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Abstract 

The objective of this study was the formulation development of polymeric mucoadhesive 

lyophilized wafers as a matrix for potential buccal drug delivery. Differential scanning 

calorimetry (DSC) was used to develop an optimum freeze-cycle, incorporating an annealing 

step. The wafers were prepared by lyophilization of gels containing three polymers, κ-

carrageenan (CAR 911), poloxamer (P407) and polyethylene glycol 600 (PEG 600). The 

formulations were characterised using texture analysis (for mechanical and mucoadhesion 

properties), hydration studies, thermogravimetric analysis (TGA), DSC, X-ray powder 

diffraction (XRPD) and scanning electron microscopy (SEM). DSC showed the eutectic 

temperature (12.8°C) of the system where the liquid solution and pure solids both existed at a 

fixed pressure which helped determine the freeze-annealing cycle at -55°C for seven hours. 

Mechanical resistance to compression, hydration and mucoadhesion studies showed that 

optimized wafers were obtained from aqueous gels containing 2% w/w CAR 911, 4% w/w 

P407 and 4.4% w/w PEG 600. TGA showed residual water of approximately 1% and SEM 

showed a porous polymeric network that made ease of hydration possible.  
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Introduction 

 Current research in many industries (e.g. food and pharmaceutical) has been directed 

towards a new generation of polymeric matrices for systemic drug delivery or topical 

application. Lyophilisation (freeze-drying) has been used in food formulations for a long 

time1 for example lyophilization of soup, coffee and strawberries, avoiding the cold chain 

supply and products can retain their original volume and shape. Pharmaceutical and 

biotechnology industries subsequently began employing the technique to improve the 

stability of protein (enzymes, genes, sera and vaccines) based formulations2-5. The 

fundamental physico-chemical processes occurring during lyophilization are known to 

determine and affect achievement of stable and well-designed lyophilized pharmaceutical 

products5. Though the cost of the specialized equipment employed for lyophilisation can be 

considerably high, it is particularly useful for formulation and storage of thermo-labile 

products. In addition, lyophilized products do not necessarily need to be refrigerated and can 

be stored at ambient temperatures6. 

 The first stage of lyophilization comprises a freezing step where ice crystals form and 

the original solute becomes highly concentrated. As the temperature falls below the glass 

transition temperature of the concentrated frozen solute, the matrix is changed into a viscous 

metastable glass. Incomplete crystallization may lead to sample collapse or formation of 

mixtures of different polymorphic forms that causes problems in reproducible manufacturing 

and characterization7. To overcome this problem, and achieve complete crystallization, 

thermal treatment or “annealing”, is required. Annealing involves warming the sample above 

the Tg (determined through DSC analysis) and maintaining for a given time period (up to 

several hours). This helps to reduce the viscosity and increase the mobility of the solute 

molecules, which prevents premature solute crystallization. However, the final elevated 

temperature should remain below the eutectic or collapse point to avoid ice melting. 
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Temperatures above this point results in the metastable glass becoming fluidised and 

consequently causes movements of the polymer molecules which orient themselves into a 

crystalline lattice to produce a binary eutectic with ice8. The annealing procedure must be 

integrated into the freezing step for all formulations containing one or more crystallisable 

compounds. This increases both solute and ice crystal formation, which reduces the product 

resistance to moisture transfer, faster water vapour transport and shorter primary drying 

times8, 9.  

 Wafers are prepared by lyophilization of aqueous polymer gels to form a porous 

polymeric inter-connecting network10. To obtain an efficient mucosal delivery system, 

swelling and mucoadhesion characteristics must be optimized as they affect functional 

characteristics such as residence time and drug release profiles11. An initial swelling step is 

required for the formation of adhesive forces at the mucosal surface which ultimately results 

in bio (muco)-adhesion12. Different factors affect the functional properties of polymeric 

mucoadhesive drug delivery systems including polymer cross-link density with low cross-

linked polymers exhibiting higher flexibility and hydration, with consequent high degree of 

swelling13.  

