
Efficient Development of Parallel NLP Applications

Prateek Jindal Dan Roth L.V. Kale
Dept. of Computer Science, UIUC
{jindal2,danr,kale}@illinois.edu

Abstract
Parallel programming is becoming increasingly popular.
Computers have increasingly many cores (processors). Also,
large computer-clusters are becoming available. But there is
still no good programming framework for these architec-
tures, and thus no simple and unified way for NLP applica-
tions to take advantage of the potential speed up. In this pa-
per, we develop a broadly applicable parallel programming
method to NLP problems. Our work is in distinct contrast to
the tradition of designing (often ingenious) ways to speed up
a single algorithm at a time. Specifically, we show how the
problems which can be expressed in LBJ framework [13]
take advantage of parallelization. We use Charm++ [7] to
demonstrate the speed up of NLP applications.

1. Introduction
This paper describes a way to facilitate the development
of natural language applications in parallel. Natural lan-
guage applications are computation-intensive. With increas-
ing availability of the resources for parallel computing (mul-
ticore desktops and computer-clusters), it is natural to use
these resources to solve the NLP problems. Unfortunately,
when one starts developing natural language applications in
parallel, one is fraught with many difficulties as described
below.

Today’s NLP systems are growing more complex with
the need to incorporate a wider range of language resources
and more sophisticated statistical methods. In many cases, it
is necessary to learn a component with input that includes
the predictions of other learned components or to assign si-
multaneously the values that would be assigned by multi-
ple components with an expressive, data dependent struc-
ture among them. As a result, the design of systems with
multiple learning components is inevitably quite technically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH 2010 Workshop on Concurrency for the Application Programmer October
18, Reno
Copyright c© 2005 ACM [to be supplied]. . . $10.00

complex, and implementations of conceptually simple NLP
systems can be time consuming and prone to error.

So, we see that developing NLP applications is hard. De-
veloping parallel NLP applications is harder. There are a
number of steps involved in creating a parallel algorithm
(e.g. task decomposition, mapping and taking care of com-
munication / synchronization issues). None of these steps
are necessary for a sequential program. Not only are there
additional steps involved when creating parallel programs,
but these steps are very prone to errors. If the wrong task-
decomposition is chosen, you might not see any performance
increases from parallel programming. Also, there is lack of
knowledge of parallel programming systems among the ap-
plication programmers. Parallel programming is not yet the
mainstream. The languages used for parallel programming
are often on a very low level, as communication or synchro-
nization operations need to be managed by the programmer.
Testing parallel programs is even trickier. Bug can be in 2
places. Either the algorithm is faulty or there may be syn-
chronization problems. Another aspect is the lack of good
libraries. Programming becomes way easier, when the pro-
grammer can rely on powerful libraries to encapsulate com-
plex behavior. Parallel programming libraries to facilitate the
development of NLP applications are largely missing.

In this paper, we address both types of difficulties - dif-
ficulties due to complex NLP systems and difficulties due
to parallel computing. We use LBJ ([13]) and Charm++
([7]) to develop parallel NLP systems. LBJ is a framework
for developing natural language applications. LBJ has al-
ready been used to build state of the art NLP systems (e.g.
[12]). Charm++ is a parallel programming paradigm that we
use to add the capabilities of parallel programming in LBJ.
The programs written in Charm++ can run efficiently on
both multicore desktops and computer-clusters without any
change. Charm++ has already been very successful in de-
veloping numerous parallel applications (e.g. NAMD, Ope-
nAtom etc.). Thus, by integrating Charm++ with LBJ, we
show how NLP programmers can use the increased compu-
tational power without having to deal with the complexity of
parallel computing.

We make three major contributions through this paper.
First, we describe a framework for developing parallel NLP
applications which doesn’t require the NLP programmer to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/18619201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

deal with any parallel programming issues. Second, the par-
allel NLP applications written using this framework run on
both multicore desktops and computer-clusters. Third, LBJ
provides a very rich library for developing NLP applications.
So, now the parallel NLP applications can also make use of
this rich library.

