are of two types; 

lower effective porosity and higher sonic velocity samples that contain a fine, discrete, 
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haematized vein within unaltered matrix, and higher porosity - lower sonic velocity samples 

that failed along haematized veins within haematized matrix.  

 

Many of the faults and fractures present in the Borrowdale Volcanic Group are altered and 

haematized and many of the core breaks, a result of drilling disturbance are also haematized. 

Hence, it is important to identify zones of altered, veined and, in particular, haematized zones 

and haematized veins and to understand their effect on the strength of intact rock specimens 

and the rock mass. 

 

The findings of this study agree with those of the McCann et al. (1990) in that the use of 

geophysical properties of rock to predict mechanical properties can only be done in general 

terms to give an indication of the variation of the property. No attempt should be made to 

obtain precise values of uniaxial compressive strength from sonic velocity determinations, 

though rock types could be classified qualitatively.  

 

This study included those samples that were successfully prepared. Of the samples selected 

from these three boreholes nineteen failed prior to sample preparation, sixteen failed during 

preparation and two failed during non-destructive testing. Most of these samples were from 

altered rocks and some from fault zones. These samples were weak and likely to have had 

higher effective porosity and lower sonic velocity or contain a haematized vein. Hence, as 

with many laboratory studies of rock, there is a bias towards stronger rocks, as these are the 

samples that are successfully cored, prepared and tested. 

 

CONCLUSIONS 

The laboratory measurement of two hundred and seventy seven effective porosity, two 

hundred and sixty one saturated sonic velocity and one hundred and sixty one saturated 

uniaxial compressive strength on intact specimens from the Borrowdale Volcanic Group of 

Sellafield Boreholes 2, 4 and 5 showed that a majority had low to very low effective porosity, 

high sonic velocity and were ‘very strong’ to ‘extremely strong’. However, a proportion of 

the values were of higher effective porosity, lower sonic velocity and lower strength.  

 

Bivariate analysis showed that the sonic velocity increased with decreasing effective porosity 

when the effective porosity was greater than about 0.3%. Below 0.3% the sonic velocity was 

fairly constant (about 6.1 to 6.3 km/s). The analysis of sonic velocity and uniaxial 
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compressive strength showed a wide range of uniaxial compressive strength at higher sonic 

velocities. Uniaxial compressive strength varies considerably at low effective porosities (less 

than about 2%). Variation of the uniaxial compressive strength at high sonic velocities and 

low effective porosities was probably due to structural differences between samples. The 

failure type of each uniaxial compressive strength test specimen was classified based on the 

material that failed. The strongest rocks tended to fail through the rock matrix, and the 

weakest rocks tended to fail through haematized material or along haematized veins. 

Effective porosity and sonic velocity could not distinguish between those samples that failed 

through the matrix and those that failed along discrete narrow veins. The presence of narrow 

haematized veins has a major effect on the intact rock strength. 
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 Table 1. Borehole data and stratigraphy. 

  Borehole 2 Borehole 4 Borehole 5 

  Depth m above ground level Depth m above ground level Depth m above ground level 

National grid reference (NY) 305543 503412 (NY) 305639 503457 (NY) 305170 503872 

Latitude, Longitude 54° 25 03N, 3° 27 20W 54° 25 05N, 3° 27 15W 

54° 25 18N, 3° 27 

22W 

        

Fleming Hall Formation  -401.54 to -878.35  -337.05 to -856.64  -403.51 to -805.40 

   Longlands Farm Member  -401.54 to -757.59  -337.05 to -720.13  -403.51 to -571.75 

   Unnamed Member  -757.59 to -764.59  -720.13 to -735.77  -571.75 to -583.30 

   Sides Farm Member Not present Not present  -583.30 to -651.10 

   Town End Farm Member  -764.59 to 812.48  -735.77 to -856.13  -651.10 to -805.40 

        

Brown Bank Formation  -812.48 to -1000.33  -856.25 to -982.86  -805.40 to -850.83 

        

Bleawath Formation  -1000.33 to -1414.57  -982.86 to -1254.00 base  -850.83 to -1254.00 base 

        

Broom Farm Formation  -1414.57 to -1425.96     

        

Moorside Farm Formation  -1427.95 to -1604.00 base     

        

Intrusive rocks  -773, -1028, -1193, -1223  -443.5, -662.5,   -763.2 to -766.7 

    -713.7 to -720.1   

     -846.64 to -851.96   
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Table 2. Basic statistical data 

Parameter Number 

of values 

Minimum Maximum Mean Percentiles 

1 2.5 10 25 50 75 90 97.5 99 

              

Effective porosity (%) 277 0.01 15.7 0.98 0.03 0.05 0.10 0.17 0.51 1.23 2.44 3.79 4.76 

U.C.S. (MPa) 177 6.1 469.6 139.8  29.1 46.3 84.0 122.3 189.7 224.1 290.0  

Sonic velocity (km/sec) 261 3.4 6.39 5.69 4.76 4.59 4.97 5.37 5.84 6.11 6.19 6.24 6.29 

 

Table 3. Regression and correlation results 

 

x y sample size Equation form a b Regression coefficient 

    n       r
2
 

       

Effective porosity Sonic velocity 256 y = aLog10(x) + b 0.78 5.428 0.750 

Effective porosity Sonic velocity 256 y=ax
b
 5.4008 -0.0615 0.722 

Effective porosity Sonic velocity 256 y=ae
bx

 5.974 -0.0557 0.703 

Sonic velocity  U.C.S. 142 y=ae
bx

 0.783 0.882 0.533 

Sonic velocity  U.C.S. 142 y=ax
b
 0.292 4.79 0.531 

Effective porosity U.C.S. 144 y=ae
bx

 159.52 -0.291 0.534 

Effective porosity U.C.S. 144 y=ax
b
 90.82 -0.363 0.501 

 