 Carrageenan (CAR) is a sulphated natural polymer produced from red seaweed 

commonly employed in the food industry as a thickening agent14, 15. Different grades are 

classified based on the number of sulphate groups present. kappa (κ) CAR (one sulphate 

group), produces a thermo reversible sol-gel in aqueous solution which undergoes dispersion 

following random-coil formation in the sol stage. At low temperature, galactose sequences 

within the carrageenan chains twist in a double helix fashion. The sweet taste of galactose 

may help to mask the bitter taste of some drugs thus avoiding the need for flavouring and 

sweetening agents16. Several sites for hydrogen bonding impart bioadhesive characteristics 

though this could be improved by ionic bond formation between the negatively charged 
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sulphate group and the positively charged mucin present on the buccal mucosa17. Poloxamer 

407 (P407) [HO (C2H4O)101(C3H6O)56(C2H4O)101 H] is a block co-polymer containing 

polyethylene glycol and propylene oxide18. It is a non-ionic surfactant with the ability to 

increase the solubility of drugs (e.g. ibuprofen) with high log P19. Previous studies have 

shown that it exhibits mucosal permeation enhancing properties20. 

 Here, we report on the development and characterisation of polymeric mucoadhesive 

lyophilized wafers from CAR 911, P407 and polyethylene glycol 600 (PEG 600) for potential 

buccal mucosa delivery.  

Methods  

Materials 

 Gelcarin [κ- carrageenan 911 (CAR 911) batch number: 50102070] was a gift from 

BASF and obtained from the UK distributor Honeywill & Stein LTD (Surrey, UK). 

Poloxamer 407 (P407) (batch number: 038k0071) and polyethylene glycol 600 (PEG 600) 

(batch number: 0001409391) were all purchased from Sigma-Aldrich (Gillingham, UK).   

 

Gel preparation 

 Wafers were prepared from aqueous gels containing 1.5-2.5% w/w CAR 911, 4% 

w/w P407 and 0–5.5% w/w PEG 600. The gel was prepared by dissolving P407 in cold water 

(< 15°C), left for two hours, CAR 911 added and kept overnight at room temperature to 

ensure complete hydration. The mixture was heated and continuously stirred using an 

overhead stirrer at 40-50°C. PEG 600 (plasticizer) was added to the gel maintained at 40-

50°C and stirring continued for a further 5-10 min. 10 g of the resulting gel was poured into 

six well plates (diameter 35.4 mm).   
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Thermal annealing (DSC studies) 

 DSC analysis of the gels was conducted with a Q2000 instrument (TA Instruments, 

Crawley, UK) under a dry nitrogen atmosphere. Identification of the gel’s eutectic point (Teu) 

was used to ascertain the maximum temperature to which the gel could be heated during the 

primary drying phase of the lyophilization process. 3-10 mg of gel was loaded into T-zero 

aluminium pans (75 µL), hermetically sealed and cooled initially to -80°C to ensure complete 

freezing of all components and heated from -80°C to 80°C at a rate of 10°C/min and the cycle 

repeated to determine wafer’s stability.  

 

Lyophilization process development 

 Preliminary experiments were conducted by freezing the gel in liquid nitrogen, 

continuing freezing at -55°C and 100 mTorr and eventually the primary drying stage on a 

Heto Power dry LL3000 freeze dryer (Biopharma Process Systems Ltd. Winchester, UK). 

Different cycles with varying time durations (24 up to 96 hours) were attempted, but the 

physical characteristics of the wafers did not meet the required criteria flexibility, plasticity 

and elasticity and thickness. Subsequently, lyophilization cycle development was pursued 

with an AdVantage freeze dryer (Biopharma Process Systems Ltd. Winchester, UK) in 

automatic mode. The freezing, primary and secondary drying cycles were programmed with 

different time periods, temperature and pressure.  