This paper is organized as follows. Section 2 presents
the related work. Section 3 & 4 describe the main features
of LBJ and Charm++ respectively. In Section 5, we show
through an example how Charm++ can be integrated into
LBJ. Section 7 shows the performance results of a case-study
for parallelizing a learning algorithm (one of the components
of LBJ) using Charm++. Finally, we conclude in Section 8.

2. Related Work
There have been several attempts in the past to parallelize
NLP applications. Elsayed et al. presents a MapReduce al-
gorithm for computing pairwise document similarity in large
document collections. Brants et al. [2] report the benefits of
large-scale statistical language modeling in machine trans-
lation using map-reduce. A distributed infrastructure is pro-
posed which is used to train on up to 2 trillion tokens, result-
ing in language models having up to 300 billion n-grams.
Das et al. [3] describes an approach to collaborative filtering
for generating personalized recommendations using map-
reduce for users of Google News. Kazama et al. [8] propose
using large-scale clustering of dependency relations between
verbs and multiword nouns (MNs) to construct a gazetteer
for named entity recognition (NER). They use MPI for par-
allelization. We see that most of the systems to parallelize
NLP applications use map-reduce paradigm for paralleliza-
tion. This necessitates the application to be specified in terms
of map-reduce framework. Our system is more general be-
cause it does not place such restrictions on the application.
Another major limitation of the above approaches is that they
are very specific in their scope. However, LBJ is a very ex-
pressive modeling language that can express a number of
NLP problems. Thus, our parallelization techniques benefit
a very broad range of NLP problems.

3. Introduction to LBJ
Many software systems are in need of functions that are
simple to describe but that no one knows how to implement.
Recently, more and more designers of such systems have
turned to machine learning to plug these gaps. Given data, a
discriminative machine learning algorithm yields a function
that classifies instances from some problem domain into one
of a set of categories. For example, given an instance from
the domain of email messages (i.e., given an email), we may
desire a function that classifies that email as either “spam”
or “not spam”. Given data (in particular, a set of emails
for which the correct classification is known), a machine
learning algorithm can provide such a function. We call

systems that utilize machine learning technology learning
based programs.

Modern learning based programs often involve several
learning components (or, at least a single learning compo-
nent applied repeatedly) whose classifications are dependent
on each other. There are many approaches to designing such
programs; here, we focus on the following approach. Given
data, the various learning components are trained entirely
independently of each other, each optimizing its own loss
function. Then, when the learned functions are applied in
the wild, the independent predictions made by each function
are reconciled according to user specified constraints. This
approach has been applied successfully to complicated do-
mains such as Semantic Role Labeling.

Learning Based Java is a modeling language for the rapid
development of software systems with one or more learned
functions, designed for use with the JavaTM programming
language. LBJ offers a convenient, declarative syntax for
classifier and constraint definition directly in terms of the ob-
jects in the programmer’s application. With LBJ, the details
of feature extraction, learning, model evaluation, and infer-
ence are all abstracted away from the programmer, leaving
him to reason more directly about his application.

The LBJ compiler accepts the programmer’s classifier
and constraint specifications as input, automatically generat-
ing efficient Java code and applying learning algorithms (i.e.,
performing training) as necessary to implement the classi-
fiers’ entire computation from raw data (i.e., text, images,
etc.) to output decision (i.e., part of speech tag, type of rec-
ognized object, etc.). The details of feature extraction, model
evaluation (i.e., evaluating the function that the learning al-
gorithm returned), and inference (i.e., reconciling the pre-
dictions in terms of the constraints at runtime) are abstracted
away from the programmer.

A classifier may be defined by:

• coding it explicitly in Java,
• using operators to build it from existing classifiers, or
• identifying feature extraction classifiers and a data source

to learn it over.

Under the LBJ programming philosophy, the designer of
a learning based program will first design an object oriented
internal representation (IR) of the application’s raw data us-
ing pure Java. A classifier is then any method that produces
one or more discrete or real valued classifications with re-
spect to a single object from the programmer’s IR. Using
LBJ, these classifications are easily interpretable either at
face value as the application requires or as features amenable
for input to a learning algorithm. Learning algorithms are
employed to create learning classifiers, which are classifiers
that can change their representation with experience. Once
the LBJ compiler has generated these representations from
their specifications and user supplied training objects, the ap-
plication, written in pure Java, simply invokes any classifier

on an IR object just like any other method. Programming
with LBJ, the practitioner reasons in terms of his data di-
rectly, disregarding the cumbersome implementation details
of feature extraction and learning.