 Further optimization was undertaken using a lyophilization cycle incorporating an 

annealing step in two main ways as follows:  

a. The gel (previously kept at room temperature, 5°C and -5°C for 30 minutes each) was 

slowly cooled (at a rate of between 0.6°C - 1.3°C/minute respectively) to -35°C, 

maintained for 30 minutes, increased to -10°C for 2 hours and returned to the initial 
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temperature of -35°C. Sample was maintained at -35°C for 2 hours and the vacuum pulled 

to initiate primary drying to remove the ice crystals by sublimation. This involved 

increasing the temperature to -10°C for 3 hours, -5°C for 2 hours and finally 0°C for 2 

hours. The secondary drying stage involved heating from 0 to 5°C, maintained for 1 hour 

and consequently heated to 25°C. 

b. Based on the eutectic point (12.8°C) determined from DSC analysis, the gels were cooled 

gradually from room temperature to 5°C, cooled to 0°C and maintained for 40 minutes, 

cooled finally to -55°C and maintained for 1 hour. Annealing was performed by 

increasing the temperature to -35°C for 3 hours to allow adequate time for large ice 

crystal formation. The temperature was returned to -55°C and maintained for 2 hours 

before primary drying was initiated.  

 

 During ice crystal sublimation in the primary drying phase, the temperature was 

increased from -55°C to -10°C and eventually to 0°C (lower than the eutectic point) to 

prevent melt back and preserve the stability of all the components. The whole primary 

drying procedure was 8 hours at -10°C followed by 6 hours at 0°C. To increase the 

stability of wafers at room temperature, secondary drying was performed to further 

reduce residual water content.  

 

Mechanical characterisation 

 Texture analysis was employed to determine the mechanical properties of the wafers 

by measuring resistance to compression profiles. Two sets of experiments were performed to 

determine the optimum amounts of each starting material used to formulate the wafers. The 

preliminary evaluation involved wafers containing different amounts of κ-CAR 911 with or 

without PEG 600 to determine their effect on mechanical strength. The second evaluation 
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involved the effect of the annealing process on textural (mechanical) characteristics of the 

wafers. The instrument employed was a Texture analyser HD-plus (Stable Microsystems, 

Godalming, UK) with Exponent software to plot and display the data. Before compression 

measurements, the thickness of the wafer was measured by micro screw-meter in five 

different areas of each sample (four edges and one in the middle) and the average thickness 

(3.5-3.7 mm) entered into the Exponent software. A 6 mm diameter cylindrical stainless steel 

probe was used to compress the wafers using the following settings: pre-test speed (0.1 

mm/sec); test speed (0.1 mm/sec); post-test speed (1 mm/sec); depth of compression (2 mm), 

trigger force (0.01N); hold time (2 sec); mode (return to start). The area under the curve of 

the force vs distance profiles was calculated.  

 

Thermal analysis (TA) 

(i) Thermogravimetric analysis (TGA) 

 TGA (TA Instruments, Crawley, UK) was used to determine the residual water in the 

wafers and the effect of PEG 600 concentration on the water content of the wafers. 3-10 mg 

was placed in aluminium pans (100 µL), heated from 25°C to 150°C at a rate of 10°C/min 

and weight loss measured using a high resolution TGA 2950 instrument (TA Instruments, 

Crawley, UK).  

(ii)  Differential scanning calorimetry (DSC) 

 This was performed to investigate the stability of the starting materials during the 

lyophilization process. 3-10 mg of wafer was loaded into T zero aluminium pans (75 µL), 

hermetically sealed, cooled to -80°C and heated from -80°C to 180°C at a rate of 10°C/min. 

Samples were cooled again to -80°C, maintained for 5 minutes before heating again to 180°C 

and maintained for 3 minutes to allow complete melting. This process was repeated to 
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investigate the behaviour (stability) of CAR 911, P407 and PEG 600 during the DSC heating 

cycle and also after storage for six months. 

X-Ray powder diffraction (XRPD) 

 XRPD was used to investigate the physical form (crystalline or amorphous) of the 

individual components present in the wafer and to determine any interactions between the 

initial materials which may lead to formation of new crystalline entities. A D8 Advance 

XRPD diffractometer (Bruker, Coventry, UK) equipped with a Lyn X–Iris detector and 6.5 

mm slit size was employed to obtain results in reflection and transmission modes. The 

instrument was set at 40 kV and 40 mA with primary solar slit of 4o and secondary solar slit 

of 2.5 mm with scattered slit of 0.6 mm. Samples were scanned at a speed of 0.02o 2-theta 

step size every 0.1 seconds. Wafers were stored in desiccators over silica for six months and 

re-analysed to determine their stability as in the DSC analysis. 

 

Scanning electron microscopy (SEM) 

 SEM was used to evaluate the topographic characteristics and morphology of the 

wafers. The analyses were carried out using a Jeol Instrument (Japan) with back scattered 

electrons and artificial shadowing ability with uncoated samples at low vacuum (<20 Pa) and 

an accelerating voltage of 20 kV.  

 

Hydration and swelling studies  

 These were conducted to investigate the maximum time to completely hydrate and 

their maximum swelling capacity in two media: 0.9% sodium chloride solution, to mimic 

biological fluids and phosphate buffer (pH=6.2) to mimic salivary pH. The buffer was 

prepared from KH2PO4 and NaOH (0.1 M). Samples were cut to 3×3 pieces, weighed and 

placed in the liquid media (42 mL). Weight changes were measured every 20 minutes for a 
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maximum of 140 minutes till constant weight and weight change versus time plotted. 

Percentage swelling (% weight change) was determined using equation 1 where W0 and Wt 

are the weights of the wafers initially and after swelling at time t respectively. Each data 

point represents the mean (± s.d), of three replicates.  

                                                                                                                                                  
 

In vitro mucoadhesivity studies 

 These were conducted using a 75 mm diameter probe attached to a Texture Analyser-

HD Plus instrument. The wafer was cut to 3×3 cm size and attached to the surface of the 

probe using double sided adhesive tape. A Petri dish containing agar gel equilibrated with 

200 L of buffer solution (pH= 6.2) to simulate pH conditions in the buccal environment was 

employed as the mucosal substrate. The sample was then placed on the agar surface, contact 

maintained for one minute to allow hydration and complete adherence to the surface. The 

Texture Analyser was programmed to work in tension mode to detach the wafer from the 

agar surface using the following settings: target mode (distance); pre-test speed (0.5 mm/sec); 

test speed (0.5 mm/sec); trigger type (auto); trigger force (1N). The maximum force applied 

to separate the sample from the agar substrate was determined.    

 

Results and discussion 

Lyophilization cycle development and wafer characteristics 

 Establishing a suitable thermal profile for the gel was critical for developing an 

optimized lyophilization cycle. Two critical parameters needed to be determined; eutectic 

(Teu) and collapse (Tc) temperatures. Teu defines the crystalline systems detectable by DSC 

and exceeding it during primary drying causes the compound to melt. Generally, Teu 
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determines maximum temperature that the formulated product could be heated during 

primary drying without the loss of structure21. Each formulation has a definitive collapse 

temperature (Tc) beyond which the formulation might be unusable (Figure 1a). Maintaining 

the temperature below the critical limits during freezing or primary drying is essential for 

maintaining an optimum sample during the lyophilization process22.  

 Evaluation of wafers formulated with varying amounts of PEG 600 and κ-CAR 911 

with or without annealing, was conducted according to the following criteria; 

i. Flexibility: wafers must be soft and easy to apply onto the mucosal tissues.   

ii.  Plasticity and elasticity: the wafer should not be fragile and brittle as that affects 

physical and mechanical stability during handling as well as potential contact 

irritation during application.  

iii.  Thickness: an ideal wafer must have optimum thickness (less than 2mm) as 

thickness greater than 2 mm could be inconvenient when applied to the buccal 

mucosal area. Thick wafers also present the possibility of being dislodged by 

tongue and teeth movement. Thickness also affects the rate of hydration and the 

diffusion distance through the resulting swollen gel with significant effects on 

drug release profiles14. 