LBJ is supported by a library of interfaces and classes
that implement a standardized functionality for features and
classifiers. The library includes learning and inference algo-
rithm implementations, general purpose and domain specific
internal representations, and domain specific parsers.

The LBJ compiler also operates similarly to a makefile.
When changes are made to one or more supporting classi-
fiers, the compiler only re-trains those learned classifiers that
were affected by the changes.

LBJ has been used to develop several state-of-the-art
NLP systems. The LBJ POS tagger reports a competitive
96.6% accuracy on the standard Wall Street Journal corpus.
In the named entity recognizer of [12], non-local features,
gazetteers, and wikipedia are all incorporated into a sys-
tem that achieves 90.8 F1 on the CoNLL-2003 dataset, the
highest score we are aware of. Finally, the co-reference reso-
lution system of [1] achieves state-of-the art performance on
the ACE 2004 dataset while employing only a single learned
classifier and a single constraint.

4. Introduction to Charm++
Charm++ [7] is an object-oriented asynchronous message
passing parallel programming paradigm. By programming
paradigm, we mean Charm++ is a way of writing a program
(a programming model). Charm++ is not a programming
language in and of itself. Instead, Charm++ uses the C++
programming language as it’s base language. Charm++ adds
additional functionality and structure on top of C++ that
allows the programmer to solve the problem at hand. In
Charm++, there are special objects called chares which are
used for communication among different processes. Each
chare object may contain some state (i.e. data), send and
receive messages, and will perform some task in response
to receiving a message (that is, execute a special member
function called an entry method).

4.1 A Charm++ Program
At a high-level, from the programmer’s perspective, a Charm++
program is simply a collection of chare objects. Each chare
object has some state associated with it. The chare objects
communicate by sending messages to one another. When a
particular chare object receives a message, it will execute an
entry method to processes the message. This entry method
may perform one or more operations/calculations, it may
send more messages to other chare objects, it may buffer the
contents of the message for later processing, or it may do
nothing at all. This is how forward progression is made in
the overall application. One chare sends a message to an-
other chare, the receiving chare does some computation and
then sends out more messages to other chares, and so on, and

so on. Execution begins with a special chare called the main
chare (similar to how execution of a C++ program begins
with the execution of a special function called main).

Figure 1. Charm user view.

4.2 Charm++ Runtime System
When a programmer writes a Charm++ application, they
write it in terms of chare objects and how the chare objects
communicate with one another through method invocation
(or message passing). Details such as the number of pro-
cessors, types of processors, type of interconnect, and so on
are not considered. The programmer simply writes the ap-
plication as a collection of interacting objects. This view of
a Charm++ application is referred to as the user’s view of a
Charm++ application (see Figure 1).

Figure 2. Charm system view.

Alternatively, when the application is actually compiled
there is a specific target platform including type of proces-
sor, type of interconnect, and so on. Additionally, when the
application is executed, there is a specific set of physical re-
sources that are made available to the application such as
the number of physical processors, and so on. The purpose
of the Charm++ Runtime System is to manage as many of
the details of the physical resources on behalf of the applica-
tion, and thus, on behalf of the programmer. This view of the
Charm++ application is referred to as the system’s view of a
Charm++ application (see Figure 2). Management decisions
that the Charm++ Runtime System can make on behalf of
the application include (but are not limited to):

Mapping Chare Objects to Physical Processors Through
various methods, the Charm++ Runtime System can as-
sign the chare objects to physical processors.

Load-Balancing Chare Objects The Charm++ Runtime
System can dynamically migrate chare objects between
physical processors as the application executes allowing
the application to utilize the physical processors more
efficiently.

Routing of Messages As chare objects are assigned to phys-
ical processors and migrated between physical proces-
sors, the Charm++ Runtime System keeps track of where
the chare objects live. Messages being sent to a chare
object are dynamically routed to the physical processor
containing the chare object.

Checkpointing Because the Charm++ Runtime System,
through the use of PUP Routines, can migrate a chare
object’s state between physical processors, checkpoint-
ing is fairly trivial. The Charm++ Runtime System can
simply migrate all of the chare objects’ states to disk.