 Wafers produced with a non-annealing lyophilization cycle showed unacceptable visual 

and physical characteristics due to excessive brittleness. Further, the presence of ice crystals 

within the wafer matrix (Figure 1a) confirmed the necessity of incorporating an optimised 

annealing step which increases porosity by increasing the size of ice crystals. Observation of 

wafers produced with the first freeze-annealing cycle confirmed that the process was not 

suitable due to product collapse (Figure 1b) from melt back and/or incomplete ice removal 

during the primary drying phase. This is because the product temperature must be maintained 

below the Teu to retain interstitial space in the solid phase and make it capable of supporting 
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its own weight after ice removal and preserve the wafer’s structure. Therefore, a different 

lyophilization cycle was developed which was based on the requirement of lower freezing 

and annealing temperature with a consequent increase in cycle time. When gels were cooled 

down to -55°C and annealed by increasing the temperature to -35°C and cooled back to -

55°C, wafers were produced with an acceptable texture and physical properties i.e. flexibility, 

porous structure, without any trace of ice crystals (Figure 1c).  

Pressure conditions were critical during the whole lyophilization process and were 

maintained at 200 mTorr during the freezing stage and was reduced to 50 mTorr during the 

drying stages as the pressure of the chamber should be higher than the pressure in the frozen 

gel. This results in sublimation of the ice crystals from the surface of the frozen gel. The 

primary drying process was conducted by gradual temperature elevation from -10°C to 0°C 

which is at least 10°C less than the Teu while the appropriate pressure condition was applied 

which resulted in significant reduction in water content. During secondary drying, desorption 

occurred and the last traces of water vapour were removed. This stage of freeze drying 

provided heat to maintain the wafers’ at ambient temperature and produce formulations with 

desirable texture and stability during storage. Overall, the optimised lyophilization cycle 

incorporating the annealing step totalled 42 hours and produced porous wafers (Figure 1c) 

with a balance between flexibility and residual water content.   

 

Mechanical properties  

 Figure 2a shows that wafers formulated without PEG 600 were very rigid with very 

high ‘work of compression’ values, suggesting highly strong and brittle characteristics. Non-

annealed wafers were difficult to compress upon application of force (Figure 2b) due to their 

non-porous texture. Therefore, addition of PEG 600 and incorporating an annealing step into 
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the lyophilization cycle significantly impacted upon the mechanical properties of the wafers. 

The results showed that wafers prepared from gels containing 2% w/w CAR 911, 4% w/w 

P407 and 4.4% w/w PEG 600 exhibited optimum mechanical properties (Figure 2a) while the 

other wafers were highly brittle and rigid. Although wafers prepared from gels containing 

1.5% w/w CAR 911, 4% w/w P407 and 3.3% w/w PEG 600 showed similar compression 

profiles, other characteristics showed differences with the formulation of choice (see below).  

 

Thermal analysis  

(i) Thermogravimetric analysis (TGA) 

 The residual water within the wafers produced either by annealing or non-annealing 

process is summarised in Table 1. Water content following lyophilization is typically 

expected between 0.5% and 3%23. The results show that this was considerably higher in non-

annealed wafers as well as in formulations containing higher concentrations of CAR 911 and 

PEG 600, which can be expected owing to the hydrophilic nature of both polymers. Wafers 

prepared from gels containing 2% w/w CAR 911, 4.4 0 % w/w P407 and 4.4% w/w PEG 600 

retained the lowest amount of water and deemed the optimum formulation to assure stability 

over a longer period. High residual water may act as seeds to initiate and accelerate 

crystallization which may cause polymorphism within the system resulting in product 

instability. Water is also an effective plasticizer which significantly depresses the Tg of the 

active compound and excipients by increasing molecular mobility which results in product 

instability including possible melt back during the primary drying stage24. Therefore, 

annealing is a desirable process to develop wafers with lower residual water content and 

potentially a more stable product.  