Fault-Tolerance If a physical processor is experiencing
problems or has already crashed, the Charm++ Runtime
System can dynamically recreate the chare objects on
the failed physical processor on the remaining physical
processors.

Dynamic Re-Allocation of Physical Resources A cluster
being used to execute a Charm++ application may sud-
denly receive more jobs (or have several jobs finish).
The Charm++ Runtime System can dynamically migrate
chare objects from (or to) physical processors allowing
the application to dynamically shrink to use fewer phys-
ical processors (or expand to use more physical proces-
sors) based on the cluster’s overall load.

Each processing element has its own Charm++ Runtime
System running on it. The various instances of the Charm++
Runtime Systems are responsible for their local processing
element. They may also communicate with one another for
collective operations (such as checkpointing, fault-recovery,
load-balancing, and so on).

Charm++ has been successfully used for the paralleliza-
tion of numerous applications.

• NAMD - Molecular Dynamics [11]
• ChaNGa - Computational Cosmology [5]
• OpenAtom - Ab Initio Molecular Dynamics [15]
• LeanMD - Protein Folding Peta-Flop class machines [10]
• Rocket Simulation
• Computational Science and Engineering (CSE) Applica-

tions

4.3 Tools
Several tools are available to facilitate the programming with
Charm++ as listed below:

• Projections: Performance analysis tool.
• Faucets: Job submission tool.

• CharmDebug: Debugging tool for Charm++ programs.
• BigSim - Simulating PetaFLOPS Supercomputers
• BigNetSim - Parallel InterConnection Network Simula-

tion

5. Integration of LBJ with Charm++
LBJ helps to develop NLP applications by providing an easy
way to develop and use classifiers as features. In addition
to the simple, hard-coded classifiers that come packaged
with LBJ, a constantly growing suite of learned classifiers is
available. These classifiers can be imported into LBJ or Java
source code, and used just like methods. Figure 3 shows the
syntax for learning classifier expressions.

Table 1 shows some of the NLP applications that have
been developed using LBJ. All these applications require the
training of classifiers.

Learning classifiers can be computationally very expen-
sive. Classifiers are trained over some training data. This
training data can contain millions of training examples.
Also, classifiers features can themselves number in millions.
Most of the learning algorithms that are used to train clas-
sifiers need to take multiple rounds on the training data for
learning accurate models. Long learning times for training
classifiers significantly hurts the efficiency of application
developers. It is also irritating for the application users.

Using Charm++, we provide a way of learning classifiers
efficiently using multicore-desktops and computer-clusters.
The application programmer using LBJ simply needs to
specify that he would like to use the parallel version of the
classifier. It automatically invokes the Charm++ Runtime
system which trains the classifier in parallel and stores the
learned model in a file. This learned model can subsequently
be used in the application to make classifications.

Next section demonstrates the parallelization of a learn-
ing algorithm using Charm++. The learning algorithm cho-
sen is called Liblinear [4].

6. Parallel Liblinear
LBJ provides a number of learning algorithms to train classi-
fiers. These learning algorithms include Perceptron, Average
Perceptron, Winnow, Stochastic Gradient Descent, Naive
Bayes, Liblinear etc. Here, we focus on Liblinear to study
the performance gains obtained by parallelization. It is a
novel dual coordinate descent method for linear SVM with
L1- and L2-loss functions. Liblinear has been shown to be
much faster than state of the art solvers such as Pegasos [14],
TRON [9], SVMperf [6], etc.

Support Vector Machines (SVMs) are useful for data
classification. Given a set of instance-label pairs (xi, yi), i =
1, ..., l, xi ∈ Rn; yi ∈ −1, +1, SVM requires the solution
of the following unconstrained optimization problem:

Table 1. NLP applications developed using LBJ
Application Description
Illinois Part of Speech Tagger This is an implementation of our SNoW-based POS tagger for use with LBJ.
Illinois Chunker A classifier that partitions plain text into sequences of semantically related words, indicat-

ing a shallow (i.e., non-hierarchical) phrase structure.
Illinois Coreference A Coreference Resolver, based on LBJ, trained on the ACE 2004 corpus.
Illinois Named Entity Tagger This is a state of the art NE tagger that tags plain text with named entitites (people /

organizations / locations / miscellaneous). It uses gazetteers extracted from Wikipedia,
word class model derived from unlabeled text and expressive non-local features. The best
performance is 90.8 F1 on the CoNLL03 shared task data.

> learn [classifier-expression] // Labeler
> using classifier-expression // Feature extractors
> [from instance-creation-expression [int]] // Parser
> [with instance-creation-expression] // Learning
algorithm
> [evaluate Java-expression] // Alternate eval method
> [cval [int] split-strategy // K-Fold Cross Validation
> [alpha double] // Confidence Parameter
> [testingMetric
> instance-creation-expression]] // Testing Function
> [preExtract boolean] // Feature Pre-Extraction
> [progressOutput int] // Progress Output Frequency
> End

The first classifier expression represents a classifier
that will provide label features for a supervised learning
algorithm. The classifier expression in the using clause
does all the feature extraction on each object, during both
training and evaluation. When the from clause appears,
the LBJ compiler retrieves objects from the specified
parser until it finally returns null. The instance creation
expression in the with clause should create an object of
a class derived from the LBJ2.learn.Learner class in the
library.

Figure 3. Syntax for learning classifier expressions.

minw
1
2
wT w + C

l∑

i=1

ξ(w;xi, yi) (1)

where ξ(w; xi, yi) is a loss function, and C > 0 is a
penalty parameter. The above problem is often referred to as
the primal form of SVM. Liblinear solves the dual version
of the problem:

minαf(α) =
1
2
αT Qα− eT α (2)

subject to 0 ≤ αi ≤ U,∀i
where Q = Q + D, D is a diagonal matrix, and Qij =

yiyjx
T
i xj .

6.1 Working of Liblinear

Algorithm 1 A dual coordinate descent method for Lin-
ear SVM

1: Given α and the corresponding w =
∑

i yiαixi

2: while α is not optimal do
3: for i ∈ {1, 2, . . . , l} do
4: G = yiW

T xi − 1 + Diiαi

5: PG =





min(G, 0) if αi = 0,
max(G, 0) if αi = U,

G if 0 < αi < U.
6: if |PG| 6= 0 then
7: αi ← αi

8: αi ← min(max(αi −G/Qii, 0), U)
9: w ← w + (αi − αi)yixi

10: end if
11: end for
12: end while

Liblinear algorithm [4] is described in Algorithm 1. The
optimization process starts from an initial point α0 ∈ Rl and
generates a sequence of vectors αk∞

k=0. Hsieh et al., 2008
refer to the process from αk to αk+1 as an outer iteration.
In each outer iteration, there are l inner iterations, so that
sequentially α1, α2, . . ., αl are updated. Each outer iteration
thus generates vectors αk,i ∈ Rl, i = 1, . . . , l + 1, such that
αk,1 = αk, αk,l+1 = αk + 1, and

αk,i = [αk+1
1 , . . . , αk+1

i−1 , αk
i , . . . , αk

l]T ,∀i = 2, . . . , l. (3)

6.2 Limitations of Liblinear
Although Liblinear is able to efficiently learn the linear clas-
sifiers, it doesnt scale well for very large problem sizes. Li-
blinear stores all the training vectors into the memory as
¡Feature, Value¿ pairs. As a result, Liblinear requires the
memory space which increases linearly with the size of the
dataset. Figure 4 shows the memory consumed by Liblin-
ear as a function of the training data size. The total number
of features used in this experiment was 100,000. As we in-
crease the number of training vectors from 2000 to 20,000,
the memory requirements increase from 0.74 GB to 7.4 GB.
So, it is clear that we cant use Liblinear for training very
large datasets.

���
���
���

�	 �	 ��	 ��	

��
�� �
������ ���� �� �������� ���
��!"#$%& '$()*#"+ ,-./ 0)1%23(3(4 5"67$%)

Figure 4. Limitations of Liblinear.

6.3 Scaling Liblinear to very large datasets
One solution to overcome the problem of insufficient mem-
ory is to use the disk space. We note that in each inner iter-
ation, Liblinear needs the weight vector and 1 training vec-
tor. Thus, we can swap the training vectors into and out of
memory alternately and thus use only a constant amount of
memory. But the problem here is that the Liblinear needs
all the training vectors for every outer iteration. This would
lead to a lot of swaps into and out of memory and thus would
be very inefficient. An alternative solution is to use multiple
processors in parallel.