(ii)  Differential scanning calorimetry (DSC) 
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 The DSC results (Figure 3) for the selected optimised wafer showed three sharp peaks 

(-0.19°C, 39.9°C and 31.48°C) corresponding to PEG 600, P407 and the mixture of these two 

polymers25 respectively. The observed peak for PEG 600 can be attributed to the melting of 

the frozen material obtained following cooling to -80°C during the initial stage of the DSC 

analysis. We have previously showed similar observations of a third entity corresponding to 

the mixture of PEG 600 and P407 due to interactions between the two polymers26. In 

addition, DSC profiles for wafers after six months storage showed similar results which 

confirmed the stability of the polymeric matrix within this time period.  

 

X-ray powder diffraction (XRPD) 

 Figure 4a represents the XRPD diffractograms of the starting materials (CAR 911, 

P407 and PEG 600) indicating amorphous structures for CAR 911 and PEG 600 and 

crystalline structure for P407. Figure 4b shows the diffractogram for wafer freshly prepared 

from aqueous gel containing all three components (2% w/w CAR 911, 4% w/w P407 and 

4.4% w/w PEG 600) with the crystalline molecules attributed to P407. The chemical structure 

of P407 comprises 79% PEG and 21% PPG (polypropylene oxide) and the peaks observed 

were due to PEG crystals from P407 based on its the XRPD library data base. Similar results 

were observed after six months of storage, confirming no significant instability during the 

storage period. The other polymers (CAR 911 and PEG 600) were largely present in 

amorphous form and expected to help improve swelling capacity due to ease of hydration 

through chain relaxation.  

 

Scanning electron microscopy (SEM) 

 Figure 5 (a-f) shows that increasing the concentration of CAR 911 resulted in a 

decrease in the pore size. Larger pores can potentially be occupied by higher amounts of 
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active compounds and also allow faster water ingress which consequently affect the release 

of active compound after drug administration. In addition, this is also dependent on the 

amounts of CAR 911 present as wafers with lower amounts of the polymer are expected to 

swell more slowly and to a lesser extent overall. This however, requires further investigations 

as drug release was not the focus of this report. 

 

Hydration and swelling studies  

 Since the secretion of saliva is 0.3 (ml/min) 26 and the volume of the medium was 42 

(mL) the wafers were immersed for 140 minutes. The results showed that the maximum 

swelling in acidic medium (pH=5.6 for saline solution) (Figure 6a) occurred over a longer 

time period (120 minutes) and the overall swelling capacity was lower in comparison to 

wafers immersed in buffer media (Figure 6b). Wafers placed in buffer solution at pH=6.2 

showed a maximum swelling capacity in 60 minutes that was 300% higher than in saline 

solution. This proved the effect of buffer pH on swelling capacity.  

Following the placement of polymeric wafer matrix in a moist environment (such as the 

buccal mucosa), the swelling process begins by the ingress of water (body fluids). In the early 

stages, water penetrates into the wafer as a consequence of a concentration gradient resulting 

in enhanced mobility of the polymer chains followed by an increase in macromolecular 

mobility at a specific polymer-water concentration. This process is termed polymer chain 

relaxation (hydration). Consequently, the water content and mesh size of the polymer 

network within the formulation increase. The relaxation stage is facilitated when the 

polymer’s Tg is below the temperature of the swelling media15.   

Figure 6a also showed that unplasticized wafers formulated with lower amounts of CAR 

911 showed the fastest rate of swelling and this trend was steady during the entire 

measurement period. The effect of CAR 911 on hydration profiles was more dominant 
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overall. The above observations can be attributed to differences observed in the micro-

structure from the SEM images. According to the SEM results (Figure 5a-5f), increasing 

CAR 911 concentration resulted in wafers with smaller pores and therefore, less capacity for 

water ingress and consequently hydrated to a lesser extent. The highest swelling capacity of 

approximately 1000% and 1300% in saline and buffer solutions respectively was exhibited by 

wafers comprising 1.5% w/w CAR 911 and 4% w/w P407. As noted earlier, addition of PEG 

600, however, decreased the percentage swelling considerably as shown by wafers 

comprising CAR 911 at 2.5% w/w and 5.5% PEG 600 (Figure 6a).  

 

In vitro mucoadhesion studies       

 These were performed to predict the stickiness and ability of the wafers to adhere to 

the buccal mucosal surface. The stickiness factor is defined as the maximum force (N) 

required for detaching the wafer from the surface of the agar, while cohesiveness is defined 

as the distance (mm) the wafer travels to detach from the agar surface. Work of adhesion, 

(energy required to overcome attractive forces between the wafer and agar surface) was 

measured by calculating the area under the force-distance curves. All of these factors 

correlate the mucoadhesion characteristics with the strength of the bonds formed between the 

polymeric matrix and agar during the contact period27. The work of adhesivity and stickiness 

factor were also affected by PEG 600 (Figure 7). Maximum mucoadhesivity was achieved for 

the wafers prepared from gels comprising 2% w/w of κ-CAR 911, 4% w/w P407 and 4.4% 

PEG 600, the same formulation with optimum mechanical characteristics deemed ideal for 

effective application to the buccal mucosa area.  

 Mucoadhesion is also closely related to the swelling index (capacity) since excessive 

hydration and swelling produce a slippery mucilage, which can easily be dislodged from 

mucosal surfaces. The mechanism of mucoadhesion involves an initial contact (bond 
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formation) phase and subsequent consolidation stage. These two stages of the adhesion 

process are affected by reduced physico-chemical interaction between the slippery gel and the 

mucosal substrate28, 29. According to the chemical structure of mucin found on the buccal 

mucosa, the feasibility of hydrogen bond formation with κ-CAR 911 is high. Furthermore, 

formation of dative covalent bonds between the sulphate group in κ-CAR 911 and NH2 

groups in mucin is also expected to result in stronger mucoadhesion forces. Ruiz and Ghaly30 

have also confirmed the ability of CAR tablets to adhere to agar gel surface. Mucoadhesion 

can also be enhanced through van der Waals forces or entanglement between the wafer 

matrix and agar31. The pH at the mucoadhesive interface also affects the adhesion of 

hydrophilic polymers owing to generation of ionisable groups. Since κ-CAR 911 is a 

polyanion and the local pH=6.2 is above the pKa of 6.1, it will be slightly ionized and result 

in enhanced mucoadhesion. Shaikh and co-workers32 stated that “the maximum 

mucoadhesive strength of polyanions is observed around pH 4–5, however, it decreases 

gradually above the pH of 6”. The application of κ-CAR 911 based buccal dosage form in 

media with pH=6.2 is not expected to have a negative impact on mucoadhesion force since 

the pH is not considerably higher than 6.  

 The concentration of PEG 600 directly correlated with the amount of residual water 

within the polymeric matrix. In the presence of higher amounts of PEG 600, the quantity of 

water increased (TGA results) resulting in a slight decrease in the mucoadhesive 

performance33. Therefore, PEG 600 concentration in the system should be kept at the lowest 

optimum level. The overall results also suggest that porosity plays a critical role due to its 

effect on the initial hydration from water ingress, allowing the formation of hydrogen bonds 

required for adhesive interactions between the matrix and the mucosal substrate.    
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Conclusion  