We have implemented 2 solutions to using multiple pro-
cessers. Each of the solutions is described below.

Figure 5. Solution 1.

6.3.1 Solution 1
In the first solution, we implemented the exact version of
Liblinear in parallel. Figure 5 shows the schematic view

of parallel liblinear. This figure shows that we maintain a
set of processes. Each of the processes is responsible for a
subset of the data. In each outer iteration of Liblinear, we
see that the entire training set is scanned once. The training
vectors are considered one by one in the inner iterations.
Each inner iteration updates the weight vector. The next
iteration uses the modified weight vector. This makes the
exact implementation inherently sequential.

The master process initializes the weight vector to zero. It
sends the weight vector to the first process. This process runs
one outer iteration on its part of the training set. The modi-
fied weight vector is passed on to 2nd process. In this way,
the weight vector is passed along the chain of processes.
Along with the weight vector, we also pass the maximum
and the minimum projected gradient that has been obtained
so far. The last process in the chain passes the weight vector
back to the master process. The master process keeps track
of the total number of iterations that have executed so far.
From the maximum and minimum projected gradient, the
master process determines whether the required convergence
has been reached or not according to the following relation:

if (PGmax - PGmin) ≤ eps then stop.

where eps is provided by the user. A value of 0.1 is good
for most purposes. The problem with the exact implemen-
tation is that only one of the processes is active at any mo-
ment. But it solves the problem of insufficient memory by
distributing the training set among different processors.

Figure 6. Solution 2.

6.3.2 Solution 2
To improve the resource utilization of parallel Liblinear, we
modified the above version by training the different parts of
the dataset concurrently. Figure 6 shows the schematic view
of this implementation. In this implementation, we divide
the training set among different processes as in the previous
solution. But, the master process doesnt send the weight

vector to process 1 as in the previous solution. Instead,
the master process broadcasts the weight vector to all the
processes. Now, each of the processes carries out one outer
iteration on its part of the training set concurrently. After one
outer iteration, all the processes send their weight vector to
the master process. The master process computes the new
weight vector from the received weight vectors according to
the following equation:

wt+1 =
∑

i

(wt+1
i)/N

where wt+1
i is the weight vector output by ith process at

the end of tth iteration. And wt+1 is the weight vector to be
broadcasted to all the processes at the beginning of (t+1)th

iteration. As in the previous solution, all the sub-processes
also send their maximum and minimum projected gradient to
the master process. The master process determines whether
the convergence has been reached or not by using maximum
and minimum projected gradients as in the previous solution.
If the convergence has not been reached yet, the weight
vector is broadcasted again and the process continues until
convergence.

7. Results
Next, we compare the convergence behavior of the 2 paral-
lel solutions to Liblinear. The machine used for these exper-
iments had the following characteristics:

CPU: Intel Xeon 2.00 GHz 8-core
Memory: 5 GB
Processors Used for Experiments: 4

0 200 400 600 800 1000
−6

−5

−4

−3

−2

−1

0

1
Figure showing the convergence behavior of 2 parallel solutions

Iterations

lo
g

(P
G

m
ax

 −
 P

G
m

in
)

solution 1
solution 2

Figure 7. Convergence behavior of two parallel solutions.

Table 2 shows the characteristics of the datasets used
in the experiments. We trained both versions of parallel
Liblinear on these datasets. Figures 7 and 8 above show the
convergence behavior of the 2 solutions. The steeper descent

0 100 200 300 400 500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Figure showing the convergence behavior of 2 parallel solutions

Iterations

lo
g

(P
G

m
ax

 −
 P

G
m

in
)

solution 1
solution 2

Figure 8. Convergence behavior of two parallel solutions.

Table 2. Characteristics of the datasets used for experiments
Features Training

Vectors
Non-zero
Elements

Dataset 1 10,000 4000 20,000,000
Dataset 2 2,000 8,000 8,000,000

indicates the faster convergence. We find that solution 1
converges faster for 1st dataset. For 2nd dataset, both the
solutions converge almost equally fast. These figures reveal
that both the solutions have good convergence properties.
Table shows the time taken by 2 parallel implementations.
We find that 2nd implementation is about 2.6 times faster
than the first.