 The development of lyophilised wafers by lyophilization (with thermal annealing) 

gels containing 2% w/w CAR 911 and 4% w/w P407 and 4.4 % w/w PEG 600 with optimum 

physico-mechanical properties has been achieved. This was confirmed by the hydration, 

mucoadhesion and TGA studies. The wafers were stable during six months storage and 

showed optimum swelling and mucoadhesion in conditions simulating those of saliva 

compared with saline, and have potential for buccal mucosa drug delivery.  
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Figure legends 

Figure 1 Digital images of wafers prepared from gels comprising 2% w/w CAR 911 + 4% 

w/w P407 + 4.4% w/w PEG 600 (a) without annealing (b) non-optimised annealing cycle and 

(c) optimised annealing cycle. 

 

Figure 2 Work of compression (N.mm) profiles for wafers produced from gels comprising (a) 

1.5-2.5% w/w CAR 911 + 4% w/w P407 + 0-5.5 % w/w PEG 600 (b) 2% w/w CAR 911 + 

4% w/w P407 + 4.4% w/w PEG 600 produced by annealing or non-annealing cycle.  

 

Figure 3 DSC thermogram of wafer produced from gels containing 2% w/w CAR 911 + 4% 

w/w P407 + 4.4% w/w PEG 600. 

 

Figure 4 XRPD patterns of (a) starting materials (CAR 911, P407 and PEG 600) and (b) 

wafer produced from gels containing 2% w/w CAR 911 + 4% w/w P407 + 4.4% w/w PEG 

600. 

 

Figure 5 SEM images showing the surface morphology of the wafers prepared from gels 

containing (a) 1.5% w/w CAR 911 + 4% w/w P407, (b) 1.5% w/w CAR 911 + 4% w/w P407 

+ 3.3% w/w PEG 600 (c) 2% w/w CAR 911 + 4% w/w P407, (d) 2% w/w CAR 911 + 4% 

P407 + 4.4% PEG 600, (e) 2.5% w/w CAR 911 + 4% w/w P407 and (f) 2.5% w/w CAR 911+ 

4% w/w P407 + 5.5% w/w PEG 600. 

 

Figure 6 Hydration profile showing the % swelling (mean ± s.d. n=3) for the wafer 

containing various concentrations of CAR 911, 4% w/w P407 with or without PEG 600 in (a) 

saline solution and (b) phosphate buffer.  
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Figure 7 Mucoadhesion profiles: work of adhesion (WOA), stickiness and cohesiveness of 

wafers containing different concentrations CAR 911 with or without PEG 600.  

 

 

Table 1 TGA results showing the % water content in xerogels containing varying 

concentrations of the polymers (n=3), mean ± s.d. 

Gel formulation content (w/w) Annealed Non-annealed 

1.5% CAR 911 + 4.0% P407 0.7 ± 0.0 4.7 ± 0.6 

1.5% CAR 911 + 4.0% P407 + 3.3% PEG 600 2.2 ± 1.0 4.3 ± 0.8 

1.5% CAR 911 + 4.0% P407 + 5.5% PEG 600 2.1 ± 1.2 5.3 ± 1.3 

2.0% CAR 911 + 4.0% P407 1.5 ± 0.5 4.7 ± 1.2 

2.0% CAR 911 + 4.0% P407 + 4.4% PEG 600 1.2 ± 0.5 5.3 ± 0.5 

2.0% CAR 911 + 4.0% P407 + 5.5% PEG 600 2.5 ± 1.0 5.4 ± 0.5 

2.5% CAR 911 + 4.0% P407 1.4 ± 0.0 4.5 ± 0.3 

2.5% CAR 911 + 4.0% P407 + 5.5% PEG 600 1.8 ± 0.1 5.8 ± 0.3 

2.0% CAR 911 + 4.0% P407+ 4.4% PEG 600 1.5 ± 0.5 
(freshly prepared) 

--------- 

2.0% CAR 911 + 4.0% P407 + 4.4% PEG 600 1.5 ± 0.8 
(one month storage) 

--------- 
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