Table 3. Comparison of time taken (in seconds) by two
parallel implementations

Solution 1 Solution 2
Dataset 1 196 75
Dataset 2 39 15

8. Conclusions
Natural Language Processing is a challenging task. To deal
with the complexity of natural language, todays NLP sys-
tems incorporate a wider range of language resources and
more sophisticated statistical methods. NLP systems can
derive great benefits from parallel computing which is be-
coming increasingly popular. In this paper, we have shown
how to integrate parallel programming techniques into LBJ,
which can be used to express a wide variety of NLP prob-
lems. LBJ provides a very rich library to help in developing
NLP applications. Our solution enables the parallel NLP ap-
plications to use this rich library. Specifically, we presented
a parallel version of a learning algorithm which can run

both on multicore-desktops and computer clusters. We also
demonstrated the convergence results of the parallel learning
algorithm.

References
[1] E. Bengtson and D. Roth. Understanding the value of features

for coreference resolution. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages
294–303. Association for Computational Linguistics, 2008.

[2] T. Brants, A. Popat, P. Xu, F. Och, and J. Dean. Large
language models in machine translation, June 22 2007. US
Patent App. 11/767,436.

[3] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In
Proceedings of the 16th international conference on World
Wide Web, page 280. ACM, 2007.

[4] C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sundararajan. A
dual coordinate descent method for large-scale linear SVM. In
Proceedings of the 25th international conference on Machine
learning, pages 408–415. ACM, 2008.

[5] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R.
Quinn. Scaling Hierarchical N -body Simulations on GPU
Clusters. In Proceedings of the ACM/IEEE Supercomputing
Conference 2010 (to appear), 2010.

[6] T. Joachims. Training linear SVMs in linear time. In Pro-
ceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, page 226. ACM,
2006.

[7] L. V. Kale and G. Zheng. Charm++ and AMPI: Adaptive Run-
time Strategies via Migratable Objects. In M. Parashar, edi-
tor, Advanced Computational Infrastructures for Parallel and
Distributed Applications, pages 265–282. Wiley-Interscience,
2009.

[8] J. Kazama and K. Torisawa. Inducing gazetteers for named
entity recognition by large-scale clustering of dependency
relations. Proceedings of ACL-08: HLT, pages 407–415, 2008.

[9] C. Lin, R. Weng, and S. Keerthi. Trust region Newton method
for logistic regression. The Journal of Machine Learning
Research, 9:627–650, 2008.

[10] V. Mehta. LeanMD: A Charm++ framework for high per-
formance molecular dynamics simulation on large parallel
machines. Master’s thesis, University of Illinois at Urbana-
Champaign, 2004.

[11] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:
Biomolecular simulation on thousands of processors. In Pro-
ceedings of the 2002 ACM/IEEE conference on Supercomput-
ing, pages 1–18, Baltimore, MD, September 2002.

[12] L. Ratinov and D. Roth. Design challenges and misconcep-
tions in named entity recognition. In CoNLL ’09: Proceed-
ings of the Thirteenth Conference on Computational Natural
Language Learning, pages 147–155, Morristown, NJ, USA,
2009. Association for Computational Linguistics. ISBN 978-
1-932432-29-9.

[13] N. Rizzolo and D. Roth. Learning Based Java for Rapid
Development of NLP Systems. In Proceedings of the Inter-
national Conference on Language Resources and Evaluation

(LREC), Valletta, Malta, May 2010. URL http://l2r.cs.

uiuc.edu/~danr/Papers/RizzoloRo10.pdf.

[14] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal
estimated sub-gradient solver for svm. In Proceedings of the
24th international conference on Machine learning, page 814.
ACM, 2007.

[15] R. V. Vadali, Y. Shi, S. Kumar, L. V. Kale, M. E. Tuckerman,
and G. J. Martyna. Scalable fine-grained parallelization of
plane-wave-based ab initio molecular dynamics for large su-
percomputers. Journal of Comptational Chemistry, 25(16):
2006–2022, Oct. 2004.

